
Breast Cancer Risk From Modifiable and Nonmodifiable Risk 
Factors Among White Women in the United States

Paige Maas, PhD, Myrto Barrdahl, PhD, Amit D. Joshi, PhD, Paul L. Auer, PhD, Mia M. 
Gaudet, PhD, Roger L. Milne, PhD, Fredrick R. Schumacher, PhD, William F. Anderson, MD, 
MPH, David Check, BS, Subham Chattopadhyay, BS, Laura Baglietto, PhD, Christine D. 
Berg, PhD, Stephen J. Chanock, MD, David G. Cox, PhD, Jonine D. Figueroa, PhD, Mitchell 
H. Gail, MD, PhD, Barry I. Graubard, PhD, Christopher A. Haiman, ScD, Susan E. 
Hankinson, ScD, Robert N. Hoover, MD, ScD, Claudine Isaacs, MD, Laurence N. Kolonel, 
PhD, Loic Le Marchand, MD, PhD, I-Min Lee, ScD, Sara Lindström, PhD, Kim Overvad, PhD, 
Isabelle Romieu, MD, MPH, ScD, Maria-Jose Sanchez, PhD, Melissa C. Southey, PhD, 
Daniel O. Stram, PhD, Rosario Tumino, PhD, Tyler J. VanderWeele, PhD, Walter C. Willett, 
MD, DrPh, Shumin Zhang, PhD, Julie E. Buring, ScD, Federico Canzian, PhD, Susan M. 
Gapstur, PhD, Brian E. Henderson, MD, David J. Hunter, MBBS, ScD, Graham G Giles, PhD, 
Ross L. Prentice, PhD, Regina G. Ziegler, PhD, MPH, Peter Kraft, PhD, Montse Garcia-
Closas, MPH, DrPH, and Nilanjan Chatterjee, PhD
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of 
Health, Bethesda, Maryland (Maas, Anderson, Check, Chattopadhyay, Chanock, Figueroa, Gail, 
Graubard, Hoover, Ziegler, Garcia-Closas, Chatterjee); Division of Cancer Epidemiology, German 

Open Access: This article is published under JAMA Oncology’s open access model and is free to read on the day of publication.

Corresponding Author: Nilanjan Chatterjee, PhD, Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins 
University, 615 N Wolfe St, Baltimore, MD 21205 (nilanjan@jhu.edu). 

Author Contributions: Drs Chatterjee and Maas had full access to all of the data in the study and takes responsibility for the integrity 
of the data and the accuracy of the data analysis.
Study concept and design: Maas, Anderson, Gail, Stram, Tumino, Henderson, Hunter, Ziegler, Kraft, Garcia-Closas, Chatterjee.
Acquisition, analysis, or interpretation of data: Maas, Barrdahl, Joshi, Auer, Gaudet, Milne, Schumacher, Check, Chattopadhyay, 
Baglietto, Berg, Chanock, Cox, Figueroa, Graubard, Haiman, Hankinson, Hoover, Isaacs, Kolonel, Marchand, Lee, Lindström, 
Overvad, Romieu, Sanchez, Southey, Stram, Tumino, VanderWeele, Willett, Zhang, Buring, Canzian, Gapstur, Hunter, Giles, Prentice, 
Ziegler, Kraft, Garcia-Closas, Chatterjee.
Drafting of the manuscript: Maas, Schumacher, Check, Chattopadhyay, Graubard, Willett, Kraft, Garcia-Closas, Chatterjee.
Critical revision of the manuscript for important intellectual content: Maas, Barrdahl, Joshi, Auer, Gaudet, Milne, Anderson, Baglietto, 
Berg, Chanock, Cox, Figueroa, Gail, Haiman, Hankinson, Hoover, Isaacs, Kolonel, Marchand, Lee, Lindstrom, Overvad, Romieu, 
Sanchez, Southey, Stram, Tumino, VanderWeele, Willett, Zhang, Buring, Canzian, Gapstur, Henderson, Hunter, Giles, Prentice, 
Ziegler, Kraft, Garcia-Closas, Chatterjee.
Statistical analysis: Maas, Joshi, Schumacher, Check, Chattopadhyay, Gail, Graubard, Willett, Prentice, Kraft, Chatterjee.
Obtained funding: Berg, Haiman, Hoover, Kolonel, Lee, Overvad, Southey, Stram, Tumino, Giles, Kraft.
Administrative, technical, or material support: Barrdahl, Joshi, Gaudet, Check, Baglietto, Berg, Chanock, Figueroa, Hoover, Kolonel, 
Marchand, Lee, Lindström, Overvad, Sanchez, Southey, Tumino, Willett, Zhang, Canzian, Henderson, Hunter, Giles.
Study supervision: Berg, Hoover, Southey, Tumino, Garcia-Closas, Chatterjee.

Conflict of Interest Disclosures: None reported.

Additional Contributions: The article is dedicated to the memory of the late Brian E. Henderson, MD, former Dean of USC’s Keck 
School of Medicine. Dr Henderson is deceased. The authors would also like to dedicate this article to the memory of the late Sholom 
Wacholder, PhD. The authors thank the WHI investigators and staff fortheir dedication, and the study participants for making the 
program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/Documents%20%20Write%20a
%20Paper/WHI%20Investigator%20Short%20List.pdf.

Reproducible Research Statement: The code used to develop the model and project risks are available as part of the R software 
package Individualized Coherent Absolute Risk Estimator (iCARE) downloadable from: http://dceg.cancer.gov/tools/analysis/icare

HHS Public Access
Author manuscript
JAMA Oncol. Author manuscript; available in PMC 2017 December 07.

Published in final edited form as:
JAMA Oncol. 2016 October 01; 2(10): 1295–1302. doi:10.1001/jamaoncol.2016.1025.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf
http://dceg.cancer.gov/tools/analysis/icare


Cancer Research Center (DKFZ), Heidelberg, Germany (Barrdahl); Program in Genetic 
Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School 
of Public Health, Boston, Massachusetts (Joshi, Lindström, Hunter, Kraft); Fred Hutchinson 
Cancer Research Center, Seattle, Washington (Auer, Prentice); School of Public Health, 
University of Wisconsin-Milwaukee, Milwaukee (Auer); Epidemiology Research Program, 
American Cancer Society, Atlanta Georgia (Gaudet, Gapstur); Cancer Epidemiology Centre, 
Cancer Council Victoria, Melbourne, Australia (Milne, Baglietto, Giles); Centre for Epidemiology 
and Biostatistics, Melbourne School of Population and Global Health, The University of 
Melbourne, Victoria, Australia (Milne, Baglietto, Giles); Department of Preventive Medicine, Keck 
School of Medicine, University of Southern California, Los Angeles (Schumacher, Haiman, Stram, 
Henderson); Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland (Berg); 
INSERM U1052 – Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France (Cox); 
Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, 
England (Cox); Department of Biostatistics and Epidemiology, School of Public Health and Health 
Sciences, University of Massachusetts, Amherst (Hankinson); Channing Division of Network 
Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 
Boston, Massachusetts (Hankinson); Lombardi Comprehensive Cancer Center, Georgetown 
University, Washington, DC (Isaacs); Epidemiology Program, Cancer Research Center, University 
of Hawaii, Honolulu (Kolonel); University of Hawaii Cancer Center, Honolulu (Le Marchand); 
Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, 
Boston, Massachusetts (Lee, Zhang, Buring); Department of Public Health, Aarhus University, 
Aarhus, Denmark (Overvad); Nutrition and Metabolism Section, International Agency for 
Research on Cancer, Lyon, France (Romieu); Escuela Andaluza de Salud Pública. Instituto de 
Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de 
Granada, Granada, Spain (Sanchez); CIBER de Epidemiología y Salud Pública (CIBERESP), 
Spain (Sanchez); Genetic Epidemiology Laboratory, Department of Pathology, The University of 
Melbourne, Melbourne, Australia (Southey); Cancer Registry and Histopathology Unit, “Civic-
M.P.Arezzo” Hospital, ASP Ragusa, Italy (Tumino); Department of Epidemiology, Harvard T. H. 
Chan School of Public Health, Boston, Massachusetts (VanderWeele); Department of 
Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts (VanderWeele); 
Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 
(Willett); German Cancer Research Center (DKFZ), Heidelberg, Germany (Canzian); Department 
of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 
(Giles); University of Washington, School of Public Health and Community Medicine, Seattle 
(Prentice); Breakthrough Breast Cancer Research Centre, Division of Genetics and Epidemiology, 
The Institute of Cancer Research, London, England (Garcia-Closas); Department of Biostatistics, 
Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Chatterjee); 
Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 
(Chatterjee)

Abstract

IMPORTANCE—An improved model for risk stratification can be useful for guiding public 

health strategies of breast cancer prevention.
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OBJECTIVE—To evaluate combined risk stratification utility of common low penetrant single 

nucleotide polymorphisms (SNPs) and epidemiologic risk factors.

DESIGN, SETTING, AND PARTICIPANTS—Using a total of 17 171 cases and 19 862 

controls sampled from the Breast and Prostate Cancer Cohort Consortium (BPC3) and 5879 

women participating in the 2010 National Health Interview Survey, a model for predicting 

absolute risk of breast cancer was developed combining information on individual level data on 

epidemiologic risk factors and 24 genotyped SNPs from prospective cohort studies, published 

estimate of odds ratios for 68 additional SNPs, population incidence rate from the National Cancer 

Institute-Surveillance, Epidemiology, and End Results Program cancer registry and data on risk 

factor distribution from nationally representative health survey. The model is used to project the 

distribution of absolute risk for the population of white women in the United States after 

adjustment for competing cause of mortality.

EXPOSURES—Single nucleotide polymorphisms, family history, anthropometric factors, 

menstrual and/or reproductive factors, and lifestyle factors.

MAIN OUTCOMES AND MEASURES—Degree of stratification of absolute risk owing to 

nonmodifiable (SNPs, family history, height, and some components of menstrual and/or 

reproductive history) and modifiable factors (body mass index [BMI; calculated as weight in 

kilograms divided by height in meters squared], menopausal hormone therapy [MHT], alcohol, 

and smoking).

RESULTS—The average absolute risk for a 30-year-old white woman in the United States 

developing invasive breast cancer by age 80 years is 11.3%. A model that includes all risk factors 

provided a range of average absolute risk from 4.4% to 23.5% for women in the bottom and top 

deciles of the risk distribution, respectively. For women who were at the lowest and highest deciles 

of nonmodifiable risks, the 5th and 95th percentile range of the risk distribution associated with 4 

modifiable factors was 2.9% to 5.0% and 15.5% to 25.0%, respectively. For women in the highest 

decile of risk owing to nonmodifiable factors, those who had low BMI, did not drink or smoke, 

and did not use MHT had risks comparable to an average woman in the general population.

CONCLUSIONS AND RELEVANCE—This model for absolute risk of breast cancer including 

SNPs can provide stratification for the population of white women in the United States. The model 

can also identify subsets of the population at an elevated risk that would benefit most from risk-

reduction strategies based on altering modifiable factors. The effectiveness of this model for 

individual risk communication needs further investigation.

Breast cancer remains the most common form of cancer diagnosed in women in developed 

countries of the Western world, with an estimated 232 670 new cases diagnosed in 2014 in 

the United States alone.1 The incidence of breast cancer is also reported to be rapidly rising 

in a number of developing countries, possibly owing to the congruence of a number of 

factors, including changes in lifestyle, behavioral patterns, and improved diagnostics, all 

results of economic growth.2,3 Decades of epidemiologic research have led to the 

identification of a number of lifestyle and environmental breast cancer risk factors, including 

menstrual and/or reproductive history, use of hormones, anthropometry, and alcohol 

consumption, each typically explaining a modest proportion of the variation in disease 

risk.4,5 However, when combined, the known risk factors could have a substantial effect on 
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breast cancer risk. More recently, genome-wide association studies (GWAS) have led to the 

identification of 92 common susceptibility loci marked by single nucleotide polymorphisms 

(SNPs).6–8 These SNPs are each associated with only a small effect size but cumulatively 

explain substantial variation in risk.9,10 The proportion of variation in risk explained by 

common genetic variation is likely to increase in the near future, after the completion of the 

OncoArray project11 that is anticipated to detect many additional risk-associated variants for 

breast cancer.

As GWAS are rapidly expanding the spectrum of genetic risk factors for breast cancer, it is 

timely to evaluate how such information can be used to understand the distribution of breast 

cancer risk across populations and focus strategies for cancer prevention.10,12,13 Following 

the discoveries from early GWAS, several studies14–17 have reported only modest utility of 

SNPs for improving the discriminatory accuracy of breast cancer risk prediction models. 

However, a recent study9 following numerous discoveries from the large Collaborative 

Oncological Geneenvironment Study (COGS) project indicated that a polygenic risk score 

(PRS) defined by the combination of 77 SNPs could be useful for providing substantial risk 

stratification of the population. As SNPs and certain other risk factors are nonmodifiable (ie, 

risk factors that cannot be modified or are unlikely to be modified with the purpose of 

altering breast cancer risk), it is unclear whether and how information on these 

nonmodifiable risk factors can guide primary cancer prevention efforts that intervene on 

modifiable risk factors. In a recent commentary,10 we used a synthetic model, based on 

published estimates of risk parameters and the assumption of multiplicative gene-

environment interaction, to show that a PRS defined by known SNPs can provide risk 

stratification to a degree that may be useful for prevention. For instance, it could be helpful 

in assessing individualized riskbenefit tradeoffs associated with the use of menopausal 

hormone therapy (MHT) and endocrine-based prevention strategies.

The goal of this study was to use data from prospective cohort studies participating in the 

Breast and Prostate Cancer Cohort Consortium (BPC3)18,19 to develop a more empirical 

model for predicting absolute risk of invasive breast cancer. This model was then used to 

project the distributions of risk for the general population of white women in the United 

States, decomposed into modifiable and nonmodifiable risk components. We provide 

estimates of the number of breast cancers that would be preventable through risk factor 

modification in strata of the population at different levels of risk from nonmodifiable factors. 

Results from these projections provide new insight into the challenges and opportunities for 

risk-based targeted primary cancer prevention efforts.

Methods

Study Population

The BPC3 has previously been described in detail.19–21 In short, it consists of 8 large, 

prospective cohorts from Europe, Australia, and the United States with genetic data and 

questionnaire information. The diagnosis of cases of breast cancer was confirmed by 

medical records and/or tumor registries. Analyses presented in this manuscript include only 

invasive breast cancer cases. We analyzed data available from the nested case-control 

samples within the cohorts selected for genetic studies. In these studies, subjects were 

Maas et al. Page 4

JAMA Oncol. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



considered eligible controls if they were free of breast cancer until the diagnosis of breast 

cancer in the matched case subject. Matching criteria varied among cohorts, but age and 

menopausal status at baseline were used for all. The BPC3 project was approved by the 

ethical committee of the International Agency for Research on Cancer (IARC) for the EPIC 

cohort, by the Emory University Institutional Review Board for CPS-II cohort, by the 

Institutional Review Board of the University of Hawaii and University of Southern 

California for the MEC cohort, by the ethical committee of the Brigham and Women’s 

Hospital for the NHS cohort and the NCI Institutional Review Board for the PLCO cohort.

The BPC3 study and published estimates of SNP odds ratios (ORs) were used to develop a 

logistic regression model that included a polygenic risk score (PRS), nonmodifiable risk 

factors other than the PRS (ie, family history, age at first birth, parity, age at menarche, 

height, menopausal status, and age at menopause), along with modifiable risk factors (ie, 

body mass index [BMI; calculated as weight in kilograms divided by height in meters 

squared], MHT use, level of alcohol consumption, and smoking status). The eMethods in the 

Supplement describe in detail all steps in the development of this model, which includes 92 

known susceptibility SNPs (eTable 2 in the Supplement) and the other risk factors. Data on 

24 SNPs genotyped in subjects in the BPC3 was initially used to derive a polygenic risk 

score for the 24 SNPs (PRS-24) by assuming additive associations on the log scale of the 

SNPs in the logistic regression model after adjustment for study, age at study entry, and 

family history. Data on the 24 genotyped SNPs was used to evaluate multiplicative 

interactions between individual SNPs and PRS-24 with other risk factors. We also used a 

recently developed tail-based χ2 goodness of fit test22 to assess possible deviations of risks 

estimated from a multiplicative model from true risks at the extremes of the risk distribution. 

Assuming the validity of the multiplicative model, we then derived a model based on all 92 

known breast cancer SNPs (PRS-92) based on published ORs for the 68 remaining SNPs 

that were not genotyped in BPC3.

Absolute Risk Modeling

We built a model for absolute risk of invasive breast cancer for the population of white 

women in the United States by combining estimates of OR parameters obtained from the 

BPC3 and external GWAS studies, age-specific breast cancer rates from the US National 

Cancer Institute-Surveillance, Epidemiology, and End Results Program (NCI-SEER) and 

data on competing hazards for mortality available from the Center for Disease Control 

(CDC) WONDER database23 (eMethods in the Supplement).

Projection of Absolute Risk Distribution for the Population of White Women in the United 
States

We projected the distribution of absolute risk for the population of white women in the 

United States based on the distribution of risk factors observed in nationally representative 

survey data from the National Health Interview Survey and National Health and Nutrition 

Examination Survey.24–28 We assumed that risk factors and PRS-92 are independently 

distributed, conditional on family history. We then generated the distribution of PRS based 

on normal distribution theory (eMethods in the Supplement).
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We further assessed the distribution of risk owing to modifiable risk factors (BMI, MHT use, 

alcohol, smoking) in categories defined by risk from nonmodifiable factors, including 

PRS-92. We estimated the proportion of breast cancer that could be prevented by shifting the 

whole population to the lowest level of modifiable risk within each strata of the population 

as defined by the nonmodifiable risk factors (eMethods in the Supplement).

Results

The analysis involved a total number of 17 171 cases and 19 862 controls from 8 prospective 

cohort studies, but the number of cases and controls with complete information in each study 

varied by risk factor (eTable 1 in the Supplement).

Assessment of Interactions and Risk Model Building

The additive model on the logistic scale for the SNP-risk associations in the PRS-24 risk 

model was adequate, even at the extremes of risk. Consistently, estimates of the ORs 

associated with deciles of a fitted logistic regression model for PRS-24 and family history 

closely followed their values predicted from the normal distribution theory for PRS 

(eMethods and eTable 3 in the Supplement).

Odds ratio estimates for individual risk factors from the fitted multivariate logistic regression 

model are shown in eFigure 1 in the Supplement. The association between risk and 

quantitative factors (height, number of children, age at first birth, and alcohol use) appeared 

to be nonlinear on the logistic scale; thus, in subsequent analysis, we modeled quantitative 

factors as categorical variables, defined by the deciles of their distributions in controls 

(eMethods and eTable 4 in the Supplement). Higher BMI was associated with increased risk 

only for postmenopausal women, and the strength of the association was stronger for 

patients who did not use MHT (eFigure 1 in the Supplement). We did not detect any 

statistically significant interactions between PRS-24 and individual risk factors in the 

categorical or the continuous modeling approaches (data not shown). We also performed an 

overall χ2 goodness-of-fit test for this model using a tail-based method22 and found that the 

model including both PRS-24 and all other risk factors in a multiplicative fashion (or 

additive in the logistic scale) fit the BPC3 data adequately.

The final risk model included main effects of the PRS-92 (genotyped PRS-24 plus simulated 

PRS-68, as described in our Methods section), main effects of all of the risk factors coded as 

categorical variables, and interaction terms involving menopausal status, BMI, and MHT 

variables (eMethods in the Supplement). The area under the receiver operating curve (AUC) 

for models with only questionnaire-based risk factors, only PRS-92, and both types of risk 

factors were 0.588,0.623, and 0.648, respectively (eFigure 2 in the Supplement).

Stratification of Absolute Breast Cancer Risk

Although AUC values were low to modest, the models, particularly the models including the 

PRS, led to substantial spread in the distribution of absolute risk for the population. For 

example, the absolute cumulative risk of a 30-year-old white woman in the United States 

developing invasive breast cancer over the next 50 years is 11.3% on average. A model 

based on PRS-92 and questionnaire-based risk factors could identify 5% of the population 
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with risk below 4.5% or above 22.0% (Figure 1). As risk accumulated over age, the degree 

of stratification of absolute risk provided by all the risk factors combined also increased with 

age (Figure 2). The percentage of the population that could be identified to be of moderate 

risk (twofold to 3-fold risk compared with the population average) and high risk (>3-fold 

risk compared with the population average) varied substantially among models (Table 1), 

with the most pronounced discrimination for the full model compared with models with only 

PRS-based or questionnaire-based risk factors.

Distribution of Modifiable and Nonmodifiable Breast Cancer Risk

The spread in the distribution of risk by the 4 modifiable risk factors (ie, BMI, MHT use, 

alcohol use, smoking) was larger for those substrata of the population that were at higher 

risk owing to nonmodifiable risk factors (Figure 3). For example, the 5th and 95 th 

percentile ranges of the risk distribution associated with modifiable factors were 2.9% to 

5.0% and 15.5 to 25.0% for subjects who were in the lowest and highest deciles of 

nonmodifiable risk, respectively. Accordingly, estimates of the proportion of cases that could 

be prevented by the reduction of modifiable risks varied substantially across these strata, 

with a higher proportion of preventable cases in the strata defined by higher nonmodifiable 

risks (Table 2). In our model, we defined women at the lowest risk from modifiable risk 

factors as those who were in the lowest decile of BMI, did not use MHT, did not drink 

alcohol, and did not smoke. Overall, we estimated that up to 28.9% of all breast cancers 

could be prevented if all white women in the US population were at the lowest risk from 

these 4 modifiable risk factors. Nearly one-fifth of these total preventable cases arise from 

the subpopulation in the top decile of nonmodifiable risk. In contrast, only about 4% of the 

preventable cases arise from the population in the lowest decile of nonmodifiable risk.

Discussion

Utilizing a model including most known risk factors for breast cancer, we have shown that 

this information can be used to identify white women in the US population at substantially 

different levels of absolute risk for invasive breast cancer. We have also shown that the 

benefit (in terms of reductions in absolute risk) this population could achieve by changing 

modifiable risk factors is expected to be larger for those who are at higher than lower risk 

from nonmodifiable factors. This indicates that individual information on risk could be 

useful in making more informed decisions on breast cancer prevention.

Our results are generally consistent with the theoretical projections made regarding the 

degree of risk stratification achievable for various breast cancer risk models under a number 

of assumptions, including multiplicative effects of genetic and other risk factors.10 Like 

other recent large studies,18,19,21,29–32 we did not detect any evidence of multiplicative 

interactions between lifestyle and/or environmental risk factors and SNPs. Moreover, by 

application of a novel χ2 goodness-of-fit test22 designed to detect model misspecification at 

extremes of disease risk, our analysis provides additional evidence that a multiplicative 

model for geneenvironment interactions is adequate for describing the joint risk of breast 

cancer for women with different risk factor profiles. This was shown for the 24 SNPs that 

were genotyped in our sample. We could not validate the multiplicative assumption of the 
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model for the full set of 92 SNPs owing to the lack of genotyped data on 68 SNPs. However, 

our analyses of 24 SNPs and other very large, previously published studies18,19,21,29–32 

including more SNPs provide solid support for the multiplicative model. Multiplicative 

effects across many risk factors, even when individual effects are modest, can lead to 

pronounced stratification for absolute risk of breast cancer, as described in this report. The 

multiplicative model also implies that the absolute risk difference from modifiable risk 

factors varies by levels of nonmodifiable risk factors.33

The US Preventive Services Task Force currently recommends biennial screening 

mammography for women ages 50 to 74 years and consideration of individual factors, such 

as risk and potential benefit, for the decision to start screening mammography prior to age 

50 years. Our analysis shows that use of a model based on most known risk factors can 

change the recommendation for screening for a substantial fraction of the population, 

compared with using only age-based criteria (Table 1). For example, a full model based on 

PRS and other risk factors can identify 16.1% of the population who can be recommended to 

start screening at age 40 years as their 10-year risk exceeds that of an average 50-year-old 

woman. However, the number of additional cases that would be detectable by screening 

would still be low, as a percentage of the women for whom risk needs to be assessed, and 

thus the population-level benefit of such practice, would depend on the implementation cost 

of risk assessment. The full model can also identify 32.0% of the population who at age 50 

years have 10-year risk less than that of an average 40-year-old woman. These women 

benefit least from screening and may benefit from additional counseling about risk of false-

positive results.

Results from these analyses could have implications for future cancer prevention efforts, 

particularly for risk communication and counseling at an individual level. For instance, 

women found to be at elevated risk owing to factors that cannot be changed may be more 

motivated to adopt a healthy lifestyle to lower their risk of breast cancer if they had a better 

understanding of the potential gains. In this regard, it is encouraging that even for women in 

the highest decile of risk owing to nonmodifiable factors, those who had low BMI, did not 

smoke or drink, and did not use MHT, had risks comparable to those for an average woman 

in the general population. Further research is needed to evaluate how knowledge of 

individual risk can influence behavior to modify risk.34,35 Early studies36–39 that have 

evaluated whether knowledge of genetic risk can improve health behavior have shown mixed 

results. As the number of susceptibility markers and their cumulative power to identify risk 

continue to increase for many common diseases, it will be increasingly important to develop 

and evaluate effective risk communication strategies that may motivate adoption of healthy 

behavior.

Consistent with a previous report from the United Kingdom,4 our analysis indicates that 

only a modest proportion (29%) of breast cancer cases could be prevented by modifying 

most known risk factors. We also showed that a larger fraction of the total preventable cases 

would occur among women at higher levels of risk owing to genetic risk factors and other 

nonmodifiable risk factors. This could indicate that certain interventions for risk factor 

modification that may not be applicable to the whole population because of cost and other 

considerations could be targeted to high-risk strata to obtain a higher yield of cancers 

Maas et al. Page 8

JAMA Oncol. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prevented. As noted before, the cost-benefit ratio of such targeted intervention will depend 

on the cost of implementing risk assessment. However, a substantial proportion of cases 

preventable by modification of risk factors is still expected to arise outside the high-risk 

strata. Therefore, to have a major effect on reducing the disease burden, broader efforts for 

prevention need to continue at the population level. Furthermore, although these 

epidemiologic estimates of preventable cases could be a useful guide to understanding the 

potential effect of intervention and lifestyle change, ultimately evidence from randomized 

trials will be needed to understand the true effect of an intervention for the underlying 

population, as a whole or for subgroups.

Nonmodifiable risk factors were defined as those that cannot be modified (eg, genetics) or 

that are unlikely to be modified with the aim of reducing breast cancer risk. However, some 

of these factors do have modifiable components (height, age at menarche, and age at 

menopause are partially determined by diet and body size). A limitation of this report is that 

we could not evaluate several known risk factors for breast cancer since data were not 

available in the BPC3 data set. These include level of education, breastfeeding, physical 

activity, breast conditions (such as mammographic density and benign breast disease), and 

endogenous hormone biomarkers (such as estradiol, testosterone, and prolactin levels).40 

Further model improvements could also be achieved by refining the risk factors included in 

the model (eg, changes inBMI since age 18 years rather than current BMI). Our risk 

projections accounted for expected changes in MHT use over time based on the population 

distribution of length of use. However, our model assumed that all other risk factors 

remained constant over the time period of projected risk. Thus, the proportion of preventable 

cases including all known modifiable risk factors could be larger than reported here.

As information on all risk factors was not available in a single large study, we developed the 

model using a combination of imputation (for risk factors that were available in BP C3 but 

had missing data) and simulation (for PRS associated with 68 SNPs not genotyped in 

BPC3). Use of imputation within BPC3 allowed us to obtain more precise estimates of 

model parameters than those that could be obtained had we analyzed patients with only 

complete data. Nevertheless, when additional variation due to imputation was accounted for, 

substantial uncertainty in estimates of OR parameters was observed for several risk factors 

(eFigure 1 in the Supplement). In contrast, the use of simulation for 68 SNPs allowed us to 

incorporate information on very precise estimates of the OR parameters that are available 

from much larger case-control studies. In principle, risk estimates can be biased owing to the 

violation of the underlying assumption of multiplicative effect of SNPs and other risk 

factors, but for reasons noted earlier herein, this scenario is unlikely. As incidence density 

sampling was not followed in all studies, it is also possible that there could be some bias due 

to the use of ORs to estimate the hazard ratio parameters underlying the absolute risk model 

(eMethods in the Supplement). The effects of different types of biases owing to various 

modeling assumptions need to be examined in future validation studies.

Our analysis also has several strengths, including the development of a model for relative 

risks based on a large case-control sample drawn from prospective cohort studies, the 

incorporation of information on cancer rate and risk factor distributions from nationally 

representative databases, and the use of novel methodologic framework for assessment of 
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risk stratification. Future studies are needed to evaluate the value of incorporating additional 

information on factors into a model. Although our model assumptions are supported by 

analyses of very large sets of data, this model, as well as future extensions (eg, including 

more SNPs and other risk factors), need to be validated in independent prospective cohort 

studies. A more precise estimate ofrisk parameters associated with some of the 

epidemiologic risk factors could be used to reduce uncertainty in the estimates of risk that 

are produced by the model.

Conclusions

Our results illustrate the potential value of risk stratification to improve breast cancer 

prevention, particularly to aid decisions on risk factor modification at the individual level. 

The effect of such models for improving the cost-benefit ratio of population-based 

prevention programs will depend on the implementation cost of risk assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

Questions

What is the utility of low penetrant common single nucleotide polymorphisms (SNPs) for 

guiding public health strategies for breast cancer prevention?

Findings

A risk prediction model including 92 susceptibility SNPs and various epidemiologic risk 

factors can provide important stratification for absolute risk for white women in the 

United States. The model predicts that effect of healthy lifestyle choices for risk 

reduction is expected to be larger for women who are at higher risk owing to genetic 

susceptibility and other nonmodifiable risk factors.

Meaning

The assessment of common SNPs may be useful for screening recommendations and 

individualized risk communication.
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Figure 1. Projected Distribution of Absolute Lifetime Risk of Breast Cancer for White Women in 
the United States Ages 30 to 80 Years
SNP indicates single nucleotide polymorphisms.
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Figure 2. Cumulative and 10-Year Breast Cancer Risk for White Women in the United States 
Stratified by Risk Percentiles
Cumulative risk is evaluated as absolute risk between age 30 years and a specific age shown 

on the x-axis. The 10-year risk is evaluated as absolute risk over the next 10 years for a 

woman who has attained a specific age (shown on the x-axis) without developing breast 

cancer.

Maas et al. Page 15

JAMA Oncol. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Distribution of Absolute Lifetime Risk Associated With Modifiable Risk Factors 
Stratified by Deciles of Nonmodifiable Risk for White Women in the United States
The horizontal line in the middle of each box indicates the median, while the top and bottom 

borders of the box mark the 75th and 25th percentiles, respectively. The whiskers above and 

below the box are the minimum and maximum excluding outliers; outliers were defined as 

individuals who had risk beyond above or below a standard deviation of 3 of means in the 

log-scale. Lifetime risk refers to cumulative risk between age 30 to 80 years. The dashed 

line indicates average lifetime risk for the population.
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