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We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accu-
rate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination
of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different
Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-
cluster methods, which is here applied to the active space, to select the orbitals to correlate and construct the
important transitions. The excitations are further grouped into classes, which are ordered in importance and can
be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of
interest. We assess the performance of the proposed wave function in the calculation of vertical excitation ener-
gies and excited-state geometry optimization of retinal models whose π → π∗ state has a strong intra-molecular
charge-transfer character. We find that our multi-resonance wave functions recover the reference values of the
total energies of the ground and excited states with only a small number of excitations and that the same expan-
sion can be flexibly used at very different geometries. Furthermore, significant computational saving can also
be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial
considerations without loss of accuracy on the excitation energy. Our multi-resonance wave functions are there-
fore compact, accurate and very promising for the calculation of multiple excited states of different character in
large molecules.

I. INTRODUCTION

The development of local correlation methods to describe
multiple electronic states of extended molecular systems is a
very active and exciting research area in computational chem-
istry. By expressing the wave function in a local orbital ba-
sis, one can make use of the assumption that electron cor-
relation is a local phenomenon for instance for nonmetallic
systems in the ground state [1]. In so doing, a local occu-
pied orbital or an orbital pair only correlates to a subset of
local virtual orbitals selected on the basis of certain crite-
ria such as spatial considerations [2, 3], the threshold on the
magnitude of the exchange integrals [4], or the threshold on
the occupation number of virtual pair natural orbitals [5, 6].
A local approach has clear advantages over traditional meth-
ods using delocalized orbitals, where all occupied orbitals
correlate to the virtual ones. For the ground state, the lo-
cal scheme has been implemented in several single-reference
methods such as the configuration-interaction [7–9], coupled-
cluster [2, 3, 6, 10, 11], and perturbation [12–15] approaches
as well as in various multi-reference methods [4, 16–21]. The
extension of the local ansatz to excited states is however not
straightforward since the excited state may be characterized
by non-local transitions and, importantly, multiple states have
to be treated at the same level of accuracy [16, 22–27].

Quantum Monte Carlo (QMC) methods which provide a
stochastic approach to the solution of the many-body problem,
can also benefit from the use of local orbitals. In the com-
monly employed Jastrow-Slater wave functions, the Jastrow
factor recovers dynamic correlation whereas static correlation
is addressed through a symmetry-adapted linear combination
of Slater determinants which can be built out of local or de-
localized orbitals. To construct the determinantal component,
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a set of relevant orbitals is selected and often correlated in a
(nearly) complete active space (CAS) expansion to capture the
desired chemical features in the application of interest. Unfor-
tunately, the dimension of such an expansion grows dramati-
cally (exponentially in the CAS case) with the system size and
hence hinders its application to large molecules. As the sys-
tem grows, truncation of the expansion is therefore inevitable
and a simple procedure as the use of a threshold on the coeffi-
cients does not guarantee the same expansion size at different
geometries. Consequently, it becomes difficult to maintain an
affordable number of determinants and ensure a balanced de-
scription of different parts of the potential energy surface of
all the states under consideration.

The availability of accurate Jastrow-Slater wave functions
with a small and transferable determinantal component is
therefore highly desirable. In the previous work with Frac-
chia, we have shown that this is possible with the use of
orbitals localized over one or two centers and introduced a
local correlation scheme in QMC to progressively construct
accurate and compact multi-determinant wave functions of
increasing quality, which were successfully applied to the
ground state of closed and open shell systems [28–30]. By
correlating two pairs of electrons sitting in adjacent bond-
ing orbitals with the corresponding anti-bonding orbitals, we
achieved linear scaling and, consequently, a significant com-
putational gain with respect to other local expansions also
employed in QMC as in the perfect-pair generalized-valence-
bond [31] or the valence-bond approach built on atomic-
centered orbitals [32].

In general, our ground-state scheme breaks down for ex-
cited states since transitions between orbitals separated by
several bonds may acquire significant weight in the many-
body wave function if the excited state has charge-transfer
or Rydberg character. The first important step is therefore
to understand how to select which orbitals we want to cor-
relate to account for the most important determinants in the
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ground and/or the excited states. To this aim, we capital-
ize on the concept of orbital domains of local coupled-cluster
methods [2, 3, 22–24] which we apply here to the local or-
bitals in the active space. We further classify the excitations
in classes and include them progressively into the expansion
of the Jastrow-Slater wave functions so that multiple states
of different character are treated on an equal footing. Such a
procedure allows us to control what enters in our wave func-
tions but the key step to ensure a compact and transferable
determinantal expansion is to also account for the multiple
Lewis resonance structures of the molecule, whose relative
importance may change in different structural configurations
or electronic states. We therefore construct the domains and
excitation classes for all sets of local orbitals corresponding
to the multiple resonance structures and write the wave func-
tion as a linear combination of the resulting determinants. We
demonstrate the excellent performance of our compact multi-
resonance local Jastrow-Slater wave functions in the calcula-
tion of the vertical excitation and geometry optimization of the
charge-transfer π → π∗ state of retinal model chromophores.

The subsequent part of the paper is organized as follow. In
section II, we illustrate the concept of orbital domains and
excitation classes for multiple resonance structures. The com-
putational details are presented in section III and the perfor-
mance of our method is demonstrated in section IV. We con-
clude in section V.

II. METHOD

To illustrate the potential of a local approach in QMC, we
briefly describe the linear-scaling scheme we recently intro-
duced for ground states, which couples electron pairs locally
to progressively construct wave functions of increasing qual-
ity [28–30]. In our approach, the occupied orbitals in the ref-
erence are localized over one or two centers along with the
corresponding antibonding orbitals in the virtual space. The
determinants are then generated by correlating two pairs of
electrons sitting in adjacent bonding orbitals and the corre-
sponding two antibonding orbitals in a so-called CAS(4,4) ex-
pansion (i.e. by including the excitations in the active space
obtained by correlating four electrons in the two bonding and
two antibonding orbitals). Importantly, we demonstrated in
our previous work that it is possible to classify the resulting
transitions in classes of increasing importance and, in so do-
ing, building a set of modular wave functions of growing com-
plexity. Since electrons located in separated orbitals are not
correlated, the number of determinants in the wave function
scales linearly with the size of the molecule.

To understand the difficulties of extending our local scheme
to excited states and how we will solve them, we consider the
retinal protonated Schiff base chromophore with three conju-
gated π bonds (PSB3) of Figure 1, which, despite its appar-
ent simplicity, represents a challenging model for the study
of retinal photochemistry. This molecule well exemplifies the
complications occurring in the excited state since its π → π∗

excitation is accompanied by significant transfer of electronic
charge from the carbon to the nitrogen terminus (or, equiva-

lently, of positive charge in the opposite direction).

To account in a balanced manner for static correlation in
the ground and excited states, one could adopt a delocalized
description in terms of three delocalized π bonding and three
π∗ antibonding orbitals (panel A) and correlate the six elec-
trons in the resulting active space, constructing a minimal
CAS(6,6) expansion. In addition to this standard represen-
tation of the determinantal component of the wave function,
we can however construct by unitary transformation not one
but three equivalent sets of localized π orbitals, corresponding
to the three possible Lewis resonance structures. These dif-
ferent local orbital pictures will be more suitable to describe
the electronic structure of PSB3 at different geometries or in
different states: While the first resonance structure (Res-1) is
dominant at the ground-state equilibrium, we anticipate that
the other resonance structures will be very important in the
treatment of the π → π∗ excitation with its strong charge-
transfer character. In general, all resonance structures will be
visited in different regions of the excited-state potential en-
ergy surface. We stress that, if we include all excitations in the
active space, these orbital representations are equivalent and
one will recover the same amount of electronic correlation.
The goal here is however to find a representation and a set of
rules which result in a compact wave function without includ-
ing all excitations, given their exponentially growing number
with system size.

FIG. 1. PSB3: (A) Active delocalized π orbitals obtained at the
CASSCF(6,6) level, and (B-D) three unitary transformed sets of lo-
calized orbitals corresponding to the three Lewis resonance struc-
tures.
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It is rather straightforward to understand the failure of our
ground-state local correlation scheme if we focus on the dom-
inant Lewis structure at equilibrium (panel B) and on a multi-
determinant expansion on the corresponding local orbitals. As
discussed below, an analysis of the dominant single-electron
transitions reveals that spatially remote orbitals are coupled
(e.g. bonding orbital 3 with antibonding orbital 6). Conse-
quently, we cannot adopt the set of rules described above for
ground states since it is impossible to simply correlate adja-
cent pairs of bonding/antibonding orbitals.

A. Domains and excitation classes

To select the orbitals to correlate, we borrow the concept of
orbital domains from local-correlation methods [1–3, 7, 22–
24] and adapt it to the advantageous features of quantum
Monte Carlo. Here, we define a domain as an orbital in the ref-
erence and the set of orbitals which are coupled to it by a large
single-electron transition in the multi-determinant wave func-
tions of the states of interest. As threshold on the weight to se-
lect the important singles, we choose to use the highest weight
in any of the states under consideration so that all orbitals in
the active space appear at least in one single excitation. In
building our multi-determinant wave functions, we will then
only retain the domains characterized by large single transi-
tions and generate the double and higher excitations within
and from the union of the surviving domains. Differently
from conventional local schemes in quantum chemistry, we
will construct the domains only from the orbitals within the
active space (letting the Jastrow factor and, subsequently, dif-
fusion Monte Carlo recover dynamical correlation) and also
attempt to further classify the resulting excitations to generate
a set of wave functions of increasing complexity as we had
done for ground states.

To illustrate our scheme and investigate whether it can lead
to a balanced description of the ground and excited states, we
first focus on PSB3 at equilibrium and the Res-1 local orbital
representation (Figure 1), and compute the CASSCF wave
functions correlating the three bonding orbitals (labeled 1,2,3)
and three antibonding orbitals (labeled 4,5,6) in a CAS(6,6)
expansion. Through the analysis of weights of the config-
urations state functions entering the wave function, we can
identify whether the subset of configurations generated with
the use of orbital domains recovers most of the weights of
the wave functions in both states and which excitation classes
may potentially be neglected when using such determinantal
component in a QMC calculation.

If one defines a reference configuration as a configuration
in the ground state consisting of doubly-occupied localized
bonding orbitals, there is only one such configuration for the
Res-1 representation of PSB3, namely 222000, where a con-
figuration is denoted as n1n2n3n4n5n6 with nm the occupation
number of orbital m. To build the domains, we now con-
sider the single excitations out of the reference in the Res-1
wave function of the π → π∗ state and find that, as reported
in Table I, there are several single-electron transitions carry-
ing significant weight, differently to what one would obtain

in an expansion over delocalized orbitals where the HOMO-
LUMO transition is instead dominant. Due to the charge-
transfer nature of the excited state, the single excitations con-
nect the bonding to the antibonding orbitals sitting on their
left and grouping the orbitals in two separate CAS(4,4) ac-
tive spaces over pairs of adjacent bonding/antibonding or-
bitals (i.e. 1,2,5,6 and 2,3,4,5) as in our ground-state scheme
would miss the second most important single excitation in a
CAS(6,6) expansion, namely, the 3 → 6 transition. Further-
more, a similar analysis of the wave function for larger mod-
els of the retinal chromophore (with one, two, and three ad-
ditional double bonds, namely, PSB4, PSB5, and PSB6) indi-
cate that this behavior will persist and that far away orbitals
will remain correlated even though to a lesser extent (see Ta-
bles S16, S28, and S29). This is clear evidence that, for this
problem, a large active space cannot be divided into several
smaller active spaces on the basis of spatial vicinity of the or-
bitals but a different procedure must be followed to construct
our wave function.

If we select the singles to build the domains so that all ac-
tive orbitals are involved in at least one transition, we find that
there are 6 important singles out of the reference (correspond-
ing to a maximum weight of 2.19% in the excited state) and,
correspondingly, three domains:

a) {1 : 6}
b) {2 : 5, 6}
c) {3 : 4, 5, 6}

For each domain, the number before the colon represents the
doubly-occupied orbital in the reference which is linked via
a single excitation to an empty orbital appearing after the
colon. As already mentioned, the purpose of establishing the
domains is to construct doubles and higher excitations by cou-
pling the domains and to achieve in this way a compact form
of the wave function. Therefore, while all domains can in
principle be employed in generating higher transitions, we
note that the most important singles belong to the b and c
domains and choose to neglect the least important a domain,
only retaining the singles within this domain and selected tran-
sitions as explained below.

We collect the configurations considered so far in the three
excitation classes denoted as X0, X1, and X2, comprising the
reference, the singles belonging to the dominant domains, and
the important singles of the remaining domains, respectively.
As next excitation class (X3), we include in our wave func-
tions all double excitations from a bonding to its correspond-
ing antibonding orbital, namely, (1 ⇒ 6), (2 ⇒ 5), and (3
⇒ 4). The importance of these excitations for the ground
state was highlighted in our work on the development of a
local correlation scheme for ground states [28] and is here cor-
roborated in the PSB3 system: With the inclusion of the X3
class, the configurations make up 97.56% of the total ground-
state CASSCF wave function. On the other hand, the X0-X3
classes only account for 89.67% of the total weight in the ex-
cited state.

To further improve the quality of the wave functions (in
this case, the excited-state one), we need to include additional
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TABLE I. PSB3: CASSCF weight percentage of configurations with
localized Res-1 orbitals computed at the S0 B3LYP equilibrium ge-
ometry.

Type Domain CSF Det Configuration Weight (%)
(N) (N) (1,2,3,4,5,6) S0 S1

X0 ref 1 1 222000 89.50 0.16
X1 S b 1 2 212010 0.01 13.43

S b 1 2 212001 0.46 18.6
S c 1 2 221100 0.02 3.05
S c 1 2 221010 0.24 27.26
S c 1 2 221001 0.26 21.03

Sub 5 10 0.99 83.37
X2 S a 1 2 122001 0.00 2.19
X3 D a 1 1 022002 1.11 0.76

D b 1 1 202020 2.31 2.75
D c 1 1 220200 3.65 0.44

Sub 3 3 7.07 3.95
X4 D b 1 1 202002 0.27 0.83

D c 1 1 220020 0.10 0.62
Sub 2 2 0.37 1.45
X5 D b+c 2 6 211110 0.45 0.08

D b+c 2 6 211101 0.03 0.73
D b+c 2 6 211011 0.08 1.39

Sub 6 18 0.56 2.20
X6 D b+c 1 2 211020 0.01 0.57

D b+c 1 2 211002 0.05 0.51
Sub 2 4 0.06 1.08
X7 D b 1 2 202011 0.01 0.04

D c 1 2 220110 0.21 0.24
D c 1 2 220101 0.02 0.26
D c 1 2 220011 0.01 0.32

Sub 4 8 0.25 0.86
X8 T b+X3 1 2 210210 0.00 0.34

T b+X3 1 2 210201 0.01 0.46
T b+X3 1 2 012012 0.00 0.08
T c+X3 1 2 201021 0.00 0.53
T c+X3 1 2 201120 0.00 0.01
T c+X3 1 2 021012 0.00 0.11
T c+X3 1 2 021102 0.00 0.03

Sub 7 14 0.01 1.56
Total 31 62 98.92 98.03

double configurations, which we generate by coupling the sin-
gle excitations within and between the dominant b and c do-
mains. The transitions are then classified based on the orbital
occupations and the resulting new excitation classes ordered
according to their importance in the multi-determinant expan-
sion. For instance, by coupling the single excitations within
the c domain {3 : 4, 5, 6}, we obtain

220200 = (3 ⇒ 4)
220020 = (3 ⇒ 5)

220002 = (3 ⇒ 6)
220110 = (3→ 4) + (3→ 5)
220101 = (3→ 4) + (3→ 6)
220011 = (3→ 5) + (3→ 6)

where (3 ⇒ 4) was already considered as a member of the
X3 class. Configurations which are double excitations from
a bonding to an adjacent antibonding orbitals are classified as
X4 excitations, where orbitals are deemed adjacent only if lo-
cated close to each other and not separated by an atom. Dou-
bles from a bonding to a separated antibonding orbital, e.g.
(3 ⇒ 6), are found to have negligible weight and are there-
fore not included in the X4 class. Double excitations from
one bonding to two different antibonding orbitals form the X7
excitation class.

From the coupling of single excitations between the two b
and c domains, we obtain the following doubles

211110 = (2→ 5) + (3→ 4)
211020 = (2→ 5) + (3→ 5)
211011 = (2→ 5) + (3→ 6)
211101 = (2→ 6) + (3→ 4)
211002 = (2→ 6) + (3→ 6)

Doubles with 4 unpaired electrons are classified as X5 and
doubles from two bonding orbitals to the same antibonding
orbital are denoted as X6, which exhausts the possible doubles
one can build within one or two domains. We note that the
ordering in importance of the X4-X7 doubles can be different
for other states or molecules but, in this work, we will use the
aforementioned ordering. The next excitation class (X8) is
given by the triples constructed as the double excitations from
a bonding to its corresponding antibonding orbital combined
with singles from the X1 class.

One can of course continue to construct further excitation
classes and also couple more than two domains until all con-
figurations in the CAS(6,6) active space are included. Here,
we however stop at X8 since the X0–X8 excitation classes
cover∼98% of the weight of both S0 and S1 states at the equi-
librium geometry. The state-averaged CASSCF weights of all
configurations in the excitation class of PSB3 with the Res-1
orbitals are listed in Table I and the description of excitation
classes is summarized in Table II.

TABLE II. Description of excitation classes. The X4-X7 excitations
are built from the domains.
Class Description
X0 References (all doubly-occupied bonding)
X1 Important singles in dominant domains to build the doubles
X2 Important singles in other domains
X3 Bonding-antibonding doubles
X4 Doubles to adjacent antibonding
X5 Doubles (4 unpaired electrons)
X6 Doubles (2 unpaired electron in bonding orbitals)
X7 Doubles (2 unpaired electron in empty orbitals)
X8 Triples (bonding-antibonding doubles plus X1 singles)
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So far, our analysis demonstrates that the concept of orbital
domains as identified at the CASSCF level leads to the con-
struction of some of the most important excitation classes for
both states. One may however ask whether these configura-
tions remain important once we optimize the orbitals in the
presence the Jastrow factor in a so-called Jastrow-Slater wave
function:

Ψ = J
NCSF∑
i

ci Ci ,

where Ci are the configuration state functions (CSF) and J
is the Jastrow correlation function explicitly depending on the
inter-electronic coordinates. In optimizing the orbitals, we do
not preserve orthogonality among them, so the square of a CI
coefficient in a Jastrow-Slater wave function is not the weight
of a configuration. Therefore, we use the following definition
of the weight of configurations in terms of the overlap Sij =
〈JCi|JCj〉:

wi =
1

qnorm

(
ciSiici +

NCSF∑
j 6=i

ciSijcjzij

)
, (1)

where the norm of the wave function is given by

qnorm =

NCSF∑
i

NCSF∑
j

ciSijcj , (2)

and, to reduce the occurrence of unphysical negative weights,
we introduced the damping factor

zij =
2(ciSii)

2

(ciSii)2 + (cjSjj)2
. (3)

As shown in Table III, the variational Monte Carlo (VMC)
weights in a determinantal expansion over the Res-1 or-
bitals of PSB3 display a very good correspondence with the
CASSCF weights. This ensures that the analysis of the ex-
citation classes we have done above based on the CASSCF
weights is transferable to VMC for this system.

B. Beyond one resonance structure

The importance of each resonance structure representation
is directly related to the internuclear distances of the molec-
ular structure under study. Therefore, while all orbital repre-
sentations of Figure 1 are equivalent if we retain the complete
expansion, we can no longer rely on the use of a single reso-
nance structure once the localized CAS expansion is truncated
based on excitation classes. For the PSB3 example, this means
that, if one adopts the Res-1 picture above at a different geom-
etry, there is no guarantee that the resulting excitations sum
up to a similar, balanced weight percentage of the total wave
functions as in Table I. For instance, at a bond-inverted geom-
etry which is more naturally described in terms of the Res-2
orbitals, the expansions constructed from the X0–X8 excita-
tion classes over CASSCF orbitals of the Res-1 type only re-
cover ∼98% and ∼74% of the total weights of the ground-

TABLE III. PSB3: CASSCF and VMC weight percentage of the X0-
X3 configurations of the first Res-1 structure computed at the S0
B3LYP equilibrium geometry. The VMC wave function includes all
singles, doubles, and triples on the Res-1 local orbitals.

Class Configuration CASSCF (%) VMC (%)
(1,2,3,4,5,6) S0 S1 S0 S1

X0 222000 89.50 0.16 92.85 2.41
X1 221100 0.02 3.05 0.01 3.97

221010 0.24 27.26 0.97 33.06
221001 0.26 21.03 0.91 20.48
212010 0.01 13.43 0.10 12.77
212001 0.46 18.6 1.62 17.96

X2 122001 0.00 2.19 0.00 1.15
X3 220200 3.65 0.44 1.25 0.35

202020 2.31 2.75 0.66 1.71
022002 1.11 0.76 0.33 0.34

and excited-state CASSCF wave functions, respectively (see
Table S6).

In general, one might expect that all three resonance struc-
tures will be “visited” in different regions of the excited state
potential energy surface of a molecule and that, to strive a
balanced description of such diverse regions and account for
changes in the relative importance of the three forms, our
wave function should include all three of them. We can
achieve this by taking advantage of the flexibility of the QMC
method which allows us to work with an over-complete or-
bital set and write the Jastrow-Slater wave function as a linear
combination of multiple Lewis structures, each expressed on
a small set of determinants constructed according to the con-
cepts of domains and excitation classes. Therefore, we rewrite
the wave function in terms of all possible resonance structures
of a molecule as

Ψ = J
(∑

i

ci C
Res-1
i +

∑
j

cjC
Res-2
j + · · ·

)
, (4)

where CRes−I
i are the CSFs of the I-th resonance structure.

In constructing this multi-resonance wave function, it is de-
sirable to adopt the same recipe for all resonance structures in
the definition of the domains and the subsequent construction
of the excitation classes. In the example of PSB3, the exten-
sion of the concept of orbital domains developed in the context
of the Res-1 structure to Res-2 and Res-3 presents however a
complication: In these two structures, the six π electrons see
four bonding (labeled 1, 2, 3, 4) and two antibonding (labeled
5, 6) orbitals (see panels C and D in Figure 1). Therefore,
bonding orbitals are not necessarily doubly-occupied in the
reference and this imbalance is reflected in the absence of a
dominant reference configuration. We can nevertheless pro-
ceed as before if we consider each reference in turn, and de-
fine a corresponding set of domains from which to construct
the doubles and other excitations. The union of the resulting
excitations will then form our multi-resonance wave function.
To analyze whether this way of extending the concept of do-
mains to Res-2 and Res-3 is successful in recovering a high
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percentage of the total weights of the CASSCF wave func-
tions, it is more appropriate to use a geometry where its inter-
nuclear distances resemble the bonding-antibonding structure
of the resonance under study.

For the Res-2 structure, we therefore investigate the excita-
tion classes using an in-plane bond-inverted geometry where
we expect a description in terms of the Res-2 orbital set to
be more suitable. By placing 6 electrons in 4 bonding or-
bitals, we can construct 4 doubly-occupied reference config-
urations: The important references are 222000, 220200, and
202200 and are included in the X0 class, while 022200 can
be neglected since its weight is 0% in both states. From each
reference, we then search for all important single excitations
to build the domains. Here, a single excitation from a par-
ticular reference is a one-electron transition from a doubly-
occupied bonding orbital to an empty (bonding or antibond-
ing) orbital. Furthermore, one such transition may be obtained
starting from more than one reference and therefore appear
more than once as belonging to domains of different refer-
ences. As in the case of Res-1, to decide which singles are
important, we apply as threshold the maximum weight in ei-
ther state so that all orbitals in the active space are involved in
a single excitation (which is here 0.72% in the ground state).
This criterion results in 9 important singles and three sets for
domains as listed in Table IV. Using the same notation as for
Res-1, the domains of the 222000 reference are :

1a) {1 : 4}
1b) {2 : 4}
1c) {3 : 4}

The domains of 220200 are

2a) {1 : 3}
2b) {2 : 3, 5}
2c) {4 : 3}

and, for the 202200 reference, we have

3a) {1 : 2}
3b) {3 : 2, 6}
3c) {4 : 2, 6}

These singles are included in the X1 class except for the least
important (2→ 5) excitation of domain 2b, which is included
in the X2 class but further neglected in constructing the dou-
bles to avoid many determinants with negligible weight on
both states. Subsequent excitation classes are built and or-
dered according to the classification in the Res-1 structure as
outlined in Table IV.

An analysis of the weights reveals that, also for this reso-
nance structure, constructing the excitations based on the or-
bital domains and including the X0-X8 classes lead to a bal-
anced description of the ground- and excited-state wave func-
tions, recovering a substantial percentage of the total weight
at the CASSCF level as shown in Table V. A complete list
of the configurations built from the Res-2 orbitals is reported
in Table S7. For the the construction of the domains and the
weight analysis of the excitation classes of the third resonance

TABLE IV. PSB3: Construction of the excitation classes of the Res-2
structure. Excitations in square brackets correspond to configurations
already obtained.

Class Reference
222000 220200 202200

X1 1→ 4 1→ 3 1→ 2
2→ 4 2→ 3 3→ [2],6
3→ 4 [4→ 3] 4→ [2],6

X2 - 2→ 5 -
X3 3 ⇒ 5 2 ⇒ 6 3 ⇒ 5

2 ⇒ 6
X4 - - [3 ⇒ 6]
X5 - - 1→ 2 + 3→ 6

1→ 2 + 4→ 6
3→ 2 + 4→ 6

X6 - - 3→ 6 + 4→ 6
X8 1→ 4 + 3 ⇒ 5 1→ 3 + 2 ⇒ 6 1→ 2 + 3 ⇒ 5

1→ 4 + 2 ⇒ 6 [4→ 3 + 2 ⇒ 6] [4→ 2 + 3 ⇒ 5]
2→ 4 + 3 ⇒ 5 4→ 6 + 3 ⇒ 5

[3→ 4 + 2 ⇒ 6]

TABLE V. PSB3: CASSCF weight percentage of the excitation
classes of the Res-2 structure. The in-plane bond-inverted S1
CASSCF geometry is used.

CSF Det Weight (%)
(N) (N) S0 S1

X0 3 3 12.60 23.29
X1 8 16 76.92 64.64
X2 1 2 0.72 0.43
X3 4 4 0.42 0.94
X5 6 18 2.66 2.84
X6 1 2 0.33 1.07
X8 6 12 0.66 1.43

Total 29 57 93.59 94.21

structure (Res-3), we refer the reader to the Supporting Infor-
mation (Table S9). The analysis is quite similar to the one
of the Res-2 structure, since Res-3 is characterized by the
same numbers of bonding and antibonding orbitals, and per-
formed at a geometry constructed to have a bond-length pat-
tern and CASSCF gap in between the values of the ground-
state equilibrium and bond-inverted geometries. Importantly,
the weights of the X0-X8 classes recover a very similar per-
centage of the ground- and excited-state CASSCF wave func-
tions as in the case of the Res-2 structure.

Therefore, the set of rules we have developed based on the
concept of domains satisfy the prerequisite to be applicable
without adjustments to the rather different resonance struc-
tures of PSB3. In practice, the analysis of the resonance struc-
tures at the different geometries is only performed to estab-
lish the domains for the different resonances and construct the
dominant configurations. Then, for the geometry of interest,
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different sets of equivalent local orbitals are generated and the
CSFs we have identified as important are used in a Jastrow-
Slater wave function. Below, using PSB3 and other retinal
models, we will employ one- and multi-resonance Jastrow-
Slater wave functions to assess the performance of the ap-
proach, namely, to investigate numerically which excitation
classes mainly impact the quality of a calculation, the accu-
racy of a one- and multiple-resonance wave function with re-
spect to the use of truncated expansion over delocalized or-
bitals, and the transferability of this framework to geometries
characteristic of different parts of the excited-state potential
energy surface.

C. Orbital Optimization

In the optimization of the orbitals of a monodeterminant
Jastrow-Slater wave function, one mixes the occupied orbitals
with the virtual ones of the same symmetry. In the multide-
terminantal case, the inactive orbitals are mixed with the ac-
tive and virtual ones, and the active orbitals with other active
and the virtual orbitals, always according to the symmetry.
For large systems, the number of orbital mixing grows rapidly
and, to maintain a low computational cost, one is often forced
to select a subset of virtual orbitals to mix with the occupied
ones: The delocalized virtual orbitals are for instance ordered
energetically and the highest-energy virtual orbitals are omit-
ted.

If we unitarily transform all (inactive, active, and virtual)
delocalized orbitals into localized ones, we can employ a dif-
ferent criterion and selectively mix the orbitals based on spa-
tial considerations. First, to establish the centers where an
orbital is mainly localized, we use its expansion over the Nbas
atomic basis functions χi as

∑
i biχi and evaluate the quanti-

ties ρa for all nuclei:

ρa = 2

Ma∑
i

Nbas∑
j

b∗i bj〈χi|χj〉 , (5)

where the first summation only runs over the Ma atomic basis
functions of nucleus a. A large value of ρa indicates that the
orbital is mainly localized on atom a and one can use a thresh-
old on the value of ρa to determine the centers contributing to
the decomposition of the orbital. Then, an orbital is mixed
with another orbitals if they share at least one nuclear cen-
ter according to the given threshold, which we name below
“threshold on orbital mixing” (TM).

We test several values of TM in the VMC wave function op-
timization of the PSB2, PSB3, and PSB4 and list the results
in Table VI. We find that both ground- and excited-state ener-
gies are of course higher when we apply this threshold since
we loose some degree of variationality in the optimization.
On the other hand, the excitation energy remains unchanged
and the computational saving is significant being as large as
a factor of 6 in the number of orbital parameters to optimize
for the largest PSB4. Therefore, this trick to cut the compu-
tational cost in the orbital optimization step is effective and
allows one to treat both states on an equal footing.

TABLE VI. VMC total and excitation energies of the PSBn models
computed with the Res-1 localized orbitals and different thresholds
on the orbital mixing in the wave function optimization. The S0
B3LYP geometry is used.

Molecule Thr. mixing E(S0) E(S1) ∆E
(parms optimized) (a.u.) (a.u.) (eV)

PSB2∗ 0.0 (579) -30.2664(3) -30.0458(3) 6.00(1)
0.1 (190) -30.2626(3) -30.0416(3) 6.01(1)
0.2 (170) -30.2614(3) -30.0408(3) 6.00(1)

PSB3† 0.00 (1213) -42.8046(5) -42.6441(5) 4.37(2)
0.05 (309) -42.7989(5) -42.6382(5) 4.37(2)
0.10 (290) -42.7977(5) -42.6372(5) 4.37(2)
0.20 (270) -42.7974(5) -42.6359(5) 4.39(2)
0.30 (257) -42.7963(5) -42.6357(5) 4.37(2)

PSB4‡ 0.00 (2079) -55.3447(5) -55.2125(5) 3.60(2)
0.10 (390) -55.3359(5) -55.2035(5) 3.60(2)
0.20 (364) -55.3348(5) -55.2017(5) 3.62(2)
0.30 (349) -55.3338(5) -55.2010(5) 3.61(2)

∗ All CAS(4,4) determinants are included.
† All singles, doubles, and triples in the CAS(6,6).
‡ CSFs with |ci|2 > 0.011 (∼99% of CASSCF weight of
both states)

III. COMPUTATIONAL DETAILS

The QMC calculations are performed with the CHAMP
program [33] with scalar-relativistic energy-consistent
Hartree-Fock pseudopotentials and the corresponding basis
sets [34, 35]. In particular, we use the double (D), triple (T′)
and quadrupole (Q′) basis sets, where the prime denotes that
a double (D) basis is used for the hydrogen atoms, and the cc-
pVDZ′ (D+) basis set which is a double basis set augmented
with additional s and p functions on the heavy atoms [36].
To account for electron-electron and electron-nucleus corre-
lations, we use a two-body Jastrow factor which is different
for every atom types [37]. The Jastrow parameters, CI coef-
ficients, and orbital coefficients are optimized with the linear
method [38] in a state-averaged fashion [39] within VMC.
In the diffusion Monte Carlo (DMC) calculations, we
treat the non-local pseudopotentials beyond the locality
approximation [40] and use an imaginary time-step of
0.01 a.u. (for a time-step convergence study of the energies
see the SI).

To determine the initial inactive localized orbitals for the
VMC trial wave function, several localization techniques [41–
44] are possible, which unitarily transform the delocal-
ized CASSCF orbitals into 1-or-2-centered localized orbitals.
Here, we employ the Pipek-Mezey method [41] to localize
the inactive and the virtual orbitals using the Molcas-7.8 [45]
package. For the active space, we are interested in construct-
ing localized orbitals that are mainly located on the atom/bond
associated with a particular Lewis resonance structure. To this
aim, we construct an initial guess of active orbitals with the
desired structure, whose shape we find to be preserved in the
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subsequent CASSCF calculation. For the Res-1 structure, the
initial localized guess are obtained in a multi-configuration
self-consistent-field calculation including the reference and
a set of bonding-antibonding double excitations using the
GAMESS(US) code [46, 47]. The initial localized active or-
bitals for the other resonance structures are prepared manu-
ally.

Upon optimization in VMC, we find that the active orbital
might become delocalized and this undermines the construc-
tion of the multi-determinant expansion based on the concept
of domains and excitation classes. We find that, to ensure the
locality of active orbitals, it is sufficient to limit the mixing
of the active orbitals among themselves: A bonding orbital
is only mixed with its adjacent bonding orbitals and the anti-
bonding orbitals that share at least one nucleus; an antibond-
ing orbital is only mixed with a bonding orbital that shares one
nucleus but not with other antibonding ones. This restricted
orbital mixing is described in detail for PSBn (n = 2, 3, 4) in
the Supporting Information (Tables S3, S10, and S21).

We perform excited state geometry optimizations of the
PSB3 at the level of multi-state complete-active-space second-
order perturbation theory (MS-CASPT2) [48–50] using the
Molcas-7.8 package. We use the Cholesky decomposition
of the two-electron integrals [51] with a threshold of 10−4

and always adopt the default 0.25 IPEA zero-order Hamilto-
nian [52]. We study the convergence of the optimal excited-
state bond lengths using the Dunning correlation consistent
cc-pVXZ and aug-cc-pVXZ basis sets [36, 53]. Finally,
we optimize the ground-state geometry of the PSBn chro-
mophores within DFT with the B3LYP functional [54–56] and
the cc-pVDZ basis set using the Gaussian code [57] and the S1
planar bond-inverted CASSCF geometries with the cc-pVDZ
basis and the Molcas-7.8 package.

IV. RESULTS

We test our novel form of Jastrow-Slater wave functions for
excited states using the retinal protonated Schiff base model
chromophores depicted in Figure 2. The smallest PSB2 model
has two conjugated π bonds and by adding one and two
more ethylenic groups, one obtains the PSB3 and PSB4 chro-
mophores.

FIG. 2. Molecules studied in this work. Blue, black, and grey repre-
sent nitrogen, carbon, and hydrogen, respectively.

To assess the flexibility of the domain and multi-resonance

concepts, we compute the VMC vertical excitation energies
of the π → π∗ state of the PSBn molecules at two in-plane
geometries with different bond-length patterns and compare
them with the reference values obtained using a complete
(or nearly complete) expansion over the active orbitals (the
configurations in the reference cover at least ∼99% of the
CASSCF weights in the ground and excited states). The two
test geometries are characterized by a positive and a negative
value of the bond-length alternation (BLA) which we define
as the difference between the averages of formal single and
double C−C bonds, where “formal” refers to the ground-state
geometry (or Res-1 Lewis structure). The two geometries are
the ground-state B3LYP geometry and the bond-inverted S1
CASSCF geometry, respectively. To test the performance of
our method in the relaxation of excited states, we also per-
form the out-of-plane excited-state geometry optimization of
PSB3 at the VMC level. Finally, we compute the DMC to-
tal and excitation energies for single and multi-resonance
local wave functions at the ground-state geometry.

A. PSB2

The minimal active space to describe the π → π∗ ex-
cited state in PSB2 is a CAS(4,4) expansion where we cor-
relate 4 electrons in 4 π orbitals. The molecule has two res-
onance structures with corresponding localized active π or-
bitals shown in Figure 3.

FIG. 3. PSB2: (A) Active delocalized π orbitals obtained at the
CASSCF(4,4) level, and (B,C) two unitary transformed sets of local-
ized orbitals corresponding to the two Lewis resonance structures.

Before addressing the performance of the wave functions
proposed here for PSB2, we investigate the effect of using dif-
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ferent active spaces, number of determinants, and basis sets on
the vertical excitation energy at the VMC level. In these tests,
the determinantal expansion is expressed on the delocalized
natural orbitals and all parameters of the wave function are
optimized. In particular, all (inactive and active) orbitals are
mixed with the active and virtual ones according to the sym-
metry. For the larger active spaces, the expansion is truncated
according to a threshold on the CI coefficients on both states,
and the union of the surviving configurations is retained in
the Jastrow-Slater wave functions. The results are collected in
Table VII.

TABLE VII. PSB2: VMC Energies computed with different basis
sets and active spaces expressed on the weighted-averaged natural
orbitals at the S0 B3LYP geometry.

Active Thr. Basis E(S0) E(S1) ∆E
Space (N det) (a.u.) (a.u.) (eV)

CAS(4,4) 0.00 (36) D -30.2661(3) -30.0460(3) 5.99(1)
CAS(4,6) 0.02 (58) D -30.2677(3) -30.0471(3) 6.00(1)
CAS(4,6) 0.01 (99) D -30.2677(3) -30.0478(3) 5.98(1)
CAS(4,8) 0.02 (83) D -30.2677(3) -30.0471(3) 6.00(1)
CAS(4,8) 0.01 (125) D -30.2678(3) -30.0479(3) 5.98(1)
CAS(4,4) 0.00 (36) D+ -30.2673(3) -30.0501(3) 5.91(1)
CAS(4,4) 0.00 (36) T′ -30.2782(3) -30.0602(3) 5.93(1)
CAS(4,4) 0.00 (36) Q′ -30.2793(3) -30.0621(3) 5.91(1)

We find that enlarging the active space beyond the mini-
mal one with the inclusion of additional π orbitals results in
the decrease of the energies of both states but that the exci-
tation energy remains compatible within the statistical error.
The choice of basis set has a larger impact on the the excita-
tion energy, which is however practically converged with the
D+ basis set at both the VMC and DMC level (see Table
S27). For the purpose of assessing our excited-state method,
we select the CAS(2n,2n) active space and D basis set for the
PSBn molecules as compromise between accuracy and com-
putational cost, keeping in mind that, if one is interested in the
best excitation energies of PSBn, one should use a larger basis
set. We also note that the use of a small CAS(2,2) expan-
sion leads to errors in the excitation energies which grow
with system size (see Table S24).

We now begin the construction of the local wave functions,
whose performance is assessed against a VMC calculation
that includes all (36) determinants of the CAS(4,4) expan-
sion. With this active space, the Res-1 localized orbitals con-
sist of 2 bonding and 2 antibonding orbitals and the dominant
doubly-occupied configurations (2200) is the reference con-
figuration. In the CASSCF calculation, there are 3 important
singles, which result in the domains:

a) {1 : 4}
b) {2 : 3, 4}

As in the case of PSB3, the charge transfer character of
the excited state is evident from the domains as the most
important single (2 → 4) results in a net charge transfer
from the C-terminus to the N-terminus (see Table S1). For

the Res-2 structure, we can place 4 electrons in 3 bonding
and 1 antibonding orbitals and, if the three possible doubly-
occupied configurations, retain 2 references for establishing
the domains, namely, 2200 and 2020. The remaining doubly-
occupied configuration (0220) is unimportant since its weight
is almost 0% in both states. The domains of the 2200 refer-
ence are

1a) {1 : 3, 4}
1b) {2 : 3}

while, for the 2020 reference, we have

2a) {1 : 2}

The excitation classes are constructed and ordered in the same
way as for PSB3 (see Method Section) and the resulting con-
figurational weights are listed in Table VIII, for the Res-1
structure at the ground-state geometry and for Res-2 at the
bond-inverted geometry, respectively.

TABLE VIII. PSB2: CASSCF weight percentage of the excitation
classes of the Res-1 and the Res-2 structure at the in-plane S0 B3LYP
and the bond-inverted S1 CASSCF geometry, respectively.

Res-1 Res-2
Det Weight (%) Det Weight (%)
(N) S0 S1 (N) S0 S1

X0 1 93.60 0.05 2 18.13 16.40
X1 6 0.63 91.67 8 75.37 74.78
X3 2 4.84 4.75 1 0.25 0.24
X4 1 0.24 2.24 1 0.01 0.08
X5 6 0.22 0.25 6 3.12 4.87
X6 2 0.00 0.06
X7 2 0.21 0.00 2 0.14 0.41
X8 4 0.00 0.23 2 0.41 2.34

Total 24 99.74 99.25 22 97.41 99.12

Here, we want to understand the minimum set of ingre-
dients in the local wave functions needed to yield the refer-
ence energies. Therefore, we include systematically the ex-
citation classes of one and two resonance structures in the
Jastrow-Slater trial wave functions of PSB2 and fully reopti-
mize each trial wave function in VMC. The resulting ground-
and excited-state energies computed at the ground-state and
bond-inverted geometries are reported in Table IX. At the
equilibrium geometry, if we use a single Res-1 structure, we
find that the excitation energy is already converged with the
inclusion of the X0–X4 excitation classes (10 determinants).
On the other hand, the ground- and excited-state energies dis-
play a slower convergence, which is is only achieved when all
X0–X8 transitions (24 determinants) are included.

If we employ a multi-resonance Jastrow-Slater wave func-
tion and account for both the Res-1 and Res-2 resonances in
the multi-determinantal wave function, the energies of both
states are already in agreement with the reference values when
we include the sole X0-X3 classes for each resonance. Con-
sequently, we obtain a somewhat more compact (20 determi-
nants) wave function for PSB2 when using two instead of a
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single resonance structure. If we perform a similar analysis
on the bond-inverted geometry of PSB2, we obtain an equiva-
lently good performance of the multi-resonance wave function
expressed on the X0–X3 excitations of both resonance struc-
tures.

We note that, in the orbital optimization step, the active or-
bitals become occasionally delocalized and that the loss in lo-
cality is especially pronounced when moving to larger sys-
tems. Therefore, all results for PSB2 in Table IX (as well
as below for PSB3 and PSB4) are obtained with the restric-
tion on the mixing among the active orbitals described in the
Computational Details. This restriction is found to generally
preserve locality but leads to an increase in the energies (as
documented in Table S4) and is in part responsible for their
slower convergence with the excitation classes. The effect of
this restriction becomes however negligible once we include
the X0-X8 excitation classes or multiple resonances in com-
bination with fewer classes. In Table IX, we further test the
effect of limiting the occupied-virtual orbital mixing in the
orbital optimization of the multi-resonance wave function by
applying a threshold TM = 0.2. We find that, at both geome-
tries, the energies of the S0 and S1 states raise by about 4–5
mHartree but that the excitation energies remain compatible
with the reference values.

TABLE IX. PSB2: VMC total and excitation energies computed with
an increasing number of excitation classes of one or two resonance
structures at the S0 B3LYP (BLA > 0) and S1 CASSCF (BLA < 0)
geometries.

Resonance Determinant S0 S1 ∆E
(N) (a.u.) (a.u.) (eV)

BLA > 0 geometry
1 X0–X1 (7) –* –* –*
1 X0–X3 (9) -30.2638(3) -30.0403(3) 6.08(1)
1 X0–X4 (10) -30.2649(3) -30.0437(3) 6.02(1)
1 X0–X5 (16) -30.2651(3) -30.0444(3) 6.01(1)
1 X0–X6 (18) -30.2651(3) -30.0437(3) 6.02(1)
1 X0–X7 (20) -30.2652(3) -30.0442(3) 6.01(1)
1 X0–X8 (24) -30.2656(3) -30.0449(3) 6.01(1)

1,2 X0–X1 (17) –* –* –*
1,2 X0–X3 (20) -30.2670(3) -30.0464(3) 6.00(1)
1,2† X0–X3 (20) -30.2616(3) -30.0412(3) 6.00(1)

1 All (36) -30.2664(3) -30.0458(3) 6.00(1)
BLA < 0 geometry

1,2 X0–X3 (20) -30.2176(3) -30.0512(3) 4.53(1)
1,2† X0–X3 (20) -30.2128(3) -30.0455(3) 4.55(1)

1 All (36) -30.2175(3) -30.0513(3) 4.52(1)
∗ The run results in delocalized optimized active orbitals.
† TM = 0.2 on the occupied-virtual orbital mixing.

B. PSB3

The construction of the excitation classes of the Res-1 and
Res-2 structures of PSB3 is explained in detail in the Method
Section whereas the construction for the Res-3 structure is de-
scribed in the SI. Having all excitation classes built, we can
progressively add them in the wave function as shown in Ta-
ble X. The reference energies are computed as an expansion
over all singles, doubles, and triples excitations expressed in
terms of the Res-1 orbitals, whose total weight at the SA-
CASSCF level is more than 99% for both states. Note that we
restrict the active orbital mixing in the orbital optimization as
for PSB2 to guarantee their locality upon optimization.

TABLE X. PSB3: VMC total and excitation energies computed with
an increasing number of excitation classes of one, two, and three
resonance structures at the S0 B3LYP (BLA > 0) and S1 CASSCF
(BLA < 0) geometries.

Resonance Determinant S0 S1 ∆E
(a.u.) (a.u.) (eV)

BLA > 0 geometry
1 X0–X2 (13) -42.7865(5) -42.6150(5) 4.67(2)
1 X0–X3 (16) -42.7980(5) -42.6262(5) 4.67(2)
1 X0–X4 (18) -42.8002(5) -42.6292(5) 4.65(2)
1 X0–X5 (36) -42.7989(5) -42.6359(5) 4.44(2)
1 X0–X6 (40) -42.8012(5) -42.6369(5) 4.47(2)
1 X0–X7 (48) -42.8017(5) -42.6382(5) 4.45(2)
1 X0–X8 (56) -42.8015(5) -42.6392(5) 4.42(2)

1,2 X0–X3 (41) -42.8029(5) -42.6396(5) 4.44(2)
1,2 X0–X4 (43) -42.8032(5) -42.6406(5) 4.42(2)
1,2 X0–X5 (79) -42.8041(5) -42.6412(5) 4.43(2)
1,2 X0–X6 (85) -42.8037(8) -42.6403(8) 4.45(3)
1,2 X0–X7 (93) -42.8041(5) -42.6410(5) 4.44(2)
1,2 X0–X8 (119) -42.8039(5) -42.6396(5) 4.47(2)

1,2,3 X0–X3 (66) -42.8045(5) -42.6431(5) 4.39(2)
1,2,3 † X0–X3 (66) -42.7973(5) -42.6352(5) 4.41(2)

Reference ‡ -42.8046(5) -42.6441(5) 4.37(2)
BLA < 0 geometry

1,2,3 X0–X3 (66) -42.7823(5) -42.6470(5) 3.68(2)
1,2,3 † X0–X3 (66) -42.7740(5) -42.6385(5) 3.69(2)

Reference ‡ -42.7823(5) -42.6468(5) 3.69(2)
† TM = 0.2 on the occupied-virtual orbital mixing.
‡ All singles, doubles, and triples with the Res-1 orbitals
(282 determinants)

Differently from the case of the PSB2, the convergence of
the excitation energy and the total energies of both states is
not achieved with by including the X0–X8 excitation classes
of one (Res-1) or two (Res-1 and Res-2) resonance structures.
While the ground-state energy is converged with a wave func-
tion expressed on the X0–X5 transitions of the Res-1 and Res-
2 structures (79 determinants), the excited-state energy needs
more configurations to reach its reference value. We stress
that the lack of convergence is here not due to the restriction
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on the mixing among the active orbitals in the wave function
optimization (see Table S11). Therefore, one needs to con-
struct and include additional excitation classes (X9, X10, etc.)
if one keeps the expansion over one or two resonance struc-
tures.

If we include also the remaining resonance structure (Res-
3) and add the corresponding excitation classes, we obtain
that the convergence of the energy of both states and, conse-
quently, of the excitation energy is reached by just including
the X0–X3 excitation classes of all three resonance structures
in the expansion. This wave function is compact and only
contains 66 determinants. The same multi-resonance expan-
sion is employed for the bond-inverted geometry and is found
to describe equally well both states and the excitation energy,
which are in agreement with the reference values. We can fur-
ther reduce the computational cost by applying TM = 0.2 in
the optimization of the wave function which leads to an in-
crease of the energies of both states by about 8–9 mHartree
but to a compatible excitation energy.

C. PSB4

The largest retinal model investigated in this work is PSB4
which has four dominant Lewis resonance structures as de-
picted in Figure 4. At the ground-state equilibrium geome-
try, the wave function of the π → π∗ excited state is dom-
inated by the Res-1 structure while the other resonances be-
come more important in the relaxation process. The analysis
of the domains, excitation classes, and weights in the localized
CASSCF wave functions for the four resonance structures is
included in the SI.

FIG. 4. PSB4: Lewis structures. The corresponding CAS(8,8) local-
ized active orbitals are reported in Figure S3.

Also for PSB4, we test the performance of the multi-
resonance wave function that includes the X0–X3 excitation
classes of all possible resonance structures and report the re-
sults in Table XI. To compute the reference energies, we con-
struct Jastrow-Slater wave functions with determinantal ex-
pansions over delocalized natural orbitals, which recover at
least 99% of the CASSCF weights of both states. At both
the equilibrium ground-state and the bond-inverted in-plane
geometry, the ground- and excited-state energies and the ex-
citation energy of the multi-resonance wave functions are in
very good agreement with the reference values. The resulting
wave function is very compact with a number of determinants
(159) which is lower by a factor of 2–3 at the two geometries

than the one used to compute the reference energies. Fur-
ther reduction of computational cost can be obtained by ap-
plying a TM = 0.2 in the orbital optimization step to limit the
occupied-virtual orbital mixing (the number of parameter to
optimize is reduced by almost a factor of 6 – see Table VI).
As in the case of PSB2 and PSB3, the resulting energy gap
remains compatible with the reference value.

TABLE XI. PSB4: VMC total and excitation energies computed with
a wave function including all resonance structures at the S0 B3LYP
(BLA > 0) and S1 CASSCF (BLA < 0) geometries.

Resonance Determinant S0 S1 ∆E
(a.u.) (a.u.) (eV)

BLA > 0 geometry
1,2,3,4 X0–X3 (159) -55.3454(5) -55.2128(5) 3.61(2)
1,2,3,4∗ X0–X3 (159) -55.3346(5) -55.2011(5) 3.63(2)

Reference† (433) -55.3441(5) -55.2123(5) 3.59(2)
BLA < 0 geometry

1,2,3,4 X0–X3 (159) -55.3237(5) -55.2149(5) 2.96(2)
1,2,3,4∗ X0–X3 (159) -55.3129(5) -55.2037(5) 2.97(2)

Reference† (485) -55.3238(5) -55.2160(5) 2.93(2)
∗ TM = 0.2 on the occupied-virtual orbital mixing
† ∼99% of CASSCF weights on delocalized natural orbitals.

D. Geometry Optimization

The wave function expanded on the X0–X3 excitation
classes of all possible resonance structures is a compact and
accurate wave function for the computation of the vertical ex-
citation energies of PSBn (n = 2,3,4) at two different in-plane
geometries. We now test its ability to describe the excited-
state relaxation by performing the out-of-plane geometry op-
timization of one retinal model chromophore, namely, the
PSB3. To reduce the computational cost, we apply TM = 0.2
in the orbital optimization and compare the resulting opti-
mized geometries against the ones obtained from a fully opti-
mized Jastrow-Slater wave function whose determinantal ex-
pansion over delocalized natural orbitals is truncated to re-
cover 99% of the total CASSCF weight of both states. We
also compare the VMC excited-state geometries to the opti-
mal CASPT2 ones.

The relevant optimized excited-state geometrical parame-
ters are shown in Table XII. The atoms are numbered and the
covalent bonds ordered as N1=C1–C2=C3–C4=C5. We find
that the optimized geometrical parameters obtained with the
local multi-resonance wave function differ by less than 3 mÅ
and 1o from the VMC reference values computed with the
same D basis set. This demonstrates the good performance of
our localized representation of the wave function also in the
optimization of the excited-state geometry. Finally, to com-
pare the VMC and MS-CASPT2 geometries, we employ the
triple- and quadruple-zeta (double-zeta for hydrogens) basis
sets, respectively, since VMC benefits from a somewhat faster
basis-set convergence of the structural parameters (see Table
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S15) and observe an excellent agreement between the equi-
librium structures obtained with the two methods with differ-
ences smaller than 7 mÅ and 2o.

TABLE XII. PSB3: VMC out-of-plane optimized geometries.

Method VMC CASPT2(6,6)
Reference∗ Local† Local†

Basis set D D T′ cc-pVQZ′

N1=C1 1.3800(2) 1.3801(7) 1.3738(4) 1.3740
C1–C2 1.4674(1) 1.4666(14) 1.4619(7) 1.4598
C2=C3 1.3981(2) 1.4009(7) 1.3934(3) 1.3951
C3–C4 1.4003(2) 1.4007(6) 1.3948(5) 1.4015
C4=C5 1.3823(1) 1.3811(9) 1.3720(4) 1.3787
BLA 0.0436(4) 0.0459(8) 0.0474(4) 0.0438
θ‡ 4.76(5) 4.48(5) 2.63(4) 1.8
γ# 72.20(4) 72.4(1) 73.56(4) 75.4

∗ ∼99% of CASSCF weights on delocalized natural orbitals.
† X0–X3 classes of all resonances and TM = 0.2
‡ θ =Dih(C1–C2=C3–C4).
# γ =180o−Dih(C2=C3–C4=C5).

E. DMC calculations

For the ground-state geometries (BLA > 0) of all mod-
els, we compute the DMC ground- and excited-state en-
ergies and the corresponding excitation energies using as
trial wave functions the fully optimized single and multi-
resonance local wave functions presented above.

As shown in Table XIII, we find that the DMC results
follow the behavior of the VMC ones (see Tables IX, X,
and XI). In particular, both total and excitation energies
are in very good agreement with the reference values if the
X0-X3 classes of all dominant Lewis resonance structures
are included in the determinantal component of the trial
wave function. This is however not the case if one employs
fewer resonance structures and the same small set of X0-
X3 excitations.

V. CONCLUSIONS

We have developed a novel class of compact multidetermi-
nantal Jastrow-Slater wave functions based on localized or-
bitals that can be progressively extended to higher quality and
accurately treat on an equal footing the ground and the ex-
cited states in QMC calculations. Since excited states may
in general be characterized by charge transfer, the orbitals to
correlate in the determinantal expansion cannot be selected
based on their spacial vicinity as we had done in our previ-
ous work on ground states. To establish a criterion to account
for the most important transitions in the excited state, we
borrowed the concept of orbital domains from local coupled-
cluster methods and applied it to the local orbitals in the active

TABLE XIII. PSBn: DMC total and excitation energies computed
with single and multi resonance local wave functions at the in-plane
S0 B3LYP equilibrium geometry.

Resonance Determinant S0 S1 ∆E
(a.u.) (a.u.) (eV)

PSB2
1 X0–X3 (9) -30.3347(3) -30.1169(3) 5.93(1)

1,2 X0–X3 (20) -30.3357(3) -30.1206(3) 5.85(1)
Reference∗ (36) -30.3360(3) -30.1208(3) 5.86(1)
PSB3

1 X0–X3 (16) -42.9010(5) -42.7377(5) 4.44(2)
1,2 X0–X3 (41) -42.9042(4) -42.7454(5) 4.32(2)

1,2,3 X0–X3 (66) -42.9037(4) -42.7470(4) 4.26(2)
Reference† (282) -42.9042(4) -42.7470(4) 4.28(2)
PSB4

1,2,3,4 X0–X3 (159) -55.4735(4) -55.3451(4) 3.49(2)
Reference‡ (433) -55.4739(5) -55.3466(5) 3.46(2)
∗ All CAS(4,4) determinants are included.
† All singles, doubles, and triples with the Res-1 orbitals
‡ ∼99% of CASSCF weights on delocalized natural orbitals.

space. For each doubly-occupied reference configuration, an
occupied orbital and the set of orbitals coupled to it by large
single-electron transitions are grouped in an orbital domain,
the dominant domains are identified, and the subsequent exci-
tations constructed within and from the union of the surviving
domains. Bonding-antibonding double excitations are always
included being the most important configurations after the ref-
erence(s) in the ground state. The resulting excitations are col-
lected into classes that are ordered in importance and can then
be systematically included in the determinantal component of
the Jastrow-Slater wave function.

To further enhance the description of the states of inter-
est (in particular, the excited states), we have also accounted
for the presence of multiple Lewis resonance structures in the
molecule. For a given representation of the delocalized or-
bitals in the active space, multiple set of equivalent local or-
bitals can be built corresponding to the different Lewis struc-
tures. These sets are no longer equivalent if we depart from
the complete expansion, as we do when using the concept of
domains, and each set may offer a better description of the dif-
ferent states in different parts of the potential energy surface.
We first verified that our scheme of constructing and classify-
ing the orbital domains and excitation classes is transferable
to all sets of local orbitals (resonance structure) and then con-
structed multiple-resonance Jastrow-Slater wave functions as
linear combinations of classes of excitations built from the do-
mains of all the different Lewis structures.

The method was demonstrated at the variational and diffu-
sion Monte Carlo level on the vertical excitation energies of
the π → π∗ state of the retinal protonated Schiff base model
chromophores, PSBn (n = 2,3,4), which represent a challeng-
ing system due to the strong intra-molecular charge-transfer
character of the transition. To test the flexibility of our wave
functions, we performed the calculations at two geometries
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with very different bond-length patterns and therefore bet-
ter described in terms of different dominant Lewis resonance
structures. We found that, while the use of one resonance
structure and a small expansion is sufficient in the smallest
PSB2 model, the convergence of the excited-state VMC en-
ergy with the number of excitation classes becomes increas-
ingly slower for the larger models. On the other hand, if one
uses a multi-resonance wave function expanded over all pos-
sible Lewis structures, few excitation classes (i.e. the refer-
ence(s), important singles, and bonding-antibonding doubles)
are needed to accurately describe the ground and excited states
of the PSBn, yielding total VMC energies in agreement with
the reference values obtained with large determinantal ex-
pansions. The same behavior is observed at the DMC level.
Importantly, the same set of excitation classes can be em-
ployed to describe both states successfully at the two differ-
ent geometries considered, whereas one would in general ob-
tain different determinantal expansions when truncating the
wave function expressed on delocalized orbitals as often done
in QMC calculations. We also employed this compact multi-
resonance wave function to determine the relaxed out-of-plane
excited-state geometry of PSB3 and obtained geometrical pa-
rameters in agreement with the VMC reference calculation.
Finally, we showed the additional benefit of the use of local
orbitals in the orbital optimization step, whose cost can be sig-
nificantly reduced by limiting the mixing of the occupied and
virtual orbitals based on spacial consideration without sacri-
ficing the quality of the excitation energy.

In summary, we have developed a successful procedure to
construct multi-resonance local Jastrow-Slater wave functions
that give a balanced description of the ground and the excited
states also in systems where distant orbitals are strongly cor-
related. The resulting expansion is compact and transferable
to different geometries without adjustments. For the largest
PSB4 model considered here, the size of the domains is still
growing but the expansion is already reduced by a factor of
2–3 as compared to the minimum number of determinants in
the delocalized-orbital basis, which is needed to achieve con-
verged total energies for both states. As the system grows fur-

ther, the spatially remote orbitals will become weakly corre-
lated and the size of the domains saturate (see Tables S28 and
S29 for PSB5 and PSB6, respectively), leading to further sig-
nificant gains over a calculations using delocalized orbitals. In
conclusion, the compactness and accuracy of the expansion,
its transferability to different geometries, and the reduction of
the orbital optimization cost are very promising features of
our novel multi-resonance local wave functions, offering a ro-
bust and affordable route to excited-state calculations of large
molecular systems in QMC.

SUPPORTING INFORMATION

The Supporting Information is available free of charge on
the ACS Publications website.

Analysis of orbital domains; effect of orbital optimization
on the VMC energies of multi-resonance local wave func-
tions; convergence study of the VMC total energies obtained
using a truncated expansion on delocalized natural orbitals
(with and without orbital optimization); VMC energies of
small CAS(2,2) wave functions; imaginary time-step and
basis-set convergence of the DMC total and excitation en-
ergies of PSB2; basis-set convergence of the out-of-plane
excited-state MS-CASPT2 optimal geometry of PSB3; XYZ
coordinates of all models at the various geometries used to
analyze the wave functions.
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[3] M. Schütz and H.-J. Werner, J. Chem. Phys. 114, 661 (2001).
[4] B. Bories, D. Maynau, and M.-L. Bonnet, J. Comput. Chem.

28, 632 (2007).
[5] F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130,

114108 (2009).
[6] F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131,

064103 (2009).
[7] S. Saebo and P. Pulay, Annu. Rev. Phys. Chem. 44, 213 (1993).
[8] P. Reinhardt, H. Zhang, J. Ma, and J.-P. Malrieu, J. Chem. Phys.

129, 164106 (2008).
[9] H. Zhang, J.-P. Malrieu, P. Reinhardt, and J. Ma, J. Chem. Phys.

132, 034108 (2010).
[10] C. Riplinger and F. Neese, J. Chem. Phys. 138, 034106 (2013).

[11] C. Riplinger, B. Sandhoefer, A. Hansen, and F. Neese, J. Chem.
Phys. 139, 134101 (2013).

[12] P. E. Maslen and M. Head-Gordon, Chemi. Phys. Lett. 283, 102
(1998).

[13] P. E. Maslen and M. Head-Gordon, J. Chem. Phys. 109, 7093
(1998).

[14] G. E. Scuseria and P. Y. Ayala, J. Chem. Phys. 111, 8330 (1999).
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