
This is the postprint version hold by the author of the paper published by ACM whose final version
is available at the following link:

https://dl.acm.org/doi/pdf/10.1145/2903146

DOI: https://doi.org/10.1145/2903146

ACM hold the copyright of the final published version.

39

A Game-Theoretic Approach for Elastic Distributed Data Stream
Processing

Gabriele Mencagli, University of Pisa

Distributed data stream processing applications are structured as graphs of interconnected modules able to
ingest high-speed data and to transform them in order to generate results of interest. Elasticity is one of the
most appealing features of stream processing applications. It makes it possible to scale up/down the allocated
computing resources on demand in response to fluctuations of the workload. On clouds this represents a
necessary feature to keep the operating cost at affordable levels while accommodating user-defined QoS
requirements. In this paper we study this problem from a game-theoretic perspective. The control logic
driving elasticity is distributed among local control agents capable of choosing the right amount of resources
to use by each module. In a first step, we model the problem as a non-cooperative game in which agents
pursue their self-interest. We identify the Nash equilibria and we design a distributed procedure to reach
the best equilibrium in the Pareto sense. As a second step, we extend the non-cooperative formulation with
a decentralized incentive-based mechanism in order to promote cooperation by moving the agreement point
closer to the system optimum. Simulations confirm the results of our theoretical analysis and the quality of
our strategies.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Design, Theory, Performance

Additional Key Words and Phrases: Autonomic Computing, Data Stream Processing, Elasticity, Game The-
ory.

ACM Reference Format:
Mencagli, G. 2015. A Game-Theoretic Approach for Elastic Distributed Data Stream Processing. ACM Trans.
Auton. Adapt. Syst. 9, 4, Article 39 (March 2010), 34 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Distributed data stream processing applications running on clusters, grids and clouds
are composed of a plurality of active components (processing modules in our terminol-
ogy) connected via streams [Cugola and Margara 2012]. The graph ingests input ele-
ments coming from external sources (e.g., cameras, sensors, financial tickers) and the
application logic continuously transforms raw input data into final results by follow-
ing different paths in the graph according to the computation semantics. This vision
is representative of a variety of application domains like continuous queries [Andrade
et al. 2014], wireless sensor networks [Lea 2007], high-frequency trading [Andrade
et al. 2011] and social media [Reuter and Cimiano 2012].

Streaming applications necessitate taking advantage of multiple host machines to
support high-throughput processing. To sustain the actual stream pressure, hotspot
modules can be internally parallel [Andrade et al. 2014]. The problem of choosing

Author’s address: Gabriele Mencagli, Department of Computer Science, University of Pisa, Largo B. Pon-
tecorvo 3, I-56127, Pisa, Italy. Phone: +39-050-221-3132. Email: mencagli@di.unipi.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 G. Mencagli

the amount of resources to use by each module is exacerbated by the dynamic na-
ture of the streaming context, often featuring time-varying arrival patterns, burstly
data rates, with the modules’ internal logic exhibiting variable processing times per
stream element. Static peak-load configurations are not sustainable for resource con-
sumption [Hummer et al. 2013; Gedik et al. 2014]. Moreover, on cloud platforms the
resources are rented on a pay-as-you-go basis, thus choosing the right amount of re-
sources is essential to keep the operating cost at affordable levels [Gohad et al. 2013].

Elasticity is the answer to deal with this variability, by adapting the application
configuration to the actual workload at run-time [Hummer et al. 2013]. Most of the
existing papers have focused on control strategies supporting elastic scaling for single
streaming components or small aggregations of them [Hummer et al. 2013; Gedik et al.
2014; Castro Fernandez et al. 2013]. The problem becomes more complex if we consider
arbitrary graph structures, since the decisions taken by the elastic strategy at the level
of each single component influence the performance of the other directly or indirectly
connected components (the so-called backpressure or remote congestion). The goal of
this paper is to study formal control strategies dealing with this problem.

The distributed control strategies proposed in this paper are studied from a game-
theoretic perspective. Game theory [Vorobjov 1994] captures the interplay between
agents, where their decisions are interdependent. Accordingly, each module has its
own control logic performed by a local control agent. Agents are interconnected and
exchange information in order to reach an agreement in the amount of resources to
use. As a first contribution, we propose a non-cooperative formulation modeling this
problem. Since the agents are responsible for controlling modules of the same applica-
tion, they are not in conflict. However, they work in a situation of strategic interaction
in which the outcome/cost of an agent depends also on the decisions of other agents.
We characterize the set of Nash equilibria, i.e. the resource allocation strategies where
no single agent has an incentive to unilaterally deviate from his actual strategical
choice. Furthermore, we propose a distributed procedure to allow the agents to reach
the Pareto-optimal Nash equilibrium, which exists in our problem and is the best so-
lution in the non-cooperative setting.

The non-cooperative approach is realistic in multi-tenant scenarios in which differ-
ent parts of the same application are managed by multiple profit-making entities like
in federated cloud systems [Gomes et al. 2012; Li et al. 2013]. In that case the strategy
may be unaware of the fact that the received jobs are part of the same application,
which usually has global QoS requirements and constraints in the total cost the user
is willing to pay for the execution. Therefore, as a second contribution we design a
decentralized incentive-based mechanism [Park and van der Schaar 2010; Rogerson
1994] where agents change the game parameters by maintaining the non-cooperative
nature of their interaction scheme. The mechanism promotes cooperation by making
the individual decisions compatible with social welfare optimization.

We conclude this work with experiments performed in a simulation environment,
in order to confirm the results of the theoretical analysis in terms of performance,
efficiency and cost optimality. Furthermore, we analyze the overhead of the strategies
in terms of the amount of exchanged messages needed to reach the desired accuracy.

The outline of this paper is the following. Sect. 2 provides a brief description of some
related works in this area. Sect. 3 shows an overview of the problem and the main
solution concepts. Sect. 4 introduces a formal definition of our non-cooperative strategy,
which will be extended in Sect. 5 with the incentive-based mechanism. Sect. 6 shows a
set of simulations by taking into account a distributed streaming application operating
in a mobile cloud environment. Finally, Sect. 7 provides the conclusions of this work
and our future research directions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:3

2. RELATED WORK
The major contribution of this paper is the investigation of novel distributed control
strategies formalized using a game-theoretic approach. Although game theory is a nat-
ural framework in which to formally study multi-agent systems, its application in the
domain of stream processing is essentially new at the best of our knowledge. In this
section we review the state-of-the-art in order to critically evaluate our contribution.

2.1. Data Stream Processing
Recently, elasticity has been investigated in the data stream processing domain.
In [Gedik et al. 2014] the authors have proposed an elastic scaling strategy for stateless
and stateful streaming operators (the equivalent of our module concept). The approach
is based on heuristics without models to drive the decisions, e.g., the parallelism de-
gree is increased until the congestion is resolved. In the case of a remote congestion
due to other operators, the strategy stops to increase the parallelism degree for a cer-
tain time period. Therefore, this work lacks in providing a model-based coordination
between operators, which is instead our main goal.

An approach for clouds has been described in [Gulisano et al. 2012]. It is based on
a centralized manager that monitors all the elastic instances in the system. Central-
ized approaches are common in the literature. Another example has been described
in [Lohrmann et al. 2015] based on queueing theory models to provide latency guaran-
tees. This work is interesting because it takes into account paths of operators instead
of single instances. The strategy is based on a centralized controller that receives the
monitored data needed to instantiate the model. In [Heinze et al. 2014] the FUGU com-
ponent is a centralized controller which assigns operators to hosts and derives scaling
decisions. These works differ from our approach, where the emphasis is on decompos-
ing the centralized strategy into multiple local communicating agents. We claim that
our contribution is definitely important for large-scale distributed applications.

ChronoStream [Wu and Tan 2015] is a framework for stream processing on multi-
tenant platforms. A centralized controller is responsible to scale up/down the system by
migrating the state in a transparent fashion in the case of stateful computations. The
execution model groups operators into computation slices assigned to the execution.
Again, our approach has a different perspective, as the application graph is not only
an abstraction to initially define the application, but it represents the execution model
where modules are the concurrent activities further parallelizable if necessary.

2.2. Game Theory and Clouds
Game theory has attracted the interest of researchers to solve various resource allo-
cation problems in cloud computing. In [Kwok et al. 2007] a non-cooperative strategy
has been proposed for grid computing, in which machines are used selfishly by mul-
tiple applications. Other works have followed a similar rationale [Ye and Chen 2013]
by proposing game-theoretic strategies to achieve load balancing in systems of parallel
cloud servers hosting applications of different users. Similarly, in [Ardagna et al. 2013]
a competitive setting has been utilized between multiple SaaS providers that share the
same infrastructure (IaaS). The problem is modeled in a game-theoretic framework by
providing the existence and the convergence to generalized Nash equilibria. Our work
differs from this vision: we study the distributed control of single applications com-
posed of several elastic jobs (modules) that can act selfishly or not.

Cooperative game theory has been applied to manage multi-organization cloud com-
puting environments [Niyato et al. 2011], in which cloud providers offer their services
by sharing resources in order to reduce the costs. Pricing mechanisms have been stud-
ied to enable cooperative behaviors. In [Zhang and Xiao 2014] cloud providers decide

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 G. Mencagli

the resource configuration while a broker entity is in charge of deciding the optimal
resource price in a centralized fashion. In contrast, the incentive-based mechanism
studied in this paper is fully decentralized, with each agent able to change its incen-
tive parameter such that the agreement point is closer or better equal to the system
optimum.

The approach studied in [Meilander et al. 2013] has interesting commonalities
with our work. The authors propose a decision-making strategy supported by cost
models for real-time online interactive applications (briefly, ROIA) executed on cloud
environments (e.g., massively multi-player online games, real-time training and e-
learning based on high-performance simulation). The approach models the effect of
various load-balancing actions on the application scalability and analyzes the compu-
tational overhead of such reconfigurations. Similar approaches have been developed
with the goal of introducing cost models of reconfiguration activities [Bertolli et al.
2010; 2009]. Typical actions consist in load redistributions among existing resources,
or in adding/removing active servers to the actual application configuration. Such ac-
tions are usually triggered in response to wide variations in the number of application
users. Our work distinguishes for at least two important aspects: first, it can be ap-
plied to generic distributed stream processing applications that cover a more general
spectrum than ROIA; second, our work investigates decision-making strategies from a
game-theoretic perspective, which has not been applied in [Meilander et al. 2013].

3. MOTIVATION AND SOLUTIONS
In this work we focus on elastic stream processing applications executed on distributed
environments. Parallelism can be exploited between modules working on different in-
put stream elements in parallel. A stream element is a data structure (e.g., financial
ticks, video frames) whose reception triggers the internal processing logic of the mod-
ule. In the sequel, we use the term task to refer to a stream element exchanged between
modules. Furthermore, modules that are not able to sustain the actual input stream
speed (hotspots) can be internally parallelized by having multiple internal replicas
working on a subset of the input tasks distributed by a scheduling functionality.

Elasticity consists in the possibility to change the configuration parameters of the
processing modules at run-time, in order adapt them to the actual workload. In this
paper we focus on the adaptation of the amount of replicas used by each processing
module, i.e. its parallelism degree. Finding the right amount of resources to use is
formulated as an optimization problem modeling the desired trade-off between perfor-
mance (throughput) and the cost of the resource allocation.

3.1. Principles of Distributed Control
To choose the best values of the configuration parameters (decision variables), a self-
optimizing system solves an optimization problem [Maggio et al. 2012]. Due to the
time variability of the actual execution conditions, the optimization problem needs to
be solved periodically, at each control step (a fixed time interval). In fact, the execution
may be affected by several uncontrollable exogenous factors, such as the arrival rate
from input streams and the processing time per stream element, that are modeled as
disturbance variables outside of the the system control.

In the simplest control structure shown in Fig. 1a, a unique control agent (controller)
receives monitoring data from the whole system and computes the optimal values of
all the decision variables. This solution is viable for systems with few decision and
monitored variables [Scattolini 2009]. Other solutions decompose the system into a
set of subsystems controlled by properly organized control agents. Multi-layer schemes
(Fig. 1b), based on controllers with different degrees of authority, are a very flexible
solution which allows different strategies to be used at the different layers of the hier-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:5

archy. However, higher level controllers need complex models to capture the behavior
of lower level controllers, and may be critical for scalability and reliability.

System

Observed
Measurements

Decision
Variables

Controller

Optimize

(a) Centralized scheme.

Observed
Measur.

Decision
variables

Controller Controller

Observed
Measur.

Controller

Controllerinformation exchange information exchange

Decision
variables

Sub-System Sub-System Sub-System

(b) Multi-layer scheme.

Sub-System

Observed
Measur.

Decision
variables

Controller Controller

Observed
Measur.

Controller
information
exchange

information
exchange

Decision
variables

Sub-System Sub-System

(c) Single-layer scheme.

Fig. 1: Single- and multi-agent control structures for distributed systems.

Finally, single-layer schemes (Fig. 1c) have a flat organization. All the controllers are
at the same level of authority and perform the same strategy in a distributed manner.
Local controllers usually exchange data to find an agreement.

3.2. Distributed Control Strategies
In this paper we investigate distributed control strategies for stream processing appli-
cations based on single-layer schemes, as sketched in Fig. 2. In this example the control
agents are interconnected following the same shape of the graph between processing
modules (though their interconnections are bidirectional). Fundamental aspects of this
vision are: i) controllers communicate only between neighbors; ii) controllers have a
partial knowledge of the system structure and behavior, and at each step they need to
exchange information several times until an agreement is reached.

In this work we examine two distributed control strategies. In the first one con-
trollers act in a non-cooperative fashion [Vorobjov 1994]. They choose the best values
of their decision variables without taking into account the effects their actions have
on the other processing modules (the so-called negative externalities). This vision is re-
alistic of real-world systems. As an example, in federated cloud environments [Gomes
et al. 2012; Li et al. 2013] separated jobs are distributed amongst multiple virtual
machines owned by different, independent profit-maximizing entities aimed at provi-
sioning physical resources such that their individual cost is optimized. Here an agree-
ment is a Nash equilibrium [Vorobjov 1994]: a configuration of the decision variables
such that no controller can improve its cost by changing unilaterally its actions. The
equilibria need to be reevaluated periodically by the strategy, because the disturbance
variables change the location of the equilibria in the admissible solution set.

There are many cases in which control agents are motivated to act coopera-
tively [Chalkiadakis et al. 2012]. A cooperative controller takes into account the pref-
erences of the other controllers while evaluating its strategy. To do that, a possible
solution is to change the reward/cost levels associated with the controllers’ actions in

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 G. Mencagli

Module

Controller

Module

Controller

Module

Controller

Module

ControllerController

Module

Module

Controller

from external
sources (e.g.

sensors,
cameras, etc.)

final results to
end-users

(filtered video
frames,

notifications,
alterts, etc.)

stream

information exchange

Fig. 2: Flow graph of modules. Each module is coupled with a control agent able to change the
local configuration parameters according to the results of the decision-making process.

such a way that the desired cooperative behavior can be enforced. An approach con-
sists in incentive-based mechanisms, e.g., pricing, taxation, rewards [Alpcan and Pavel
2009], that promote cooperation by moving the agreement point towards more socially
desirable solutions. An example is to reach the solution that optimizes the joint cost of
the controllers, i.e. the so-called system optimum. Incentive-based mechanisms can be
applied by a single centralized authority having a complete vision of the system or in
a fully decentralized fashion. In this second case the design of the mechanism is more
challenging as controllers have only a partial knowledge.

4. NON-COOPERATIVE CONTROL OF STREAM PROCESSING APPLICATIONS
In this section we analyze the problem of finding the optimal allocation of computing
resources to the modules of a stream processing application. We study the problem
from a non-cooperative perspective, by characterizing the equilibria and the main lim-
itations of this approach.

4.1. Performance Analysis of Flow Graphs
Let Mi be a generic module of a flow graph. We consider two performance metrics:

— the ideal service time (denoted by TSi,k
) is the inverse of the average number of

stream elements that Mi is able to serve in a time unit during control step k;
— the inter-departure time (denoted by TDi,k

) is the inverse of the effective output rate
(throughput) of results transmitted onto the output streams of Mi during step k, i.e.
the average time interval between the generation of two consecutive results∗.

The first metric is a measure of the Mi’s performance in isolation, i.e. without taking
into account the interaction with other modules. Let Ti,k be the mean (sequential)
running time per task during control step k. We model Ti,k as a disturbance variable
whose value may change over the execution and is monitored by the controller.

We express the Mi’s service time as a function of its parallelism degree ni,k and the
mean running time per task Ti,k. Fig. 3 shows some service time models. The ideal
behavior with perfect scalability is represented in Fig. 3a. Possible non-ideal behav-
iors are depicted in Figs. 3b and 3c. Fig. 3b shows the case in which the service time
remains constant for parallelism degrees greater than n0. This model roughly approxi-
mates the behavior of memory-bound computations whose scalability is limited by the
memory bandwidth. Fig. 3c shows the case in which the service time has a minimum

∗We assume for simplicity that each module produces one result for each consumed input task.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:7

point at n0. This is possible if some functionalities (e.g., a task scheduler) become a
bottleneck with high parallelism degrees. In all the cases the best model is the one
that better approximates the profiling measurements. Unless otherwise noted, in the
rest of the description we will suppose the ideal behavior, i.e. TSi,k

= Ti,k/ni,k, although
our results can be easily generalized to any convex model as the ones shown in Fig. 3.

S
er

vi
ce

 ti
m

e

Parallelism degree

Shape of the ideal model.

(a) Ideal model.

S

er
vi

ce
 ti

m
e

Parallelism degree

Shape of the blocked model.

(b) Blocked model.

S
er

vi
ce

 ti
m

e

Parallelism degree

Shape of the curved model.

(c) Curved model.

Fig. 3: Different convex models of the service time of a processing module.

The most used cooperation model for distributed applications is the message-passing
one [Leopold 2001]: modules interact by transmitting messages on destination buffers
with finite capacity. If a module attempts to deliver a message to a full capacity des-
tination buffer, it is forced to wait until the destination has enough space to enqueue
the new message. Therefore, a bottleneck throttles down the other processing modules
due to backpressure. Backpressure is an effect that starts at the bottleneck and prop-
agates backwards through the flow graph. As a result, the inter-departure time of a
module can be greater than its service time, i.e. TDi,k

≥ TSi,k
. The backpressure phe-

nomenon originates the strategic interdependence between control subproblems. The
effective performance achieved by a module depends on the parallelism degrees chosen
by all the other modules. The utilization degree of the resources assigned to a module
is capture by the relative efficiency metric εi,k ∈ [0, 1], defined as εi,k = TSi,k

/TDi,k
.

The relationship between inter-departure time and service time can be formalized
by the model proposed in [Mencagli 2012], used in our prior works [Mencagli et al.
2013b; 2013a; 2014; Mencagli and Vanneschi 2011] and valid for a significant and
large class of graphs: acyclic computations with a single source. The single-source and
the acyclicity assumptions are not so restrictive in practice and allow a simple yet
precise modeling. Flow graphs of continuous queries [Babu and Widom 2001] for ex-
amples, and the ones from the nesting of algorithmic skeletons [González-Vélez and
Leyton 2010], have by construction one single entry point. In the most general case, it
is possible to re-design the applications such that the streams generated by external
sources are multiplexed and demultiplexed by a single entry point of the graph. In-
stead, cycles are not taken into account in this work, as they render the performance
modeling more complex. Extensions covering this feature will be studied in our future
works.

Let G = (M,A) be a single-source acyclic directed graph, where M is the set of
the indices of the modules (vertices) M = {1, 2, . . . ,m} (s ∈ M is the identifier of
the source) and A is the set of streams (arcs). Each arc (i, j) ∈ A is labeled with the
probability pki,j ∈ [0, 1] that a message is routed to that arc during step k. We denote
by Pi→jk the probability during step k of traversing any path starting from module Mi

and ending in Mj , where Λ(i, j) is the set of the paths from Mi to Mj . Pi→jk is defined

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 G. Mencagli

as follows:

Pi→jk =
∑

∀π∈Λ(i,j)

 ∏
∀(u,v)∈π

pku,v

 (1)

We use the following result whose proof can be found in [Mencagli 2012] (chapter 8,
page 213):

PROPOSITION 4.1 (INTER-DEPARTURE TIME). The inter-departure time of a mod-
ule Mi with i ∈M during control step k is expressed as follows:

TDi,k
= max

{
fki,1
(
TS1,k

)
, fki,2

(
TS2,k

)
, . . . , fki,m

(
TSm,k

)}
(2)

Each function fki,j returns the lower bound of the inter-departure time of Mi by suppos-
ing Mj the bottleneck. The functions fki,j for j = 1, 2, . . . ,m are defined as follows:

fki,j(TSj,k
) = TSj,k

Ps→jk

Ps→ik

(3)

Since we do not know which module is the bottleneck, we take the highest lower bound,
i.e. the maximum of fki,j for j = 1, 2, . . . ,m.

It is worth noting that fki,i returns the Mi’s service time, as the inter-departure time
of a module can never be smaller than its service time. The concept of bottleneck can
be formalized as follows:

PROPOSITION 4.2 (BOTTLENECK). A processing module Mb with b ∈ M is the bot-
tleneck of graph G if and only if:

TDi,k
= fki,b

(
TSb,k

)
, for all i = 1, 2, . . . ,m (4)

PROOF. The inter-departure times of all the modules are limited by the bottleneck
Mb. According to Prop. 4.1, for all Mi for i = 1, 2, . . . ,m we have:

fki,b
(
TSb,k

)
≥ fki,j

(
TSj,k

)
, for all j = 1, 2, . . . ,m

Therefore, according to Expr. 2 TDi,k
= fki,b

(
TSb,k

)
for all i = 1, 2, . . . ,m.

By applying Prop. 4.1 and 4.2 it is easy to prove that the bottleneck always exists. It
is also possible that more than one module is a bottleneck. In that case, if Mi and Mj

are both bottleneck we have that fkr,i
(
TSi,k

)
= fkr,j

(
TSj,k

)
for any r ∈M.

4.2. Non-cooperative Game and Nash Equilibria
In the description we use a notation similar to the one used in [Saraydar et al. 2002].
Let NPGK = [M, {Ni}i∈M, {Ji(·)}i∈M] be the non-cooperative game played at control
step k, whereM = {1, 2, . . . ,m} is the index set for the cost-minimizing control agents,
Ni is the strategy set and Ji(·) is the cost function of the i-th controller. Each controller
selects a parallelism degree ni,k ∈ Ni, where Ni is the interval of integers [1, nmaxi].
Let nk = (n1,k, . . . , nm,k) ∈ N be a strategy profile where N is the set of all the ad-
missible vectors. The cost of the i-th controller is expressed as a function of all the
decision variables of the players, i.e. Ji(nk). Occasionally, we use the alternative nota-
tion Ji(ni,k,n−i,k) to highlight that the i-th controller has control only on its decision
variable ni,k whereas n−i,k ∈ N−i is the vector of the parallelism degrees of the other
players (N−i is the set of strategy spaces of all the controllers except the i-th one).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:9

In order to make our analysis tractable, we assume that each decision variable ni,k
takes positive real-valued numbers in the interval Ni = (0, nmaxi] rather than integer
values. NPGK becomes a continuous strategic game and we can obtain an admissible
solution by rounding up the real values to the nearest positive integers. This simplifi-
cation is reasonable for large-scale applications requiring tens/hundreds of processing
nodes, which is a realistic in distributed environments like grids and clouds.

The local cost function of a control agent is designed to take into account the through-
put level of the module and the cost for its actual resource allocation. More formally:

Definition 4.3 (Local cost function). The i-th controller is aimed at minimizing a
cost function defined as follows:

Ji(ni,k,n−i,k) = αi TDi,k
+ Copi (ni,k) (5)

The function is composed of two parts. The first (performance cost) is a cost propor-
tional to the inter-departure time: the higher the inter-departure time (the slower the
module) the greater the cost. This part is properly weighted by a fixed price per time
unit αi > 0. The second part (resource cost) expresses the operational cost related to
resource consumption. We model it by a convex function Copi : Ni → R+. The convexity
assumption is quite general and captures many typical cost models applied in data
centers and clouds [Lin et al. 2013; Yuan et al. 2011; Chaisiri et al. 2012]. We refer to
the following cost definition:

Copi (ni,k) = Cvar + Cfix = βi τ ni,k + Cfix (6)

This function describes a very general and representative model in which the monetary
cost for using computing resources is composed of a fixed and a variable cost. The
fixed cost is independent from the type and number of resources used. It may include
occupancy, administration and power consumption. The variable cost is determined by
a fixed per-usage cost model proportional to the number of rented resources, e.g., the
number of cores specified for the application’s virtual machines, and the time units τ
of a control step. An example is the hourly-based pricing system of Amazon EC2 [Inc
2008]. We denote by βi > 0 the price rate in monetary units per unit resource and unit
time.

In the non-cooperative game each control agent optimizes its local cost function with-
out taking care of the implications of its actions on the other controllers. The game is
formally expressed as follows:

(NPGK) min
ni,k∈Ni

Ji(ni,k,n−i,k), for all i ∈M (7)

Important strategy profiles are the ones where all the controllers are satisfied with
the cost they pay given the parallelism degrees adopted by the others. Such operating
points are called equilibria. The notion of Nash Equilibrium (briefly NE) is the fun-
damental solution concept of non-cooperative games [Vorobjov 1994; Nash 1951]. At a
NE no controller can reduce its cost by making individual changes. This condition is
stated as follows:

Definition 4.4 (Nash equilibrium). A strategy profile nk = (n1,k, . . . , nm,k) ∈ N is a
Nash equilibrium if for every i ∈M the following conditions are satisfied:

Ji(ni,k,n−i,k) ≤ Ji(n′i,n−i,k), for all n′i ∈ Ni

The parallelism degree chosen by a controller is its best response to the decisions of
the others. The best response of the i-th controller is a mapping Bi : N−i → Ni that

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 G. Mencagli

assigns to each n−i,k ∈ N−i a set of parallelism degrees defined as:

Bi(n−i,k) =
{
ni,k ∈ Ni : Ji(ni,k,n−i,k) ≤ Ji(n′i,n−i,k), for all n′i ∈ Ni

}
(8)

Therefore, a vector nk = (n1,k, . . . , nm,k) ∈ N is a NE if and only if ni,k ∈ Bi(n−i,k)
for all i ∈M.

To identify the NEs we need to formalize the best responses of the agents. In isola-
tion the inter-departure time of a module always coincides with its service time. The
cost function in isolation (denoted by J i) is defined as follows:

J i(ni,k) = αi
Ti,k
ni,k

+ βi τ ni,k + Cfix (9)

In the definition we assume the ideal service time model shown in Fig. 3a. The “by-
isolation” condition removes the strategic interdependence between controllers and
the cost function depends on the parallelism degree ni,k only. The parallelism degree
that optimizes the local cost function in isolation is defined as follows:

Definition 4.5 (Ideal parallelism degree). The ideal parallelism degree is a value
n?i,k that minimizes J i. It is determined by nullifying the first-order derivative:

n?i,k =

√
αi Ti,k
βi τ

(10)

If n?i,k /∈ Ni the function J i is monotonically decreasing in Ni and we set
n?i,k = nmaxi . Therefore, we can denote the ideal parallelism degree vector by n?k =

(n?1,k, n
?
2,k, . . . , n

?
m,k) ∈ N .

In the real execution, a module interacts with other modules of the application and
its inter-departure time is lower bounded by a value that depends on the choices of the
other agents. Given a strategy profile nk = (n1,k, n2,k, . . . , nm,k) ∈ N we denote by ni,k
the value of the parallelism degree defined as follows:

ni,k =
Ti,k
TminDi,k

with TminDi,k
= max

j 6=i
fki,j(TSj,k

) (11)

where TminDi,k
is the minimum inter-departure time that Mi can assume due to the other

controllers’ strategies. The local cost function Ji is a piecewise-defined function of ni,k.
The strategies of the other controllers determine the value ni,k in which the domain
Ni splits into two regions:

Ji(ni,k,n−i,k) =

αi
Ti,k
ni,k

+ βi τ ni,k + Cfix if 0 < ni,k ≤ ni,k

αi T
min
Di,k

+ βi τ ni,k + Cfix if ni,k < ni,k ≤ nmaxi

(12)

In the interval (0, ni,k] the module Mi is the bottleneck and the values of the local cost
function are the same of the one in isolation. In the second interval (ni,k, n

max
i] the cost

function grows linearly with the parallelism degree as the inter-departure time does
not change. We need to determine the value of ni,k such that Ji is minimized with a
given n−i,k ∈ N−i. In the first subdomain the first-order derivative is:

dJ i
dni,k

= −αi Ti,k
ni,k

+ βi τ (13)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:11

which is negative if ni,k ≤ n?i,k. Therefore, in the first subdomain the function Ji is
monotonically decreasing if ni,k ≤ n?i,k. Otherwise the function has a minimum at n?i,k.
In the second interval the first-oder derivative is βi τ > 0, thus the function is always
strictly monotonically increasing. We can derive the best-response correspondence of a
controller in NPGK:

PROPOSITION 4.6 (BEST RESPONSE). The controller i’s best response is a function
in the usual sense defined as follows:

Bi(n−i,k) = min
{
n?i,k, ni,k

}
(14)

PROOF. The proof derives directly from Expr. 12. Fixed n−i,k ∈ N−i the parallelism
degree that minimizes Ji is given by:

— if n?i,k ≥ ni,k the function Ji is monotonically decreasing in the interval (0, ni,k] and
the minimum is the non-differentiability point ni,k;

— if n?i,k < ni,k the function has a minimum in (0, ni,k] which is the point n?i,k.

In conclusion, the best response of Mi is the minimum between n?i,k and ni,k.

In the rest of this section we will analyze the properties of the NEs in NPGK. We
start by defining a very special class of strategy profiles defined as follows:

Definition 4.7 (E-vectors). A strategy profile nk ∈ N is a E-vector if and only if εi,k =
1 for all i ∈M, i.e. each module has the maximum relative efficiency.

LEMMA 4.8. All the Nash equilibria of NPGK are E-vectors.

PROOF. The proof can be done by contradiction. Suppose that the vector nek =
(ne1,k, n

e
2,k, . . . , n

e
m,k) ∈ N is a NE and it is not a E-vector. This means that there ex-

ists a module Mi with an inter-departure time TDi,k
higher than the service time TSi,k

.
Therefore, the control agent i can use a value n′i,k < nei,k such that its new service
time is now equal to its inter-departure time T ′Si,k

= TDi,k
. In this way Mi reduces its

resource cost by maintaining the same value of the inter-departure time, thus we have
Ji(n′i,k,n−i,k) < Ji(nei,k,n−i,k) and according to Def. 4.4 nek cannot be a NE.

PROPOSITION 4.9 (IDENTIFICATION OF NES). A E-vector nek ∈ N is a Nash equi-
librium of NPGK if nek ≤ n?k

†.

PROOF. No controller has the unilateral incentive to increase its parallelism degree.
At nek all the modules have a service time equal to the inter-departure time. If the i-th
controller deviates unilaterally by using a parallelism degree greater than nei,k, its new
service time becomes smaller without changing the inter-departure time. Therefore, its
resouce cost increases without improving the performance, and the local cost function
assumes worse values.

To be a NE no controller must also have the unilateral incentive to decrease its
parallelism degree. If a Mi deviates unilaterally by using values smaller than nei,k, its
new service time is equal to its new inter-departure time and the module becomes the
bottleneck. Therefore, in the interval (0, nei,k] the local cost function Ji coincides with
the one in isolation. To not have the unilateral incentive to use smaller parallelism

†x ≤ y means that each component of vector x is less than or equal to each corresponding component of
vector y.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 G. Mencagli

degrees, the function must be monotonically decreasing for values smaller than nei,k.
According to Expr. 12 this is true if and only if nei,k ≤ n?i,k.

PROPOSITION 4.10. Prop. 4.9 identifies all the NEs of NPGK.

PROOF. The proof derives directly from Lemma 4.8 and Prop. 4.9.

To compare the outcome achieved by different strategy profiles we introduce the
following well-known partial ordering relation:

Definition 4.11 (Pareto dominance). A vector nk ∈ N dominates a vector n̂k ∈ N if,
for all i ∈ M, Ji(nk) ≤ Ji(n̂k) and for some i ∈ M Ji(nk) < Ji(n̂k). A vector nk is
Pareto optimal if no other vector dominates it.

A resource allocation is more efficient than another if it is possible to decrease the
cost of some of the control agents without hurting any other agent. As it is well known,
NEs can be inefficient [Dubey 1986]. This concept is illustrated in Fig. 4 by assuming to
have five controllers with their local cost functions. The figure shows the values of the
cost functions with three strategy profiles: two inefficient NEs and a Pareto-optimal
NE. The two inefficient NEs are not comparable: the second equilibrium is better than
the first one expect for the third cost function. The third equilibrium is Pareto-optimal,
thus it is no worse (better in this case) than the first two Nash equilibria in all the cost
functions.

Fig. 4: Illustrative example of Nash Equilibria and Pareto-optimal Nash Equilibria.

In terms of existence of Pareto-optimal Nash equilibria, we can distinguish between
three possible scenarios: no NE is Pareto optimal (Fig. 5a), or there exist many Pareto-
optimal NEs (Fig. 5b) or exactly one unique Pareto-optimal NE (Fig. 5c).

LEMMA 4.12. All the Pareto-optimal strategy profiles of NPGK are E-vectors.

PROOF. Suppose that the vector nk = (n1,k, n2,k, . . . , nm,k) ∈ N is Pareto optimal
and it is not a E-vector. Therefore, there exists a module i ∈M such that TDi,k

> TSi,k
.

Control agent i can use a new value n′i,k < ni,k such that T ′Si,k
= TDi,k

. In this way it
reduces its resource cost without changing the inter-departure time, thus improving
Ji without hurting the costs of the other controllers. The new vector n′k equal to nk
except that agent i uses n′i,k dominates nk which is absurd.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:13

ammissibile solutions

Nash
Equilibria

Pareto
Optimal

solutions

(a) Scenario 1.

ammissibile solutions

Pareto
Optimal

solutions

Pareto-optimal
Nash Equilibria

Nash
Equilibria

(b) Scenario 2.

ammissibile solutions

Pareto
Optimal

solutions

Pareto-optimal
Nash Equilibrium

Nash
Equilibria

(c) Scenario 3.

Fig. 5: Locations of Nash equilibria and Pareto-optimal solutions into the admissible set.

Therefore, both the set of NEs and the set of Pareto-optimal strategy profiles are
subsets of the set of E-vectors. To identify the Pareto-optimal strategy profiles that are
also NEs, we introduce the following lemma and propositions:

LEMMA 4.13. A total order relation exists among the E-vectors.

PROOF. Let nk ∈ N be a E-vector. By definition we have TSi,k
= TDi,k

for all i ∈ M.
According to Prop. 4.1, for any pair i, j ∈M we have:

TSi,k
= TDi,k

≥ fki,j(TSj,k
) = TSj,k

Ps→jk

Ps→ik

That can be rewritten as follows:

fkj,i(TSi,k
) = TSi,k

Ps→ik

Ps→jk

≥ TSj,k

We also have TSj,k
= TDj,k

, thus we can apply the same reasoning:

TSj,k
= TDj,k

≥ fkj,i(TSi,k
) = TSi,k

Ps→ik

Ps→jk

Therefore we can conclude that TSj,k
= TDj,k

= fkj,i(TSi,k
) for any pair i, j ∈M.

Let nk ∈ N and n′k ∈ N be two E-vectors. We want to show that if for some i ∈ M
ni,k ≤ n′i,k then nj,k ≤ n′j,k for all j ∈ M (the case ni,k > n′i,k is symmetrical). We know
that for any j ∈M:

TDi,k
= TSi,k

= fki,j(TSj,k
)

T ′Di,k
= T ′Si,k

= fki,j(T
′
Sj,k

)

By hypothesis ni,k ≤ n′i,k, thus we have:

TSi,k
=
Ti,k
ni,k

≥ T ′Si,k
=
Ti,k
n′i,k

and thus TDi,k
≥ T ′Di,k

. We can write:

TDi,k
= fki,j(TSj,k

) =
Tj,k
nj,k

Ps→jk

Ps→ik

≥ Tj,k
n′j,k

Ps→jk

Ps→ik

= fki,j(T
′
Sj,k

) = T ′Di,k

which is true if and only if nj,k ≤ n′j,k. As a particular case, we derive that if there
exists an index i ∈ M such that ni,k = n′i,k then nj,k = n′j,k for all j ∈ M, i.e. the two
vectors are identical nk = n′k.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 G. Mencagli

PROPOSITION 4.14 (PARETO-OPTIMAL STRATEGY PROFILES). A E-vector nk ∈ N is
Pareto optimal if nk ≮ n?k and nk ≯ n?k.

PROOF. For Lemma 4.12 it is sufficient to show that any E-vector n′k ∈ N cannot
dominate nk. According to the condition nk ≮ n?k there exists a i ∈ M such that ni,k ≥
n?i,k . We distinguish three possible cases:

— if ni,k = n′i,k for Lemma 4.13 the two vectors are identical, i.e. nk = n′k;
— if ni,k < n′i,k then n′i,k > n?i,k. Since nk is a E-vector we have that TDi,k

= TSi,k
= TminDi,k

(see Expr. 11). Therefore ni,k = ni,k which is greater or equal than n?i,k. The same
reasoning can be applied to n′k and we have n′i,k = n′i,k > ni,k = ni,k. According
to Expr. 12 in the interval [ni,k, n

max
i] the local cost function Ji is monotonically

increasing. Since ni,k < n′i,k we have Ji(nk) < Ji(n′k) thus n′k cannot dominate nk;
— the last case is ni,k > n′i,k. For the hypothesis nk ≯ n?k there exists a j ∈ M such

that nj,k ≤ n?j,k. From Lemma 4.13 if ni,k > n′i,k then nj,k > n′j,k and thus n?j,k > n′j,k.
Since nk and n′k are both E-vectors, we have nj,k = nj,k > n′j,k = n′j,k. According
to Expr. 12 in the interval (0, nj,k] the local cost function is the one in isolation,
which is monotonically decreasing in that interval if nj,k ≤ n?j,k (see Expr. 13). Since
n?j,k ≥ nj,k = nj,k > n′j,k, we have Jj(nk) < Jj(n′k) thus n′k cannot dominate nk.

In conclusion, nk cannot be dominated by any other E-vector. Since all the Pareto-
optimal vectors are E-vectors, we can conclude that nk is Pareto optimal.

PROPOSITION 4.15 (PARETO-OPTIMAL NES). A NE nek ∈ N of NPGK is Pareto op-
timal if there exists at least one control agent i ∈M such that nei,k = n?i,k.

PROOF. The strategy profile nek satisfies the condition nek ≤ n?k (see Prop. 4.9). To
be further a Pareto-optimal strategy profile, the vector needs to satisfy the conditions
nek ≮ n?k and nek ≯ n?k. All these conditions are satisfied if and only if ∃i ∈ M : nei,k =
n?i,k.

PROPOSITION 4.16 (UNIQUENESS OF THE PNE). In NPGK there exists exactly one
NE which is Pareto optimal (denoted by PNE).

PROOF. Let nk ∈ N and n′k ∈ N be two distinct Pareto-optimal NEs of NPGK. For
Prop. 4.15, let i, j ∈ M be two indexes such that ni,k = n?i,k and n′j,k = n?j,k. Since the
two vectors are distinct, for Lemma 4.13 we have i 6= j. Owing to the fact that nk and
n′k are NEs and E-vectors (Prop. 4.9) we can derive:

n′i,k < ni,k = n?i,k

n?j,k = n′j,k > nj,k

which is absurd for Lemma 4.13. Therefore i must be equal to j and the two vectors
are identical, i.e. the PNE is unique.

In conclusion, NPGK admits an infinite set of NEs with exactly one NE which is
Pareto optimal. Fig. 6a illustrates the best response functions in a game with two con-
trol agents that control two processing modules interconnected in a tandem graph, i.e.
M1 → M2. Both the best response functions are shown in the figure: B1 is a function of
the parallelism degree of the second module while B2 of the first one. The intersection
points of the two plots satisfy the conditions n1,k = B1(n2,k) and n2,k = B2(n1,k), and by
definition they are the NEs of the game. Inspection of Fig. 6a shows that the intersec-
tion is the red line segment marked in bold in the figure. All the points on that segment

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:15

Parallelism degree of M1

Pa
ra

ll
el

is
m

 d
eg

re
e

o
f

M
2

Nash
Equilibria

Pareto-optimal
Points

PNE
(Pareto-optimal NE)

n?
1

n?
2

B1 B2

E-vectors

E-vectors

(a) Best response functions.
Cost of M1

C
o
st

 o
f

M
2

Nash
Equilibria

Pareto
Frontier

PNE

E-vectors

E-vectors

(b) Pareto frontier, NEs and PNE.

Fig. 6: Best responses and location of Nash equilibria, Pareto-optimal points and PNE: example
of the M1 → M2 graph.

are the NEs of NPGK, i.e. we have an infinity (in fact a continuum) of equilibria, and
the unique Pareto-optimal NE is denoted by PNE. The blue segment identifies all the
Pareto-optimal points of the game. The union of the red, the blue segments and the
gray one represent all the E-vectors of the game.

Fig. 6b shows the outcome in terms of the values of the two functions J1(n1,k, n2,k)
and J2(n1,k, n2,k) for each admissible point (n1,k, n2,k). The figure has been generated
using a specific configuration of the cost parameters and the running times per task.
Its goal is to exemplify where NEs, the PNE and the E-vectors are located in the space
of admissible solutions. In particular, the blue area identifies all the possible outcomes.
The curved line corresponds to the outcomes achieved by the set of the E-vectors, with
the red part representing the outcomes of the NEs and the blue part the ones of the
Pareto-optimal points (the so-called Pareto frontier).

4.3. Reaching the Pareto-optimal Nash Equilibrium
In this section we design a distributed procedure which allows the agents to reach
the PNE as their agreement point. In fact, the Pareto-optimal NE is the best stable
point given the non-cooperative structure of the game. The procedure is an example
of negotiation scheme [Espinasse et al. 1997; Scattolini 2009], where agents have dif-
ferent goals and need to determine their positions and criteria for an agreement. The
algorithm is based on the following characterizing points:

— each controller knows only its own cost function and not those of the other agents;
— decisions are taken independently by the agents without any central authority. How-

ever, no agent can reach an equilibrium on its own, but some information (control
messages) needs to be transmitted among the agents;

— control messages are transmitted (and received) from any control agent to a given
subset of the others called neighbors (agents are partially interconnected);

— the procedure is iterative. Control messages are transmitted and received by the
agents many times within the control step.

As exemplified in Fig. 2, we assume the following interconnection scheme between
control agents:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 G. Mencagli

ASSUMPTION 1. Control agent i is directly interconnected with agent j and vice
versa if and only if the two corresponding processing modules Mi and Mj are intercon-
nected by a stream in the flow graph.

More formally, let G = (M,A) be a flow graph. For each module Mi with i ∈ M we
denote by Hi ⊆M the set of the indices of its neighbors defined as follows:

Hi =
{
j ∈M| ∃(j, i) ∈ A ∨ ∃(i, j) ∈ A

}
(15)

The graph between control agents has the same structure of the flow graph except that
arcs are undirected (represent bidirectional communications). It is easy to show that
the graph between agents is connected (i.e. it has a single connected component).

Since each agent receives control messages only from a subset of the other agents,
its inter-departure time is expressed in terms of the service times of the neighbors:

TDi,k
= max
j∈Hi

{
fki,j(TSj,k

)
}

This model does not capture the presence of all the possible bottlenecks. However,
the negotiation will be able to discover and take into account the global bottleneck
through a proper propagation of information between control agents, so that all the
agents are aware of the presence of a bottleneck in any part of the application after a
finite number of information exchanges (iterations).

The procedure to locate the PNE is described in Function 1 (Find-PNE). Agents do
not exchange their parallelism degrees directly, but they advertise the service time
resulting from their last parallelism degree proposal.

Function 1: Find-PNE(k, i, Ji)
input : the index of the current control step, the index of

an agent and its local cost function.
output : the parallelism degree adopted by agent i at the

Pareto-optimal Nash equilibrium (PNE).
1 n

(0)
i,k = n?

i,k; // C using Def. 4.5.

2 T
(0)
Si,k

= Ti,k/n
?
i,k; // C using the service time ideal model.

3 for q=1 to D do
4 send to neighbors

(
T

(q−1)
Si,k

to any j ∈ Hi

)
;

5 receive from neighbors
(
T

(q−1)
Sj,k

from all j ∈ Hi

)
;

6 n
(q)
i,k = optimize(Ji); // C Best response.

7 T
(q)
Si,k

= Ti,k/n
(q)
i,k ;

8 return n
(D)
i,k ;

The procedure executed by a generic agent i ∈ M proceeds as follows. In the ini-
tialization part the agent computes its ideal parallelism degree (row 1) and its initial
service time at row 2 (we assume a perfect scalability). The agent sends its service
time to the neighbors and receives their service times at rows 4 and 5. Then, the agent
computes its best response at row 6. Although data are exchanged only between neigh-
bors, the effect of a local decision must propagate in the graph reaching all the other
agents. To this end, the procedure is executed for a number of iterations equal to the
diameter D of the graph, i.e. the longest shortest path between any pair of agents.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:17

Alg. 1 shows the pseudocode of the non-cooperative strategy. At the end of the al-
gorithm each agent applies an integer rounding (e.g., to the nearest integer) of the
parallelism degree value obtained by Find-PNE.

Algorithm 1: NonCoop-Strategy(k, {Ji(·)}mi=1)
input : the index of the current control step k, the set of

the local cost functions of the agents.
output : every agent determines the new integer

parallelism degree for control step k.
1 foreach control agent i ∈M do
2 ni,k = Find-PNE(k, i,Ji);
3 agent i applies an integer rounding of ni,k;

PROPOSITION 4.17. The set of the parallelism degrees returned by the Find-PNE()

procedure executed by all agents simultaneously is the PNE of NPGK.

PROOF (SKETCH). In the initialization phase (row 1) all the agents set their initial
decision to their ideal parallelism degree. Let Mb with b ∈ M be the bottleneck ac-
cording to Prop. 4.2. The idea of the proof is based on the following property: at each
iteration q ≥ 1 each agent i ∈ M adapts its parallelism degree to the modules at
distance at most q from it. In the first iteration q = 1 we have:

T
(1)
Si,k

= max
j∈Hi∪{i}

{
fki,j(T

(0)
Sj,k

)
}

If b ∈ Hi, i.e. Mb is in the neighborhood of Mi, we have:

T
(1)
Si,k

= fki,b(T
(0)
Sb,k

)

After just one iteration the service time (and thus the parallelism degree) of Mi adapts
to the bottleneck of the flow graph. If b /∈ Hi, we repeat the reasoning for q = 2. In this
case we can write:

T
(2)
Si,k

= max
j∈Hi∪{i}

{
fki,j(T

(1)
Sj,k

)
}

= max
j∈Hi∪{i}

{
fki,j

(
max

p∈Hj∪{j}

{
fkj,p(T

(0)
Sp,k

)
})}

If Mb is at distance 2 from Mi we have:

T
(2)
Si,k

= max
j∈Hi∪{i}

{
fki,j

(
fkj,b(T

(0)
Sb,k

)
)}

For each j ∈ Hi we can write:

T
(2)
Si,k

= T
(0)
Sb,k

Ps→bk

Ps→jk

Ps→jk

Ps→ik

= T
(0)
Sb,k

Ps→bk

Ps→ik

= fki,b(T
(0)
Sb,k

)

The reasoning can be easily repeated for any q > 0. After D iterations all the control
agents adapt to the bottleneck at any distance. The final set of parallelism degrees is
a E-vector with one agent using its ideal parallelism degree (agent b) and the others
choosing a parallelism degree smaller than or equal to their ideal one. According to
Prop. 4.14 this vector is the PNE.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 G. Mencagli

The completion time and the total number of exchanged messages can be determined
as follows:

Time = D · H and Nmsg = D ·
m∑
i=1

∣∣Hi∣∣ = D · 2 |A|

The average completion time is proportional to the graph diameter multiplied by
the average number of neighbors per agent (i.e. the degree of a vertex) denoted by
H =

∑ |Hi|/m. The number of messages is equal to the graph diameter multiplied by
the total messages transmitted per iteration of the for loop (the sum of the degree of all
the vertices is 2 |A| for handshaking lemma). Tab. I shows the time and message com-
plexity of the non-cooperative strategy by distinguishing between dense flow graphs,
with typical diameter D = O(logm) and average degree H = O(m), and sparse flow
graphs with D = O(m) and H = O(logm).

Dense graphs Sparse graphs

Time O(m logm) O(m logm)
Messages O(m2 logm) O(m2)

Table I: Time and message complexity of the non-cooperative strategy.

Sparse graphs are realistic of many real-life streaming applications. Examples are
the Vwap, Lois and LinearRoad applications studied in [Tang and Gedik 2013], com-
posed of tens of modules with relatively few interconnections among them. Dense
graphs represent a worst case.

5. DISTRIBUTED CONTROL WITH COOPERATION
In every instance of NPGK each control agent is aimed at minimizing its own cost
function and choosing its optimal parallelism degree. So doing, each agent ignores the
harm it imposes on the other agents. To address this issue, pricing-based and incentive-
based mechanisms [Alpcan and Pavel 2009] have been applied in a wide number of
applications of Game Theory in domains ranging from peer-to-peer networks [Park
and van der Schaar 2010] to economics [Rogerson 1994]. Such mechanisms try to im-
prove the quality of the equilibria in the Pareto sense. In the previous section we have
designed a procedure to converge to an agreement point which is the PNE strategy
profile. The goal of the incentive-based mechanism is to move such agreement point
closer to the system optimum, i.e. the strategy profile optimizing the so-called social
welfare defined as the sum of the costs of the agents, i.e. JG(nk) =

∑m
i=1 Ji(nk).

Clearly, the system optimum is a Pareto optimal strategy profile because no other
point yields to a strictly lower joint cost (the proof is straightforward and we omit it
for brevity). The so-called “price of stability” (PoS) is the metric used to quantify how
NEs are socially inefficient. It is the ratio between the social welfare with the best
equilibrium (the unique PNE in our case) and the one at the system optimum.

Instead of being an inherent feature of the game, the PoS stems from the arbitrary
choice of the game parameters [Alpcan and Pavel 2009]. This is also true in our NPGK.
The identification of E-vectors does not depend on the parameters {αi, βi}mi=1 of the
cost functions. Instead, these parameters change the location of NEs within the E-
vectors set. The idea of incentive-based mechanisms follows this intuition in spirit, by
changing some of the game parameters in order to locate NEs to a more desired region.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:19

5.1. Decentralized Incentive-based Mechanism
We develop a non-cooperative game with incentives (NPGIK). With respect to NPGK

each control agent is associated with a local cost function J ci : N × R → R, i =
1, 2, . . . ,m, parameterized by a scalar incentive parameter γi ∈ R. For the moment
being we suppose no restriction in the domain of this parameter. The incentive-based
mechanism is asymmetric since each agent has a own incentive parameter different
from the others. Let be γ ∈ Rm the incentive vector. By assuming that the new game
for any γ ∈ Rm has a unique Pareto-optimal NE (as NPGK), we define the game map-
ping Z as a function that maps incentive vectors onto PNE points:

Z : Rm → N and Z−1 : N → Rm (16)

This function is not explicitly expressible in general. However, the parameterized
game can be used in a dynamic incentive scheme as illustrated in Fig. 7a. Ideally, a
conceptually centralized logic executed by a game controller is in charge of changing
the values of the incentive parameters in order to move the location of the PNE point
to a better E-vector. The game controller and the agents constitute a sort of “outer
feedback loop” in which the first one decides the values of the incentive parameters (it
does not have direct access to all the system parameters like running times per task,
arcs probability, and so forth) and receives from the agents the new PNE point and the
value of the social welfare at that point. The loop is repeated until the social welfare
cannot be further bettered, i.e. we have found a vector γ∗ ∈ Rm s.t. the PNE of NPGIK

coincides with the system optimum of the original game, as sketched in Fig. 7b.

Agent

Agent

Agent

Agent

Agent

γPNE

Game
Controller

(a) Hypotetical game controller and control
agents.

ammissibile solutions

Nash
Equilibria

of NPG

PNE of
NPG

PNE of NPGI
with Nash Equilibria

of NPGI
(system
optimum
of NPG)

γ*

(b) Moving the PNE to a different location.

Fig. 7: Exemplification of the incentive-based mechanism.

However, such centralized locus of control cannot physically exist, because it repre-
sents a centralization point that contradicts our fully distributed approach. The idea
is to decentralize the central logic of the game controller among the control agents in
such a way that each agent is able to change its incentive parameter in such a way
that the cooperative behavior can be enforced in a distributed way.

In NPGIK we assume that the i-th agent minimizes a cost function with the follow-
ing structure that includes a reward given by an incentive function ri : N ×R+ → R+:

J ci (nk, γi) = Ji(nk)− ri(nk, γi) (17)

Our goal is to choose an incentive function such that the mechanism is incentive com-
patible, i.e. the PNE point of NPGIK with a proper vector γ should be able to achieve
a better social welfare than the PNE point of the original game without incentives. It

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 G. Mencagli

is worth noting that the social welfare is always calculated as the sum of the local cost
functions of the original game NPGK, i.e. {Ji(·)}mi=1 that is the ones that the user want
to optimize.

The specific incentive scheme must be tailored for the problem at hand. According
to the formulation described in Sect. 4.2, we know that the best response of any agent
can never be greater than its ideal parallelism degree (see Prop. 4.6). To move the
agreement closer to the system optimum, some agents should be able to choose a par-
allelism degree greater than their ideal one, thus adopting a control action not optimal
from a selfish perspective. Motivated by the cost structure shown in Expr. 5 and 6, it
is sufficient to use a linear incentive function of the form:

ri(ni,k, γi) = γi τ ni,k (18)

That is a usage-based incentive function in which the received reward is proportional to
the amount of resources used by the agent. Furthermore, as a result of this choice, we
can note that all the propositions discussed in Sect. 4.2 (e.g., best responses, unique-
ness of the PNE) are still valid for the new game with incentives, which has essentially
the same structure of NPGK with different cost parameters. In addition we have:

lim
γi→βi

dJ ci
dni,k

=
d (Ji − ri)
dni,k

=

√
αi Ti,k

(βi − γi) τ
= +∞

Therefore, with a proper choice of γi ∈ R the i-th agent is incentivated to use a paral-
lelism degree arbitrarily greater than the ideal one. In conclusion, a proper selection
of the vector γ ∈ Rm allows to move the PNE of NPGIK to any Pareto-optimal strategy
profile of NPGK, thus also to the system optimum of the original problem.

5.2. Reaching the System Optimum

At the beginning of each step the agents play many times (rounds) the game NPGIK

with different values of the incentive vector. Fig. 8 exemplifies the mechanism in a case
of four agents. At the first round every agent i executes the Find-PNE procedure with
γi = 0 to determine the PNE of the original game NPGK. At the end of the procedure
there exists one agent choosing its ideal parallelism degree (see Prop. 4.15). According
to Prop. 4.2 this module is the bottleneck of the flow graph, e.g., the third module in
the example of Fig. 8. A better social welfare might be obtained if this module would
choose a parallelism degree greater than its ideal one and the other agents would
properly adapt to it. However, this is not possible in a purely non-cooperative setting,
because for Prop. 4.6 any parallelism degree greater than the ideal one does not pursue
the self-interest of the agent. Therefore, that agent increments by a positive stepsize
∆c

3 the value of its incentive parameter γ3 in order to increase the value of its ideal
parallelism degree. Then, the NPGIK is played again (Find-PNE) by locating the new
PNE at a different (greater) E-vector. If the system achieves a better social welfare
than the one obtained at the end of the previous round, the agent of the new bottleneck
(which can be a different module than the previous round) tries to further improve the
social welfare by incrementing its incentive parameter. Otherwise the procedure stops
and each agent applies an integer-rounding of the final parallelism degree obtained.

The procedure does not have any centralization point as each agent is in charge
of autonomously checking whether it is the bottleneck and in that case incrementing
its γi. However, a global feedback is still necessary to check if the social welfare has
been improved in the last round or not. The social welfare is an aggregate information
that needs to be determined by the agents according to a proper protocol. Centralized
protocols assign responsibility to a specific agent in charge of collecting the values

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:21

Agent 1

Agent 2

Agent 3

Agent 4

PNE γ=0 (System Optimum)

bottleneck

. . .

. . .

. . .

. . .

bottleneck

bottleneck

PNE γ round 1(1) PNE γ round R(R)

n1,k

n2,k

n3,k

n4,k

SO

Fig. 8: Incentive logic: starting from the PNE with γ = 0 the agents play repeatedly NPGIK

with a different γ ∈ Rm
+ .

of the local costs, computes the sum and spreads it over the graph. Such approaches
are hampered by scalability and reliability issues due to the presence of a leader entity.
Moreover, they require multi-hop communications. We tackle the problem in a different
way by using approaches inspired by two prevailing solutions studied in the literature:

— tree-based protocols [Makhloufi et al. 2014; Prieto and Stadler 2007] use spanning
trees to collect aggregate information. The computation is performed hierarchically
in a bottom-up fashion. Agents collect measurements from their children, compute
a partial aggregate and transmit it to their parent. The same spanning tree is used
to broadcast the global result from the root to all the agents;

— gossip-based protocols [Makhloufi et al. 2009; Akdere et al. 2006; Kempe et al. 2003]
do not require any particular structure. Each agent maintains an estimate of the
global aggregate and exchanges/combines this value with other partners several
times until convergence. The protocols may require several iterations to converge
and the final approximate result is available directly on all the agents.

Tree-based protocols are particularly suitable for our purpose, because flow graphs
have usually a fixed topology and the spanning tree can be computed once when the
application starts (Fig. 9a). The latency is linear in the diameter of the graph (for min-
imum height spanning trees), while the messages are linear in the number of agents.

We also study gossip-based protocols for their structureless nature and for the sym-
metricity of the agents role. In most of the existing protocols [Makhloufi et al. 2009;
Akdere et al. 2006; Kempe et al. 2003] agents exchange their estimates with a set of
randomly chosen partners. When the partner is not an immediate neighbor, multi-hop
communications are needed. In Sect. 6 we will use the Local Push-Sum protocol [Geibig
and Bradler 2010] studied for locality-aware sparse networks (Fig. 9b). The local esti-
mates are exchanged only between immediate neighbors by avoiding multi-hop com-
munications. The protocol converges after a number of iterations I > 0 proportional to
the graph diameter. Further details can be found in [Geibig and Bradler 2010].

Agent

Agent

Agent

Agent
Agent

(root)
disseminate

results

aggregation

aggregation

(a) Tree-based aggregation.

Agent

Agent

Agent

Agent
Agent local estimate

local estimate

(b) Gossip-based aggregation.

Fig. 9: Tree-based and gossip-based protocols for decentralized aggregation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 G. Mencagli

Alg. 2 shows the incentive-based strategy. At each round the agents execute Find-PNE
to determine the PNE with the actual incentive vector, compute the sum of the original
local costs {Ji(·)}mi=1 using Aggregate-Protocol() and check whether the social welfare
has been bettered or not. The idealDegree(γi) formula is defined as follows:

idealDegree(γi) = min

{√
αi Ti,k

(βi − γi) τ
, nmaxi

}
The algorithm stops whether the current incentive vector does not improve the value
of the social welfare or we have reached the maximum number of rounds R > 0.

Algorithm 2: Incentive-based-Strategy(k, {Ji(·)}mi=1)
input : the index of the current control step k, the set of the local

cost functions of the agents.
output : every agent determines the new integer parallelism

degree for control step k.
1 foreach control agent i ∈M do
2 round = 0, γi = 0, ni,k = 0;
3 globalCost = +∞;
4 do
5 round = round + 1;
6 nold

i,k = ni,k;
7 oldGlobalCost = globalCost;
8 if ni,k == idealDegree(γi) then
9 γi = γi + ∆c

i ; // C agent i is the bottleneck.

10 ni,k = Find-PNE(k, i,J c
i);

11 globalCost = Aggregate-Protocol(Ji, ni,k);
12 while ((globalCost < oldGlobalCost) and (round < R));
13 agent i applies an integer rounding of nold

i,k ;

Tab. II shows the complexity in the worst case in which the algorithm stops after
reaching the maximum number of rounds. The complexity is the same in terms of
orders of magnitude between using the tree-based and the gossip-based protocol for the
aggregation, since in both the cases it is linear in the graph diameter. As we will see
in the experiments, the incentive-based strategy with gossiping requires more rounds
and messages due to a higher multiplicative factor in its complexity.

Dense graphs Sparse graphs

Tree-based Gossiping Tree-based Gossiping

Time O(Rm logm) O(Rm logm) O(Rm logm) O(Rm logm)
Messages O(Rm2 logm) O(Rm2 logm) O(Rm2) O(Rm2)

Table II: Time and message complexity of the incentive-based strategy.

6. SIMULATION RESULTS
We evaluate our decision-making strategies on the OmNeT++ discrete event simula-
tor‡. OmNeT is an open-source simulation environment offering several features to

‡Visit http://www.omnetpp.org/ for further details about the OmNeT++ simulator. The source code of the
experiments will be made available at http://www.di.unipi.it/∼mencagli/omnet-sim.zip.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:23

facilitate computer network modeling. Over the last years the simulator has been ex-
tended to reproduce the behavior of grids and clouds [Núñez et al. 2012] and it has
been used in some of our past publications [Mencagli et al. 2014; 2013b; 2013a].

We use OmNeT to simulate flow graphs of streaming modules. The idea is to re-
produce the backpressure due to the presence of hotspots. In the simulator a module
consists of two interconnected simulation objects: i) an operating part implements the
internal functional logic of the module; ii) a control part implements the agent execut-
ing the local decision strategy. OmNeT objects are programmed using an event-driven
programming style and they exchange messages through communication ports.

In the current version of the simulator the operating part reproduces the behavior of
internally parallel data stream operators [Hummer et al. 2013; Gedik et al. 2014]. The
operating part mimics the behavior of multiple operator replicas inside the module,
interfaced with the input and the output streams through a distributor and a collector
entity. The distributor manages a queue where input tasks received from the sender
modules are temporarily stored before being distributed to the replicas according to
some policies that depend on the operator semantics (e.g., round-robin or hash-based
distributions). Accordingly, each input task is distributed to one of the replicas. The
simulator allows the control part to change the actual number of replicas within the
operating part of the module, i.e. the current parallelism degree.

The control part has an internal notion of control step emulated by the reception of
a self-message generated by an internal timer. Reconfigurations are implemented as
modifications of the parallelism degree attribute of the operating part.

6.1. Application Description
We study a streaming application targeting mobile cloud computing platforms [Yang
et al. 2013] (briefly, MCC). The MCC paradigm is based on the integration between
mobile devices and cloud resources used to offload resource-intensive tasks. Examples
are mobile stream processing applications which retrieve data from cameras, sensors
and perform perception related tasks like object and face recognition to augment the
original scene in the display of the final user. As studied in [Yang et al. 2013], these ap-
plications need elastic use of resources for two main reasons: i) they require to sustain
the actual input rate to avoid losing important details; ii) computer vision algorithms
are usually time-consuming and require parallel implementations.

The test-bed application is an object recognition service designed to be hosted on
cloud resources and interfaced with mobile users. The application is inspired to the
one described in [Yang et al. 2013] and consists in a flow graph of five main modules
interconnected as depicted in Fig. 10.

The Dispatcher module multiplexes several input streams of digital images (tasks)
received from outside mobile sources. It detects the amount and the type of noise affect-
ing the received images and dispatches them either to the second module or the third
one. The second module (Denoiser-1) applies a variation of the well-known NL-mean
filter [Buades et al. 2005] working well with imaged affected by Gaussian noise. The
third module (Denoiser-2) applies a weighted median filter [Gayathri and Sabeenian
2013] suitable for images mainly affected by impulse noise. The probability to dispatch
images to one of the two denoisers is supposed to be equiprobable. The Edge-Detector
module applies a suite of edge detection algorithms (Candy, Sobel, Marr-Hildreth)
based on the image characteristics. The Recognizer compares the shapes obtained by
the previous phase with a database of possible candidates.

The simulator abstracts some of the details of the real application while focusing on
the relevant aspects for the evaluation. In the simulation the running time per image
of each module is modeled by a normally distributed random variable. According to the
default setting of the OmNeT simulator, the pseudo-random number generator used in

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 G. Mencagli

mobile users

Object
Recognitor

Control
Agent

Edge
Detector

Control
Agent

M4 M5

Dispatcher

Control
Agent

Denoiser-1

Control
Agent

Control
Agent

Denoiser-2

M2

M1

M3

mobile users

cloud resources of class A

cloud resources of class B

Fig. 10: Flow graph of the object recognition service on a MCC environment.

our simulations is based on the Mersenne-Twister algorithm, which is by far the most
widely used high-quality pseudo-random number generator [Law and Kelton 1999].
Tab. III shows several configuration parameters of the modules and, in particular, the
mean values of the random variables that have been profiled by executing the algo-
rithms on an Intel Xeon Sandy-Bridge E5-2650 CPU (we observe a standard deviation
about 30% of the mean value).

Dispatcher Denoiser-1 Denoiser-2 Edge-Detector Recognitor

Module no. 1 2 3 4 5
Avg. Runn. Time (sec) 0.1 2.48 3.66 7.80 14.44

Cost αi ($/sec) 0.5 0.5 0.5 0.5 0.5
Cost βi ($/τ) 4.83× 10−3 4.83× 10−3 4.83× 10−3 1.77× 10−2 1.77× 10−2

Max no. cores 1 8 8 32 32

Table III: Configuration parameters of the simulation.

For simplicity we assume that all the service times of the parallel modules follow the
ideal model (see Fig. 3a). In fact, although non-ideal models could also be taken into
account, they do not have impact on the way in which the agents interact to converge to
a common decision. Tab. III shows the cost parameters used. Providers apply the com-
mon pay-as-you-go billing model [Gohad et al. 2013], in which users pay a fixed price
per unit of use and unit of time. Providers usually offer different classes of resources,
with different CPU frequencies, memory and storage capabilities. Fig. 11 shows the
on-demand instance prices applied by Amazon EC2 in June 2015. They distinguish be-
tween “Compute Optimized”, “Memory Optimized” and “Storage Optimized” resources.

The cost per hour is proportional to the number of cores, thus the model described
in Expr. 6 is representative of real providers. We use this billing model to instantiate
our cost parameters shown in Tab. III. The {βi}i=1,...,5 parameters report the cost per
core (dollars) per control step of 5 minutes. We make the following simplifications:

— cloud providers usually offer fixed configurations in terms of number of cores (e.g., 2,
4, 8). Therefore, not all the configurations are available to the user. In the simulation
we suppose to use a flexible cloud provider which allows the user to instantiate its
virtual machines with any number of cores smaller or equal to a maximum value;

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:25

— in real clouds each partial instance-hour consumed is billed as a full hour. We ne-
glect this aspect and we assume that the user pays exactly for what he consumes.

0! 1! 2! 3! 4! 5! 6! 7!

2!

4!

8!

16!

32!

Cost per hour (dollars)!

N
um

be
r o

f c
or

es
!

Cost parameters of the pay-as-you-go billing model.!
Storage-Optimized! Memory-Optimized! Compute-Optimized!

Fig. 11: Cost per hour of different resources provided by Amazon EC2.

The cost parameters {αi}i=1,...,5 shown in Tab. III are chosen in order to properly
weight the performance-oriented part of the cost function by capturing the user-degree
of satisfaction related to the achieved throughput. The table shows the maximum num-
ber of cores for each module, which depends on the class of resources rented for the
execution. The first module is executed on a single-core instance since it performs a
fine-grained computation and it is never a bottleneck. Finally, the execution consists of
600 control steps of 300 seconds, for a total of 50 simulation hours. The measurements
taken during the simulations are mainly based on the steady-state phase of the execu-
tion: after each reconfiguration the transient period lasts for few seconds, therefore its
length is negligible with respect to the control step length.

6.2. Strategies Evaluation
In this section we present the results of the simulations. We will show the workload
scenarios, the quality and quantity of reconfigurations executed and the relative effi-
ciency achieved. Finally, we will analyze the throughput, cost efficiency and the efficacy
of the incentive-based mechanism. Each simulation has been repeated 100 times. The
variance of the measurements and the confidence intervals of the mean values are
small. Therefore, we omit to show them in the plots for the sake of clarity.

Workload scenarios. Fig. 12 shows three scenarios that describe a different behav-
ior of the mean inter-arrival time from external sources, i.e. the average time interval
between two consecutive arrivals of requests to the Dispatcher module. The service
time of the Dispatcher is equal to the maximum between its running time per task and
the inter-arrival time, i.e. TS1,k

= max{T1,k, Ta,k} where Ta,k is the mean inter-arrival
time. The inter-arrival time is a disturbance subject to possible high variability, and
its behavior can be described as a non-stationary process. The three scenarios are: 1)
Cyclic workload (Fig. 12a) represents a time-series with cyclic variations; 2) Trend
workload (Fig. 12b) is a time-series following a decreasing trend; 3) Rwalk workload
(Fig. 12c) is a sequence of values generated according to a random walk model.

At the beginning of each control step the Dispatcher control part estimates the mean
inter-arrival time during the next step using an exponentially weighted moving aver-
age filter (EWMA), in order to smooth the noise of the time-series. The EWMA es-
timations are depicted with a red solid line in Fig. 12. In the simulation the inter-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 G. Mencagli

 0

 280

 560

 840

 1120

 1400

 0 100 200 300 400 500 600

A
vg

. i
nt

er
-a

rr
iv

al
 ti

m
e

(m
s)

Control step (τ = 300 sec)

First scenario (cyclic workload).

Mean inter-arrival time.

(a) Cyclic workload.

 0

 280

 560

 840

 1120

 1400

 0 100 200 300 400 500 600

A
vg

. i
nt

er
-a

rr
iv

al
 ti

m
e

(m
s)

Control step (τ = 300 sec)

Second scenario (trend workload).

Mean inter-arrival time.

(b) Trend workload.

 0

 280

 560

 840

 1120

 1400

 0 100 200 300 400 500 600

A
vg

. i
nt

er
-a

rr
iv

al
 ti

m
e

(m
s)

Control step (τ = 300 sec)

Third scenario (random walk workload).

Mean inter-arrival time.

(c) Rwalk workload.

Fig. 12: Workload traces: mean value of the inter-arrival time for each step of the simulation.

arrival time is modeled as a normally distributed random variable whose mean value
is changed at each step in order to follow the used workload trace.

Reconfigurations and efficiency. Fig. 13 shows the number of cores used by the
modules with the non-cooperative and the incentive-based (cooperative) strategy. We
expect that the sequences of the parallelism degrees track the external workload vari-
ability. As expected, the phases in which the inter-arrival time is lower (the stream
pressure is more intensive) correspond to time periods in which the modules are con-
figured to use more cores. The opposite occurs in phases of higher inter-arrival time.
For the sake of brevity, we limit our analysis to the last two modules, Edge Detector
and Recognizer, which perform coarse-grained computations on the stream elements
and require a higher number of reconfigurations than the others.

It is important to observe that there are execution phases in which the two strate-
gies take the same decisions at each step, and phases in which the incentive-based
strategy uses higher parallelism degrees than the pure non-cooperative approach. The
first situation happens when the modules use a number of cores lower than their ideal
parallelism degree. This occurs during the execution intervals between [200, 400] steps
in the cyclic workload, between [0, 300] steps in the trend workload and between [0, 100]
and [400, 550] steps in the rwalk workload. As depicted in Fig. 12, these intervals cor-
respond to phases in which the workload is less intensive. The other phases of the
execution are characterized by a higher pressure of the input stream and the modules
need more cores to sustain the input rate. In the non-cooperative strategy each module
is forced to use a number of cores lower or at most equal to its ideal parallelism degree
(Prop. 4.6). This is the reason because the reconfiguration sequences performed with
the non-cooperative strategy are flattened when a certain parallelism degree value is
reached, e.g., around 21 cores for the Recognizer. The ideal parallelism degree of a mod-
ule changes if its mean running time per image changes (Def. 4.5). In this experiment
the values of the running times listed in Tab. III are generated by using stationary
time-series with a fixed mean and variance, thus the ideal parallelism degrees do not
change or change very marginally during the execution. In fact, some ±1 fluctuations
are sporadically observed.

With the incentive-based strategy the Recognizer and Edge Detector modules are
able to choose a number of cores greater than their integer-rounded ideal parallelism
degrees, i.e. 21 and 16 according to Expr. 10. This is possible owing to the mechanism
described in Sect. 5.2: the two modules increase their local incentive parameters as
long as they are able to get closer to the system optimum. The effect is that the recon-
figurations track more accurately the workload, although they are still flat during the
time periods in which the Recognizer module uses its maximum number of cores (32).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:27

 0
 6

 12
 18
 24
 30

 0 100 200 300 400 500 600

N
o.

 o
f c

or
es

Control step (τ = 300 sec)

Reconfigurations - Edge Detector (cyclic workload).

Non-coop. Coop.

(a) Cyclic workload - Reconf. of Edge Detector.

 0
 9

 18
 27
 36
 45

 0 100 200 300 400 500 600

N
o.

 o
f c

or
es

Control step (τ = 300 sec)

Reconfigurations - Recognizer (cyclic workload).

Non-coop. Coop.

(b) Cyclic workload - Reconf. of Recognizer.

 0
 6

 12
 18
 24
 30

 0 100 200 300 400 500 600

N
o.

 o
f c

or
es

Control step (τ = 300 sec)

Reconfigurations - Edge Detector (trend workload).

Non-coop. Coop.

(c) Trend workload - Reconf. of Edge Detector.

 0
 9

 18
 27
 36
 45

 0 100 200 300 400 500 600

N
o.

 o
f c

or
es

Control step (τ = 300 sec)

Reconfigurations - Recognizer (trend workload).

Non-coop. Coop.

(d) Trend workload - Reconf. of Recognizer.

 0
 6

 12
 18
 24
 30

 0 100 200 300 400 500 600

N
o.

 o
f c

or
es

Control step (τ = 300 sec)

Reconfigurations - Edge Detector (rwalk workload).

Non-coop. Coop.

(e) Rwalk workload - Reconf. of Edge Detector.

 0
 9

 18
 27
 36
 45

 0 100 200 300 400 500 600

N
o.

 o
f c

or
es

Control step (τ = 300 sec)

Reconfigurations - Recognizer (rwalk workload).

Non-coop. Coop.

(f) Rwalk workload - Reconf. of Recognizer.

Fig. 13: Reconfiguration sequences of the Edge Detector and Recognizer modules with the non-
cooperative and the incentive-based (cooperative) strategies.

Tab. IV shows the number of reconfigurations performed by the two strategies and
the mean relative efficiency per module over the entire execution (average of the effi-
ciency values for each step).

As expected and confirmed by Fig. 13, the incentive-based strategy performs a
greater number of reconfigurations, as the parallelism degree values are not bounded
by the ideal parallelism degrees. The relative efficiency is high and in general near
to 1. This is an expected result of the theoretical analysis described in Sects. 4 and 5.
The non-cooperative strategy selects an integer approximation of the new PNE strat-
egy profile at each step, which is always a E-vector. Due to the integer rounding the
efficiency values are not exactly 1 but slightly lower. In the case of the two denoiser
modules the efficiency is slightly lower than the others, as they need fewer cores to
sustain the input pressure and the integer rounding penalizes the efficiency more than
modules needing more cores (Edge Detector and Recognizer). The same considerations
can be applied for the incentive-based strategy, where the system optimum at each
step always belongs to the E-vector set.

Performance and cost. We study the cost and the total number of completed tasks
over the entire execution. Tab. V lists the total cost, defined as the sum of the cost paid

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:28 G. Mencagli

Reconf. Efficiency

Non-coop. Coop. Non-coop. Coop.

Denoiser-1 4 8 0.87 0.88
Denoiser-2 5 14 0.86 0.90
Edge-Det. 12 45 0.99 0.97
Recognizer 23 96 0.97 0.98

(a) Cyclic workload.

Reconf. Efficiency

Non-coop. Coop. Non-coop. Coop.

Denoiser-1 5 11 0.87 0.89
Denoiser-2 7 21 0.87 0.88
Edge-Det. 51 125 0.98 0.96
Recognizer 121 199 0.97 0.99

(b) Trend workload.

Reconf. Efficiency

Non-coop. Coop. Non-coop. Coop.
Denoiser-1 6 12 0.86 0.88

Denoiser-2 8 44 0.86 0.87
Edge-Det. 68 205 0.99 0.97
Recognizer 154 297 0.98 0.99

(c) Rwalk workload.

Table IV: Number of reconfigurations and relative efficiency of the modules.

by each module for all the execution steps. In general, the incentive-based strategy is
able to provide lower costs than the non-cooperative one. The cost reduction depends
on the workload characteristics. In the trend workload we observe the largest benefit
of using the cooperative approach, with an overall cost reduction of about 18%. The
cost reduction in the cyclic workload scenario is modest, only of about 5%. Tab. V also
reports the mean price of stability (Sect. 5) over the 600 simulation steps.

Cyclic Trend Rwalk

Non-coop. Coop. Non-coop. Coop. Non-coop. Coop.

Total cost 1,792 1,698 2,123 1,812 1,941 1,786
Price of stability 0.95 0.82 0.92

Com. Tasks 241,736 289,885 248,377 311,026 240,851 300,447
Avg. throughput

(img per step) 403 483 414 518 401 501

Table V: Total operating cost and number of completed tasks over the entire execution.

To provide a better understanding of how the incentive-based strategy works, Fig. 14
shows the cost per step of each parallel module under the rwalk workload. The cost of
the non-cooperative and the cooperative strategies are reported in the same plot to
simplify the comparison. Owing to the incentive-based mechanism, the cost of the two
denoiser modules is reduced during the time interval between step 130 and 400 (see
the blue line) where the cooperative strategy uses higher parallelism degrees.

The Recognizer deserves a special attention (Fig. 14d). During the same execu-
tion phase, the cost achieved by the incentive-based strategy is higher than the one
achieved by behaving selfishly. This is the essence of cooperation: the incentive scheme
forces the Recognizer module to use parallelism degrees that slightly worsen its indi-
vidual cost; this marginal lose is counterbalanced by a decrease in the cost of some of
the other modules such that the social welfare can be globally improved.

Furthermore, Tab. V shows the total number of tasks completed over the entire ex-
ecution. As expected, the cooperative strategy allows the application to complete more
tasks and to reach higher throughput than the non-cooperative strategy. The reason
is quite intuitive. The incentive-based strategy uses higher parallelism degrees. Since

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:29

 0
 0.3
 0.6
 0.9
 1.2
 1.5

 0 100 200 300 400 500 600

C
os

t p
er

 s
te

p
($

)

Control step (τ = 300 sec)

Cost - Denoiser 1 (rwalk workload).

Non-coop. Coop.

(a) Cost of Denoiser-1.

 0
 0.3
 0.6
 0.9
 1.2
 1.5

 0 100 200 300 400 500 600

C
os

t p
er

 s
te

p
($

)

Control step (τ = 300 sec)

Cost - Denoiser 2 (rwalk workload).

Non-coop. Coop.

(b) Cost of Denoiser-2.

 0.3

 0.4

 0.55

 0.75

 1

 0 100 200 300 400 500 600

C
os

t p
er

 s
te

p
($

)

Control step (τ = 300 sec)

Cost - Edge Detector (rwalk workload).

Non-coop. Coop.

(c) Cost of Edge Detector.

 0.6

 0.67

 0.74

 0.81

 0.9

 0 100 200 300 400 500 600

C
os

t p
er

 s
te

p
($

)

Control step (τ = 300 sec)

Cost - Recognizer (rwalk workload).

Non-coop. Coop.

(d) Cost of Recognizer.

Fig. 14: Cost per step paid by each control agent during the execution: rwalk workload.

resources are never wasted (the PNE and system optimum are both E-vectors), this
yields to achieve higher throughput levels on average.

Tuning of the incentive-based mechanism. As stated in Sect. 5, the incentive-
based mechanism allows to locate the agreement point closer to the system optimum.
Fig. 15 shows the values of the incentive parameters γ4 and γ5 applied by the fourth
and the fifth module. The other modules do not need to apply any incentive parameter
throughout the execution (γ2 = γ3 = 0). In the experiments each agent i uses an
increment stepsize ∆c

i = βi/10 (the same used in the previous experiments).
The values of the incentive parameters at each step depend on how far the PNE is

from the system optimum. As we can note, no incentive is used during the steps in
which the system optimum of NPGK is also coincidentally the PNE point. In those
cases the non-cooperative strategy is directly able to find an integer rounding of the
system optimum (Alg. 1). This behavior happens during the time periods in which the
non-cooperative and the cooperative strategies produce identical reconfigurations, see
Fig. 13.

Fig. 16a shows the average number of rounds in the rwalk workload as a function of
the increment stepsize ∆c

i (which is the same both for Edge Detector and Recognizer).
As expected, the greater the stepsize the smaller the number of rounds performed by
the agents. The number of rounds also affects the cost optimality. By using a smaller
stepsize the strategy is able to reach a better approximation of the system optimum
at each step. To this end, Fig. 16b shows the average price of stability over the en-
tire execution. Smaller stepsizes make it possible to achieve better PoS values and
consequently a lower cost of the application. As it is evident from Fig. 16b, too small
stepsizes are not useful as the PoS stops to grow for stepsizes greater than a threshold.
The reason is that at the end of Alg. 2 the control strategy applies an integer rounding.
Therefore, a very high degree of precision in not really needed, and few rounds per
step are often sufficient to achieve a near optimal cost reduction. The results with the
other workload scenarios are qualitatively similar. We omit them for brevity.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:30 G. Mencagli

 0
 0.0016
 0.0032
 0.0048
 0.0064

 0.008

 0 100 200 300 400 500 600

In
ce

nt
iv

e
fa

ct
or

 γ

Control step (τ = 300 sec)

Incentive factor - Edge Detector (cyclic workload).

Incentive factor.

(a) Cyclic workload - γ4 of Edge Detector.

 0
 0.004
 0.008
 0.012
 0.016

 0.02

 0 100 200 300 400 500 600

In
ce

nt
iv

e
fa

ct
or

 γ

Control step (τ = 300 sec)

Incentive factor - Recognizer (cyclic workload).

Incentive factor.

(b) Cyclic workload - γ5 of Recognizer.

 0
 0.0016
 0.0032
 0.0048
 0.0064

 0.008

 0 100 200 300 400 500 600

In
ce

nt
iv

e
fa

ct
or

 γ

Control step (τ = 300 sec)

Incentive factor - Edge Detector (trend workload).

Incentive factor.

(c) Trend workload - γ4 of Edge Detector.

 0
 0.004
 0.008
 0.012
 0.016

 0.02

 0 100 200 300 400 500 600

In
ce

nt
iv

e
fa

ct
or

 γ

Control step (τ = 300 sec)

Incentive factor - Recognizer (trend workload).

Incentive factor.

(d) Trend workload - γ5 of Recognizer.

 0
 0.0016
 0.0032
 0.0048
 0.0064

 0.008

 0 100 200 300 400 500 600

In
ce

nt
iv

e
fa

ct
or

 γ

Control step (τ = 300 sec)

Incentive factor - Edge Detector (rwalk workload).

Incentive factor.

(e) Rwalk workload - γ4 of Edge Detector.

 0
 0.004
 0.008
 0.012
 0.016

 0.02

 0 100 200 300 400 500 600

In
ce

nt
iv

e
fa

ct
or

 γ

Control step (τ = 300 sec)

Incentive factor - Recognizer (rwalk workload).

Incentive factor.

(f) Rwalk workload - γ5 of Recognizer.

Fig. 15: Incentive parameters (factors) applied by Edge Detector and Recognizer control agents
at each step of the execution.

 0

 5

 10

 15

 20

 25

1 2 4 8 10 15 20 30 40 50

A
vg

. n
o.

 o
f r

ou
nd

s

Ratio βi / ∆i
c

Average no. of rounds (rwalk workload).

Rounds.

(a) Avg. no. of rounds.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

1 2 4 8 10 15 20 30 40 50

P
ric

e
of

 s
ta

bi
lit

y

Ratio βi / ∆i
c

Price of stability (rwalk workload).

PoS.

(b) Price of stability.

Fig. 16: Average number of rounds per step and average price of stability with different incre-
ment stepsizes of the cooperative strategy (rwalk workload).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:31

We conclude this section by analyzing two final aspects. According to the description
of Sect. 5.2, the cooperative strategy executes a distributed algorithm to compute the
value of the social welfare at each round in a fully distributed manner. In the previous
experiments we have used a tree-based protocol for distributed aggregation based on
a minimum height spanning tree (briefly, MHST), while the local push-sum protocol is
our gossip-based alternative to solve the same problem.

The accuracy of the gossip protocol depends on the number of iterations (I > 0) per-
formed. Fig. 17a shows the accuracy compared with the exact global cost determined
by the MHST-based procedure. As we can see, few iterations are sufficient to reach
a good accuracy: with 15 iterations the error is about 2%. As stated in [Geibig and
Bradler 2010], the convergence time of local push-sum is proportional to the longest
shortest path in the graph, i.e. the diameter.

Fig. 17b shows the total number of messages generated by the control agents at each
step. We use ∆c

i = βi/10 for the incentive-based strategy and I = 15 for the gossiping
aggregation. The incentive-based mechanism with gossiping aggregation produces the
higher number of messages per step, slightly different in the three workload scenar-
ios. When the aggregation is performed with the MHST-based approach, we obtain
exact results with fewer messages at the expense of a non-homogeneous protocol. In
contrast, the gossip-based protocol is fully distributed, with agents with the same be-
havior at each iteration. The non-cooperative strategy is reported in Fig. 17b to have
a comparison baseline. The number of messages is much smaller than the cooperative
strategy with MHST-based/gossiping aggregation, as it requires one single round per
step to converge to the actual PNE strategy profile.

 0

 2

 4

 6

 8

3 5 6 7 8 10 15 20 100500

E
rr

or
 %

Iterations of local push-sum

Gossiping accuracy (rwalk workload).

Error.

(a) Gossiping accuracy.

 0

 250

 500

 750

 1000

 1250

 1500

Cyclic Trend Rwalk

N
o.

 o
f m

es
sa

ge
s

pe
r

st
ep

Workload scenarios

Number of messages per step.

Coop (MHST).
Coop (Gossip).

Non-Coop.

(b) Messages per step.

Fig. 17: Accuracy of the gossip-based protocol (local push-sum) and total number of messages
per step.

7. CONCLUSIONS
This paper proposes new control strategies for distributed stream processing applica-
tions. The application modules are provided with elastic scaling capabilities in order to
change their internal parallelism degree. As a first step, we formalize the performance
modeling of flow graphs in order to identify bottlenecks and quantify the backpressure
effect. Then, we distribute the control logic of the application among its modules, each
one equipped with an agent performing the local control strategy. The first solution

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:32 G. Mencagli

consists in modeling the agents as rationale entities pursuing their self-interest. Ac-
cordingly, the agreement is modeled with the concept of Nash equilibrium. We identify
the Nash equilibria of our problem and we design a distributed procedure to reach the
best equilibrium. Furthermore, to promote cooperation, we introduce a decentralized
incentive-based mechanism which maintains the non-cooperative scheme by changing
the rewards of the agents such that better agreements can be reached in the coopera-
tive sense. The simulation confirms the results of the theoretical analysis in terms of
performance, efficiency and cost optimality.

In the future we plan to extend this work in different directions. We are currently
developing some of the strategies proposed in this work in the FastFlow [Fas 2015]
stream processing framework. Furthermore, we are aimed at extending our theoret-
ical analysis by taking into account other relationships between modules, not only
coupled according to the performance model presented in Sect. 4.1, but also in the use
of resources, e.g., the available nodes are shared and can be used by any module of
the application. In this way the problem could be studied in terms of generalized Nash
equilibria, with some theoretical issues that we are currently studying.

REFERENCES
2007. Learning from Data Streams: Processing Techniques in Sensor Networks (1 ed.). Springer.
2015. FastFlow (FF). (2015). http://http://calvados.di.unipi.it/fastflow/
Mert Akdere, Cemal Çagatay Bilgin, Ozan Gerdaneri, Ibrahim Korpeoglu, Özgür Ulusoy, and Ugur

Çetintemel. 2006. A Comparison of Epidemic Algorithms in Wireless Sensor Networks. Comput. Com-
mun. 29, 13-14 (Aug. 2006), 2450–2457.

Tansu Alpcan and L. Pavel. 2009. Nash equilibrium design and optimization. In Game Theory for Networks,
2009. GameNets ’09. International Conference on. 164–170.

Henrique Andrade, Buğra Gedik, and Deepak Turaga. 2014. Fundamentals of Stream Processing. Cam-
bridge University Press. Cambridge Books Online.

H. Andrade, B. Gedik, K. L. Wu, and P. S. Yu. 2011. Processing High Data Rate Streams in System S. J.
Parallel Distrib. Comput. 71, 2 (Feb. 2011), 145–156.

D. Ardagna, B. Panicucci, and M. Passacantando. 2013. Generalized Nash Equilibria for the Service Provi-
sioning Problem in Cloud Systems. Services Computing, IEEE Transactions on 6, 4 (Oct 2013), 429–442.

Shivnath Babu and Jennifer Widom. 2001. Continuous Queries over Data Streams. SIGMOD Rec. 30, 3
(Sept. 2001), 109–120.

C. Bertolli, G. Mencagli, and M. Vanneschi. 2009. Adaptivity in Risk and Emergency Management Applica-
tions on Pervasive Grids. In Pervasive Systems, Algorithms, and Networks (ISPAN), 2009 10th Interna-
tional Symposium on. 550–555. DOI:http://dx.doi.org/10.1109/I-SPAN.2009.92

Carlo Bertolli, Gabriele Mencagli, and Marco Vanneschi. 2010. A Cost Model for Autonomic Reconfigurations
in High-performance Pervasive Applications. In Proceedings of the 4th ACM International Workshop on
Context-Awareness for Self-Managing Systems (CASEMANS ’10). ACM, New York, NY, USA, Article 3,
10 pages. DOI:http://dx.doi.org/10.1145/1858367.1858370

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2005. A Non-Local Algorithm for Image Denoising.
In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05) - Volume 2 - Volume 02 (CVPR ’05). IEEE Computer Society, Washington, DC, USA,
60–65.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch. 2013. Integrating
Scale out and Fault Tolerance in Stream Processing Using Operator State Management. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD ’13). ACM, New
York, NY, USA, 725–736.

S. Chaisiri, Bu-Sung Lee, and D. Niyato. 2012. Optimization of Resource Provisioning Cost in Cloud Com-
puting. Services Computing, IEEE Transactions on 5, 2 (April 2012), 164–177.

Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. 2012. Cooperative Game Theory: Basic Con-
cepts and Computational Challenges. IEEE Intelligent Systems 27, 3 (2012), 86–90.

Gianpaolo Cugola and Alessandro Margara. 2012. Processing Flows of Information: From Data Stream to
Complex Event Processing. ACM Comput. Surv. 44, 3, Article 15 (June 2012), 62 pages.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Game-Theoretic Strategies for Elastic Data Stream Processing 39:33

Pradeep Dubey. 1986. Inefficiency of Nash Equilibria. Mathematics of Operations Research 11, 1 (1986), pp.
1–8.

Bernard Espinasse, Guy Picolet, and Eugène Chouraqui. 1997. Negotiation support systems: A multi-
criteria and multi-agent approach. European Journal of Operational Research 103, 2 (1997), 389 – 409.

R. Gayathri and R.S. Sabeenian. 2013. A performance analysis of efficient schemes and algorithms in im-
age denoising procedures. In Computer Communication and Informatics (ICCCI), 2013 International
Conference on. 1–5.

B. Gedik, S. Schneider, M. Hirzel, and Kun-Lung Wu. 2014. Elastic Scaling for Data Stream Processing.
Parallel and Distributed Systems, IEEE Transactions on 25, 6 (June 2014), 1447–1463.

J. Geibig and D. Bradler. 2010. Self-organized aggregation in irregular wireless networks. In Wireless Days
(WD), 2010 IFIP. 1–7.

A. Gohad, N.C. Narendra, and P. Ramachandran. 2013. Cloud Pricing Models: A Survey and Position Paper..
In Cloud Computing in Emerging Markets (CCEM), 2013 IEEE International Conference on. 1–8.

Eduardo R. Gomes, Quoc Bao Vo, and Ryszard Kowalczyk. 2012. Pure exchange markets for resource sharing
in federated clouds. Concurrency and Computation: Practice and Experience 24, 9 (2012), 977–991.

Horacio González-Vélez and Mario Leyton. 2010. A Survey of Algorithmic Skeleton Frameworks: High-level
Structured Parallel Programming Enablers. Softw. Pract. Exper. 40, 12 (Nov. 2010), 1135–1160.

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente, and Patrick Valduriez.
2012. StreamCloud: An Elastic and Scalable Data Streaming System. IEEE Trans. Parallel Distrib.
Syst. 23, 12 (Dec. 2012), 2351–2365.

Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof Fetzer. 2014. Latency-aware Elastic
Scaling for Distributed Data Stream Processing Systems. In Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems (DEBS ’14). ACM, New York, NY, USA, 13–22.

Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. 2013. Elastic stream processing in the
Cloud. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3, 5 (2013), 333–345.

Amazon Inc. 2008. Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc.,
http://aws.amazon.com/ec2/#pricing. http://aws.amazon.com/ec2/\#pricing

David Kempe, Alin Dobra, and Johannes Gehrke. 2003. Gossip-Based Computation of Aggregate Informa-
tion. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS
’03). IEEE Computer Society, Washington, DC, USA, 482–.

Yu-Kwong Kwok, Kai Hwang, and S. Song. 2007. Selfish Grids: Game-Theoretic Modeling and NAS/PSA
Benchmark Evaluation. Parallel and Distributed Systems, IEEE Transactions on 18, 5 (May 2007),
621–636.

Averill M. Law and David M. Kelton. 1999. Simulation Modeling and Analysis (3rd ed.). McGraw-Hill Higher
Education.

Claudia Leopold. 2001. Parallel and Distributed Computing: A Survey of Models, Paradigms and Ap-
proaches. John Wiley & Sons, Inc., New York, NY, USA.

Hongxing Li, Chuan Wu, Zongpeng Li, and F.C.M. Lau. 2013. Profit-maximizing virtual machine trading in
a federation of selfish clouds. In INFOCOM, 2013 Proceedings IEEE. 25–29.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. 2013. Dynamic Right-sizing for
Power-proportional Data Centers. IEEE/ACM Trans. Netw. 21, 5 (Oct. 2013), 1378–1391.

B. Lohrmann, P. Janacik, and O. Kao. 2015. Elastic Stream Processing with Latency Guarantees. In The
35th International Conference on Distributed Computing Systems (ICDCS 2015). to appear.

Martina Maggio, Henry Hoffmann, Alessandro V. Papadopoulos, Jacopo Panerati, Marco D. Santambro-
gio, Anant Agarwal, and Alberto Leva. 2012. Comparison of Decision-Making Strategies for Self-
Optimization in Autonomic Computing Systems. ACM Trans. Auton. Adapt. Syst. 7, 4, Article 36 (Dec.
2012), 32 pages.

Rafik Makhloufi, Grégory Bonnet, Guillaume Doyen, and Dominique Gaı̈ti. 2009. Decentralized Aggregation
Protocols in Peer-to-Peer Networks: A Survey. In Modelling Autonomic Communications Environments,
JohnC. Strassner and YacineM. Ghamri-Doudane (Eds.). Lecture Notes in Computer Science, Vol. 5844.
Springer Berlin Heidelberg, 111–116.

Rafik Makhloufi, Guillaume Doyen, Grégory Bonnet, and Dominique Gaı̈ti. 2014. A survey and performance
evaluation of decentralized aggregation schemes for autonomic management. International Journal of
Network Management 24, 6 (2014), 469–498.

D. Meilander, S. Kottinger, and S. Gorlatch. 2013. A Scalability Model for Distributed Resource Management
in Real-Time Online Applications. In Parallel Processing (ICPP), 2013 42nd International Conference on.
763–772. DOI:http://dx.doi.org/10.1109/ICPP.2013.90

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:34 G. Mencagli

Gabriele Mencagli. 2012. A Control-Theoretic Methodology for Controlling Adaptive Structured Parallel
Computations. Ph.D Thesis, Department of Computer Science, University of Pisa, Italy. http://etd.adm.
unipi.it/t/etd-05242012-212444/

G. Mencagli and M. Vanneschi. 2011. QoS-control of Structured Parallel Computations: A Predictive Control
Approach. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International
Conference on. 296–303.

G. Mencagli, M. Vanneschi, and E. Vespa. 2013a. Control-theoretic adaptation strategies for autonomic re-
configurable parallel applications on cloud environments. In High Performance Computing and Simu-
lation (HPCS), 2013 International Conference on. 11–18.

Gabriele Mencagli, Marco Vanneschi, and Emanuele Vespa. 2013b. Reconfiguration Stability of Adaptive
Distributed Parallel Applications Through a Cooperative Predictive Control Approach. In Proceedings
of the 19th International Conference on Parallel Processing (Euro-Par’13). Springer-Verlag, Berlin, Hei-
delberg, 329–340.

Gabriele Mencagli, Marco Vanneschi, and Emanuele Vespa. 2014. A Cooperative Predictive Control Ap-
proach to Improve the Reconfiguration Stability of Adaptive Distributed Parallel Applications. ACM
Trans. Auton. Adapt. Syst. 9, 1, Article 2 (March 2014), 27 pages.

John Nash. 1951. Non-Cooperative Games. The Annals of Mathematics 54, 2 (Sept. 1951), 286–295.
Dusit Niyato, Kun Zhu, and Ping Wang. 2011. Cooperative Virtual Machine Management for Multi-

organization Cloud Computing Environment. In Proceedings of the 5th International ICST Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS ’11). ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium,
528–537.

Alberto Núñez, Jose L. Vázquez-Poletti, Agustin C. Caminero, Gabriel G. Castañé, Jesus Carretero, and
Ignacio M. Llorente. 2012. iCanCloud: A Flexible and Scalable Cloud Infrastructure Simulator. J. Grid
Comput. 10, 1 (March 2012), 185–209.

Jaeok Park and M. van der Schaar. 2010. A Game Theoretic Analysis of Incentives in Content Production
and Sharing Over Peer-to-Peer Networks. Selected Topics in Signal Processing, IEEE Journal of 4, 4
(Aug 2010), 704–717.

A. G. Prieto and R. Stadler. 2007. A-GAP: An Adaptive Protocol for Continuous Network Monitoring with
Accuracy Objectives. IEEE Trans. on Netw. and Serv. Manag. 4, 1 (June 2007), 2–12.

Timo Reuter and Philipp Cimiano. 2012. Event-based Classification of Social Media Streams. In Proceedings
of the 2Nd ACM International Conference on Multimedia Retrieval (ICMR ’12). ACM, New York, NY,
USA, Article 22, 8 pages.

William Rogerson. 1994. A Theory of Incentives in Procurement and Regulation by Jean-Jacques Laffont;
Jean Tirole. Journal of Political Economy 102, 2 (1994), pp. 397–402.

C.U. Saraydar, Narayan B. Mandayam, and D. Goodman. 2002. Efficient power control via pricing in wireless
data networks. Communications, IEEE Transactions on 50, 2 (Feb 2002), 291–303.

Riccardo Scattolini. 2009. Architectures for distributed and hierarchical Model Predictive Control - A review.
Journal of Process Control 19, 5 (2009), 723–731.

Yuzhe Tang and B. Gedik. 2013. Autopipelining for Data Stream Processing. Parallel and Distributed Sys-
tems, IEEE Transactions on 24, 12 (Dec 2013), 2344–2354.

Nicolai Vorobjov. 1994. Foundations of game theory - noncooperative games. Birkhäuser. I–VI, 1–496 pages.
Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful stream computation in the cloud. In

Data Engineering (ICDE), 2015 IEEE 31st International Conference on. 723–734.
Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin Chan. 2013. A Framework for Partitioning

and Execution of Data Stream Applications in Mobile Cloud Computing. SIGMETRICS Perform. Eval.
Rev. 40, 4 (April 2013), 23–32.

Deshi Ye and Jianhai Chen. 2013. Non-cooperative Games on Multidimensional Resource Allocation. Future
Gener. Comput. Syst. 29, 6 (Aug. 2013), 1345–1352.

Qin Yuan, Zhixiang Liu, Junjie Peng, Xing Wu, Jiandun Li, Fangfang Han, Qing Li, Wu Zhang, Xinjin
Fan, and Shengyuan Kong. 2011. A Leasing Instances Based Billing Model for Cloud Computing. In
Proceedings of the 6th International Conference on Advances in Grid and Pervasive Computing (GPC’11).
Springer-Verlag, Berlin, Heidelberg, 33–41.

Tienan Zhang and Peng Xiao. 2014. A Novel Resource Pricing Mechanism based on Multi-Player Gaming
Model in Cloud Environments. Journal of Software 9, 6 (2014).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

