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ABSTRACT 

Inferring information from a set of acquired data is the main objective of any signal proc-

essing (SP) method. In particular, the common problem of estimating the value of a vector of 

parameters from a set of noisy measurements is at the core of a plethora of scientific and 

technological advances in the last decades; for example, wireless communications, radar and 

sonar, biomedicine, image processing, and seismology, just to name a few.  

Developing an estimation algorithm often begins by assuming a statistical model for the 

measured data, i.e. a probability density function (pdf), which if correct, fully characterizes 

the behaviour of the collected data/measurements. Experience with real data, however, often 

exposes the limitations of any assumed data model since modelling errors at some level are 

always present. Consequently, the true data model and the model assumed to derive the esti-

mation algorithm could differ. When this happens, the model is said to be mismatched or mis-

specified. Therefore, understanding the possible performance loss or regret that an estimation 

algorithm could experience under model misspecification is of crucial importance for any SP 

practitioner. Further, understanding the limits on the performance of any estimator subject to 

model misspecification is of practical interest. 

Motivated by the widespread and practical need to assess the performance of a “mis-

matched” estimator, the goal of this paper is to help bring attention to the main theoretical 

findings on estimation theory, and in particular on lower bounds under model misspecifica-
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tion, that have been published in the statistical and econometrical literature in the last fifty 

years. Secondly, several potential applications are discussed to illustrate the broad range of 

areas and problems to which this framework extends, and the consequent numerous opportu-

nities available for SP researchers. 

1. INTRODUCTION 

The mathematical basis for a formal theory of statistical inference was presented by 

Fisher, who introduced the Maximum Likelihood (ML) method along with its main properties 

[Fis25]. Since then, ML estimation has been widely used in a variety of applications. One of 

the main reasons for its popularity is its asymptotic efficiency, i.e. its ability to achieve a 

minimum value of the error variance as the number of available observations goes to infinity 

or as the noise power decreases to zero. The concept of efficiency is strictly related to the ex-

istence of some lower bounds on the performance of any estimator designed for a specific in-

ference task. Such performance bounds, one of which is the celebrated Cramér-Rao Bound 

(CRB) [Cra46] [Rao45], are of fundamental importance in practical applications since they 

provide a benchmark of comparison for the performance of any estimator. Specifically, given 

a particular estimation problem, if the performance of a certain algorithm achieves a relevant 

performance bound, then it is established that no other algorithm can do better. Moreover, 

evaluating a performance bound is often a prerequisite for any feasibility study. In particular, 

the availability of a lower bound for the estimation problem at hand makes the SP practitioner 

aware of the practical impossibility to achieve better estimation accuracy than the one indicat-

ed by the bound itself. Another fundamental feature of a performance bound is its ability to 

capture and reveal the complex dependences amongst the various parameters of interest, thus, 

offering the opportunity to understand more deeply the estimation problem at hand and ulti-

mately to identify an appropriate design choice of parameters and criterion for an estimator 

[Kay98a].   
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Before describing specific performance bounds, it is worth mentioning that estimation the-

ory explores two different frameworks: one is deterministic and one is Bayesian. In the classi-

cal deterministic approach, the parameters to be estimated are modelled as deterministic but 

unknown variables. This implies that no a-priori information is available that would suggest 

that one outcome is more or less likely than another. In the Bayesian framework instead, the 

parameters of interest are assumed to be random variables and the goal is to estimate their 

particular realizations. Unlike the classical deterministic approach, the Bayesian approach ex-

ploits this random characterization of the unknown parameters by incorporating a-priori in-

formation about the unknown parameters in the derivation of an estimation algorithm. In par-

ticular, the joint pdf of the unknown parameters is assumed known, and therefore can be taken 

into account in the estimation process through Bayes’ theorem [Kay98a]. 

When talking about lower bounds, the first distinction that needs to be made is between 

the local (or small-error) bounds and the global (or large-error) bounds.  A bound can be con-

sidered a local error bound if its calculation relies exclusively on the behaviour of the pdf at a 

single point value of the parameter (or perhaps a very small “local” neighbourhood around 

this point). If the calculation of a bound requires knowledge of the pdf behaviour at multiple 

(more than one) distinct and well separated (non-local) points, then the bound can be charac-

terized as a global error bound.  Local error bounds at best determine the limits of the asymp-

totics of optimal algorithms like ML, whereas characterization of non-asymptotic perform-

ance must somehow take into account the possible influence of parameter values other than 

then the true value.   

A bound is said to be “tight” if it reasonably predicts the performance of the ML estimator.  

In particular, if a bound is only asymptotically tight, then it is reliable only in the presence of 

high Signal-to-Noise Ratio (SNR) or sufficiently large number of measurements. On the other 

hand, if a bound is globally tight, then it is a reliable bound for the error covariance of an ML 

estimator irrespective of the SNR level or of the amount of the available data. The more gen-

eral deterministic bound that can be regarded as the representative of the class of the global 
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bounds is the Barankin Bound (BB) [Bar49]. As a counterpart of its generality, the calculation 

of the BB is not straightforward and usually, it does not admit a closed form representation. 

The most popular local bound is the above-mentioned CRB. Unlike the BB, the CRB is easy 

to evaluate for many practical problems, but it is reliable only asymptotically. In the non-

asymptotic region, that is characterized by a low SNR and/or by a low number of measure-

ments, the CRB results to be “too optimistic” with respect to the effective error covariance 

achievable by an estimator [Van13].  

The second subdivision of the performance bounds is a direct consequence of the dichot-

omy between the deterministic and the Bayesian estimation frameworks. In particular, we can 

identify the class of deterministic lower bounds and the class of Bayesian lower bounds 

[Van07]. Without any claim of completeness, the class of the deterministic lower bounds in-

cludes: the (global) BB [Bar49], and two local bounds, i.e. the Bhattacharyya Bound [Bha46] 

and the CRB [Cra46] [Rao45]. It is worth noting that the most common form of these bounds, 

including the CRB, apply only to unbiased estimators.  Versions of these bounds exist, how-

ever, that can be applied to biased estimators whose bias function can be determined. Con-

cerning the Bayesian bounds, they can be divided in two classes [Ren08]: the Ziv-Zakaï fami-

ly and the Weiss-Weinstein family to which the Bayesian version of the CRB belongs. The 

first family is derived by relating mean squared error to the probability of error in a binary 

hypothesis testing problem, while the derivation of the latter is based on the covariance ine-

quality. For further details on Bayesian Bounds, we refer the reader to the comprehensive 

book [Van07]. 

Regardless of the differences previously discussed, both the classical deterministic estima-

tion theory and the Bayesian framework are based on the implicit assumption that the as-

sumed data model, i.e. the pdf, and the true data model are the same, i.e. the model is cor-

rectly specified. However, much evidence from engineering practice shows that this assump-

tion is generally violated, i.e. the assumed model is often different from the true one. There 

are two main reasons for model misspecification. The first is that it is due to imperfect knowl-
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edge of the true data model that leads to a wrong specification of the data pdf. On the other 

hand, there could be cases where perfect knowledge of the true data model is available but, 

due to an intrinsic computational complexity or to a costly hardware implementation, it is not 

possible nor convenient to pursue the optimal “matched” estimator. In these cases, one may 

prefer to derive an estimator by assuming a simpler but misspecified data model. Of course, 

this suboptimal procedure may lead to some degradation in the overall system performance, 

but ensuring, on the other hand, a simple analytical derivation and real-time hardware imple-

mentation of the inference algorithm. It is clear that, in such a misspecified estimation frame-

work, the possibility to assess the impact of the model misspecification on the estimation per-

formance is of fundamental importance to guarantee the reliability of the mismatched estima-

tor. Misspecified bounds are then the perfect candidates to fulfil this task: they generalize the 

classical framework by allowing the assumed and true model to differ, yet establishing per-

formance limits on estimation error covariance in a way that indicates how the difference be-

tween the true and assumed model affects the estimation performance. Having established the 

main motivations, we can now briefly review the literature on the estimation framework un-

der model misspecification, with a focus on the two classical building blocks, i.e. the ML es-

timator and the CRB. 

The first fundamental result on the behaviour of the ML estimator under misspecification 

appeared in the statistical literature in the year 1967 and was provided by Huber [Hub67]. In 

that paper the consistency and the normality of the ML estimator was proved under very mild 

regularity conditions. Almost ten years later, Akaike [Aka72] highlighted the link between the 

Huber’s findings and the Kullback-Leibler (KL) divergence [Cov06]. He noted that the con-

vergence point of the ML estimator under model misspecification could be interpreted as the 

point that minimizes the KL divergence between the true and the assumed models. In the 

early 80’s, these ideas were further developed by White [Whi82], where the term “Quasi 

Maximum Likelihood” (QML) estimator was introduced. Some years later, the second fun-

damental building block of an estimation theory under model misspecification was estab-
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lished by Vuong in [Vuo86]. Vuong was the first one to derive a generalization of the 

Cramér-Rao lower bound under misspecified models. Analysis of the Bayesian misspecified 

estimation problem has been investigated in [Ber66] and [Bun98].  

Quite surprisingly and despite of the wide variety of potential applications, the SP com-

munity has remained largely unaware of these fundamental results for many years. Only re-

cently, this topic has been rediscovered and its applications to well-known SP problems in-

vestigated ([Xu04], [Noa07], [Ric13], [Gre14], [Gus14], [Ric15], [Kan15], [Par15], [Ren15], 

[Fri15], [For16a], [For16b], [For16c], [Ric16]). Of course, any SP practitioner was well 

aware of the misspecification problem, but some approaches commonly used within the SP 

community to address it differed from some of those proposed in the statistical literature. In 

particular, the effect of the misspecification has been modelled by adding into the true data 

model some random quantities, also called nuisance parameters, and by transforming the es-

timation problem at hand into a higher dimensional hybrid estimation problem. The perform-

ance degradation due to the augmented level of uncertainty generated by the nuisance pa-

rameters could be assessed by evaluating the true CRB when possible, the hybrid CRB (see, 

e.g. [Roc87], [Gin00], [Par08], [Noa09]), or the modified CRB ([And92], [Gin98], [Kba17]). 

This approach, although reasonable, is application-dependent and not general at all. Other ap-

proaches include sensitivity analyses [Fri90], [Van13]. 

Finally, the relationship between misspecified estimation theory and robust statistics is 

worth pointing out here (see [Zou12] for an excellent tutorial on robust statistics). As one 

would expect, these two frameworks share the same motivations, i.e. an imperfect knowledge 

of the true data model. The aim of robust estimation theory is to develop estimation algo-

rithms capable of achieving good performance over a large set of allowable input data mod-

els, even if suboptimal under any nominal (or true) model. Even though the development of 

robust estimators are surely of great importance in many SP applications, for some of these 

the mathematical derivation and consequent implementation may be too involved or too time 

and hardware intensive. In these cases, as discussed before, one may prefer to apply the clas-
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sical, non-robust, estimation theory by assuming a simplified, hence misspecified, statistical 

model for the data.  

The first aim of this article is to summarize the most relevant existing works in the statisti-

cal literature using a formalism that is more familiar to the SP community. Secondly, we aim 

to show the potential application of misspecified estimation theory, in both the deterministic 

and Bayesian contexts, to various classical SP problems.  

2. FORMAL DESCRIPTION OF A MISSPECIFIED MODEL PROBLEM 

Let 
N

m x  be an N-dimensional (generally complex) random vector, representing the 

outcome of a measurement process, with cumulative distribution function (cdf) ( )X mP x  and a 

relevant pdf ( )X mp x  belonging to a possibly parametric family, or model,  that character-

izes the observed random experiment. As discussed in the Introduction, in almost all the prac-

tical applications the true pdf ( )X mp x  is i) not perfectly known, or ii) does not admit a simple 

derivation or easy implementation of an estimation algorithm. Thus, instead of ( )X mp x , in the 

mismatched estimation framework we adopt a different parametric pdf, say ( | )X mf x θ  with 

dθ , to characterize the statistical behaviour of the data vector 
mx .  Potential estima-

tion algorithms may be derived from the misspecified parametric pdf ( | )X mf x θ  and not from 

the true pdf ( )X mp x . Specifically, ( | )X mf x θ  is implicitly assumed to belong to a parametric 

model { | ( | ) is a pdf }X X mf f  x θ θ  whose elements represent the instances of 

( | )X mf x θ  for different value of the parameter vector θ . Moreover, we assume that 

( | )X mf x θ  could differs from ( )X mp x  for every θ . Since this assumption represents the 

divide between the classical matched and the misspecified parametric estimation theories, 

some additional comments are warranted. The matched estimation theory requires the exis-

tence of at least a parameter vector θ  for which the pdf assumed by the SP practitioner 

equates the true one. Mathematically, we can say that the classical matched theory holds true 

if, for some θ , ( ) ( | )X m X mp fx x θ , or equivalently if ( )X mp x . For example, sup-
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pose that the collected data, i.e. the outcomes of a random experiment, are distributed accord-

ing to a univariate Gaussian distribution with mean value   and variance 2 , namely, 

2( ) ( , )m X mx p x   , 1, ,m M . Moreover, suppose that the assumed parametric 

model for data inference is the Gaussian parametric model, i.e.  

1 2{ | ( | ) ( , ) }X X mf f x       θ θ , where 

 is the set of positive real numbers. 

This situation clearly represents a matched case, since there exists 
2( , )T    θ  such 

that ( ) ( | )X m X mp x f x θ =
2( , )  . Suppose now that the collected data is actually distrib-

uted according to a univariate Laplace distribution with location parameter   and scale pa-

rameter  , i.e. ( ) ( , )m X mx p x   . Due to perhaps misleading and incomplete informa-

tion on the experiment at hand, or due to the need to derive a simple algorithm, we decide to 

exploit the same parametric Gaussian model  to characterize the collected data. Unlike the 

previous case, this is obviously a mismatched situation, since there does not exist any 

1 2[ , ]T θ  for which the Gaussian model can equate to the true Laplace distribution. 

Many practical examples of model misspecification can be found in the everyday engi-

neering practices. Just to name a few, recent papers have investigated the application of this 

misspecifed model framework to the Direction-of-Arrival (DoA) estimation problem in sen-

sor arrays ([Ric13],[Ric15],[Kan15]) and MIMO radars [Ren15], to the covariance matrix es-

timation problem in non-Gaussian disturbance ([Gre14], [For16a], [For16c]), to radar-

communication systems coexistence [Ric16], to waveform parameter estimation in the pres-

ence of uncertainty in the propagation model [Par15], and to the Time-of-Arrival (ToA) esti-

mation problem for UWB signal in the presence of interference [Gus14]. 

Since the first part of the paper deals with the deterministic misspecified estimation theory, 

the parameter vector θ  is assumed to be an unknown and deterministic real vector. The exten-

sion to the Bayesian case will be discussed later on. Suppose now that for inference purposes 

we collect M truly independent, identically distributed (i.i.d.) measurement vectors 
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1{ }M

m mx x , where ( )m X mpx x . Due to the independence, the true joint pdf of the dataset x  

can be expressed as the product of the marginal pdf as 
1

( ) ( )
M

X X mm
p p


x x .  The assumed 

joint pdf of the dataset is 
1

( | ) ( | )
M

X X mm
f f


x θ x θ . 

This misspecified model framework raises two important questions: 

 Is it still possible to derive lower bounds on the error covariance of any mis-

matched estimator of the parameter vector θ ? 

 How will the classical statistical properties of an estimator, e.g. unbiasedness, con-

sistency and efficiency, change in this misspecified model framework? 

The remainder of this paper addresses these two fundamental issues. 

3. THE MISSPECIFIED CRAMÉR-RAO BOUND (MCRB) 

This section introduces a version of the CRB accounting for possible model misspecifica-

tion, i.e. the Misspecified CRB (MCRB), which can be considered a generalization of the 

usual CRB obtained when the model is correctly specified. We start by providing the required 

regularity conditions and the notion of unbiasedness for mismatched estimators.   

3.1 REGULAR MODELS 

As for the classical CRB, in order to guarantee the existence of the MCRB, some regular-

ity conditions on the assumed pdf need to be imposed. Specifically, the assumed parametric 

model  has to be regular with respect to (w.r.t.) , i.e. the family to which the true pdf 

belongs. The complete list of assumptions that  has to satisfy to be regular w.r.t.  are 

given in [Vuo86] and briefly recalled in [For16a]. Most of them are rather technical and fa-

cilitate order reversal of integral and derivative operators. Nevertheless, there are two as-

sumptions that need to be discussed here due to their importance in the development of the 

theory. The first condition that has to be satisfied is:  

A1. There exists a unique interior point 0θ  of   such that 
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       0 |argmin ln | argminp X m X XE f D p f
 

   θ
θ θ

θ x θ , (1) 

where pE   indicates the expectation operator of a vector- or scalar-valued function 

w.r.t. the pdf ( )X mp x  and  | ln( ( ) ( | )) ( )X X X m X m X m mD p f p f p dθ x x θ x x  is the 

Kullback-Leibler divergence [Cov06] (KLD) between the true and the assumed pdfs. 

As indicated by eq. (1), 0θ  can be interpreted as the point that minimizes the KLD 

between ( )X mp x  and ( | )X mf x θ  and it is called the pseudo-true parameter vector 

([Vuo86], [Whi82]). 

After having defined the pseudo-true parameter vector 0θ  in A1, let 
0θ

A  be the matrix 

whose entries are defined as: 

     
0

0

2

0ln | ln |T

p X m p X m
ij ij

i j

E f E f
 



 
               

θ θ θ

θ θ

A x θ x θ , (2) 

where 0( )uθ θ   and 
0( )Tu θ θ θ  indicate the gradient (column) vector and the symmetric 

Hessian matrix of the scalar function u evaluated at 0θ . The second fundamental condition 

that must be satisfied by the misspecified model  in order to be regular w.r.t.  is: 

A2. The matrix 
0θ

A  is non-singular. 

The pseudo-true parameter vector 0θ  plays a fundamental role in estimation theory for 

misspecified models.  Roughly speaking, it identifies the pdf 0( | )X mf x θ  in the assumed pa-

rametric model  that is closest, in the KLD sense, to the true model. As the next sections 

will clarify, it can be interpreted as the counterpart of the true parameter vector of the classi-

cal matched theory.  Regarding the matrix 
0θ

A , it represents a sort of generalization of the 

classical Fisher Information Matrix (FIM) to the misspecified model framework. In order to 

clarify this, we first define the matrix 
0θ

B  as: 
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0

0 0

0 0ln | ln |

ln | ln |
.

T

p X m X m
ij ij

X m X m

p

i j

E f f

f f
E

  

       

   
  

   

θ θ θ

θ θ θ θ

B x θ x θ

x θ x θ  (3) 

As with matrix 
0θ

A , we recognize in 
0θ

B the second possible generalization of the FIM. 

Vuong [Vuo86] showed that if ( ) ( | )X m X mp fx x θ  for some θ , then 0 θ θ  and 

 
θ θ

B A , where θ  is the true parameter vector of the classical matched theory. The last 

equality shows that, under correct model specification, the two expressions of the FIM are 

equal, as expected [Van13]. This represents a first evidence of the fact that the misspecified 

estimation theory is consistent with the classical one. After having established the necessary 

regularity conditions, we can introduce the class of misspecified-unbiased estimators. 

3.2 THE MISSPECIFIED (MS) – UNBIASEDNESS PROPERTY 

The first generalization to mismatched estimators of the classical unbiasedness property 

was proposed by Vuong [Vuo86]. As we will see in the following sections, in the context of 

estimation theory for misspecified models, it has the same meaning and plays exactly the 

same role of the classical unbiasedness property defined for matched estimators. Specifically, 

let ˆ( )θ x  be an estimator of the pseudo-true parameter vector 0θ , i.e. a function of the M 

available i.i.d. observation vectors 1{ }M

m mx x , derived under the misspecified parametric 

model . Then ˆ( )θ x  is said to be an MS-unbiased estimator if and only if (iff): 

   0
ˆ ˆ( ) ( ) ( ) ,p XE p d θ x θ x x x θ  (4) 

where 0θ  is the pseudo-true parameter vector defined in eq. (1). The link with the classical 

matched unbiasedness property is obvious. In particular, if the parametric model  is cor-

rectly specified, 0θ  correspond to the vector θ  such that ( ) ( | )X m X mp fx x θ . Conse-

quently, eq. (4) can be rewritten as 
|

ˆ ˆ{ ( )} ( ) ( | )
X

f XE f d θ
θ x θ x x θ x θ  that represent the clas-
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sical definition of the unbiasedenss property. At this point, we are ready to introduce the ex-

plicit expression for the MCRB. 

3.3 A COVARIANCE INEQUALITY IN THE PRESENCE OF MISSPECIFIED MODELS 

In this section, we present the MCRB as introduced by Vuong in his seminal paper 

[Vuo86].  An alternative derivation was proposed by Richmond and Horowitz in [Ric13] and 

[Ric15]. A comparison between the derivation given in [Vuo86] and the one proposed in 

[Ric13] and [Ric15] has been provided in [For16a].  

Theorem 1 [Vuo86]:  Let  be a misspecified parametric model that is regular w.r.t. . Let 

ˆ( )θ x  be an MS-unbiased estimator derived under the misspecfied model  from a set of M 

i.i.d. observation vectors 1{ }M

m mx x . Then, for every possible ( )X mp x : 

    
0 0 0

1 1

0 0

1ˆ( ), MCRBp
M

  θ θ θC θ x θ A B A θ , (5) 

where 

      0 0 0
ˆ ˆ ˆ( ), ( ) ( )

T

p pE  C θ x θ θ x θ θ x θ  (6) 

is the error covariance matrix of the mismatched estimator ˆ( )θ x  where the matrices 
0θ

A  and 

0θ
B  have been defined in eqs. (2) and (3), respectively. 

The following comments are in order. The major implication of Theorem 1 is that it is still 

possible to establish a lower bound on the error covariance matrix of an (MS-unbiased) esti-

mator even if it is derived under a misspecified data model, i.e. it is derived under a pdf 

( | )X mf x θ  that could differ from the true pdf ( )X mp x  for every value of θ  in the parameter 

space  . An important question that may arise under a misspecified model framework is 

which vector in the assumed parameter space   should be use to evaluate the effectiveness 

of a mismatched estimator, particularly when no “true” parameter vector exists, i.e. 

( ) ( | )X m X mp fx x θ , for all θ ? It is certainly reasonable to use the parameter value that 

minimizes the “distance”, in a given sense, between the assumed misspecified pdf ( | )X mf x θ  
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and the true pdf ( )X mp x . Theorem 1 shows that if, as a measure of the “distance,” one uses 

the KLD and by assuming that the misspecified model  is regular with respect to the true 

model , this parameter vector exists and it is the pseudo-true parameter vector 
0θ  defined 

in eq. (1). Specifically, the MCRB is a lower bound to the error covariance matrix of any MS-

unbiased estimator, where the error is defined as the difference between the estimator and the 

pseudo-true parameter vector. Moreover, if the model  is correctly specified, then, as said 

before, 
0θ  equates the “true” parameter vector θ , such that ( ) ( | )X m X mp fx x θ , and 

0
  θ θ θ

B B A . Consequently, the inequality in (5) collapses to the classical (matched) 

Cramér-Rao inequality for unbiased estimators: 

      
|

1 11 1ˆ ˆ( ) ( ) CRB
X

T

fE
M M

     
θ θ θ

θ x θ θ x θ B A θ . (7) 

The second point is how can Theorem 1 be exploited in practice? The MCRB is a gener-

alization of the classical CRB to the misspecified model framework and can play a similar 

role. Specifically, the MCRB can be used to assess the performance of any mismatched esti-

mators and it plays the same key role of the classical CRB in any feasibility study, but with 

the added flexibility to assess performance under varied forms of modelling errors. One 

thinks for example to the recurring scenario in which the SP practitioner is aware of the true 

data pdf ( )X mp x , but in order to fulfil some operational constraints, she/he is forced to derive 

the required estimator by exploiting a simpler, but misspecified, model. In this scenario, the 

MCRB in (5) can be directly applied to assess the potential estimation loss due to the mis-

match between the assumed and the true model.  

This scenario can be extended to the case the SP practitioner is not completely aware about 

the functional form of the true data pdf, but she/he is still able to infer some of its properties, 

for example, from empirical data or parameter estimates based on such data. Such knowledge 

can be used to motivate surrogate models for the true data pdf, which in turn could be ex-

ploited to conduct system analysis and performance assessment. To clarify this point, con-

sider the case in which the SP practitioner, in order to derive a simple inference algorithm, 
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decides to assume a Gaussian distribution to describe the data behaviour. However, thanks to 

a preliminary data analysis, she/he is aware of the fact that the data share a heavy-tailed dis-

tribution, e.g., due to the presence of impulsive non-Gaussian noise. Then she/he could 

choose as true data pdf a heavy-tailed distribution, e.g. the t-distribution, and consequently, 

exploits the MCRB to assess how ignoring the heavy-tailed and impulsive nature of the data 

impacts on the performance of an estimation algorithm based on a Gaussian pdf. This ex-

plains that, although the chosen “true” pdf (in this example, the t-distribution) may not be the 

exact true data pdf, it can still serve as a useful surrogate for the purposes of system analysis 

and design by means of the MCRB. 

The MCRB can also be used to predict potential weaknesses (i.e. breakdown of the estima-

tion performance) of a system. Suppose one has a system/estimator derived under a certain 

modelling assumption, but it is of interest for practical reasons to predict how well this system 

will react in the presence of different “true” input data distributions perhaps characterizing 

operational scenarios that the system can undergo. Clearly, the MCRB is well-suited to ad-

dress this task. 

Another important question may arise analysing Theorem 1. In order to evaluate the 

pseudo-true parameter vector 
0θ  in eq. (1) and then the MCRB in eq. (5), we need to know 

the true data pdf ( )X mp x , since it is required to evaluate the expectation operators. How can 

we calculate the MCRB in all the practical cases in which we haven’t any a priori knowledge 

of the functional form of ( )X mp x ? An answer to this fundamental question will be given in 

Sect. 4.1, where we show that consistent estimators for both the pseudo-true parameter vector 

0θ  and of the MCRB matrix can be derived from the acquired data set. To conclude this sec-

tion, it is worth mentioning that the proposed MCRB can be easily extended to misspecified 

estimation problems that require equality constraints. We refer the reader to [For16b] for a 

comprehensive treatise of this problem. 
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3.4 AN INTERESTING CASE: THE MCRB AS A LOWER BOUND ON THE MEAN SQUARE ERROR 

  In this section, we focus on a particular mismatched case that is of great interest in a lot 

of practical applications. Specifically, we consider the case in which the parameter vector of 

the assumed model  is nested in the one of the true parametric model , i.e. the assumed 

parameter space Θ is a subspace of the true parameter space  , where   indicates 

the Cartesian product. Under this restriction, the true parametric model can be expressed as 

  | ( | , ) is a pdf [ , ] ,T T T

X X mp p  x θ γ θ γ  (8) 

while the assumed model is { | ( | ) is a pdf }X X mf f  x θ θ  as before. It is worth notic-

ing that ( | )X mf x θ  could differ from the true ( | , )X mp x θ γ  for  θ  and for  γ . 

Moreover, the nested parameter vector assumption includes, as special case, the scenario in 

which the true parameter space and the assumed one are equal, i.e.  . This particular 

case arises, for example, in array processing applications in which both the true and the as-

sumed pdfs of the acquired data vectors can be parameterized by the angles of arrival of a cer-

tain number of sources [Ric15]. A practical example of the more general nested model as-

sumption is the estimation of the disturbance covariance matrix in adaptive radar detection 

[For16a]. In this misspecified estimation problem, both the unknown true data pdf and the as-

sumed one can be parameterized by a scaled version of the covariance matrix and by the dis-

turbance power. Both these applications will be discussed in Sect. 6, while here we focus our 

attention on the theoretical implications of the condition in (8). The first immediate conse-

quence of (8) is the fact that if the pseudo-true parameter vector 0θ  and the true parameter 

sub-vector θ  belong to the same parameter space Θ, then the difference vector 0r θ θ  is 

well defined, but in general different from a zero-vector. As shown in ([For16a], Sect. II.D) or 

in ([Ric15], eq. 70), using r, a bound on the Mean Square Error (MSE) of the estimate of the 

true parameter vector θ  under model misspecification can be easily established as: 
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0 0 0

1 1

0

1ˆ ˆ ˆ ˆMSE ( ), ( ) ( ) ( ),
T

T T

p p pE
M

      θ θ θθ x θ θ x θ θ x θ C θ x θ rr A B A rr  (9) 

4. THE MISMATCHED MAXIMUM LIKELIHOOD (MML) ESTIMATOR 

The aim of this section is to present the second milestone of the estimation theory under 

model misspecification: the Mismatched Maximum Likelihood (MML) estimator. As dis-

cussed in the Introduction, the theoretical framework supporting the existence and the con-

vergence properties of the MML estimator was developed by Huber [Hub67] and later by 

White [Whi82]. Here, our goal is to summarize the main findings of [Hub67] and [Whi82] 

from a SP standpoint. As detailed in Section 2, assume to have a set 1{ }M

m mx x  of M i.i.d. 

measurement vectors distributed according to a true, but unknown or inaccessible pdf 

( )X mp x . So, the log-likelihood function for the data x under a generally misspecified para-

metric pdf ( | )X mf x θ  is given by 1

1
( ) ln ( | )

M

M X mm
L M f

θ x θ . Following the classi-

cal definition, the MML estimator can be defined as the vector that maximize the, possibly 

misspecifed, log-likelihood function: 

    
1

ˆ argmax ( ) argmax ln |
M

MML M X mm
L f


 

 
θ θ

θ x θ x θ , (10) 

where ( )m X mpx x . The definition of the MML estimator given in eq. (10) is clear and self-

explanatory. Moreover, it is consistent with the classical “matched” ML estimator, as we will 

see in details later on in this subsection The main question is what is the convergence point of 

ˆ ( )MMLθ x ? As proved in [Hub67] and [Whi82], under suitable regularity conditions, the MML 

estimator converges (almost surely, a.s.) to the pseudo-true parameter vector 
0θ  defined in eq. 

(1). This is a desirable result, since it shows that the MML estimator converges to the parame-

ter vector that minimizes the distance, in the KLD sense, between the misspecified and the 

true pdfs. In addition, Huber and White have investigated the asymptotic behaviour of the 

MML estimator, i.e. when the number of available data observations goes to infinity, and 

their valuable findings can be summarized in the following theorem. 
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Theorem 2 ([Hub67], [Whi82]): Under suitable regularity conditions, it can be shown that: 

  
. .

0
ˆ

a s

MML
M
θ x θ . (11) 

Moreover,  

     
0

.

0
ˆ , ,

d

MML
M

M


 θθ x θ 0 C  (12) 

where 
.d

M 
 indicates the convergence in distribution and 

0 0 0 0

1 1 

θ θ θ θC A B A  where the matri-

ces 
0θ

A  and 
0θ

B have been defined in eqs. (2) and (3), respectively. The matrix 
0θ

C  is some-

times referred to as Huber’s “sandwich covariance.” 

Two comments are in order:  

1. The MML estimator is asymptotically MS-unbiased and its asymptotic error covari-

ance equates the MCRB, i.e. it is an efficient estimator w.r.t. the MCRB. The analogy 

with the classical matched ML estimator is completely transparent. In particular, if 

the model  is correctly specified, i.e. there exists a parameter vector θ  such 

that ( ) ( | )X m X mp fx x θ , then 
. .

ˆ ( )
a s

MML
M
θ x θ  with an asymptotic error covariance 

matrix given by the classical inverse of the FIM 
θ

B  or 
θ

A . 

2. Theorem 2 represents a very useful result for practical applications. In fact, it tells us 

that, when we do not have any a-priori information about the true data model, the ML 

estimator derived under a possibly misspecified model, is still a reasonable choice 

among other mismatched estimators, since it converges to the parameter vector that 

minimizes the KLD between the true and the assumed model and it has the lowest 

possible error covariance (at least asymptotically).  

4.1 A CONSISTENT SAMPLE ESTIMATE OF THE MCRB 

In this section, we go back to an issue raised before, i.e. the calculation of the MCRB 

when the true model is completely unknown. In fact, from eq. (5), to obtain a closed form ex-

pression of the MCRB, we need to evaluate analytically the pseudo-true parameter vector 0θ  
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and the matrices 
0θ

A  and 
0θ

B . As shown in eqs. (1), (2) and (3), these three quantities in-

volve the evaluation of the expectation operator taken w.r.t. the true pdf ( )X mp x . If ( )X mp x  

is completely unknown, we will not be able to evaluate these expectations in closed form, but, 

as an alternative, we could obtain a sample estimates of the required quantities. More for-

mally, we define the matrices [Whi82]: 

  
 2

1

1

ln |
( )

M
X m

M ij
m i j

f
M

 







 


x θ
A θ , (13) 

  
   1

1

ln | ln |
( )

M
X m X m

M ij
m i j

f f
M

 





 


 


x θ x θ
B θ , (14) 

 
1 1( ) [ ( )] ( )[ ( )]M M M M

 
C θ A θ B θ A θ . (15) 

Remarkably, it can be shown (see the proof in [Whi82, Theo 3.2]) that: 

  
0

. .

0 ,,,

ˆ( ) MCRB( ) , 1, ,
a s

M MML i ji jMi j
i j d



         θC θ C θ , (16) 

where d is the dimension of the pseudo-true parameter vector. In words, eq. (16) assures us 

that we can obtain a strongly consistent estimate of the MCRB by evaluating the sample 

counterpart of the matrices 
0θ

A  and 
0θ

B , i.e. ( )MA θ  and ( )MB θ , at the value of the MML 

estimator. This result potentially has a strong practical implications, since it allow us to 

evaluate an estimate of the MCRB even if we do not have any knowledge of the true pdf 

( )X mp x
;
  in addition it widens areas of applicability of the MCRB. This of course requires 

the data to be stationary over some reasonable period of time to support sufficient averaging 

(as is required in numerous SP applications).  This result can also be used to design statistical 

tests to detect model misspecification [Whi82], [Whi96, p. 218]. 

4.2 A SIMPLE EXAMPLE 

To solidify ideas about the theoretical findings previously presented, we describe now an 

illustrative example that aims at clarifying the use and the derivation of the MCRB and of the 

MML estimator. Building upon the toy examples discussed in [For16a], we investigate here 

the problem of estimating the variance of a Gaussian-distributed dataset under the misspecifi-
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cation of the mean value. Let 1{ }M

m mx x  be a set of M i.i.d. univariate data sampled from a 

Gaussian pdf with mean value   and variance 2 , i.e. 
2( ) ( , )X mp x     with 0  . 

Due to perhaps an imperfect knowledge about the data generation process, the user assumes a 

zero-mean parametric Gaussian model { | ( | ) (0, ) }X X mf f x        , i.e. she/he 

misspecifies the mean value. It is worth noting that, as long as 0  , the true but unknown 

pdf ( )X mp x  does not belong to the assumed model . According to the theory presented in 

Section 3, we first have to check if the assumed model  is regular w.r.t.  or, in other 

words, we have to prove the existence of the pseudo-true parameter vector 
0  (Assumption 

A1) and the non-singularity of the matrix 
0θ

A  defined in (2) (Assumption A2). Note that, for 

the problem at hand, 
0θ

A  is a scalar quantity, so we have to prove that 
0

0A θ .  

The pseudo-true parameter vector 
0  is defined in (1) as the point that minimizes the KLD 

between the true and the assumed model. Following [Cov06], the KLD can be expressed as: 

 
2 2 2

|

1
( ) 1 ln

2 2
X XD p f

  

  

 
    

 
θ

 . (17) 

The minimum is obtained for 2 2

0     that, according to (1), represents the pseudo-true 

parameter vector. Since the pseudo-true parameter exists and is unique, Assumption A1 is sat-

isfied. We can pass to check Assumption A2. To this end, from (2), 
0

A  can be evaluated as: 

  
0 0

2
2

2 2 3 2

0 0 0

ln ( | ) 1 1 1

2 2

X m
p p m

f x
A E E x  



   


 
    

 
 , (18) 

yielding a denominator different from zero since 
2  ; consequently, Assumption A2 is 

verified as well. Now we can evaluate the MCRB in (5) for the estimation problem at hand. 

At first, the scalar 
0

B  can be easily evaluated from (3) as: 
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0 0

2 4 22 4 2 2
0 0

4 4

0 0

2ln ( | ) 2 4

4 4

p m p mX m
p

E x E xf x
B E  

    

  


     
   

   

.  (19) 

Finally, from (5), we get: 

 
4 2 2

0

2 4
MCRB( )

M M

  
   . (20) 

It can be noted, in passing, that in this case the MCRB in (20) is always greater that the 

classical CRB given by 2 4CRB( ) 2 M   and they are equal only in the case of perfect 

model specification, i.e. when the true mean value   is zero. After having established the 

MCRB, we pass to investigate the properties of the MML estimator for the estimation prob-

lem at hand. In particular, we can say that the MML estimator is not consistent since, from 

(11), it converges to 0θ  that is different from the true variance. More formally, we have that: 

  
. .

1 2 2 2 2

01

ˆ
a s

M

MML mm M
M x    

 
    x . (21) 

However, according to the definition in (4), the MML estimator is MS-unbiased since: 

    1 2 2 2

01

ˆ ( )
M

p MML p mm
E E M x   


   x  , (22) 

And then, according to Theorem 1, its MSE is lower bounded by the MCRB in (20). Fig. 1 

shows the progress of the MSE of the MML estimator, the MCRB, the sample estimate of the 

MCRB obtained from the (16) and the matched CRB as function of the value of the true mean 

value  . As we can see, the MSE is lower bounded by both the MCRB and the estimated 

MCRB. In particular, the latter represents a good approximation of the relevant MCRB. Fi-

nally, it can be noted that the MCRB equates the MCRB only when 0  , i.e. when the as-

sumed mean value equates the true one.  

5. GENERALIZATION TO THE BAYESIAN SETTING 
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The Bayesian philosophy adopts the notion that one has some prior knowledge (belief or 

perhaps a guess) about the values a desired parameter will assume before an experiment.  

Once data is observed, then one can update that prior knowledge based on the information 

provided by the data measurements. Thus, the Bayesian framework is designed to allow prior 

knowledge to influence the estimation process in an optimal fashion. Specifically, within a 

Bayesian framework estimation of parameter vector θ derives from the joint pdf 
, ( , )Xf θ x θ  

instead of solely the conditional (non-Bayesian) pdf ( | )
X

f
θ

x θ . Basic probability informs that 

the joint density can be expressed as , ( , ) ( | ) ( )X XX
f f fθ θ

x θ θ x x  where clearly the posterior 

density ( | )
X

f
θ

θ x  summarizes all the information needed to make any inference on θ based 

on data 1{ }M

m mx x . The joint density can likewise be related to the conditional density that 

models the parameter's influence on data measurements, i.e. via , ( , ) ( | ) ( )X X
f f fθ θθ

x θ x θ θ . 

Prior knowledge about parameter vector θ is reflected in the prior pdf ( )fθ θ . When there is 

no prior knowledge, all outcomes for the parameter vector can be assumed equally likely. 

Such a non-informative prior often leads to results consistent with standard non-Bayesian ap-

proaches, i.e. yields algorithms and bounds that rely primarily on ( | )
X

f
θ

x θ . Thus, the Bayes-

ian framework in a sense can be considered a generalization of the non-Bayesian framework 

[Van07], [Van13], [Leh98]. 

When the model is perfectly specified, the optimal Bayesian estimator under cost metrics 

such as the mean squared error (MSE), absolute error, and the uniform cost depends primar-

ily on the posterior distribution ( | )
X

f
θ

θ x . Indeed, the MSE is minimized by the conditional 

mean estimator ˆ ( ) { | }
XMSE fE

θ
θ x θ x , the absolute error is minimized by the marginal condi-

tional median estimator 
0.5

ˆ ( )ABS X
θ x θ  (for d=1 case) and the uniform cost is minimized by 

the maximum a posteriori (MAP) estimator ˆ ( ) argmax ( | )MAP X
f θ θ

θ x θ x  [Van13], [Leh98]. 

Under perfect model specification the asymptotic properties of Bayes estimators and the pos-
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terior distribution have been investigated extensively. It is known that under suitable condi-

tions, as the number of data samples increases the Bayes estimator tends to become independ-

ent of the prior distribution ([Leh98], Ch. 4). Thus, the influence of the prior distribution on 

posterior inferences decreases and asymptotic behaviour similar to the non-Bayesian maxi-

mum-likelihood estimator (MLE) emerges. Indeed, strong consistency, efficiency, and nor-

mality properties of Bayes estimators have been established for a large class of prior distribu-

tions [Str81]. This asymptotic behaviour has some intuitive appeal since the prior represents a 

statistical summary of one's best guess (prior to an actual experiment) of the likelihood the 

desired parameter will assume any particular value.  As actual data measurements become 

available, however, it makes sense that one will eventually abandon the guidance provided by 

the prior pdf in light of the valuable information carried by the data measurements obtained 

from the actual experiment. This phenomenon is well established and has been observed in 

signal processing applications.  When the prior ( )fθ θ  is incorrect but the model ( | )
X

f
θ

x θ  is 

correct then it is possible that a significantly larger number of data observations (or higher 

signal-to-noise ratios) may be required before the Bayes estimator becomes independent of 

the influence of the incorrect prior ([Kan13] p. 4737). 

Misspecification within a Bayesian framework explores the possibility that the assumed 

joint pdf 
, ( , )Xf θ x θ  may be incorrect. This, of course, includes the prior pdf ( )fθ θ  as well as 

the model ( | )
X

f
θ

x θ . Under model misspecification the asymptotic properties of the posterior 

distribution also have been investigated extensively. The following discussion attempts to 

summarize some key results on this topic, although no claims are made here that the summary 

is complete or exhaustive. The goal here is to identify results perhaps of interest to the signal 

processing community in the authors' viewpoint. The first discussion to follow will focus on 

published results that detail the asymptotic behaviour and properties of the Bayesian posteri-

ori distribution under model misspecification, i.e. the asymptotic behaviour of ( | )
X

f
θ

θ x  as 

the amount of data increases. These results can be considered the Bayesian counterparts in 
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spirit of the contributions of Huber [Hub67] and White [Whi82] that detail MLE performance 

under misspecification, as discussed before. Secondly, a discussion of results on misspecified 

Bayesian bounds will be given. As this remains a relatively new area of research, there appear 

to be very few published results on this topic. So a brief discussion of some of the issues in-

volved will be given. 

5.1 BAYESIAN ESTIMATION UNDER MISSPECIFIED MODELS 

Since Bayes' estimators derive from the posterior density ( | )
X

f
θ

θ x , considering its as-

ymptotic behaviour likewise yields insights into the convergence properties of the associated 

estimators. Berk [Ber66] was the first one to investigate the asymptotic behaviour of the pos-

terior distribution under misspecification as the number of data observations becomes arbi-

trarily large. Specifically, consider a set of i.i.d. data measurements 1{ }M

m mx x  according to 

joint pdf 
1

( ) ( )
M

X X mm
p p


x x . Let the assumed pdf of x be 

1
( | ) ( | )

M

X X mm
f f


x θ x θ  and 

the assumed prior be ( )fθ θ . Define the set A  such that 

     : argmin ln |A p XE f


  
θ

θ x θ .  (23) 

For a large class of unimodal and well-behaved distributions, the set A  consists of a single 

unique point, i.e. 0{ }A  θ , but clearly the definition allows for the possibility that this set 

contains more than one point. It is also noteworthy (see also eq. (1)) that the set A  is simply 

the set of all points/vectors θ  that minimize the KLD |( || )X XD p f θ  between the true and 

assumed distributions. Berk noted this relation to the KLD in [Ber66], i.e. prior to the Akaike 

[Aka72] reference to Huber's work [Hub67]. In particular, Berk proved that, if 0{ }A  θ , i.e. 

it consists of a single unique point 0θ , then the following convergence in distribution holds: 

  
.

1 2 0( | ) ( | , , , )
d

MX X
M

f f 

 

θ θ
θ x θ x x x θ θ ,  (24) 
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where 1 2( ) ( ) ( ) ( )da a a   a   and ( )a  is a Dirac delta function.  

From (24), one can presume that 0θ  is the counterpart for the misspecified Bayesian esti-

mation framework of the pseudo-true parameter vector introduced in (1). This conjecture is 

validated by the fundamental results of Bunke and Milaud [Bun98] that provide strong consis-

tency arguments for a class of Mismatched (or pseudo) Bayesian (MB) estimators. Specifi-

cally, let ( , )L    be a nonnegative, real valued loss function such that ( , ) 0L θ θ . A familiar 

example of this this type of function is the one leading to the mean square error (MSE) be-

tween a given estimate θ̂  and a given vector θ, i.e. ˆ ˆ ˆ( , ) ( ) ( )T

MSEL   θ θ θ θ θ θ . Consider now 

the class of (possibly mismatched) Bayesian estimates defined as: 

     
|

ˆ ( ) argmin , argmin , ( | )
XMB f X

E L L f d
 

 
 

 θ θ
θ x θ θ θ x θ .  (25) 

Bunke and Milaud [Bun98] investigated the asymptotic behaviour of the class of estima-

tors in (25) and their results can be recast as follow.  

Theorem 3 ([Bun98]): Under certain regularity conditions (see A1-A11 in [Bun98]) and pro-

vided that 0{ }A  θ , it can be shown that: 

  
. .

0
ˆ

a s

MB
M
θ x θ . (26) 

Moreover,  

     
0

.

0
ˆ , ,

d

MB
M

M


 θθ x θ 0 Λ  (27) 

where  

  
0 0 0 0

1 1 1 1

2 1 2 1

T
   

θ θ θ θΛ L L A B A L L   (28) 

 
0

00

2 2

0
1 2, ,

( , ) ( , )
,

i j i j
i i i i

L L

   




 
          

α θ
α θβ θ

α β α θ
L L  (29) 

 and the matrices 
0θ

A  and 
0θ

B have been defined in eqs. (2) and (3), respectively. 

Two comments are in order:  
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1. The similarity between the results given in Theorem 1 for the MML estimator and the 

ones given on Theorem 2 for the MB estimator is now clear: under model misspecifi-

cation (and under suitable regularity conditions), both the MML and the MB estima-

tors converge almost surely to the point θ0 that minimizes the KLD between the true 

and the assumed distributions. Moreover they are both asymptotically normal distrib-

uted with covariance matrices that are related to the matrices 
0θ

A  and 
0θ

B . 

2. If, in (25), the square error loss function ( , )MSEL α β  is used, then 
1 2 2  L L I  and, 

consequently, the asymptotic covariance matrix of the MB estimator equates the one 

of the MML, i.e. 
0 0 0 0 0

1 1  θ θ θ θ θΛ C A B A  . 

While identifying key results from [Bun98] and [Ber66] in this article, reference has been 

made to several assumptions (see e.g. A1-A11 in [Bun98]) whose details were omitted here.  

While important (in particular, the uniqueness of the KLD minimizer is critical in Theorem 

3), inclusion of these details would unnecessarily clutters the discussion. It is worth mention-

ing, however, that the regularity conditions described by [Bun98] characterize a wide spec-

trum of problems relevant to the signal processing community. 

To conclude, the results discussed in this section are based on a parametric model 

( | )Xf x θ  for the data. It is worth mentioning that a similar convergence persists in the non-

parametric case. Specifically, Kleijn and Van der Vaart [Kle06] address convergence proper-

ties of the posterior distribution in the nonparametric case as well as the rate of convergence.   

5.2 BAYESIAN BOUNDS UNDER MISSPECIFIED MODELS 

As sketched in the Introduction, when the model is correctly specified, a wide family of 

Bayesian bounds can be derived from use of the covariance inequality [Van07]. As well de-

tailed in [Van07] and [Ren08], this family includes the Bayesian Cramér-Rao Bound, the 

Bayesian Bhattacharyya Bound, the Bobrovsky-Zakai Bound, and the Weiss-Weinstein 

Bound among others. 
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Establishing Bayesian bounds under model misspecification appears to have received very 

limited attention and represents an area of open research.  The only results on the topic to the 

authors' knowledge are given in [Kan15] and [Ric16]. The approach taken therein differs 

from the classic approach adopted in [Van07] with some loss in generality. In fact, the Bayes-

ian bounds obtained in [Kan15] and [Ric16] attempt to build on non-Bayesian results as those 

in [Ric15]. Specifically, it is required that the true conditional pdf | ( | )Xp θ x θ  and the assumed 

model | ( | )Xf θ x θ  share the same parameter space Θ, thus any misspecification occurs exclu-

sively due to the functional form of the assumed distribution. This is exactly the particular 

case discussed in the non-Bayesian context in the sub-section 3.4, then the bound that we are 

going to derive has a form similar to the one of the non-Bayesian bound in (9). 

Let the conditional mean of the estimator be 
|

ˆ{ ( )} ( )
XpE 
θ
θ x μ θ  and define the error vector 

and the bias vector as ˆ( , ) ( ) ζ x θ θ x θ  and ( ) ( ) r θ μ θ θ , respectively. As in (9), the total 

MSE is given by the sum of the covariance and squared bias. Thus, a lower bound on MSE 

under model misspecification is given by: 

            
, , , , ,

11ˆMSE ( )
X X X X X

T T T T T

p p p p p pE E E E E
M

 
θ θ θ θ θ θ
θ x ζζ ζη ηη ηζ rr  , (30) 

where we dropped the dependences on x and θ for notation simplicity. The vector function 

( , )η x θ  represents the score function [Van07] and a judicious choice of it leads to tight 

bounds. In [Kan15] and [Ric16], the following score function is considered with bounding the 

Bayes MAP estimator and MLE in mind 

  
|| |( , ) ln ( | ) ln ( | )

XX p Xf E f  
θθ θ θ θη x θ x θ x θ .  (31) 

This score function is the same as the one used for the MCRB in [Ric15] and it leads to a ver-

sion of the misspecified Bayesian CRB. With the aim of providing a sketch of this fact, we 

define the following two matrices as  
|

( )
X

T

pE 
θ
ηζ Ξ θ  and  

|
( )

X

T

pE 
θ
ηη J θ . Closed-form 



27 
 

expressions for them can be found in [Ric15] for the case where both the true and the as-

sumed conditional distributions are complex Gaussian, for example. The resulting lower 

bound on MSE follows from (30) and is given by:    

          
,

11ˆMSE ( ) ( ) ( ) ( )
X

T T

p p p p pE E E E
M

 
θ θ θ θ θ
θ x Ξ θ J θ Ξ θ rr  . (32) 

The class of estimators to which the above misspecified Bayesian CRB applies is that with 

mean and estimator-score function correlation satisfying respectively 

        
, ,

ˆ ˆ( ) ( ) , ( , )[ ( ) ( )] ( )
X X

T

p p p pE E E E  
θ θ θ θ
θ x μ θ η x θ θ x μ θ Ξ θ .  (33) 

These constraints follow as a consequence of the covariance inequality ([Ric15], Sect. III-

C) and the choice in score function. This limits the applicability of the bound in contrast to 

bounds obtained when the model is perfectly correct. Thus, an obvious area of future effort is 

the development of Bayesian bounds under misspecified models with fewer constraints and 

much broader applicability. 

To conclude, we note that an example demonstrating the applicability of this Bayesian 

Bound to direction-of-arrival estimation for sparse arrays is given in [Kan15]. 

6. EXAMPLES OF APPLICATIONS 

The chance of choosing an incorrect or a surrogate model to characterize the statistical be-

haviour of the data is a recurring and, in a way, unavoidable situation in mostly all the practi-

cal applications of the statistical inference. In this section, we describe some examples related 

to the problems of Direction of Arrival (DOA) estimation and covariance/scatter matrix esti-

mation. We also describe a detection problem under model misspecification. 

6.1 DOA ESTIMATION UNDER MODEL MISSPECIFICATION 

The estimation of the DOAs of plane wave signals by means of an array of sensors has 

been the core research area within the array signal processing community for years [Van02]. 
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The fundamental prerequisite for any DOA estimation algorithm is that the positions of the 

sensors in the array is known exactly, i.e. known geometry. As discussed in the Introduction, 

many authors have investigated the impact on the DOA estimation performance of an imper-

fect knowledge of the sensor positions, or of the misscalibration of the array itself (see e.g. 

[Fri90] and [Van13], just to name two of them). Other authors have proposed hybrid or modi-

fied CRB with the aim to predict the lowest MSE of the DOA estimators in the presence of 

the position uncertainties ([Roc87], [Par08]). The goal of this section is to show that the mis-

specified estimation framework presented in this paper is a valuable and general tool to deal 

with modelling errors in the array manifold. The application of the MCRB and the MML es-

timator to the DOA estimation problem has been recently investigated in [Ric15] for Uniform 

Linear Arrays (ULAs) and in [Ren15] for MIMO radar systems.  

Following [Ric15], consider a ULA of M sensors and a single plane wave signal imping-

ing on the array from a conic angle  . Moreover, suppose that, due to an array misscalibra-

tion, the true position vector pm of the m
th
 sensor, defined in a three-dimensional Cartesian 

coordinate frame, is known up to an error term modelled as a zero-mean, Gaussian random 

vector, i.e. 2

3(0, )m ee I . Then, the received data can be expressed as 

[ ( )] [ ]m m mx s  d c , where [ ( )] exp( ( ))T

m m mj


  d k p e  is the m
th
 element of the true (per-

turbed) steering vector and (2 ) ( )


  k u  and ( )u  is a unit vector pointing at the direc-

tion defined by   while λ is wavelength of the transmitted signal. Moreover, s is an unknown 

deterministic complex scalar that accounts for the transmitted power, the source scattering 

characteristics and the two-way path loss while  c n j  is the disturbance noise term com-

posed of the white Gaussian noise n and of a possible interference signal (or jammer) j. Given 

particular realizations of the position error em, the clutter vector is usually modelled as a zero-

mean complex Gaussian random vector 
2(0, ( ) ( ) )H

M j j j  c I d d  where 
2

j  and j  

represent the power and the DOA of the jamming signal. The DOA estimation problem is 

clearly in the estimation of   given the complex data vector x. Since in practice, it is quite 
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impossible to be aware of the particular realizations of the position error vectors me , the user 

may decide to derive a DOA estimation algorithm starting from the nominal steering vector 

( )v , whose components are [ ( )] exp( )T

m mj


 v k p , i.e. the user may want to neglect the 

sensor position errors. The true (unknown) data model is given by the pdf 

2( ) ( ( ), ( ) ( ) )H

X M j j jp s      x d I d d , while the assumed parametric model is: 

  2| ( | , )  ( ( ), ( ) ( ) ), , [0,2 )H

X X M j j jf f s s s           x v I v v .  (34) 

It must be noted that the true pdf ( )Xp x  does not belong to , or in other words, the as-

sumed parametric pdf ( | , )Xf s x  differs from ( )Xp x  for every value of [0,2 )  . This is 

because, even if both the true and the assumed pdfs are complex Gaussian, by neglecting the 

position errors in the assumed steering vector, we are choosing the wrong parameterization 

for the mean value and the covariance matrix of the assumed Gaussian model. The question 

that naturally arises now is: how large is the performance loss due to this model mismatch? 

The MCRB presented in Sect. 3 answers the question. We omit the details for the calculation 

of the MCRB and the derivation of the joint MML estimator of the DOA and of the scalar s.  

We refer the readers to [Ric15]. However, in order to provide some insights about this mis-

matched estimation problem, Fig. 2 illustrates the matched CRB in the estimation of  , i.e. 

the CRB on the DOA estimation evaluated by considering the true data pdf ( )Xp x , the 

MCRB and the MSE of the MML estimator obtained from the assumed and misspecified pdf 

( | , )Xf s x .  Fig. 2 plots the square root of the bounds and root MSE (RMSE) in units of 

beamwidths as a function of element level SNR.  The MCRB accurately predicts performance 

of the MML estimator.  If the system goal is a 10-to-1 beamsplit ratio, i.e. -10dB RMSE in 

beamwidths, then this could be accomplished with an SNR of ~10dB when the model is per-

fectly known, but not knowing precisely the true sensor positions requires an additional 

~10dB of SNR to achieve the same goal. This information can be quite valuable to tradespace 

analyses seeking to determine where to focus efforts to improve system performance. 
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6.2 SCATTER MATRIX ESTIMATION UNDER MODEL MISSPECIFICATION 

Another widely encountered inference problem is the estimation of the correlation struc-

ture, i.e. the scatter or covariance matrix, of a dataset. Estimation of the covariance/scatter 

matrix is a central component of a wide variety of SP applications [Oll12]: adaptive detection 

and DOA estimation in array processing, Principal Component Analysis (PCA), signal sepa-

ration, interference cancellation and the portfolio optimization in finance, just to name a few. 

Even if the data may come from disparate applications, they usually share a non-Gaussian, 

heavy-tailed statistical nature, as discussed e.g. in [Zou12]. Estimating the covariance matrix 

of a set of non-Gaussian data, however, is not a trivial task. In fact, non-Gaussian distribution 

characterization typically requires additional parameters that have to be jointly estimated 

along with the scatter matrix. To solidify the idea, think for example of the (complex) t-

distribution that has been widely adopted as a suitable and flexible model able to characterize 

the non-Gaussian, heavy-tailed data behaviour [Lan89], [San12], [Oll12]. A complex, zero-

mean, random vector N

m x  is said to be t-distributed if its pdf can be expressed as: 

 
 

 

 
11

( | , , ) , tr( )

N

H

X m m mN

N
p N

 
  

 
   

 


     

    
    

x Σ x Σ x Σ
Σ

, (35) 

where Γ(·) indicates the Gamma function while λ and η are the so-called shape and scale pa-

rameters while Σ is the scatter matrix. For proper identifiability, a constraint on Σ, e.g. 

tr( ) NΣ , needs to be imposed. The complex t-distribution has tails heavier than the Gaus-

sian for every λ(0,∞), and it collapse to the complex Gaussian distribution for λ∞. As can 

be clearly seen from (35), in order to perform some inference on a t-distributed dataset, we 

have to jointly estimate the shape and scale parameters along with the scatter matrix. Unfor-

tunately, as pointed out in [Lan89], a joint ML estimator of these three quantities presents 

convergence and even existence issues. Moreover, as discussed in Sect. 3.3, the t-distribution 

may be only an approximation of the true heavy-tailed data model. To overcome these prob-

lems, the SP practitioner has fundamentally two choices: i) to apply some robust covariance 
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matrix estimator (see [Oll12] and [Zou12] for further details) or ii) to assume a simpler, but 

generally misspecified, model for characterizing the data, gaining the possibility to easily de-

rive an estimator at the cost of a loss in the estimation performance [For16a], [For16c]. If the 

option ii) is adopted, the most reasonable choice for the simplified data model is the Complex 

Gaussian distribution: 

    
 

 
1

2

2
2

1
| | , exp , tr

H

m m
X m X m N

f f N


 
   

 

x Σ x
x θ x Σ Σ

Σ
.  (36) 

In fact, the joint Constrained MML estimator of the scatter matrix and of the data power can 

be easily derived as: 

 2 1

1 1

1

1ˆ ˆˆ,
M MH H

CMML m m CMML m CMML mM m mH

m mm

N

NM
 

 



  


Σ x x x Σ x
x x

.  (37) 

Two comments are in order: 

1. It can be shown that ˆ
CMMLΣ  converges to the true scatter matrix, i.e. 

. .
ˆ

a s

CMML
M
Σ Σ , 

thus it can be successfully applied to estimate it [For16a], [For16c]. 

2. It is computational inexpensive and easy to implement and this makes its exploitation 

suitable for real time applications, such as the radar detection problem.  

Along with the knowledge of the convergence point of the MML estimator, it would be of 

great interest to have an idea of the performance losses due to the model mismatch. To this 

end, since the Gaussian model is nested in heavy-tailed, t-distributed model (see Section 3.4), 

we can evaluate the MCRB for the problem at hand and compare it with the matched CRB. 

As an example (further details can be found in [For16c]), in Fig. 3 we compare the curves 

relative to the Constrained CRB for the estimation of the scatter matrix under matched condi-

tions (i.e. when the true t-distribution is exploited), the Constrained MCRB [For16b] derived 

under the misspecified Gaussian model and the MSE of the constrained MML estimator in eq. 

(37). The distance between the CCRB and the CMCRB curves gives us a measure of the per-
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formance loss due to the model mismatch. As expected, the losses increase when the shape 

parameter goes to zero, i.e. when the data have an extremely heavy-tailed behaviour. On the 

other hand, when   , i.e. when the t-distribution collapses to the Gaussian one, the 

CCRB and the CMCRB tends to coincide. We note that the Constrained MML estimator of 

the scatter matrix is an efficient estimator w.r.t. the CMCRB, as predicted by the theory pre-

sented in Sect. 4. 

6.3 THE LIKELIHOOD RATIO TEST UNDER MODEL MISSPECIFICATION 

So far, we have focused our attention on estimation theory under model misspecification. 

The question that naturally arises is if it is possible to extend this analysis to the detection 

theory. In particular, what can we say about the effects of the model misspecification in a 

general Hypothesis Testing (HT) problem? Testing between two (or more) statistical hypothe-

ses is in fact a fundamental inference problem that is behind a plethora of SP applications. For 

example, one thinks to the classical radar detection problem, in which one has to discriminate 

between the absence (the H0 hypothesis) and the presence (the H1 hypothesis) of a target in a 

given range cell. Following the well-known Neyman-Pearson lemma [Kay98b], a classical 

approach used to discriminate between two hypotheses, is to derive the Likelihood Ratio (LR) 

test from an assumed statistical model of the available data. As with the ML estimator, the LR 

test relies on the assumption of perfect model specification, i.e. the parametric model assumed 

to derive the test statistic truly characterizes the acquired data. If this assumption is satisfied, 

then, asymptotically, the LR statistic is a chi-square random variable with a suitable number 

of degrees of freedom. Because of a possible model misspecification however, the assumed 

model, i.e. the one assumed to derive the LR test, and the true model, i.e. the model that effec-

tively characterizes the statistical behaviour of the data, may differ. Therefore, the asymptotic 

distribution of the LR test statistic may no longer be a chi-square distribution. In his seminal 

work, [Ken82] showed that, as the number of available data goes to infinity, the LR statistic 

under model misspecification converges in distribution to a weighted sum of independent chi-

square random variables where the weights depends on the actual true and the assumed mod-
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els. Starting from this result, Kent derived alternative decision tests that are asymptotically 

robust, i.e. they are asymptotically chi-squared distributed irrespective to the actual true data 

model if it belongs to a suitable class of distributions. 

The aim of this subsection is to provide some useful insights about the Kent’s findings on 

the asymptotical behaviour of the mismatched LR test. The scenario is exactly the same as the 

one used to introduce the MCRB and the MML estimator. Let 1{ }M

m mx x  be a set of M i.i.d. 

random observation vectors with ( )m X mpx x . As before, the true data pdf ( )X mp x  is as-

sumed unknown or inaccessible. In order to perform any statistical inference, one needs to as-

sume a suitable joint pdf for the dataset, 
1

( | ) ( | )
M

X X mm
f f


x θ x θ  that in general may dif-

fer from the true one for every value of the unknown parameter vector θ . By following the 

notation introduced in [Kay98b], suppose that θ  can be partitioned in two sub-vectors, i.e. 

[ , ]T T T

r sθ θ θ , where 
rθ  is the unknown sub-vector of the parameters of interest, while 

sθ  is 

the unknown sub-vector of the nuisance parameters. Consider now the following (composite) 

HT problem: 

 
0 00 1: , vs : , ,r r s r r sH H θ θ θ θ θ θ   (38) 

where we want to test if the vector of the parameter of interest is equal (H0) or not (H1) to a 

given vector 
0r

θ , while the nuisance parameters are the same (but unknown) in both the H0 

and H1 hypotheses. The mismatched Generalized LR statistic for this HT problem is: 

 
 
 

1 1 11

0 0 01
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x θ θ
x x x

x θ θ
,  (39) 

where 
1 1

ˆ ˆ ˆ[ , ]T T T

r sθ θ θ  is the MML estimator of vector θ  under H1 while 
0

ˆ
sθ  is the MML esti-

mator of the nuisance parameter vector under H0. As shown in [Ken82], the asymptotical dis-

tribution of ( )GLR x  under the H0 hypothesis depends on both the true and the assumed pdfs. 

However, in practical applications, it could be of great interest to have a test statistic that, at 
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least asymptotically, is invariant to the actual true and unknown data model. Kent proved that, 

under the H0 hypothesis, it is possible to construct a test statistic ( )K x  with the remarkable 

property to converge in distribution to a central chi-square random variable whose degree of 

freedom is given by the dimension of the vector of the parameter of interest 
rθ , i.e. 

2

0( )
d

K p
M

H 


 x  , where dim( )rp  θ  . ( )K x  can be explicitly expressed as: 

    
1 0 1 0

1

,

ˆ ˆ ˆ( ) ( )
r r

T

K r r M r rM    
  θ θ

x θ θ C θ θ θ ,  (40) 

where 1

,
ˆ[ ( )]

r rM



θ θC θ  indicates the first top-left sub-matrix of the inverse of ˆ( )MC θ , i.e. the 

consistent estimate of the MCRB defined in eq. (16). The big advantage in the use of ( )K x  

w.r.t. the GLR test in eq. (39) is that, for a given threshold, the significance level (i.e. the 

probability to reject H0 when it is true) is independent of the actual and inaccessible true data 

pdf. Clearly, a lot of work remain to be done. In particular, no optimality property has been 

shown for the test ( )K x , where, in this context, the optimality is defined as the ability of a 

given test to achieve the highest power (i.e. the probability of accepting H1 when it is true) for 

a given level of significance.  

7. CONCLUDING REMARKS 

The objective of this paper is to provide an accessible, and at the same time comprehensive 

treatment of the fundamental concepts about Cramér-Rao bounds and efficient estimators in 

the presence of model misspecification. Every SP practitioner is well aware of the fact that, in 

almost all practical applications, a certain amount of mismatch between the true and the as-

sumed statistical data model is inevitable. Despite of its ubiquity, establishing performance 

bounds under the model misspecification problem appears to have received limited attention 

by the SP community, while it has been deeply investigated by the statistical community. The 

first aim of this tutorial paper is then to propose to a wide SP audience a comprehensive re-

view of the main contributions to the mismatched estimation theory, both for the deterministic 
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and Bayesian frameworks, with a particular focus on the derivation of Cramér-Rao Bounds 

(CRB) under mismatched conditions. Specifically, we have shown how the classical tools of 

the estimation theory can be generalized to address a mismatched scenario. Firstly, the Mis-

specified  CRB (MCRB) has been introduced and the behaviour of the mismatched maximum 

likelihood (MML) estimator investigated. It can be proved that the MML estimator is asymp-

totically MS-unbiased and its error covariance matrix asymptotically equates the MCRB. 

Secondly, results related to the deterministic estimation framework have been extended to the 

Bayesian one. The existence and the asymptotic properties of a mismatched Bayesian estima-

tor have been discussed. Moreover, some general ideas about the possibility to derive mis-

specified Bayesian Cramér-Rao Bounds have been provided. In the last part of the paper, we 

showed how to apply the theoretical findings to two well-known problems: the Direction of 

Arrivals (DOAs) estimation in array processing and the problem of estimating the disturbance 

covariance matrix for adaptive radar target detection algorithms. Finally, some insights about 

the link between the MCRB and a test to discriminate between two composite statistical hy-

potheses in the presence of model misspecification has been also provided.   

Of course, much work remains to be done. In the following, we try to identify some open 

problems that could be of great interest for the SP community. First, the theory behind the 

derivation of the MCRB should be extended to other local and global performance bounds. 

The first steps toward this direction have been outlined by Richmond and Horowitz in [Ric15] 

where, a generalization of the theory to the Bhattacharyya bound, to the Barankin bound and 

to the Bobrovsky-Mayer-Wolf-Zakai bound has been proposed. Second, as discussed in Sec-

tion 5, a future area of research is the derivation of general Bayesian lower bounds that could 

be obtained by relaxing or, hopefully, removing the constraints given in (33). Third, a sys-

tematic and deep investigation of a general decision theory under model misspecification is 

required since it could lead great advantages in a huge number of SP application. 
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Fig. 1 – MSE of the MML estimator, MCRB, estimated  MCRB, and CRB as function of   . Simula-

tion parameters: M =10 and 
2 =4. 
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Fig. 2 – MSE of the MML estimator, MCRB, for the DOA estimation problem. Simulation parameters: 

M=18 element ULA, the array position errors of σe=0.01λ of standard deviation, θt=90°, θj=87° and 

σJ
2
=10

3
. 
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Fig. 3 – Frobenius norms of the MSE matrix of the CMML estimator, CMCRB and CCRB for the 

scatter matrix estimation problem. Simulation parameters: N=16, M=10N, the scale parameter of the 

true t-distribution is η=1.  

 


