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Abstract. We survey most of the known results concerning the Eisenbud-Green-Harris
Conjecture. Our presentation includes new proofs of several theorems, as well as a unified
treatment of many results which are otherwise scattered in the literature. We include a final
section with some applications, and examples.

1. An introduction to the conjecture

A very important problem in Commutative Algebra is the study of the growth of the
Hilbert function of an ideal in a given degree if one knows more than one step of [its]
history, cit. Mark Green [Gre98]. A classical theorem, due to Macaulay [Mac27], answers
this question by providing an estimate on the Hilbert function in a given degree just by
knowing its value in the previous one. This result is very useful, but it is far from being
optimal. For instance, there is no way of taking into account any additional information
about the ideal. The Eisenbud-Green-Harris, henceforth EGH, Conjecture was first raised
in [EGH93, EGH96], and precisely addresses this matter. By effectively using the additional
data that the given ideal contains a regular sequence, it predicts for instance more accurate
growth bounds.

We will now introduce some notation and terminology in order to state the EGH Con-
jecture. Throughout this article, A =

⊕
d>0Ad will denote a standard graded polynomial

ring K[x1, . . . , xn] over a field K, and m = (x1, . . . , xn) its homogeneous maximal ideal.
We consider A equipped with the lexicographic order > induced by x1 > x2 > . . . > xn.
Given polynomials g1, . . . , gs ∈ A, we will denote by 〈g1, . . . , gs〉 the K-vector space gener-
ated by such elements to distinguish it from the ideal that they generate, which we denote
by (g1, . . . , gs). We denote the Hilbert function of a graded module M and its value in d
by H(M) and H(M ; d), respectively. On the set of Hilbert functions we consider the par-
tial order given by point-wise inequality. Recall that a K-vector space V ⊆ Ad is called
lex-segment if there exists a monomial v ∈ V such that V = {u ∈ Ad | u monomial, u > v}.

The classical Macaulay Theorem states that, given any homogeneous ideal I, if one lets
Ld ⊆ Ad be the lex-segment of dimension equal to H(I; d), then Lex(I) =

⊕
d>0 Ld is an

ideal, that we call lex-ideal. In order to take into account that I contains a regular sequence,
we will introduce the so-called lex-plus-powers ideals.

Given an integer 0 < r 6 n, we let a = (a1, . . . , ar) denote an ordered sequence of integers
0 < a1 6 . . . 6 ar, and we call it a degree sequence. We call the ideal a = (xa11 , . . . , x

ar
r ) ⊆ A

the pure-powers ideal of degree a. With any homogeneous ideal I ⊆ A which contains an
ideal f generated by a regular sequence f1, . . . , fr, of degree a = (a1, . . . , ar), we associate
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the K-vector space

LPPa(I) =
⊕
d>0

〈Ld + ad〉,

where Ld ⊆ Ad is the largest, hence unique, lex-segment which satisfies H(I; d) = dimK〈Ld+
ad〉. As Macaulay Theorem proves that Lex(I) is an ideal, the EGH Conjecture predicts that
LPPa(I) is an ideal, which we call the lex-plus-powers ideal associated with I with respect to
the degree sequence a.

Conjecture 1.1 (EGH). Let I ⊆ A be a homogeneous ideal that contains a homogeneous
ideal f generated by regular sequence of degree a. Then LPPa(I) is an ideal.

Observe that the EGH Conjecture is a generalization of Macaulay Theorem, which cor-
responds to the case f = (f1) with respect to any 0 6= f1 ∈ I of degree a1. Just like
lexicographic ideals, lex-plus-powers ideals enjoy several properties of extremality. For ex-
ample, assuming that the EGH Conjecture is true in general, then one can show that the
growth of LPPa(I) in each degree is smaller than that of I. That is, H(mLPPa(I)) 6 H(mI),
see Lemma 2.14. This immediately translates into an inequality β0j(LPPa(I)) > β0j(I) be-
tween minimal number of generators in each degree j. We point out that the more refined
version of such inequality, i.e.,

βij(LPPa(I)) > βij(I) for all i, j,

is currently unknown in general, and goes under the name of LPP-Conjecture, see for instance
[Fra04, Ric04, FR07, MPS08, MM11, CS18].

In the following, it will be useful to have several formulations of the EGH Conjecture,
which we will use interchangeably at our convenience.

An equivalent way of approaching the conjecture is degree by degree: given a sequence
a, for a non-negative integer d we say that a homogeneous ideal I ⊆ A = K[x1, . . . , xn]
satisfies EGHa(d) if there exists an a-lpp ideal J such that dimK(Jd) = dimK(Id) and
dimK(Jd+1) 6 dimK(Id+1). We say that I satisfies EGHa if it satisfies EGHa(d) for all
non-negative integers d. One can readily verify that Conjecture 1.1 holds true if and only
if, for every degree sequence a, every homogeneous ideal containing a regular sequence of
degree a satisfies EGHa, see [CM08].

We conclude this introductory section by recalling a weaker version of the EGH Conjecture,
raised in [EGH96]. Let a = (a1, . . . , an) be a degree sequence, and D be an integer such that

a1 6 D 6
∑n

i=1(ai−1). Let b the unique integer such that
∑b

i=1(ai−1) 6 D <
∑b+1

i=1(ai−1),

and set δ =
∑b+1

i=1(ai − 1)−D + 1 if b < n, and δ = 1 otherwise.

Conjecture 1.2 (Cayley-Bacharach). Let f ⊆ A = K[x1, . . . , xn] be an ideal generated by
a regular sequence of degree a = (a1, . . . , an), and g /∈ f be a homogeneous element of degree
D > a1. Let I = f + (g), and e be the multiplicity of A/I. Then

e 6
n∏

i=1

ai − δ
n∏

i=b+1

ai.

Conjecture 1.2 has been studied by several researchers, from very different points of view;
for instance, see [GKR93, GK13, CDS20a, HLU20]. The validity of the EGH Conjecture in
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the case r = n for almost complete intersections would imply Conjecture 1.2. For an explicit
instance of this, see Example 5.7.

This survey paper is structured as follows: in Section 2 we treat the case when the given
ideal already contains a pure-powers ideal, presenting a new proof of the Clements-Lindström
Theorem. Section 3 is very brief, and collects some statements from the theory of linkage,
together with a result which yields a reduction to the Artinian case. In Section 4 we present
proofs of several cases of the conjecture, previously known in the literature. Finally, in
Section 5 we collect some applications of the techniques and the results illustrated before,
together with several examples.

2. Monomial regular sequences and the Clements-Lindström Theorem

The goal of this section is to prove the Clements-Lindström Theorem [CL69], a more
general version of the Kruskal-Katona Theorem [Kru63, Kat68]. The proof presented here
relies on recovering a strong hyperplane restriction theorem for strongly-stable-plus-powers
and lpp ideals due to Gasharov [Gas98, Gas99], see also [CS16, Theorem 2.2]. Our strategy
uses the techniques of [CK13], and is different from the standard one available in the literature
[CL69, MP06, MP07].

Recall that a monomial ideal J ⊆ A = K[x1, . . . , xn] is called strongly stable if for every
monomial u ∈ J and any variable xi which divides u, one has that x−1i xju ∈ J for all
1 6 j 6 i. The ideal J is said to be a-strongly-stable-plus-powers, a-spp or, simply, spp for
short, if there exist a strongly stable ideal S and a pure power ideal a of degree a such that
J = S + a. Clearly, a-lpp ideals are a-spp.

Theorem 2.1. Let I ⊆ A be a homogeneous ideal that contains a pure-powers ideal a of
degree a. Then

(i) LPPa(I) is an ideal.
(ii) If I is a-spp, then H(I + (xin)) > H(LPPa(I) + (xin)) for all i > 0.

We first prove Theorem 2.1 (i) for n = r = 2. Since strongly stable ideals in two variables
are lex-ideals, a-spp ideals are automatically a-lpp in this case.

We start by recalling a few properties of monomial ideals, which are special cases of more
general results derived from linkage theory, that we will discuss in Section 3.

Let I be a monomial ideal that contains a = (xa11 , xa22 ). When we view I as a K[x1]-module,
we have a decomposition

(2.1) I =
⊕
i>0

xdi1 K[x1] · xi2;

observe that, since I is an ideal, one has di > di+1 for all i. Also observe that I is spp if and
only if di+1 +1 > di for all i. Define the link I` = I`a of I with respect to the ideal a to be the

ideal I` = (a :A I). Notice that I` = (xa1−d01 , xa22 )∩ (xa1−d11 , xa2−12 )∩ · · · ∩ (x
a1−da2−1

1 , x2) is an
ideal generated by the monomials xa1−di1 xa2−1−i2 , i = 0, . . . , a2−1, and that as a K[x1]-module
can be written as

(2.2) I` =

(
a2−1⊕
i=0

x
a1−da2−1−i

1 K[x1] · xi2

)
⊕

(⊕
i>a2

K[x1] · xi2

)
.
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Remark 2.2. (1) It is immediate from (2.2) that (I`)` = I.
(2) The Hilbert function of I` is determined by that of I. More precisely, if we let R = A/a

and s = a1 + a2 − 2, then H(R; d) = H(R/IR; d) +H(R/I`R; s− d).
(3) The link of an a-lpp ideal is again an a-lpp ideal. Thus, we may as well prove that I` is

a-spp if I is a-spp. To this end, consider the decomposition of I as in (2.1). Given any
monomial xb11 x

b2
2 ∈ I` with 1 6 b2 < a2, one just needs to show that xb1+1

1 xb2−12 ∈ I`. By
(2.2), it is enough to verify that a1 − di + 1 > a1 − di+1 for all i, which is equivalent to
di+1 + 1 > di for all i. Finally, this is true for all i, because I is spp by assumption.

We are now ready to prove the case n = 2 of Theorem 2.1 (i).

Proposition 2.3. Let a = (a1, a2), and I ⊆ A = K[x1, x2] be a homogeneous ideal that
contains a = (xa11 , x

a2
2 ). Then LPPa(I) is an ideal.

After taking any initial ideal, without loss of generality we may assume that I is monomial.
In fact, this operation preserves its Hilbert function, and the initial ideal still contains a.
Next, we give three different proofs of the above proposition.

In the first one, we make use of linkage.

Proof 1. We need to show that the K-vector space LPPa(I) =
⊕

j>0〈Lj + aj〉 is indeed an

ideal, and we do so by proving that LPPa(I) agrees with an ideal J for all degrees i 6 a2− 1
and it agrees with an ideal J ′ for all degrees i > a2 − 1. By Macaulay Theorem, there is a
lex-ideal L with the same Hilbert function as I. Consider the a-lpp ideal J = L + a. By
construction, for all j = 1, . . . , a2 − 1 one has H(J ; j) = H(L; j) = H(I; j).

Now we construct the ideal J ′ as follows. First consider the link I` = (a :A I). Since
I` ⊇ a, again by Macaulay Theorem there exists a lexicographic ideal L′ with the same
Hilbert function as I`. Thus, the a-lpp ideal L′ + a has the same Hilbert function as I` in
degrees j = 0, . . . , a1 − 1. We now let J ′ = (L′ + a)`. By Remark 2.2 (3), J ′ is an lpp ideal
and, by Remark 2.2 (2) its Hilbert function in degrees j > a2 − 1 coincides with that of I.
Therefore J ′ has the desired properties, and the proof is complete. �

In the second proof we use techniques borrowed from [MM11, Section 3], see also [CK13,
Section 4].

Proof 2. The Hilbert function of a monomial ideal is independent of the base field, thus
without loss of generality we may assume that K = C. It suffices to construct an a-spp ideal
with the same Hilbert function as I. Let ξ1, . . . , ξa2 the a2-roots of unity over C, and observe
that xa22 − xa21 = (x2 − ξ1x1)(x2 − ξ2x1) · · · (x2 − ξa2x1) ∈ I. We consider the distraction
D given by a family of linear forms {li}i>1 defined as li = x2 − ξix1, for i = 1, . . . , a2, and
li = x2 for all i > a2; see [BCR05] for the theory of distractions. Given a decomposition of
I(0) = I =

⊕
i>0 I[i]x

i
2, we let J (0) be the distracted ideal

J (0) = J =
⊕
i>0

I[i]

i∏
j=1

lj =

a2⊕
i=0

I[i]

i∏
j=1

lj ⊕
⊕
i>a2

K[x1] · xi2,

which shares with I the same Hilbert function, and the same Betti numbers as well. Observe
that the last equality is due to the fact that both xa21 and xa22 − xa21 are in J , and therefore
xa22 ∈ J . We let I(1) be in>(J (0)), where > is any monomial order such that x1 > x2, and J (1)



THE EISENBUD-GREEN-HARRIS CONJECTURE 5

be the ideal obtained by distracting I(1) with D. We construct in this way a sequence I(0),
I(1),. . . ,I(h) of ideals with the same Hilbert function, each of which contains a; we finally
want to show that this sequence eventually stabilizes at an ideal, we call it L, which is a-spp.
To this end, observe that for all integers p > 0 we have

H
(
I
(h)
[0] ⊕ I

(h)
[1] x2 ⊕ · · · ⊕ I

(h)
[p] x

p
2

)
= H

(
in>(I

(h)
[0] ⊕ I

(h)
[1] l1 ⊕ · · · ⊕ I

(h)
[p]

p∏
j=1

lj)

)
6 H

(
I
(h+1)
[0] ⊕ I(h+1)

[1] x2 ⊕ · · · ⊕ I(h+1)
[p] xp2

)
.

(2.3)

In the above, we consider three modules whose Hilbert functions are computed as homoge-
nous K[x1]-submodules of the graded K[x1]-module A = K[x1, x2], where xd2 has degree
d. Notice that the inequality in (2.3) is due to the inclusion of the second module in the

third one. Observe that I
(0)
[0] ⊆ I

(1)
[0] ⊆ . . . is an ascending chain of ideals that will eventu-

ally stabilize, say at I
(h0)
[0] . Inductively, assume that for all i = 0, . . . , p − 1 the ideals in

I
(hi−1)
[i] ⊆ I

(hi−1+1)
[i] ⊆ . . . form a chain that stabilizes, say at hi. The inclusion of the sec-

ond into the third module of (2.3), for any h > max{h0, . . . , hp−1}, yields that I
(h)
[p] ⊆ I

(h+1)
[p] .

Thus, for h > hp−1 we have again a chain of ideals which will stabilize, say at hp. Repeat this
process for all p 6 a2 − 1, so that for all h > h′ = max{h1, . . . , ha2−1} we have I(h) = I(h+1).
Let L = I(h

′). Keeping in mind how L has been constructed, apply (2.3) to L to obtain, for
all p > 0

L[0] ⊕ L[1]x2 ⊕ · · · ⊕ L[p]x
p
2 = in>

(
L[0] ⊕ L[1]l1 ⊕ · · · ⊕ L[p]

p∏
j=1

lj

)

= L[0] ⊕ L[1]l1 ⊕ · · · ⊕ L[p]

p∏
j=1

lj,

(2.4)

where the second equality can be verified by induction on p, using the first equality and the
fact that the least monomial with respect to > in the support of

∏p
j=1 lj is xp2.

Next, we prove that L is a-spp. By construction L ⊇ a, since each I(i) and J (i) does; thus,
we have to show that x1L[p] ⊆ L[p−1] that for all 0 < p 6 a2−1. Again by induction on p, by
(2.4) we have L[0] ⊕ L[1]x2 = L[0] ⊕ L[1](x2 − x1), which implies x1L[1] ⊆ L[0]. Moreover, by

induction and again by (2.4), L[0] ⊕ L[1]x2 ⊕ · · · ⊕ L[p]x
p
2 = L[0] ⊕ L[1]x2 ⊕ · · · ⊕ L[p−1]x

p−1
2 ⊕

L[p]

∏p
j=1 lj. Since lj = x2 − ξjx1 with j = 1, . . . , p, we have that

∏p
j=1 lj has a full support,

i.e., its support contains all of the monomials of degree p. In particular it contains x1x
p−1
2 .

It follows that x1L[p] ⊆ L[p−1], as desired. �

The third proof relies on an application of Gotzmann Persistence Theorem [Got78, Gre89].

Proof 3. Let LPPa(I) = L+a, where each Ld is the largest lex-segment such that dimK(Ld+
ad) = H(I; d). In order to show that LPPa(I) is an ideal we have to show that, for every
integer d > 0, we have H(A/(mL+ a); d+ 1) > H(A/LPPa(I); d+ 1). For this, without loss

of generality we can assume that (LPPa(I))j = aj for all j < d. Let k = dimK L̃d, where L̃d
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is the image in A/a of the K-vector space Ld + ad. If k = 0 there is nothing to prove. Let
us assume k > 0, and study the following three cases separately: d < a2 − 1, d = a2 − 1,
and d > a2. If d < a2 − 1, then (LPPa(I))d = Ld, (LPPa(I))d+1 = Ld+1, and the conclusion
follows from Macaulay Theorem.

Now assume d = a2 − 1. If Ld+1 = Ad+1, then there is nothing to show, so assume that
Ld+1 ( Ad+1. If xd+1

2 is a minimal generator of I, thenH(A/(mLd); d+1) > H(A/mI; d+1) >
H(A/I; d+1)+1. Since H(A/I; d+1) = H(A/L; d+1)−1, it follows that H(A/mL; d+1) >
H(A/L; d + 1), and therefore m1Ld ⊆ Ld+1. A fortiori, we have that m1(LPPa(I))d ⊆
(LPPa(I))d+1, and the proof of this case is complete. If xd+1

2 is not a minimal generator of
I, then dim(A/J) = 0, where J = I6d. In particular, H(A/I; j) 6 H(A/(xd1, x

d
2); d) = d. By

Macaulay Theorem we have that H(A/I; d+1) 6 d. If equality holds, then I has no minimal
generators in degree d + 1, and thus H(A/J ; d + 1) = d as well. By Gotzmann Persistence
Theorem applied to J , we have that H(A/H; j) = d for all j > d, which contradicts the fact
that dim(A/J) = 0.

Finally, if d > a2, we first observe that once again k = H(A/I; d) 6 d, and that
H(A/(mLd) + a; d + 1) = k − 1. Since k = H(A/I; d), to conclude the proof it suffices
to show that k > H(A/I; d+ 1), since the latter is equal to H(A/LPPa(I); d+ 1). It follows
from Macaulay Theorem H(A/I; d + 1) 6 k = H(A/I; d), since we have already observed
that k 6 d. If equality holds, then by Gotzmann Persistence Theorem applied to the ideal
J = I6d we would have that H(A/J ; j) = H(A/J ; d) = k > 0 for all j > d. In particular,
this would imply that dim(A/J) > 0, in contrast with the fact that J contains (xa11 , x

a2
2 ),

and hence it is Artinian. �

Remark 2.4. (1) Observe that Proof 1 can be adapted to any regular sequence of degree
a = (a1, a2) using properties of linkage analogous to those of Remark 2.2, see Theorem 4.1.
(2) It is easy to see that, in Proof 2, we can also keep track of Betti numbers and prove, in
characteristic zero, that they cannot decrease when passing to the lex-plus-powers ideal.
(3) In Proof 3 we do not actually use the fact that the regular sequence is monomial. In fact,
the same argument can be used to prove that any ideal which contains a regular sequence of
degree a = (a1, a2) satisfies EGHa.

We now move our attention from the case n = 2 to the general one.

Proposition 2.5. Under the same assumptions of Theorem 2.1, there exists an a-spp ideal
with the same Hilbert function as that of I.

Proof. We define a total order on the set S of monomial ideals with the same Hilbert function
as I, and which contain the pure-powers ideal a = (xa11 , . . . , x

ar
r ). First, given any J ∈ S,

we order the set of its monomials {mi} from lower to higher degrees, and monomials of
the same degree lexicographically. Now, given a second ideal J ′ ∈ S and the set of its
monomials {m′i}, we set J > J ′ if and only if there exists i such that mj = m′j for all j 6 i
and mi+1 > m′i+1. Observe that, since J and J ′ have the same Hilbert function, we are
forced to have degmj = degm′j for all j. Let P be the maximal element of S; we claim
that P is a-spp. Assume by contradiction that there exists a monomial m ∈ P r a such
that xi divides m and x−1i xjm /∈ P for some j < i. Write P =

⊕
q Pq · q, where each

q ∈ K[x1, . . . , x̂j, . . . , x̂i, . . . , xn] is a monomial, and Pq ⊆ K[xj, xi] is an ideal. Notice that
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each Pq contains (x
aj
j , x

ai
i )K[xj, xi] since P ∈ S, and that Pq ⊆ Pq′ whenever q divides q′ since

P is an ideal. By Proposition 2.3, for every q there exists an (aj, ai)-spp ideal Qq ⊆ K[xj, xi]
with the same Hilbert function as Pq.

Let now Q =
⊕

qQq · q, and observe that Q ∈ S. In fact, Q is clearly spanned by

monomials, and it contains a. Moreover, if q divides q′ one gets H(Qq) = H(Pq) 6 H(Pq′) =
H(Qq′). Since Qq and Qq′ are both (aj, ai)-spp, it follows that Qq ⊆ Qq′ , which in turn
that Q is an ideal. Since P is not a-spp, by our choice of the indices i and j there exists
q such that Pq is not (aj, ai)-spp. In particular, it follows that Q > P , which contradicts
maximality of P . �

Remark 2.6. As in the case of two variables, see Remark 2.4 (2), in the proof of Propo-
sition 2.5 one can keep track of how the Betti numbers change in order to prove that, in
characteristic zero, the Betti numbers of the a-spp ideal we obtain cannot decrease. This
fact is helpful in order to prove the LPP-Conjecture for ideals that contain pure-powers.

We point out that, in all pre-existing proofs of Clements-Lindström Theorem 2.1 [CL69,
MP06, MP07], one finds a preliminary reduction step that goes under the name of com-
pression. This step consists of assuming that Clements-Lindström Theorem holds in n − 1
variables in order to construct an a-spp ideal J ⊆ A in n variables that, for any i = 1, . . . , n,
has a decomposition J =

⊕
j>0 J[j]x

j
i , where J[j] is (a1, . . . , âi, . . . , ar)-lpp for all j. In our

proof, this step corresponds to the reduction provided by Proposition 2.5. Observe that the
above ideal J is not necessarily a-lpp globally in n variables, as the following example shows.

Example 2.7. Let n > 4 and consider the (2, 2)-spp ideal I = (x21, x1x2, . . . , x1xn−1, x
2
2, x2x3)

in A = K[x1, . . . , xn]; then I is compressed, but not (2, 2)-lpp, since the monomial x1xn is
missing from its generators.

We introduce some notation and terminology, which will be used henceforth in this section.
Let A = K[x1, . . . , xn], m = (x1, . . . , xn), a = (a1, . . . , ar) be a degree sequence, and a =
(xa11 , . . . , x

ar
r ) be the corresponding pure-powers ideal. Furthermore, let A = K[x1, . . . , xn−1],

and m = (x1, . . . , xn−1)A. If r < n, we let a = a and a = (xa11 , . . . , x
ar
r )A. Otherwise, if

r = n, we let a = (a1, . . . , an−1) and a = (xa11 , . . . , x
an−1

n−1 )A.
Given a K-vector space V ⊆ Ad generated by monomials, we say that V is a-lpp if it is the
truncation in degree d of an a-lpp ideal. Similarly, we say that V is a-spp if it is the truncation
in degree d of an a-spp ideal. Observe that a K-vector subspace V =

⊕d
i=0 V[d−i]x

i
n ⊆ Ad

containing ad is a-spp if and only if V[i] is a-spp for all i, and m1V[i] ⊆ V[i+1] for all i >
max{d − an + 1, 0}; we will refer to the latter property as stability. Moreover, if V ⊆ Ad

is a-lpp, respectively a-spp, then m1V + ad+1 is also a-lpp, respectively a-spp. Finally, if
V,W ⊆ Ad are a-lpp and dimK(V ) 6 dimK(W ), then V ⊆ W .

Let L ⊆ Ad be a lex-segment and V = L+ad. If V 6= Ad, there exists the largest monomial
u ∈ Ad r V with respect to the lexicographic order. In this case, we let V + = V + 〈u〉;
otherwise, we let V + = V = Ad. Either way, V + can be written as L′ + ad, where L′ is a
lex-segment, and therefore it is a-lpp.
If V 6= ad we may write V = W ⊕ ad, with W 6= 0 a vector space minimally generated by
monomials m1 > m2 > . . . > mt. In this case, we let V − = 〈m1, . . . ,mt−1〉 + ad; otherwise,
we set V − = V = ad.
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The notion of segment we recall next is extracted from [CK13], and it will be crucial in
the proof of Theorem 2.1.

Definition 2.8. Let V ⊆ Ad be a K-vector space, written as V =
⊕d

i=0 V[d−i]x
i
n. Then, V

is called an a-segment, or simply a segment, if it is a-spp and, for all i,

(i) V[i] ⊆ Ai is a-lpp, and
(ii) V[i+j] ⊆ mj(V[i])

+ + ai+j for all 1 6 j 6 d− i.

Note that, if V ⊆ Ad is a-lpp, then it is an a-segment.

Remark 2.9. If V ⊆ Ad is a segment, it immediately follows from the definition that
m1V + ad+1 ⊆ Ad+1 is also an a-segment.

Lemma 2.10. Let V and W be two a-segments in Ad. Then either V ⊆ W , or W ⊆ V .

Proof. Write V =
⊕d

i=0 V[d−i]x
i
n and W =

⊕d
i=0W[d−i]x

i
n. If the conclusion is false, since V

and W are segments we can find i 6= j such that V[i] ( W[i] and V[j] ) W[j]; say j < i. Since
V[j] is lpp, V[j] ⊇ (W[j])

+, and therefore V[i] = V[i]+ai ⊇ mi−jV[j]+ai ⊇ mi−j(W[j])
++ai ⊇ W[i],

which is a contradiction. �

Definition 2.11. Let V ⊆ Ad be a K-vector space, written as V =
⊕d

i=0 V[d−i]x
i
n. We define

the dimension sequence δ(V ) = (dimK(V[d]), dimK(V[d] ⊕ V[d−1]), . . . , dimK(V )) ∈ Nd+1. On
the set of all such sequences, we consider the partial order given by point-wise inequality.

Lemma 2.12. Let V ⊆ Ad be an a-spp K-vector space, written as V =
⊕d

i=0 V[d−i]x
i
n.

Assume that

(i) V[i] ⊆ Ai is a-lpp for all i, and
(ii) δ(V ) is minimal among all dimension sequences of a-spp K-vector subspaces W =⊕d

i=0W[d−i]x
i
n ⊆ Ad such that dimK(W ) = dimK(V ) and W[i] is a-lpp for all i.

Then, V is a segment.

Proof. Assume that V is not a segment; then, there exist i < j such that V[i] ( Ai and
mj−i(V[i])

+ + aj 6⊇ V[j], and choose i and j so that j − i is minimal. Observe that necessarily

i > max{d− an + 1, 0}, since otherwise V[i] = Ai. Since V[i] and V[j] are a-lpp, the fact that
mj−i(V[i])

+ + aj does not contain V[j] implies that mj−i(V[i])
+ + aj is properly contained in

V[j]. In particular, the latter properly contains aj, and we have that

(2.5) mj−i(V[i])
+ + aj ⊆ (V[j])

−.

Now, define W =
⊕d

k=0W[d−k]x
k
n, where W[i] = (V[i])

+, W[j] = (V[j])
−, and W[k] = V[k] for all

k 6= j, i. We claim that W is an a-spp vector space.

In fact, let k > max{d − an + 1, 0}; by stability, if k 6= j, j − 1, i, i − 1, then m1W[k] =
m1V[k] ⊆ V[k+1] = W[k+1]; if k = j, then m1W[j] ⊆ m1V[j] ⊆ V[j+1] = W[j+1] and if k = i − 1,
then m1W[i−1] = m1V[i−1] ⊆ V[i] ⊆ W[i].
By costruction, we have that mj−iW[i] ⊆ W[j], see (2.5); therefore, if j − i = 1 we are done,
again by stability.
Thus, we may assume that j − i > 1 and prove next that mk−iW[i] + ak = W[k] for all
i < k < j. Since j − i is minimal, we have that mk−iW[i] + ak = mk−i(V[i])

+ + ak ⊇ V[k] =
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W[k]. If the containment were strict, then we would have mk−i(V[i])
+ + ak ⊇ (V[k])

+ and,
again by minimality, mj−k(V[k])

+ + aj ⊇ V[j]; this would in turn imply mj−i(V[i])
+ + aj =

mj−k
(
mk−i(V[i])

+ + ak
)

+ aj ⊇ V[j], contradicting our initial assumption on i and j.
The only case left to be shown is now m1W[j−1] ⊆ W[j]. By applying what we have proved

above for k = j−1, we have that m1W[j−1]+aj = m1

(
mj−1−iW[i]

)
+aj = mj−iW[i]+aj ⊆ W[j],

as desired.

Thus, W is an a-spp vector space; furthermore, it is clear from definition that each W[i]

is an a-lpp. Finally, observe that δ(W ) < δ(V ) by construction, which contradicts the
minimality of δ(V ), and we are done. �

Proposition 2.13. For every d > 0 and every D 6 dimK(Ad) there exists a unique segment
V with dimK(V ) = D. Moreover, the sequence δ(V ) is the minimum of the set of all

sequences δ(W ) of a-spp vector spaces W =
⊕d

i=0W[d−i]x
i
n ⊆ Ad which have dimension D

and such that each W[i] is a-lpp.

Proof. By Lemma 2.12 we have that any vector space with minimal dimension sequence is a
segment, and by Lemma 2.10 any two such segments are comparable, hence equal. �

We already mentioned before that, if the EGH Conjecture held in full generality, then
LPPa(I) would be the ideal with minimal growth among those containing a regular sequence
of degree a, and with Hilbert function equal to that of I. The proof is easy and we include
it here.

Proposition 2.14. Assume that EGH holds true. Let I ⊆ A be a homogeneous ideal that
contains a regular sequence of degree a. Then H(mLPPa(I)) 6 H(mI).

Proof. Let d > 0 be an integer, and let a′ = (a1, . . . , ar) be the degree sequence obtained
from a by considering only the degrees ai such that ai 6 d. Let J = (Id), and observe that

LPPa(I)d = LPPa′(I)d = LPPa′(J)d. Moreover, since Jd+1 = m1Id, we have H(LPPa′(J); d+

1) = H(J ; d+ 1) = H(mI; d+ 1). Since m1LPPa′(J)d ⊆ LPPa′(J)d+1, we finally obtain that

H(mLPPa(I); d+ 1) = H(mLPPa′(J); d+ 1) 6 H(mI; d+ 1). �

We would like to observe that, even if we do not know that EGH holds in general, we
can still get an minimal growth statement in a Clements-Lindström ring A/a, under milder
hypotheses.

Lemma 2.15 (Minimal Growth). Assume that every homogeneous ideal containing a satis-
fies EGHa. If a ⊆ I ⊆ A is such an ideal, then H(mLPPa(I) + a) 6 H(mI + a).

Proof. Fix an integer d > 0, and let J = (Id) + a. Note that both I and J satisfy the EGH,
and LPPa(I)d = LPPa(J)d. Observe that Jd+1 = m1Jd+ad+1 = m1Id+ad+1, and accordingly
H(LPPa(J); d + 1) = H(J ; d + 1) = H(mI + a; d + 1). Now, since (mLPPa(J) + a)d+1 =
m1(LPPa(J))d + ad+1 ⊆ (LPPa(J))d+1, we may conclude that H(mLPPa(I) + a; d + 1) 6
H(LPPa(J); d+ 1) = H(mI + a; d+ 1). �

We are finally in a position to prove the main result of this section. The simple idea
underlying the new proof we present here is to demonstrate Clements-Lindström Theorem
using Strong Hyperplane Restriction, like Green proved Macaulay Theorem using generic
hyperplane section; this also motivates why Part (ii) has been assimilated into the statement.
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Proof of Theorem 2.1. By adding sufficiently large powers of the variables xr+1, . . . , xn, we
may assume that r = n. After taking any initial ideal, and by Proposition 2.5, we may
assume that I is an a-spp monomial ideal. By induction, we may also assume that both
Part (i) and Part (ii) hold true in polynomial rings with less than n variables, since the case
n = 1 is trivial. In particular, any lpp ideal of A has Minimal Growth, see Lemma 2.15.

We write I =
⊕

i>0 I[i]x
i
n; for all i, we let J[i] = LPPa(I[i]), which by induction is an ideal

of A. Next, we prove that

J =
⊕
i>0

J[i]x
i
n

is also an a-spp ideal. First of all, observe that I[k] ⊆ I[k+1] for all k, since I is an ideal. This
implies that H(J[k]) = H(I[k]) 6 H(I[k+1]) = H(J[k+1]). Since the ideals J[k] and J[k+1] are
lpp, it follows that J[k] ⊆ J[k+1], which, in turn, translates into J being an ideal. Since I is
a-spp, for all i < an − 1 we have m1I[i+1] ⊆ I[i] and a ⊆ I[i]; thus

H(J[i]) = H(I[i]) > H(m1I[i+1] + a) > H(m1J[i+1] + a),

where the last inequality follows from Lemma 2.15. This yields that that m1J[i+1] ⊆ J[i] for
all i < an − 1, and J is a-spp by stability.

Given an a-spp vector space V ⊆ Ad, denote by σ(V ) the segment contained in Ad which
has the same dimension as V . Let J =

⊕
d>0

Jd be the homogeneous ideal we constructed

above and let

σ(J) =
⊕
d>0

σ(Jd).

We claim that σ(J) is the a-lpp ideal we are looking for.

First of all we show that it is an ideal. Fix a degree d > 0, and write Jd =
⊕d

i=0(Jd)[d−i]x
i
n,

σ(Jd) =
⊕d

i=0 σ(Jd)[d−i]x
i
n; for notational simplicity, in the following we let σ[d−i] = σ(Jd)[d−i].

By stability, we then have

m1Jd+ad+1 =


(
m1(Jd)[d] + ad+1

)
⊕
(⊕d

i=0(Jd)[d−i]x
i+1
n

)
, if d < an − 1,

(
m1(Jd)[d] + ad+1

)
⊕
(⊕an−2

i=0 (Jd)[d−i]x
i+1
n

)
⊕
(⊕d

i=an
Ad−ix

i
n

)
, if d > an − 1,

and

m1σ(Jd)+ad+1 =


(
m1σ[d] + ad+1

)
⊕
(⊕d

i=0 σ[d−i]x
i+1
n

)
, if d < an − 1

(
m1σ[d] + ad+1

)
⊕
(⊕an−2

i=0 σ[d−i]x
i+1
n

)
⊕
(⊕d

i=an
Ad−ix

i
n

)
, if d > an − 1.

When d < an − 1, we set σ[an−1] = (Jd)[an−1] = 0. From the above equalities we thus get

dimK(m1Jd + ad+1)− dimK(m1σ(Jd) + ad+1) =

=
(
dimK(m1(Jd)[d] + ad+1)− dimK(m1(σ[d] + ad+1))

)
+(

dimK(σ[an−1])− dimK((Jd)[an−1])
)
.

(2.6)
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Since σ(Jd) is a segment, σ[d] ⊆ A is a-lpp and its dimension sequence δ = δ(σ(Jd))

is minimal for the Proposition 2.13. Moreover, the a-lpp vector space Ld ⊆ Ad with the
same Hilbert function as (Jd)[d] has Minimal Growth, and σ[d] ⊆ Ld by the minimality of δ.
Therefore,

dimK(m1(Jd)[d] + ad+1) > dimK(m1Ld + ad+1) > dimK(m1σ[d] + ad+1).

Recall that the last entry of the dimension sequence is the dimension of the vector space itself;
thus, since σ(Jd) and Jd have the same dimension and δ(Jd) > δ we get dimK(σ[an−1]) >
dimK((Jd)[an−1]). An application of (2.6) now yields

dimK(m1Jd + ad+1) > dimK(m1σ(Jd) + ad+1).

Since J is an ideal that contains a, we have that m1Jd + ad+1 ⊆ Jd+1 and, thus,

dimK(m1σ(Jd) + ad+1) 6 dimK(Jd+1) = dimK(σ(Jd+1)).

By Remark 2.9, we know that m1σ(Jd) + ad+1 is a segment, and so is σ(Jd+1) by definition;
then, it follows that m1σ(Jd) ⊆ σ(Jd+1). We may finally conclude that σ(J) is an ideal,
which is a-spp by construction, and has the same Hilbert function as I.

Next, we observe that σ(J) satisfies Part (ii) of the theorem, since H(σ(J) + (xin); d) is
just the i-th entry of δ(σ(Jd)), H(J + (xin); d) is the i-th entry of δ(Jd), and δ 6 δ(Jd).

By construction, σ(J) is the ideal with all the required properties, once we have proved
the following claim.

Claim. σ(J) is a-lpp.

Proof of the Claim: By contradiction, there exists a degree d such that σ(Jd) is an a-spp
D-dimensional vector space which is not lpp; thus, we may consider a counterexample of
degree d and of minimal dimension D for which the operator σ does not return an a-lpp
vector space of dimension D inside Ad; then, if we apply σ to any (D− 1)-dimensional a-spp
vector space of Ad, we obtain an a-lpp vector space, but there is an a-spp vector space of
dimension D which is transformed by σ into an a-spp vector space V + 〈v〉 which is not lpp.
Thus, V is a-lpp, V + 〈v〉 is a-segment, and we write them as

V =
d⊕

i=0

V[d−i]x
i
n, V + 〈v〉 =

d⊕
i=0

Ṽ[d−i]x
i
n.

Let also w be the monomial such that V + 〈w〉 is the a-lpp vector subspace of dimension D
of Ad and observe that w > v. Write v = vxtn and w = wxsn, where v, w are monomials in A.
Since V + 〈v〉 is a segment, we have that t > s.
If t = s we immediately get a contradiction, since by construction v and w would both be
the largest monomial of degree d− t which is not contained in V[d−t].

Therefore, we may assume that t > s, and a = deg(w) = d − s > d − t = deg(v) = b.

Observe that v ∈ Ṽ[d−t], and that d− t < an. Moreover ma−bṼ[d−t] ⊆ Ṽ[d−s] holds by stability
applied to V + 〈v〉. We write w = xi1 · · ·xia and v = xj1 · · ·xjb , with i1 6 . . . 6 ia and
j1 6 . . . 6 jb. Since w > v we have two cases, either v divides w, or xi1 · · ·xib > v. In

both cases, it is easy to see that w ∈ ma−bṼ[d−t] ⊆ Ṽ[d−s], and thus w ∈ V + 〈v〉, which is a
contradiction. �
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The proofs of Theorem 2.1 (i) previously available in the literature do not include part (ii),
the Strong Hyperplane Section of Gasharov. One advantage of our approach is that, with
little additional effort, one can show that the Betti numbers of an a-spp ideal are at most
those of the corresponding a-lpp ideal; see [Mur08, CK14]. Furthermore, combining this fact
with Remark 2.6, one recovers the LPP-Conjecture for ideals containing pure-powers ideals
in characteristic zero, which is the main result of [MM11, Section 3]. Note that, in [MM11],
the authors also provide a characteristic-free proof that settles the LPP-Conjecture for ideals
that contain pure-powers.

3. Artinian reduction and linkage

In this brief section we collect some results which will be useful in what follows. We
start with Proposition 10 in [CM08], which offers in many cases a way to prove the EGH
Conjecture in the Artinian case only.

Proposition 3.1. Let f ⊆ A = K[x1, . . . , xn] be an ideal generated by a regular sequence
of degree a, and ` be a linear A/f-regular form. Let also A = A/(`), and f = fA. If every
homogeneous ideal of A containing f satisfies EGHa, then every homogeneous ideal of A
containing f satisfies EGHa.

Proof. Without loss of generality, we may assume that K is infinite. Let I ⊆ A be a
homogeneous ideal that contains f and for i > 0 we let Ii = (I :A `

i) + (`). By assumption,
there exist a-lpp ideals Ji ⊆ K[x1, . . . , xn−1] with the same Hilbert function as Ii/(`). Now,
we define

J =
⊕
i>0

Jix
i
n,

and we claim that J is an ideal with the same Hilbert function as I; since a ⊆ J0 ⊆ J , the
conclusion will then follow from Theorem 2.1.
By considering the short exact sequences 0 −→ A/(I :A `j)(−1)

·`−→ A/(I :A `j−1) −→
A/Ij−1 −→ 0 for all j, a straightforward computation yields that H(J) = H(I).

What it is left to be shown is that J is an ideal. Let as before m = (x1, . . . , xn−1); since
Ji is an ideal of A, we have mJi ⊆ Ji for all i and, accordingly, mJ ⊆ J . The condition
xnJ ⊆ J translates into the containments Ji ⊆ Ji+1 for all i > 0. Since each Ji is an a-lpp
ideal, it suffices to show that H(Ji) 6 H(Ji+1), which holds true since Ii ⊆ Ii+1. �

We now recall some results from the theory of linkage. In Section 2 we introduced the
following notation: given a homogeneous ideal I ⊆ A = K[x1, . . . , xn] containing an ideal f
generated by a regular sequence of degree a = (a1, . . . , an), we let I`f = (f :A I), and call it
the link of I with respect to f , which is an ideal that contains f . Obviously, the link depends
on f ; however, when it is clear from the context which f we consider, we denote I`f simply
by I`.

Proposition 3.2. Let a = (a1, . . . , an) and A, I, f be as above; let also R = A/f and
s =

∑n
i=1(ai − 1). Then,

(i) (I`)` = I.
(ii) H(I; d) = H(R; d)−H(I`; s− d).
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(iii) type (IR) = µ(I`R), i.e., the dimension of the socle of IR equals the minimal number
of generators of its linked ideal.

In particular, if I = (f + (g)) is an almost complete intersection, then the ideal I` = (f :A g)
defines a Gorenstein ring, and viceversa. Moreover, if deg(g) = D, then soc((f :A g)R) is
concentrated in degree s−D.

Proof. Observe that the functor (−)∨ = HomR(−, R) is the Matlis dual, since R is Gorenstein
Artinian. The statements that we want to prove are a direct consequence of Matlis duality,
see [BH93, Sections 3.2 and 3.6]. It is well known that a module and its Matlis dual have
the same annihilator. In particular, since (A/I)∨ ∼= I`/f , we obtain that I = annA(A/I) =
annA(I`/f) = (I`)`, which proves (i). For (ii), recall that in the graded setting one has
((A/I)∨)d ∼= (A/I)s−d, for all d ∈ Z. Since (A/I`)∨ ∼= I/f , the claim follows from the graded
short exact sequences of K-vector spaces 0→ (I/f)d → (A/f)d → (A/I)d → 0. Part (iii) is
again a consequence of Matlis duality. �

We conclude this part with an easy lemma.

Lemma 3.3. Let a = (a1, . . . , ar) and b = (b1, . . . , br) be degree sequences satisfying ai 6 bi
for all i = 1, . . . , r. If an ideal I satisfies EGHa, then it satisfies EGHb.

Proof. By assumption, J = LPPa(I) is a a-lpp ideal with the same Hilbert function as I. By
our assumption on the degree sequences, J also contains the pure-powers ideal (xb11 , . . . , x

br
r ).

Therefore, by Theorem 2.1, LPPb(J) is a b-lpp ideal with the same Hilbert function as I. �

4. Results on the EGH conjecture

We collect in the following the most relevant cases when EGH is known to be true. We
start with a very recent result, Theorem 4.1, proved by the first two authors in [CDS20b,
Theorem A], which improves an older result due Maclagan and the first author, [CM08,
Theorem 2]. Indeed, Theorem 4.1 covers all of the significant known cases of the EGH
Conjecture which take into account only hypotheses on the degree sequence a and not on
the ideal I. A further generalization can be found in [CDS20b], see Theorem 3.6.

Theorem 4.1. Let I ⊆ A be a homogeneous ideal which contains a regular sequence of degree
a = (a1, . . . , ar) and assume that ai >

∑i−1
j=1(aj − 1) for all i > 3; then, I satisfies EGHa.

Proof. For brevity’s sake, we present here only the proof of the weaker statement [CM08,

Theorem 2], that is, we will assume that ai >
∑i−1

j=1(aj − 1) for all i > 3. Observe that, by

Proposition 3.1, we may let r = n and work by induction on n. Let a = (a1, . . . , an−1); by
induction, suppose that every ideal of A containing a regular sequence of degree a satisfies
EGHa(d) for all d.

Clearly, for d < an, we have that EGHa(d) is equivalent to EGHa(d). Thus, let d > an,
so that s − d < an; by induction, I` satisfies EGHa and the previous case yields that I`

satisfies EGHa(s − d) for all d > an. By Proposition 3.2 (ii), we know that H(I; d) =
H(R; d)−H(I`; s−d), where R = A/f and s =

∑n
i=1(ai−1). It now follows that I satisfies

EGHa(d) also for all d > an, and the proof is complete. �
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One big advantage of Theorem 4.1 is that it can be applied in order to obtain growth
bounds for the Hilbert function which are at least as good as the ones given by Macaulay
Theorem. This can be done for any homogenous ideal, regardless of the degree sequence.
The key observation to see this is the following.

Lemma 4.2. Assume that |K| = ∞ and that I contains an ideal f generated by a regular
sequence of degree a = (a1, . . . , ar). If b = (b1, . . . , br) is a degree sequence such that bi > ai
for all i, then I contains an ideal g generated by a regular sequence of degree b.

Proof. We proceed by induction on r > 1. Let r = 1 and observe that ht(I) > 1, since
f1 ∈ I. Consider the truncation ideal I>b1 where, by assumption, b1 > a1; by avoiding
primes, it immediately follows that ht(I>b1) > 1 and there exists a regular element g1 ∈ I of
degree b1.

By induction, we have constructed a homogeneous ideal g′ = (g1, . . . , gr−1), which is
unmixed and generated by a regular sequence of degrees b1, . . . , br−1. Observe that, since I
contains f1, . . . , fr, we have that ht(I>j) > r for all j > ar. In particular, the ideal g′+I>br
has height at least r, since br > ar. Thus, againg by avoiding primes, we find an element
gr ∈ Ibr which is regular modulo g′ and g = (g1, . . . , gr) is the ideal we were looking for. �

As another application of the theory of linkage to the EGH Conjecture, we now present
a result due to Chong [Cho16], which settles the conjecture for Gorenstein ideals of height
three.

Proposition 4.3. Let I be a homogeneous ideal that contains an ideal f generated by a
regular sequence of degree a = (a1, . . . , an). Assume that b = (b1, . . . , bn) is a degree sequence
such that bi 6 ai for all i, and I`f satisfies EGHb; then I satisfies EGHa.

Proof. Let s =
∑n

i=1(ai − 1) and I` = I`f ; by hypothesis there exists a b-lpp ideal J with
the same Hilbert function as I` that also contains the pure-powers ideal a = (xa11 , . . . , x

ar
r ),

since ai > bi for all i. Consider now J `
a ; by Proposition 3.2 (ii) for all d > 0 we have

H(I; d) = H(A/f ; d)−H(I`; s− d) = H(A/a; d)−H(J ; s− d) = H(J `
a ; d).

Again by Theorem 2.1, there exists an a-lpp ideal with the same Hilbert function as J `
a , and

we are done. �

Observe that in the above proof we used Theorem 2.1 to transform the monomial ideal J `
a

into an a-lpp ideal. In fact, it can be proved in general that J `
a is already a-lpp whenever J

is a-lpp, see for instance [RS08, Theorem 5.7], or [CS18, Proposition 3.2].
Sequentially bounded licci ideals were first introduced in [Cho16], and are those ideals to

which Proposition 4.3 can be applied repeatedly in order to prove the EGH Conjecture. We
recall the main definitions here.

Definition 4.4. Let I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal, and set I0 = I. We say
that I is linked to a complete intersection, or licci for short, if there exist ideals Ij = (Ij−1)

`
fj

where f1, . . . , fs are ideals of the same height as I generated by regular sequences of degrees
a1, . . . , as, such that Is is generated by a regular sequence of degree as+1.
We say that I is sequentially bounded licci if the above sequence also satisfies a1 > . . . > as+1.
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We also recall that I is said to be minimally licci if it is licci and, in addition, for each j
the regular sequence generating fj+1 can be chosen to be of minimal degree among all the
regular sequences contained in Ij. Observe that fj ⊆ Ij, therefore minimally licci ideals are
sequentially bounded licci. It was proved by Watanabe [Wat73] that height three Gorenstein
ideals are licci. Later on, Migliore and Nagel show that such ideals are also minimally licci
[MN10]. We see next how these facts together, combined with Proposition 4.3, yield the
main result of [Cho16].

Theorem 4.5. Let I ⊆ A be a sequentially bounded licci ideal, where the first link of I is
performed with respect to a regular sequence of degree a; then I satisfies EGHa.

In particular, if I is a Gorenstein ideal of height 3 containing a regular sequence of degree
a = (a1, a2, a3), then I satisfies EGHa.

Proof. We prove the first part only for n = r, and we refer the reader to the original paper
for the reduction to this case; this is shown in [Cho16, Proposition 10], where the proof runs
along the same lines as that of Proposition 3.1.
Since Is is a complete intersection of degree as+1 by assumption, it trivially satisfies EGHas+1

;
therefore Proposition 4.3 implies that Is−1 satisfies EGHas

, and its repeated application to
the sequence of linked ideals eventually yields that I satisfies EGHa1

, that is EGHa. �

Remark 4.6. The height 3 Gorenstein case proved by Chong is also related to a previous
result due to Geramita and Kreuzer concerning the Cayley-Bacharach Conjecture in P3

[GK13, Corollary 4.4]. In fact, EGH for a height 3 Gorenstein ideal I is equivalent to EGH
for its linked ideal I`, which is an almost complete intersection by Proposition 3.2 (iii). As
pointed out in the introduction, EGH for almost complete intersections implies the Cayley-
Bacharach Conjecture 1.2.

A result due to Francisco [Fra04, Corollary 5.2] settles EGHa(D) for almost complete
intersections (f + (g)) in the first relevant degree, namely D = deg(g).

Theorem 4.7. Let f ⊆ A be an ideal generated by a regular sequence of degree a =
(a1, . . . , ar), and let g /∈ f be an element of degree D > a1 such that I = f + (g) has
height r. Then, I satisfies EGHa(D).

Proof. We may assume that K is infinite. First, we reduce to the Artinian case by arguing
as follows: we choose some N > D + 1 and homogeneous elements of degree N such that
f1, . . . , fr, fr+1, . . . , fn is a full regular sequence of degree a′ = (a1, . . . , ar, N, . . . , N). In this
way, proving EGHa(D) for I is equivalent to proving EGHa′(D) for I + (fr+1, . . . , fn). Thus,
for the rest of proof r = n and A/f is Artinian.

Now, let b be the unique integer such that
∑b

i=1(ai − 1) 6 D <
∑b+1

i=1(ai − 1). It is then

easy to see that J = a + (h), where h = xa1−11 · · ·xab−1b · xD−
∑b

i=1(ai−1)
b+1 , is the smallest a-lpp

ideal with H(J ;D) = H(I;D).
To conclude the proof, it suffices to show that H(J ;D+1) 6 H(I;D+1). To this end, let

s =
∑n

i=1(ai − 1), and consider the links I` = I`f = (f :A I) and J ` = J `
a = (a :A J). Then,

Proposition 3.2 yields the natural graded short exact sequences

0→ A/I`(−D)→ A/f → A/I → 0 and 0→ A/J `(−D)→ A/a→ A/J → 0,
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which in turn show that we only have to prove that H(J `; 1) > H(I`; 1). A direct computa-
tion shows that

J ` = a : (h) = (x1, . . . , xb, x
∑b+1

i=1 (ai−1)−D+1

b+1 , x
ab+2

b+2 , . . . , x
an
n ),

that is, H(J `; 1) = b.
Suppose, by contradiction, that I` contains c linear forms, with c > b; then, by Prime

Avoidance we can find a homogeneous ideal g ⊆ I` generated by a regular sequence of degree
(1, . . . , 1, ac+1, . . . , an) such that the socle degree of A/g is

∑n
i=c+1(ai−1) <

∑n
i=b+1(ai−1) 6

s − D. Thus, H(A/I`; s − D) 6 H(A/g; s − D) = 0 which is not possible, since the ring
A/I` is Gorenstein of socle degree s−D by Proposition 3.2 (iii). �

Remark 4.8. It is easy to see by means of Lemma 4.2 that the condition D > a1 in the
statement of Theorem 4.7 can always be met.

Observe that, again by Proposition 3.2 (ii), the statement of Theorem 4.7 is equivalent
to proving EGHa(s − D − 1) for the ideal I` = I`f . Since the socle of A/I` is concentrated
in degree s − D, this is equivalent to controlling the growth of the Hilbert function of a
Gorenstein ring from socle degree minus 1 to the socle degree. For other results of this
nature, see for instance [Otw02].

The next result we present is due to Abedelfatah, see [Abe15] and [Abe16]; it can be
viewed as a generalization of the Clements-Lindström Theorem to ideals that contain a
regular sequence generated by products of linear forms. Below we provide the proof of the
general version, cf. [Abe16, Theorem 3.4].

Theorem 4.9. Let f ⊆ A be an ideal generated by a regular sequence of degree a =
(a1, . . . , ar). Assume that f ⊆ P , where P is an ideal generated by products of linear forms.
Then, any ideal I ⊆ A that contains P satisfies EGHa.

Proof. By induction we may assume that the claim is true for ideals in polynomial rings with
less than n variables, since the base case n = 1is trivial.
Let s be the smallest degree of a minimal generator p of P . Since s 6 a1, by Lemma 3.3
it suffices to show that I satisfies EGHa′ , where a′ = (s, a2, . . . , ar). Moreover, by Theorem
2.1, it is enough to prove that, for every degree d > 0, there exists a monomial ideal J that
contains (xs1, x

a2
2 , . . . , x

ar
r ) such that H(I; d) = H(J ; d) and H(I; d+ 1) = H(J ; d+ 1).

We write p = `1 · · · `s, where `i are linear forms which we order as follows:

For k = 1, . . . , s, let I
(0)
k denote the image ideal of I in A/(`k) and choose `1 so that

H(I
(0)
1 ; d) = mink{H(I

(0)
k ; d)}.

Inductively, given `1, . . . , `j, for k = j + 1, . . . , s we let I
(j)
k denote the image ideal of (I :A

(`1 · · · `j)) in A/(`k) and choose `j+1 so that H(I
(j)
j+1; d− j) = mink{H(I

(j)
k ; d− j)}.

Now, with some abuse of notation, we let Ak = A/(`k) for k = 1, . . . , s; for notational

simplicity, we also set Ij = I
(j)
j+1 for j = 0, . . . , s− 1. By construction, we thus have

(4.1) H(Ij; d− j) 6 H(Ij+1; d− j) for all j = 0, . . . , s− 1.

Moreover, for all j = 1, . . . , s− 1, the short exact sequences

0 // A/(I :A (`1 · · · `j))(−1) // A/(I :A (`1 · · · `j−1)) // Aj/Ij−1 // 0
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provide that

(4.2) H(A/I; i) =
s−1∑
j=0

H(Aj+1/Ij; i− j), for all i.

Let ã = (a2, . . . , an) and Ã = K[x2, . . . , xn]. Observe that Ak
∼= Ã for all k, thus, by

induction, we can find ã-lpp ideals J[j] in Ã with the same Hilbert function as Ij, for j =

0, . . . , s−1. Consider now J =
⊕s−1

j=0 J[j]x
j
1⊕Axs1, and let Jd denote the degree d component

of J . If we show, and we shall do, that m1Jd ⊆ Jd+1, that is, J is closed under multiplication
from degree d to degree d + 1, then the proof is complete, since H(A/J ; i) = H(A/I; i) for
all i by (4.2).
To this end, we clearly have that (x2, . . . , xn)1(J[j])d−j ⊆ (J[j])d−j+1, since each J[j] is an ideal

in Ã. It is left to show that x1Jd ⊆ Jd+1, which translates into (J[j])d−j ⊆ (J[j+1])d−j for all
j = 0, . . . , s− 1; since such ideals are both ã-lpp, this is yielded by (4.1). �

Corollary 4.10. The EGH Conjecture is true for monomial ideals.

Another interesting case, of different nature, when the EGH Conjecture is known in general
is when the regular sequence that defines f is a Gröbner basis with respect to some monomial
order. In fact, in this situation, the initial forms of the sequence form a regular sequence of
monomials.

Proposition 4.11. Let a = (a1, . . . , ar) be a degree sequence and let f be an ideal of A
generated by a regular sequence f1, . . . , fr of degree a, such that {f1, . . . , fr} is a Gröbner
basis with respect to some monomial order <. Then, every homogeneous ideal of A containing
f satisfies EGHa.

Proof. Let I be a homogeneous ideal that contains f . Let us consider the set S of all
homogeneous ideals of A with the same Hilbert function as I that contain a monomial
regular sequence g1, . . . , gr of degree a. Observe that S is not empty since, by assumption,
the initial ideal of I contains the regular sequence of monomials given by the initial forms of
f1, . . . , fr, which has degree a.

Since the monomials g1, . . . , gr are pairwise coprime, we may write gi =
∏

j∈Bi
x
bij
j , for

some subsets Bi’s of {1, . . . , n} with Bi∩Bi′ = ∅ if i 6= i′, and we let |g1, . . . , gr| =
∑r

i=1 |Bi|
denote the cardinality of the support of g1, . . . , gr.

Now, we choose an element J of S which contains a regular sequence h1, . . . , hr with
minimal support and we will show that

|h1, . . . , hr| = r;

in this way we have that each hk is the ak-th power of a variable. After reordering the
variables if necessary, we may assume that hk = xakk , and the conclusion follows by Theorem
2.1.

Clearly |h1, . . . , hr| > r, and assume by way of contradiction that the inequality were
strict, i. e., there would exist i ∈ {1, . . . , r} and 1 6 j < j′ 6 n such that xjxj′ |hi. Consider
then the change of coordinates ϕ defined by

xk 7→ xk, for all k 6= j′, and xj′ 7→ xj + xj′ ,
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let J ′ = in>(ϕ(J), where > denotes the lexicographic order, and let h′k = in>(ϕ(hk)) ∈ J ′
for k = 1, . . . r. It is immediate to see that h′1, . . . , h

′
r is still a monomial regular sequence

of degree a; since J ′ has the same Hilbert function as I, it belongs to S . However, h′k =
hk for all k 6= i, whereas h′i has one less variable than hi in its support. In particular,
|h′1, . . . , h′r| < |h1, . . . , hr|, which contradicts the minimality of the support of h1, . . . , hr, and
we are done. �

Clearly, one can generalize the above by using a weight order ω, as long as the given regular
sequence form a Gröbner basis with respect to the induced order >ω; therefore, any ideal
that contains the initial forms of the sequence satisfies the EGH Conjecture.

Corollary 4.12.

Contrary to the “special” case in which the regular sequence f1, . . . , fr is a Gröbner basis,
as far as we know the “generic” version of the conjecture is still open. We record this fact
as a question.

Question 4.13. Let a = (a1, . . . , ar) be a degree sequence. Does there exist a non-empty
Zariski open set U ⊆ Pn−1(Aa1)× Pn−1(Aa2)× · · · × Pn−1(Aar) of general forms of degree a
such that, for every [f1, . . . , fr] ∈ U , any ideal I containing f = (f1, . . . , fr) satisfies EGHa?

In [HP98, Proposition 4.2], Herzog and Popescu show that, once a regular sequence of
degree a = (2, 2 . . . , 2) is fixed, then any generic ideal generated by quadrics that contains it
satisfies EGHa. We would like to warn the reader that Question 4.13 addresses a different
kind of “genericity”. In fact, we are not fixing the regular sequence beforehand, but we
are asking whether the EGH Conjecture holds for any ideal containing a general regular
sequence.

Remark 4.14. (1) When f is a general complete intersection, then the set of monomials of
A which do not belong to f ???forms a K-basis of A/f , and this is well-known.

(2) It is currently not known, though, whether or not, after a general change of coordinates
ϕ : A → A the set of monomials of A which does not belong to ϕ(f) is a K-basis of
A/ϕ(f), when f is a complete intersection. A positive answer in this matter would make
Question 4.13 even more interesting. In fact, in light of the first part of the remark, it
would provide a strategy to attack the EGH Conjecture at once.

There are some other very special cases when EGH is known to hold that can be found in
the literature; we complete this section with two of them mmh

A special case of interest is when I contains a regular sequence of quadrics, and this is
the assumption on I in the original statement of the conjecture. In this case, EGH is known
to be true in low dimension; for n 6 4, it can be proven by a direct application of linkage;
see also [Che12]. The validity of the conjecture for n = 5 was first claimed in [Ric04], but
a proof was never provided until recently, when Güntürkün and Hochster finally settle the
case of five quadrics in [GH19, Theorem 4.1]. We present an alternative, much shorter proof
of their result which relies on the techniques we used so far.

Theorem 4.15. I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal containing a regular sequence
of degree a = (2, 2, 2, 2, 2); then, I satisfies EGHa.
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Proof. We may assume that K = K. By Proposition 3.1 we may assume that n = 5, A/I is
Artinian and f ⊆ I is an ideal generated by a regular sequence of five quadrics; notice that
the socle degree s of A/f is s = 5.
By Proposition 3.2 (ii) it suffices to show that I satisfies EGHa(j) for j = 0, 1, 2; this is
clearly true for j = 0, 1 and we are left with the case j = 2.

If H(I; 2) = 6, then we are done by Theorem 4.7. Since the locus of reducible elements
in P(Sym2(A1)) has dimension 2n − 2 = 8, if H(I; 2) > 7 then I must contain a reducible
quadric Q = `1`2. Proceeding as in the proof of Theorem 4.9, we construct ideals J[0] and

J[1] in Ã = K[x2, . . . , x5] such that J = J[0] ⊕ J[1]x1 ⊕Ax21 is a monomial vector space which
contains a = (x21, . . . , x

2
5), m1J2 ⊆ J3, H(A/J ; i) = H(A/I; i) for all i, and the conclusion

follows from an application of Theorem 2.1. �

In [Coo12], Cooper proves some cases of EGH when r is small, including a = (a1, a2, a3)
with a1 = 2, 3, and with a2 = a3, and with a = (3, a, a). We present a proof of the latter
one, which is again based on the techniques of [CDS20b].

Proposition 4.16. Let I ⊆ A = K[x1, . . . , xn] be a homogeneous ideal containing a regular
sequence of degree a = (3, a, a). Then, I satisfies EGHa.

Proof. By Proposition 3.1, we may assume that n = 3, and that K is infinite. Let f =
(f1, f2, f3) ⊆ I be an ideal generated by a regular sequence of degree a. By Proposition 3.2
(ii), we only have to show that EGHa(d) holds for all d 6 a. Let a = (3, a), and observe that
I satisfies EGHa by Theorem 4.1. In particular, since EGHa(d) is equivalent to EGHa(d) for
all d < a, we only have to show that EGHa(a− 1) holds. Let {v1, . . . , vc} be the pre-image
in A of a K-basis of (I/f)a−1, and let Q = (f1, f2, v1, . . . , vc). First, assume that f3 /∈ Q. By
assumption, we have that Q satisfies EGHa(a − 1) so that, if J is the smallest a-lpp ideal

such that H(Q; a− 1) = H(J ; a− 1), then H(Q; a) > H(J ; a). Observe that J = J ′+ (xa3) is
an a-lpp ideal such that H(J ; a−1) = H(J ; a−1) and H(J ; a) = H(J ; a) + 1. We then have
that H(I; a) = H(Q + (f3); a) = H(Q; a) + 1 > H(J ; a) + 1 = H(J ; a), and we are done. If
f3 ∈ Q then ht(Q) = 3, and by homogeneous prime avoidance we may assume that f1, vc, f2
forms a regular sequence of degree a′ = (3, a − 1, a) (or (a − 1, 3, a) in case a = 3). Either
way, I satisfies EGHa′ by Theorem 4.1, and therefore there exists a a′-lpp ideal J with the
same Hilbert function as I. In particular, since a > a′, the monomial ideal J also contains
a = (x31, x

a
2, x

a
3), and we conclude by Theorem 2.1. �

5. Applications and examples

In this section, we present some applications of the EGH Conjecture, supported by several
examples. For our computations, it is convenient to introduce the following integers.
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Definition 5.1. Let a = (a1, . . . , ar) be a degree sequence, and k, d be non-negative integers.
For r < i 6 k, we let ai =∞ and xaii = 0. Also, we let

[
k
d

]
a

=


dimK

(
K[xn−k+1, . . . , xn]

(xaii : n− k + 1 6 i 6 n)

)
d

if k > 1;

0 if k = 0.

Whenever a is clear from the context, we will omit it from the notation.

Remark 5.2. Notice that

[
k
d

]
a

actually depends on n: for instance

[
1
2

]
(2)

=

{
0 if n = 1;

1 otherwise.

The next definition mimics the Macaulay representation of a number [BH93, Section 4.2],
but also takes into account the additional information of a degree sequence a.

Definition 5.3. An (a, n)-Macaulay representation of a non-negative integer k in base d is
the expression of k as sum

k =

[
kd
d

]
+

[
kd−1
d− 1

]
+ . . .+

[
k1
1

]
,

where kd > kd−1 > . . . > k1 > 0. Whenever n is understood from the context, we just called
the above an a-Macaulay representation of k in base d.

As for the standard Macaulay representation, which corresponds to the choice ai =∞ for
all i, the (a, n)-Macaulay representation of k in base d exists, and it is unique. Moreover, if
V ⊆ Ad is the a-lpp vector space with dimK(V ) = k, then there is a vector space decom-

position V =
⊕d

j=0 V[d−j]uj, where uj is a monomial of degree j and V[d−j] can be identified

with
(

K[xn−kd−j−1,...,xn]

(x
ai
i |n−kd−j−16i6n)

)
d−j

. In particular, dimK(V[d−j]) =

[
kd−j
d− j

]
.

Given the a-Macaulay representation of k in base d we let

k〈d〉a =

[
kd

d+ 1

]
+

[
kd−1
d

]
+ . . .+

[
k1
2

]
.

The following enhanced version of Macaulay Theorem is a direct consequence of the proof
of Theorem 2.1. For instance, see [RS08, CR09].

Theorem 5.4. Let a = (a1, . . . , ar) be a degree sequence,a be the corresponding plus-powers
ideal, and set R = A/a. Let H : N −→ N be a numerical function. Then H is the Hilbert

function of R/I for some homogeneous ideal I ⊆ R if and only if H(d+ 1) 6 H(d)
〈d〉
a .

Proof. If J ⊆ A is any a-lpp ideal, and we set k = H(A/J ; d), then one can check that

H(A/mJ ; d + 1) = k
(d)
a . Since mJd ⊆ Jd+1, the value H(A/J ; d)

(d)
a is therefore the maximal

growth in degree d+ 1 of the quotient by an a-lpp ideal which has Hilbert function equal to
k in degree d.
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Let I ⊆ R be a homogeneous ideal. We lift it to A, and still call it I. By assumption,
LPPa(I) is an ideal with the same Hilbert function as I, and from the fact that mId ⊆ Id+1

by the above observation we get that H(A/I; d+ 1) 6 H(A/I; d)
(d)
a .

Conversely, let H be a numerical function that satisfies the hypothesis, and let V ⊆ Ad

be an a-lpp K-vector space such that dimK(Ad/V ) = H(d). Consider the a-lpp ideal J =

(V ) + a. By the above observation, H(d)
(d)
a coincides with the dimension of (A/J)d+1 which,

by assumption, is at least H(d + 1). By adding appropriate monomials to Jd+1, we can
assume that J is an a-lpp K-ideal such that dimK((A/J)d+1) = H(d + 1). Arguing in this
way for all integers d, we obtain a monomial ideal I containing a (in fact, an a-lpp ideal)
such that H(A/I) = H. �

There are some implementations of these results in software systems such as Macaulay2.
For instance, the one authored by White [Whi].

Example 5.5. Let A = K[x1, x2, x3], and let I be a homogeneous ideal which contains a
regular sequence of degree a = (3, 3, 4). Suppose that, regarding its Hilbert function, we only
know that H(A/I; 5) = 5, and that we want to get an estimate on H(A/I; 6). Classically, this
can be done by means of Macaulay Theorem, which in this case gives that H(A/I; 6) 6 5.
However, since EGHa holds in this case by Theorem 4.1, we know that H(I) = H(LPPa(I))

and, by Theorem 5.4, we conclude that H(A/I; 6) 6 5
(5)
a = 2.

The following result was observed by Liang.

Proposition 5.6. Let I ⊆ A = K[x1, x2, x3] be an ideal which contains an ideal f generated
by a regular sequence of degree (a1, a2). The minimal number of generators of I is bounded
above by a1 · a2.

Proof. Observe that any ideal containing f satisfies EGH(a1,a2) by Theorem 4.1. By Lemma

2.15 we have that H(I/mI) 6 H(J/mJ), where J = LPP(a1,a2)(I), and thus we may just
bound the number of generators of J . As J is monomial, we can find a minimal monomial
generating set. Notice that, if u = xi1x

j
2x

k
3 is a minimal generator of J , then 0 6 i < a1 and

0 6 j < a2, since J contains a = (xa11 , x
a2
2 ). Moreover, if v = xi

′
1x

j′

2 x
k′
3 is another minimal

monomial generator of J , then i′ 6= i or j′ 6= j, otherwise u and v would be one multiple of
the other. Therefore, there are at most a1 · a2 possible choices for i and j, which proves the
desired bound. �

Proposition 5.6 can be applied to bound the number of defining equations of curves in P3.
In fact, such a curve can is defined by a homogeneous height two prime ideal P ⊆ K[P3] =
K[x0, x1, x2, x3], which then contains a regular sequence of some degree (a1, a2). We may
assume that K is infinite, and we pick a general linear form ` which is regular modulo P .
Let P be the image of P inside A = A/` ∼= K[x1, x2, x3]. The minimal number of generators
of P in A coincides with that of P in A, and we can now apply the previous proposition to
the ideal P , which still contains a regular sequence of degree (a1, a2).

Another application of the EGH conjecture is the Cayley-Bacharach Theorem, Conjecture
1.2. Its most classical version states that if a cubic C ⊆ P2 contains eight points that lie
on the intersection of two cubics, then it must contain the ninth point as well. This has
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been extended and generalized in several ways. We illustrate the relation with the EGH
conjecture in the following example.

Example 5.7. Let X ⊆ P3 be a complete intersection of degree (3, 3, 3). If a cubic hyper-
surface Y contains at least 22 of the 27 points of X, then it must contain X. To see this,
let f = (f1, f2, f3) be an ideal of definition of X, generated by three cubics. Let g be a cubic
defining Y , and let I = f + (g). Our assumptions guarantee that e(A/I) > 22. By way of
contradiction, assume that g /∈ f . We may assume that K is infinite and, after a general
change of coordinates, we may assume that Isat = (I :A x∞4 ), and x4 is a regular element
modulo Isat. Let f , I, g and Isat denote the images of f , I, g and Isat in A/(x4) ∼= A.

First, assume that g ∈ f + (x4). In this case, there exists g′ ∈ (I :A x4) ⊆ Isat of degree
at most 2. If g′ ∈ f + (x4), we repeat the process, to find that Isat actually contains a
linear form `. At this point ` /∈ f + (x4) is forced by our assumption that x4 is regular
modulo Isat. Either way, we found an element of degree less than 3 which belongs to Isat

but not to f + (x4). Multiplying such an element by an appropriate power of a general
linear form, we obtain a form of degree 3 which still belongs to Isat, but does not belong to
f +(x4). By abuse of notation, we still call it g, and will assume henceforth that g /∈ f +(x4),
that is g /∈ f . We have that e(A/I) = e(A/Isat) 6 e(A/J), where J = f + (g) ⊆ A. By

Proposition 4.16, LPP(3,3,3)(J) is an ideal with the same Hilbert function as J . Moreover,

since g /∈ f , the ideal LPP(3,3,3)(J) must contain the monomial x21x2. In particular, e(A/J) =

e(A/LPP(3,3,3)(J)) 6 e(A/(x31, x
2
1x2, x

3
2, x

3
3)) = 21. However, our assumptions guarantee that

e(A/I) > 22, a contradiction.

We conclude the paper by illustrating how the combinatorial Kruskal-Katona Theorem
[Kru63, Kat68] is related to the EGH conjecture and, in fact, recovered by the Clements-
Lindström Theorem 2.1 in the case a = (2, 2, . . . , 2). For additional details on what follows,
see for instance [HH11, Section 6.4].

The Kruskal-Katona Theorem characterizes all the possible f -vectors of simplicial com-
plexes ∆. Recall that the f -vector f(∆) = (f0, . . . , fr−1) of an (r− 1)-dimensional simplicial
complex ∆ simply records in the i-th entry the number of faces of ∆ of dimension i. Given
non-negative integers f, d, there is a unique Macaulay representation

f =

(
fd
d

)
+

(
fd−1
d− 1

)
+ . . .+

(
f1
1

)
,

where fd > fd−1 > . . . > f1 > 0. If we set

f (d) =

(
fd

d+ 1

)
+

(
fd−1
d

)
+ . . .+

(
f1
2

)
,

then the Kruskal-Katona Theorem states that (f0, . . . , fr−1) is the f -vector of a simplicial

complex of dimension r − 1 if and only if fd+1 6 f
(d+1)
d for each d = 0, . . . , r − 2.

If K[∆] denotes the Stanley-Reisner ring associated to the simplicial complex ∆, then
K[∆] = K[x1, . . . , xn]/J , where n = f0 and J is a square-free monomial ideal. Letting
R = K[x1, . . . , xn]/I, where I = J + (x21, . . . , x

2
n), then it is easy to see that H(R; i) = fi−1

for all i > 0, where we set f−1 = 1. On the other hand, given any monomial ideal I ⊆ A =
K[x1, . . . , xn] containing a = (x21, . . . , x

2
n), we can write it uniquely as I = J+a, where J is a
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square-free monomial ideal. The simplicial complex ∆ associated to the Stanley-Reisner ring
A/J has f -vector f = (f0, . . . , fr−1), where fi = H(A/I; i + 1) for i = 0, . . . , r − 1. Finally,

we observe that if a = (2, 2, . . . , 2), then

[
k
d

]
a

=

(
k

d

)
. Therefore, the numerical condition

of Theorem 5.4 can be restated as fd = H(R; d+ 1) 6 H(R; d)
(d)
a = H(R; d)(d) = f

(d)
d−1 for all

d > 1, which is precisely the condition of the Kruskal-Katona Theorem.

Example 5.8. Let f = (4, 5, 2), and let us construct a simplicial complex ∆ such that
f(∆) = f . Consider the numerical function H : N → N defined as H(0) = 1, H(1) = 4,
H(2) = 5, H(3) = 2, and H(d) = 0 for d > 3. By Theorem 5.4, it can be checked
that there exists a (2, 2, 2, 2)-lpp ideal I with Hilbert function equal to H, namely, I =
(x1x2)+(x21, x

2
2, x

2
3, x

2
4). If we let J = (x1x2), then the Stanley-Reisner ring K[x1, x2, x3, x4]/J

is associated to the following 2-dimensional simplicial complex, which has f -vector precisely
equal to f :

x3 x1

x4x2

Example 5.9. Let f = (4, 5, 3), and let us show that there is no simplicial complex ∆ with
such f -vector. To show this, by Theorem 5.4 there is no (2, 2, 2, 2)-lpp ideal ofK[x1, x2, x3, x4]

which has Hilbert function H satisfying H(2) = 5 and H(3) = 3 > H(2)
(2)
(2,2,2,2) = 2.
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