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Van der Waals heterostructures employing graphene and hexagonal boron nitride (hBN) crystals
have emerged as a promising platform for plasmonics thanks to the tunability of their collective
modes with carrier density and record values for plasmonics figures of merit. In this Article we
investigate theoretically the role of moiré-pattern superlattices in nearly aligned graphene on hBN by
using continuum-model Hamiltonians derived from ab initio calculations. We calculate the system’s
energy loss function for a variety of chemical potential values that are accessible in gated devices.
Our calculations reveal that the electron-hole asymmetry of the moiré bands leads to a remarkable
asymmetry of the plasmon dispersion between positive and negative chemical potentials, showcasing
the intricate band structure and rich absorption spectrum across the secondary Dirac point gap for
the hole bands.

I. INTRODUCTION

Research on graphene has been actively pursued dur-
ing the past decade after seminal experiments achiev-
ing its isolation via micromechanical cleavage and sub-
sequent transport measurements.1–5 Graphene shows
semimetallic behavior with linearly dispersing massless
Dirac-fermion bands near charge neutrality while hexag-
onal boron nitride (hBN) is a wide band-gap insula-
tor. Devices based on graphene on hBN substrates6–8

have shown a dramatic enhancement of electronic qual-
ity compared to SiO2 substrates, due to the atomi-
cally smooth surface structure of hBN and the relatively
smaller number of charge trap centers due to dangling
bonds. This has allowed the observation of fine Coulomb-
interaction-driven phenomena such as fractional quan-
tum Hall states,9,10 enhancement of the Fermi velocity,11

and strong Coulomb drag,12 to mention a few examples.
The use of hBN substrates allows to engineer the elec-

tronic structure of graphene. In the limit where the layers
are nearly aligned, graphene on hBN (G/hBN) displays
moiré superlattice patterns with periodicity as large as
λ ∼ 14 nm, which allows to access moiré-pattern-induced
electronic structure features at carrier densities accessi-
ble with conventional electrostatic gating. The presence
of a long periodic superlattice structure together with
the high quality of the devices has allowed the obser-
vation of Hofstadter butterfly physics in the presence of
magnetic fields routinely accessible in the laboratory.13,14

The moiré periodicity λ depends on the relative differ-
ence ε = (aG−aBN)/aBN between graphene’s and hBN’s
lattice constants, aG and aBN, respectively, and on the
relative twist angle θ, through λ ' aG/(θ

2 + ε2)1/2. Be-
cause of this dependence, the layer orientation is an addi-
tional knob for modifying the electronic structure. The
band gaps observed at the primary15–17 and secondary
Dirac points18 reflect the effect of moiré strains inducing
an average mass term,19,21,22 while realistic models for
the moiré pattern potentials can capture the secondary
Dirac point gaps on the hole side.23,24 Fairly accurate
moiré patterns can be modeled already in the first har-

monic approximation for slowly varying potentials in the
basis of the identity and Pauli matrices, whose details
determine the character of the moiré superlattice bands
such as the electron-hole asymmetry23 and the presence
of secondary gaps.24

A detailed study of the collective behavior induced by
long-range Coulomb interactions in G/hBN systems is
of considerable value for advancing our understanding of
2D-material-based plasmonics. Indeed, it has been recog-
nized early on that graphene and other two-dimensional
materials exhibit very interesting optoelectronic proper-
ties.25 In particular, G/hBN systems have been iden-
tified as a promising platform for plasmonic applica-
tions,26 featuring e.g. electrical tunability of the plas-
mon dispersion, high compression of electromagnetic ra-
diation, and facile coupling to emitters adjacent to the
graphene sheet. Most importantly, it has been shown27

that graphene encapsulated between hBN crystals sup-
ports plasmon propagation with room-temperature life-
time τp exceeding 500 fs, which represents a five-fold
enhancement compared to that achieved in the case of
SiO2

28 or SiC29 substrates. The propagation of plasmons
in graphene/hBN systems has also been used to recon-
struct the local conductivity,30 and thus verify the mod-
ification of the electronic structure due to the moiré pat-
tern. More recently, the plasmonic properties of encap-
sulated graphene have been explored at liquid-nitrogen
temperatures, where plasmon lifetimes on the order of
1.600 fs have been measured.31

These breakthroughs have fostered a substantial re-
search activity into the optoelectronic properties of the
large family of two-dimensional materials, which includes
semimetals, semiconductors, and insulators.32,33 These
materials feature several light-matter hybrid modes, gen-
erally referred to as “polaritons,” which are supported by
the electric polarization of free carriers, excitonic states,
or lattice ions.

Previous studies of the electron energy loss in G/hBN
moiré patterns,34 which neglected gauge fields, demon-
strated that the dispersion of plasmonic excitations in
graphene sensitively depends on the Hamiltonian details.
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In this Article we take a step further by exploring plas-
mons in G/hBN in a wide chemical potential range ac-
cessible in experiments by using a realistic electronic
structure model for G/hBN moiré patterns.21,24,35 The
manuscript is structured as follows. In Sec. II we present
the continuum-model effective Hamiltonian for G/hBN,
summarizing the framework to calculate a set of real-
istic parameters for the moiré potential, and we detail
the expression for the dielectric and loss functions within
the random phase approximation (RPA).36 The results of
our numerical calculations are presented and discussed in
Sec. III. Finally, in Sec. IV we summarize our work and
draw our main conclusions.

II. THE MODEL

A. Effective Hamiltonian

The effect of interlayer coupling on graphene’s band
structure can be modelled through the following Hamil-
tonian, where we use the notation of Ref. 34, including
scalar, mass, and gauge potentials:

Ĥ = vFτ0σ · p̂+ τ0σ0V (r) + τ3σ3[∆0 + ∆(r)]

+τ3σ ·A(r) . (1)

The position vector r lies in the two-dimensional (2D)
plane where the graphene sheet lies. The Pauli matri-
ces σi operate on the pseudospin space spanned by the

sublattice sites A, B; τi acts on the space of graphene’s
principal valleys K, K ′; and σ = (σ1, σ2) is a vector of
Pauli matrices. We parametrize the spatial distribution
of the moiré pattern as follows24,37

V (r) = 2C0<e[eiφ0f(r)] , (2)

∆(r) = 2Cz<e[eiφzf(r)] , (3)

A(r) = 2CABχẑ × ~∇<e[eiφxyf(r)] . (4)

Here, Cµ and φµ are numerical constants that we discuss
below. The coefficient χ depends on the twist angle θ
and is given by

χ =
1 + ε− cos (θ)√

(1 + ε)2 + 2(1 + ε) cos (θ) + 1
. (5)

Finally, the complex function f(r) is given by

f(r) =

6∑
m=1

eiGm·r 1 + (−1)m

2
, (6)

where Gm are the six reciprocal lattice vectors of the
moiré pattern which are closer to the origin. The Hamil-
tonian (1) can be rewritten in the more explicit form

Ĥ = vFτ0σ · p̂+ τ3σ3∆0 +

6∑
m=1

eiGm·rWm , (7)

where

Wm =

(
Wm,1 0

0 Wm,−1

)
, Wm,ν =

(
C0e

i(−1)mφ0 + νCze
i(−1)mφz νCABχe

i[−ϕm+(−1)m+1φxy ]

−νCABχei[ϕm+(−1)m+1φxy ] C0e
i(−1)mφ0 − νCzei(−1)

mφz

)
. (8)

Here, ϕm is the polar angle of the wave vector Gm and
the order of the basis vectors in the 4-dimensional sub-
lattice/valley space is {|AK〉, |BK〉, |BK ′〉, −|AK ′〉}.

The Hamiltonian for G/hBN that we use in this work
is based on ab initio calculations for the interlayer cou-
pling, which capture effects beyond the commonly as-
sumed two-center approximation.35 In Eq. (2), the mag-
nitude and phase pairs Cµ, φµ are moiré pattern param-
eters that capture the effective interlayer coupling in the
first harmonic approximation.24,35 The parameters Cµ,
φµ were obtained by first calculating the distant hopping
terms from carbon to the substrate atoms, for all pos-
sible commensurate stacking configurations. Then, the
real-space hopping terms were Fourier transformed, to
calculate the effective interlayer coupling near the Dirac
point, for every stacking configuration. An additional
Fourier transform in the reciprocal lattice vectors for the
moire patterns led to the Wm terms used in Eq. (7) and
defined in Eq. (8). The parameters used in our model

Hamiltonian are:

C0 = 0.01013 eV, φ0 = 26.53◦ ,
Cz = 0.00901 eV, φz = −51.57◦ ,
CAB = 0.01134 eV, φxy = 130.40◦ .

(9)

The model also needs the following additional parame-
ters:

∆0 = 0.010 eV, ε = −0.017 ,
vF = 1.1 nm/fs, αee = 1.0 ,

(10)

where ∆0 is the magnitude of the average gap that can be
introduced by moiré strains,21 vF is the Fermi velocity in
G/hBN, and αee = e2/(ε̄~vF) is a dimensionless coupling
constant measuring the strength of electron-electron in-
teractions, with ε̄ the average dielectric constant.

We point out that a different set of Hamiltonian pa-
rameters ui, ũi, based on inversion symmetry consider-
ations and a choice of origin, was also analyzed in the
literature.38,39 The relation between the sets ui, ũi and
Cµ, φµ is discussed in detail in Ref. 24.
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B. Theory of the dielectric and loss functions for
moiré superlattices

The dielectric function εG,G′(q, ω) relates the external
potential Vext(G + q, ω) applied to the electron system
and the screened potential Vsc(G + q, ω), which results
from the displacement of the carrier’s charges, according
to the relation∑

G′

εG,G′(q, ω)Vsc(G
′ + q, ω) = Vext(G+ q, ω) . (11)

Here,G are reciprocal lattice vectors of the moiré pattern
superlattice and q is a wave vector in the moiré Brillouin
zone (mBZ). Differently from a homogeneous system, the
dielectric function is a matrix in the reciprocal lattice
space,36 because the wave vector of the external potential
is conserved only up to a reciprocal lattice vector of the
mBZ.

Within the RPA, the dielectric function is related to
the non-interacting density-density polarization function

(i.e. the Lindhard function) χ
(0)
G,G′(q, ω) by36,40

εG,G′(q, ω) = δG,G′ − vG(q)χ
(0)
G,G′(q, ω) , (12)

where vG(q) = v(q+G) with v(q) = 2πe2/(ε̄q) is the 2D
Fourier transform of the Coulomb potential.

The explicit expression for the Lindhard function is

χ
(0)
G,G′(q, ω) =

2

L2

∑
k,n;k′,n′;ν

nF(εk,n,ν)− nF(εk′,n′,ν)

~ω + εk,n,ν − εk′,n′,ν + iη

×Mk,n,ν;k′,n′,ν(q +G)M†k,n,ν;k′,n′,ν(q +G′) ,

(13)

where L2 is the 2D electron system area, nF(x) =
{exp[(x− µ)/kBT ] + 1}−1 is the Fermi-Dirac occupation
factor at temperature T and chemical potential µ, and,
finally,

Mk,n,ν;k′,n′,ν(q +G) ≡ 〈k, n, ν|e−i(q+G)·r|k′, n′, ν〉 ,
(14)

|k, n, ν〉 being the eigenstate of the non-interacting
Hamiltonian for wave vector k in the mBZ, band n, and
principal valley ν, and εk,n,ν the corresponding eigen-
value.

The plasmon spectrum can be found, in principle, by
solving for the roots ω = ωpl(q) of the G = 0, G′ = 0 en-
try of the dielectric function matrix, in the wave vector q
and complex angular frequency ω space. Assuming that
the plasmon modes are long-lived, one can also solve for
the roots with real angular frequency only, and then es-
timate the imaginary part.41 It is numerically more con-
venient, however, to calculate the so-called loss function

L(q, ω) = −=m{[ε−1]0,0(q , ω)} , (15)

which is proportional to the probability of exciting the
2D electron system by applying a perturbation with wave

FIG. 1. Graphene-hBN superlattice minibands along the
Γ̃-K̃-M̃ ′-K̃′-Γ̃ direction in the mBZ, for the set of parameters
given in Eq. 9, corresponding to vanishing twist angle θ =
0. On the horizontal axis, the quantity ξ indicates the total
length along the path in the reciprocal space.

FIG. 2. (Color online) Fermi surfaces of the minibands
in Fig. 1 for two Fermi energies εF = −180 meV (red) and
−215 meV (blue). The gray shaded area corresponds to the
moiré superlattice Brillouin zone. The Fermi surfaces are pe-
riodically repeated in the reciprocal space for clarity.

vector q and angular frequency ω, and is directly mea-
sured e.g. via electron-energy-loss spectroscopy.42 More
details on the calculation of the loss function and the
eigenvectors of the moiré Hamiltonian can be found in
Ref. 34.
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III. RESULTS

In this Section, we present our numerical results for
the loss function and associated plasmon spectrum.

The dispersion of the electronic energies in the mBZ,
dubbed “minibands,” is shown in Fig. 1 along a path
in the mBZ around the K valley of the original graphene
Brillouin zone. Two gaps are clearly visible at the energy
of the Dirac point ε = 0 around the Γ̃ point of the mBZ
and at ε ' −200 meV around the K̃ ′ point. (Notice that,

in the K ′ valley, the points K̃ and K̃ ′ are exchanged.)
The flatness of the second band below the Dirac point
is noteworthy and clearly visible along the path between
the K̃ and K̃ ′ points. To better appreciate this band’s
flatness, in Fig. 2 we plot the Fermi surfaces for two dif-
ferent Fermi energies. The bottom of the first band below
the Dirac point consists of one sharp minimum around
the K̃ ′ point, parabolic in shape but strongly anisotropic.
The maximum of the second band, instead, is located at
the M̃ point but, in a small energy range . 5 meV, ex-

pands around the K̃ ′ point, roughly in the shape of a
three-blade propeller. Eventually, the tips of the blade-
like shapes touch at the K̃ points and merge, yielding a
familiar-looking but distorted hexagonal Fermi surface.

Fig. 3 contains the main results of this Section. It
shows the loss function, at fixed wave vector, in a large
chemical potential range. Above the Dirac point, we
identify a single plasmon branch, almost unperturbed
by the moiré potential. We emphasize that the spec-
tral broadening of the plasmon branch, i.e. the width
of the peak as a function of ω, cannot be readily esti-
mated from this density plot, because the extent of the
monochrome shades has been truncated to improve the
visibility of the less intense features. Around the Dirac
point, the existence of the gap manifests as a forbidden
band for the plasmon propagation, i.e. a region where
plasmon branches are not supported. Moreover, inter-
band transitions across the gap contribute a continuum
of excitations which has the shape of an inverted, trun-
cated cone.

The profile of the loss function below the Dirac point
is dramatically different. As the chemical potential be-
comes more negative, the graphene’s plasmon branch first
grows in energy and then bends abruptly to reach zero
energy at the gap located around µ ' −200 meV. Below
the gap, a plasmon branch rises again. This is an instance
of the plasmon morphing phenomenon that was intro-
duced and discussed in Ref. 34. Across the gap, inter-
band transitions contribute a thick continuum around
~ω . 10 meV. The location and extent of this contin-
uum can be understood by looking at the Fermi surfaces
just below and above the gap, shown in Fig. 2, which
support a large number of electronic transitions with al-
most arbitrary wave vector in a restricted energy range.
Most interestingly, below the gap and as the chemical
potential changes, more than one plasmon branch and
an apparent “avoided crossing” appear, suggesting that

(a)

(b)

FIG. 3. A 2D density plot of the RPA loss function L(q, ω),
as a function of the chemical potential µ and excitation en-
ergy ~ω, for the parameters given in Eq. 9. The calculation
is performed for a fixed wave vector of length q = 0.02 nm−1

along the M̃ -Γ̃ direction. Panel (b) shows a magnification of
(a) around the gap at µ ' −200 meV (cfr. the minibands in
Fig. 1). In both panels, and in the following figures as well,
the range of the monochrome shades has been truncated to
improve the visibility of the less intense features. For compar-
ison, the graph of the loss function at fixed chemical potential
is shown in Fig. 6(a).

these branches correspond to coupled modes.

To better appreciate the asymmetry of the plasmon
spectrum above and below the Dirac point, in Fig. 4 we
show the loss function as a function of the wave vec-
tor, for two values of the chemical potential. Above the
Dirac point the plasmon’s dispersion is almost unper-
turbed by the moiré potential. On the contrary, close
to the gap at µ ' −200 meV, the low-energy dispersion
(~ω . 100 meV) is fractured into several branches with
variable intensity, and recovers its almost unperturbed
profile only at larger energies. Fig. 5 focuses on the low-
energy dispersion for two chemical potentials close to the
gap. The dispersion is very similar, thus showing that
the features discussed here are robust and do not de-
pend on the specific value of the chemical potential. At
very low energies (~ω . 30 meV) a well-defined branch
rises with q and then flattens out, giving way to a contin-
uum band of excitations, peaked around the unperturbed
dispersion. The continuum band features a thin abrupt
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(a)

(b)

FIG. 4. A 2D density plot of the RPA loss function L(q, ω),
as a function of the wave vector length q and the excitation
energy ~ω. The wave vector is taken along the M̃ -Γ̃ direction.
Results for positive µ = 200 meV and negative µ = −205 meV
chemical potentials are shown in (a) and (b), respectively.

fracture around ~ω ' 50 meV, above which another con-
tinuum band appears.

To guide the interpretation of these spectral features,
in Fig. 6(a) we juxtapose the loss function and the real
and imaginary parts of the dielectric function. Two sharp
zeros of the real part of the dielectric function are present
where the loss function has its maxima. This shows that
the maxima are indeed collective modes, and can be inter-
preted as branches of the plasmon dispersion. Between
the maxima, a peak of the imaginary part of the dielec-
tric function signals the existence of a continuum of elec-
tronic excitations, which separates the two branches. A
more complete picture is obtained by looking at Fig. 6(b),
which shows the imaginary part of the dielectric func-
tion, i.e. the electron-hole (e-h) continuum. In unper-
turbed graphene, at excitation energies which are small
compared to the chemical potential, the e-h continuum
consists of intra-band excitations below the “light-cone”
ω = vFq. Here, instead, it consists of a fractured do-
main, which includes bands extending horizontally with
sharp bottom edges. Again, the origin of these bands
can be qualitatively understood by referring to the large
Fermi surfaces shown in Fig. 2. More precisely, elon-
gated structures in the Fermi surface grant a support

(a)

(b)

FIG. 5. As in Fig. 4, but in a smaller wave vector range
around the origin of the reciprocal space. Results for two
negative chemical potentials µ = −205 meV and −215 meV,
slightly lower than the gap (cfr. the minibands in Fig. 1), are
shown in (a) and (b), respectively.

for e-h transitions with variable wave vector and con-
stant energy, which coalesce into the horizontal bands of
Fig. 6(b). The dispersion of the plasmon modes cannot
penetrate the intra-band e-h continuum, as is the case
in unperturbed graphene, where the plasmon dispersion
is tangent to the light-cone. Thus, the dispersion bends
and follows the bottom edge of the e-h bands. Differ-
ent branches effectively avoid each other, as if they were
coupled modes, because they stem from the same set of
electronic excitations.

The results that we have presented above hold for
nearly-aligned graphene and hBN layers, where θ ' 0,
because they crucially depend on the existence of the
gap in the electronic dispersion at the K̃ ′ point of the
Brillouin zone around µ ' −200 meV. However, we have
verified that the plasmon spectrum is asymmetric for a
larger angle θ = 2◦ as well, although in a less dramatic
fashion than displayed in Fig. 3. Since the exact angular
dependence of the parameter ∆0 is not known analyti-
cally, and experimental reports of the gap magnitude are
not in agreement15,17–20, we have used both ∆0 = 0 and
∆0 = 10 meV in the calculations.
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(a)

(b)

FIG. 6. (Color online) (a) The RPA loss function L(q, ω)
(shaded area), the real (solid line), and the imaginary (dashed
line) part of the dielectric function ε(q, ω), as functions of
the transition energy ~ω, at fixed wave vector length q =
0.01 nm−1. The values of the loss (dielectric) function are
reported on the left (right) vertical axis. (b) A 2D density plot
of the imaginary part of the dielectric function, as a function
of the wave vector length q and the excitation energy ~ω.
In both panels, the wave vector is taken along the M̃ − Γ̃
direction and the chemical potential is µ = −215 meV, as in
Fig. 4(b).

IV. SUMMARY AND CONCLUSIONS

In this work we have analyzed the plasmon spectrum
of a heterostructure composed of two nearly-aligned lay-
ers of graphene and hexagonal boron nitride (hBN). We
have used a continuum-model effective Hamiltonian to
obtain the dispersion relation of graphene’s carriers in
the heterostructure, which is different from that of iso-
lated graphene because the hBN layer generates a peri-

odic moiré potential for the carriers. We have discussed
in detail the symmetry of the moiré potential and the
relation between different formal representations of its
functional form in real and sublattice space. The pa-
rameters of the moiré potential have been derived using
a framework24 which combines symmetry considerations
with input from ab initio calculations. The electronic
dispersion obtained with the continuum model consists
of several minibands in the moiré superlattice Brillouin
zones, centered at the K and K ′ points of the Brillouin
zone of pristine graphene, which shift in energy as the
twist angle between the layers is varied. At vanishing
twist angle between the layers, a gap is present about
200 meV below the Dirac point. We have numerically
calculated the dielectric function and the loss function
taking into account electronic transitions between mini-
bands in the moiré Brillouin zones and electron-electron
interactions at the level of the random phase approxima-
tion (RPA).

In conclusion, our calculations demonstrate a dramatic
asymmetry of the plasmon dispersion at positive and
negative chemical potential. This observation is poten-
tially very relevant to establish the ideal working point
of a graphene/hBN heterostructure as a two-dimensional
platform for tunable, low-loss plasmonics. Moreover,
around the gap below the Dirac point, the plasmon spec-
trum features several branches which appear as a result
of a fractured electron-hole continuum due to the inter-
band transitions between closely-spaced minibands with
almost flat dispersion. Given the richness of the available
band dispersion in graphene-based and, in general, in van
der Waals heterostructures, our findings could be useful
to guide further exploration of the non-trivial connection
between the electronic and plasmonic dispersion in these
systems.
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