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Abstract. We prove that, given a planar bi-Lipschitz map u defined on the boundary of the

unit square, it is possible to extend it to a function v of the whole square, in such a way that

v is still bi-Lipschitz. In particular, denoting by L and L̃ the bi-Lipschitz constants of u and

v, with our construction one has L̃ ≤ CL4 (C being an explicit geometric constant). The same

result was proved in 1980 by Tukia (see [3]), using a completely different argument, but without

any estimate on the constant L̃. In particular, the function v can be taken either smooth or

(countably) piecewise affine.

1. Introduction

Given a set C ⊆ Rn and a function u : C → Rn, we say that u is bi-Lipschitz with constant

L (or, shortly, L bi-Lipschitz) if, for any x 6= y ∈ C, one has

1

L
|y − x| ≤ |u(y)− u(x)| ≤ L|y − x| . (1.1)

Consider the following very natural question. If u : C → Rn is bi-Lipschitz, is it true that there

exists an extension v : Rn → Rn which is still bi-Lipschitz? Notice that, roughly speaking, we

are asking whether the classical Kirszbraun Theorem holds replacing the Lipschitz condition

with the bi-Lipschitz one. It is easy to observe that the answer to our question is, in general,

negative. Indeed, let C be the unit sphere plus its center O and let u be a function sending the

sphere in itself via the identity, and O into some point out of the sphere. Then, it is clear that

no continuous extension of u to the whole unit ball can be one-to-one. In fact, the real obstacle

in this example is of topological nature. Therefore, one is led to concentrate on the case in which

C is the boundary of a simply connected set. In particular, we will focus on the case in which

the dimension is n = 2, and C = ∂D is the boundary of the unit square D = (−1/2, 1/2)2. In

this case, to the best of our knowledge, the following first positive result was found in 1980 ([3]).

Here, and in the following, by saying that a bi-Lipschitz map v : D → R2 is an extension of

u : ∂D → R2, we mean that the unique continuous extension of v to ∂D coincides with u.

Theorem 1.1 (Tukia). Let u : ∂D → R2 be an L bi-Lipschitz map. Then there exists an L̃ bi-

Lipschitz extension v : D → R2, L̃ depending only on L. In particular, v can be taken countably

piecewise affine (that is, D is a locally finite union of triangles on which v is affine).

Unfortunately, in the above result there is no explicit dependence of L̃ on L, due to the fact

that the existence of such L̃ is obtained by compactness arguments. On the other hand, it is

clear that in many situations one may need to have an explicit upper bound for L̃. In particular,

it would be interesting to understand whether the theorem may be true with L̃ = CL for some

geometric constant C—simple examples show that this is not possible with C ≤ 1. In this
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paper we prove that it is possible to bound L̃ with CL4. More precisely, our main result is the

following.

Theorem A (bi-Lipschitz extension, piecewise affine case). Let u : ∂D → R2 be an L bi-Lipschitz

and piecewise affine map. Then there exists a piecewise affine extension v : D → R2 which is

CL4 bi-Lipschitz, C being a purely geometric constant. Moreover, there exists also a smooth

extension v : D → R2 which is C ′L28/3 bi-Lipschitz.

We can also extend the result of Theorem A to general maps u. Notice that, if u is not

piecewise affine on ∂D, then of course it is not possible to find an extension v which is (finitely)

piecewise affine.

Theorem B (bi-Lipschitz extension, general case). Let u : ∂D → R2 be an L bi-Lipschitz map.

Then there exists an extension v : D → R2 which is C ′′L4 bi-Lipschitz, C ′′ being a purely geo-

metric constant.

Also in the general case, one may want the extending function v to be either smooth or

countably piecewise affine: we deal with this issue at the end of the paper, in Corollary 3.3 and

Remark 3.4. In particular, the constants C,C ′ and C ′′ of Theorems A and B can be bounded

as follows:

C = 460000 , C ′ = 50C7/3 , C ′′ = 256C .

Our proof of Theorem A is constructive and for this reason it is quite intricate. However,

the overall idea is simple and we try to keep it as clear as possible.

The plan of the paper is the following. In Subsection 1.1 we briefly describe the construction

that we will use to show Theorem A, and in Subsection 1.2 we fix some notation. Then, in

Section 2 we give the proof of Theorem A. This section contains almost the whole paper, and it is

subdivided into several subsections, which correspond to the different steps of the proof. Finally,

in Section 3 we show Theorem B, which follows from Theorem A thanks to an approximation

argument.

1.1. An overview of the proof of Theorem A. Let us briefly explain how the proof of

Theorem A works. Given a bi-Lipschitz function u : ∂D → R2, its image is the boundary ∂∆ of

a bounded Lipschitz domain ∆ ⊆ R2 (since u is piecewise affine, in particular ∆ is a polygon).

Then, the extension must be a bi-Lipschitz function v : D → ∆.

First of all (Step I) we determine a “central ball” “B, which is a suitable ball contained in ∆

and whose boundary touches the boundary of ∆ in some points A1, A2, . . . , AN , with N ≥ 2.

The image through v of the central part of the square D will eventually be contained inside this

central ball.

For any two consecutive points Ai, Ai+1 among those just described, we consider the part

of ∆ which is “beyond” the segment AiAi+1 (by construction, the interior of this segment lies

inside ∆). We call these regions “primary sectors”, and we give the formal definition and study

their main properties in Step II. It is to be observed that the set ∆ is the essentially disjoint



A PLANAR BI-LIPSCHITZ EXTENSION THEOREM 3

union of these primary sectors and of the “internal polygon” having the points Ai as vertices

(see Figure 2 for an example).

We start then by considering a given sector, with the aim of defining an extension of u which

is bi-Lipschitz between a suitable subset of the square D and this sector. In order to do so, we

first give a method (Step III) to partition a sector into triangles. Then, using this partition, for

any vertex P of the boundary of the sector we define a suitable piecewise affine path γ, which

starts from P and ends on a point P ′ on the segment AiAi+1 (Step IV). We also need a bound

on the lengths of these paths, found in Step V.

Then we can define our extension. Basically, the idea is the following. Take any point

P ∈ ∂D such that P := u(P ) is a vertex of ∂∆ inside our given sector. Denoting by O the

center of the square D, we send the first part of the segment PO of the square (say, a suitable

segment PP ′ ⊆ PO) onto the path γ found in Step IV, while the last part P ′O of PO is sent

onto the segment connecting P ′ with a special point O of the central ball “B (in most cases O

will be the center of “B). Unfortunately, this method does not work if we simply send PP ′ onto

γ at constant speed; instead, we have to carefully define speed functions for all the different

vertices P of the sector, and the speed function of any point will affect the speed functions of

the other points. This will be done in Step VI.

At this stage, we have already defined the extension v of u on many segments of the square,

thus it is easy to extend v so as to cover the whole primary sectors. To define formally this map,

and in particular to deal with the CL4 bi-Lipschitz property, is the content of Step VII. Finally,

in Step VIII, we put together all the maps for the different primary sectors and fill also the

“internal polygon”, finally checking the bi-Lipschitz property. The whole construction is done

in such a way that the resulting extending map v is piecewise affine. Hence, to conclude the

proof of Theorem A, we will only have (Step IX) to show the existence of a smooth extension v.

This will be obtained from the piecewise affine map thanks to a recent result by Mora-Corral

and the second author in [2], see Theorem 2.32.

1.2. Notation. In this short section, we briefly fix some notation that will be used throughout

the paper, and in particular in the proof of Theorem A, Section 2. We list here only the notation

which is common to all the different steps.

We call D = (−1/2, 1/2)2 the open unit square in R2, and O = (0, 0) its center. The function

u is a bi-Lipschitz function from ∂D to R2, and L is a bi-Lipschitz constant, according to (1.1).

The image u(∂D) is a Jordan curve in the plane, therefore it is the boundary of a bounded

open set, which we call ∆. Notice that an extension v as required by Theorems A and B must

necessarily be such that v(D) = ∆.

Given a set A ⊆ R2, we denote its closure by A. The points of D will be always denoted

by capital letters, such as A, B, P, Q and so on. On the other hand, points of ∆ will be always

denoted by bold capital letters, such as A, B, P , Q and similar. To shorten the notation and

help the reader, whenever we use the same letter for a point in ∂D and (in bold) for a point

in ∂∆, say P ∈ ∂D and P ∈ ∂∆, this always means that u(P ) = P . Similarly, whenever the
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same letter refers to a point P in D and (in bold) to a point P in ∆, this always means that

the extension v that we are constructing is done in such a way that v(P ) = P .

For any two points P, Q ∈ D, we call PQ and `(PQ) the closed segment connecting P and

Q and its length. In the same way, for any P , Q ∈ ∆, by PQ and by `
Ä
PQ
ä

we will denote

the closed segment joining P and Q and its length. Since ∆ is not, in general, a convex set, we

will use the notation PQ only if the segment PQ is contained in ∆.

For any P, Q ∈ ∂D, we call P̄Q the shortest closed path in ∂D connecting P and Q, and by

`(P̄Q) ∈ [0, 2] its length. Notice that P̄Q is well-defined unless P and Q are opposite points of

∂D. In that case, the length `(P̄Q) is still well-defined, being 2, while the notation P̄Q may refer

to any of the two minimizing paths (and we write P̄Q only after having specified which one).

Accordingly, given two points P and Q on ∂∆, we write P̄Q to denote the path u
Ä
P̄Q
ä
, which

is not necessarily the shortest path between P and Q in ∂∆. Observe that, if u is piecewise

affine on ∂D, then P̄Q is a piecewise affine path for any P and Q in ∂∆.

Given a point P ∈ R2 and some ρ > 0, we will call B(P, ρ) the open ball centered at P

with radius ρ. Given three noncollinear points P , Q and R, we will call P “QR ∈ (0, π) the

corresponding angle. Sometimes, for the ease of presentation, we will write the value of angles

in degrees, with the usual convention that π = 180◦.

Throughout our construction, we will extensively use the following concepts. The central

ball “B is introduced in Step I, while the sectors and the primary sectors are introduced in Step II.

Moreover, in Step III a partition of a sector into triangles is defined, where the triangles are

suitably partially ordered and each triangle has its exit side.

To be formally consistent, when not otherwise specified, we will always consider the 1-

dimensional objects (such as “paths”, “good paths”, “sides”. . . ) as closed, and the 2-dimensional

objects (such as “balls”, “sectors”, “triangles”. . . ) as open. As a consequence, whenever a set

will be “partitioned” into triangles, this will mean that it essentially coincides with the disjoint

union of the triangles. However, since all the maps that we will build will be continuous up to

the boundaries, there will actually never be any possibility of confusion about the constructions.

2. Proof of Theorem A

In this section, which is the most extensive and important part of the paper, we show

Theorem A. The proof is divided in several subsections, to distinguish the different main steps

of the construction.

2.1. Step I: Choice of a suitable “central ball” “B.

Our first step consists in determining a suitable ball, which will be called “central ball”,

whose interior is contained in ∆ and whose boundary touches the boundary ∂∆. Before starting,

let us briefly explain why we do so. Consider a very simple situation, i.e., when ∆ is convex.

In this case, the easiest way to build an extension u as required by Theorem A is first to select

a point O = v(O) ∈ ∆ having distance of order at least 1/L from ∂∆, and then to define the

obvious piecewise affine extension of u, that is, for any two consecutive vertices P, Q ∈ ∂D
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we send the (open) triangle OPQ onto the (open) triangle OPQ in the affine way. This very

coarse idea does not suit the general case, because in general ∆ can be very complicated and,

a priori, there is no reason why the triangle OPQ should be contained in ∆. Nevertheless,

our construction will be somehow reminiscent of this idea. In fact, we will select a suitable

point O = u(O) ∈ ∆ in such “central ball” and we will build the image of a triangle like OPQ

as a “triangular shape”, suitably defining the “sides” OP and OQ which will be, in general,

piecewise affine curves instead of straight lines. Thanks to the fact that the “central ball” is a

sufficiently big convex subset of ∆, in a neighborhood of O of order at least 1/L the construction

will be eventually carried out as in the convex case (in Step VIII).

The goal of this step is only to determine a suitable “central ball” “B. The actual point O

will be chosen only in Step VIII, and it will be in the interior of this ball—in fact, in most cases

O will be the center of “B.

Lemma 2.1. There exists an open ball “B ⊆ ∆ such that the intersection ∂“B ∩ ∂∆ consists of

N ≥ 2 points A1, A2, . . . , AN , taken in the anti-clockwise order on the circle ∂“B, and with the

property that ∂D is the union of the paths ˚�AiAi+1, with the usual convention N + 1 ≡ 1.

Remark 2.2. Before giving the proof of our lemma, some remarks are in order. First of all,

since the ball “B is contained in ∆, one has ∂∆ ∩ “B = ∅. As a consequence, the path ∂∆ meets

all the points Ai in the same order as ∂“B, hence also the points Ai ∈ ∂D are in the anti-

clockwise order (we assume without loss of generality that u is orientation preserving). Hence,

the statement is equivalent to saying that for each i, among the two injective paths connecting

Ai and Ai+1 on ∂D, the anti-clockwise one is shorter than the other.

In addition, notice that from the lemma one has two possibilities. If N = 2, then necessarily

`(A1A2) = 2, so that the two paths Ȧ1A2 and Ȧ2A1 have the same length. On the other hand, if

N ≥ 3, then it is immediate to observe that there must be two points Ai and Aj, not necessarily

consecutive, such that `
Ä
ĂiAj

ä
≥ 4/3. By the bi-Lipschitz property of u, this ensures that the

radius of “B is at least 2
3L , since the circle ∂“B contains two points having distance at least 4

3L .

Finally notice that, given a ball B contained in ∆ and such that ∂∆ ∩ ∂B contains at least

two points, there is a simple method to check whether “B = B satisfies all the requirements of

Lemma 2.1. Indeed, this is easily seen to be true unless there is an arc of length 2 in ∂D whose

image does not contain any point of ∂∆ ∩ ∂B.

Proof of Lemma 2.1. First of all, we define the symmetric set

S =
{

(A,B) ∈ ∂∆× ∂∆ : A 6= B and ∃ a ball B ⊆ ∆ s.t. {A,B} ⊆ ∂B ∩ ∂∆
}
.

This set is nonempty, since for instance the biggest ball contained inside ∆ contains at least two

points of ∂∆ in its boundary. Since for any δ > 0 the set¶
(A,B) ∈ S : `(ĀB) ≥ δ

©
is compact, we can select a pair (A,B) maximizing `(ĀB). We then distinguish two cases. If

`(ĀB) = 2, then by Remark 2.2 any ball “B ⊆ ∆ such that {A,B} ⊆ ∂“B ∩ ∂∆ satisfies our

claim.
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Suppose then that `(ĀB) < 2. Since by definition there are balls B ⊆ ∆ such that {A,B} ⊆
∂B ∩ ∂∆, we let “B be one of such balls maximizing the radius. We will conclude the thesis by

checking that “B satisfies all the requirements. In particular, we will make use of the following

Claim . There is a point P ∈ ∂“B ∩ ∂∆ \ ĀB.

Let us first observe that the thesis readily follows from this claim; then we will show its

validity. In fact, let P be a point in ∂“B ∩ ∂∆ \ ĀB, and consider the three points A, B and

P in ∂D and the corresponding paths ĀB, ĀP and B̄P . Since P 6∈ ĀB by construction, by

the maximality of `(ĀB) we conclude that ĀP does not contain B, and similarly B̄P does not

contain A. Thus, ∂D is the (essentially disjoint) union of the three paths ĀB, ĀP and B̄P . But

then, if we take any path of length 2 in ∂D, this intersects at least one between A, B and P .

Thanks to the last observation of Remark 2.2, this shows the thesis.

“B
ΓΓ̃

B′

B

A

A′

Figure 1. Geometric situation for the Claim in the proof of Lemma 2.1.

Let us now prove the claim. Call, as in Figure 1, A′ and B′ two points of ∂∆ sufficiently

close to A and B respectively, so that Ȧ′B′ ⊇ ĀB (here we use the fact that `(ĀB) < 2).

Let now Γ be the open path connecting A and B obtained as the union of the two radii of “B
passing through A and B; moreover, let Γ̃ be another open path connecting A and B inside “B,

close to Γ but contained out of the closed subset of ∆, coloured in the figure, having ĀB ∪ Γ

as boundary. For any Q ∈ Γ̃, consider a point R ∈ ∂∆ minimizing `(QR). By construction, R

cannot belong to the open path ĀB; moreover, if we assume that the claim is false, and if Γ̃

has been chosen sufficiently close to Γ, then by continuity R must belong either to ĂA′ or to

B̆B′. Of course, if Q ∈ Γ̃ is close to A (resp. B), then so is R. Therefore, by continuity, there

exists some Q ∈ Γ̃ for which there are two points RA and RB minimizing the length `(QR)

within ∂∆, with RA ∈ ĂA′ and RB ∈ B̆B′. Let then B′ be the ball centered in Q and with

radius `(QRA). By definition, this ball is contained inside ∆, thus (RA,RB) ∈ S. Moreover,
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since both RA and RB belong to Ȧ′B′, one has ¸�RARB ⊇ ĀB; hence `(˚�RARB) ≥ `(ĀB). This

gives a contradiction with the maximality of `(ĀB), unless RA = A and RB = B. But also in

this case we have a contradiction, because B′ is a ball contained in ∆, having A and B in its

boundary, and with radius strictly bigger than that of “B. This shows the validity of the Claim,

thus concluding the proof. �

2.2. Step II: Definition and first properties of the “sectors” and of the “primary

sectors”.

In this step, we will give the definition of “sectors” of ∆, we will study their main properties,

and we will call some of them “primary sectors”.

We first need to fix some further notation. Recall that u is a finitely piecewise affine

map from ∂D onto ∂∆, hence ∂D is an essentially disjoint union of segments on each of those

u is affine. We will then call vertex on ∂D each extreme point of any of these segments.

Therefore, the four corners of ∂D are of course vertices, but there are usually many more

vertices. Correspondingly, we call vertex on ∂∆ the image of each vertex on ∂D. Thus, all the

points of ∂∆ which are “vertices” in the usual sense of the polygon (i.e., corners), are clearly

also vertices in our notation. However, there may be also other vertices which are not corners,

hence which are in the interior of some segment contained in ∂∆. We will also call side in ∂D
or in ∂∆ any closed segment connecting two consecutive vertices on ∂D or on ∂∆. Hence, some

of the segments which are sides of ∂∆ in the sense of polygons are in fact sides according to

our notation, but there might be also some segments contained in ∂∆ which are not sides, but

finite unions of sides. Finally, notice that it is admissible to add (finitely many!) new vertices to

∂D—and then correspondingly to ∂∆—or vice versa. This means that we will possibly decide to

consider some particular side as a union of two or more sides, thus increasing the total number

of vertices: this is possible since of course u is affine on each of those “new sides”.

Remark 2.3. As an immediate application of this possibility of adding a finite set of new

vertices, we will assume without loss of generality that for any two consecutive vertices P and

Q in D, one always has P “OQ ≤ 1/(60L). Moreover, we will also assume that the points

A1, A2, . . . , AN of Step I are all vertices of ∂∆.

Definition 2.4. Let A and B be two vertices in ∂∆ such that the open segment AB is entirely

contained in ∆. Let moreover ĀB be, as usual, the image under u of the shortest path connecting

A and B on ∂D (or of a given one of the two injective paths, if A and B are opposite). We will

call sector between A and B, and denote it as S(AB), the open subset of ∆ enclosed by the

Jordan curve AB ∪ ĀB.

Remark 2.5. It is useful to notice what follows. Given four vertices A, B, C, D ∈ ∂∆ such

that C, D ∈ ĀB, we have C̄D ⊆ ĀB, unless possibly if A and B are opposite points of ∂D
and {A,B} = {C,D}. Moreover, if both the open segments AB and CD lie inside ∆, then one

has

S(CD) ⊆ S(AB) .
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We observe now a very simple property, which will play a crucial role in our future con-

struction, namely that the length of a shortest path in ∂D can be bounded by the length of the

corresponding segment in ∆.

Lemma 2.6. Let P , Q be two points in ∂∆ such that the segment PQ is contained in ∆. Then

one has

`
Ä
P̄Q
ä
≤ 2L `(PQ) . (2.1)

Proof. The inequality simply comes from the Lipschitz property of u, and from the fact that D
is a square. Indeed,

`
Ä
P̄Q
ä
≤ 2 `(PQ) ≤ 2L `(PQ) .

�

Remark 2.7. We observe that, of course, the estimate (2.1) holds true because P̄Q is the

shortest path between P and Q in ∂D (however, this does not necessarily imply that P̄Q is the

shortest path between P and Q in ∂∆). The validity of the estimate (2.1) is the reason why

we had to perform the construction of Step I so as to find points Aj on ∂∆ such that each path˚�AiAi+1 does not pass through the other points Aj.

We can now define the “primary sectors”, which are the sectors between the consecutive

points Ai given by Lemma 2.1.

Definition 2.8. We call each of the sectors S(AiAi+1) primary sector, the Aj’s being the points

obtained by Lemma 2.1.

A2

A4

A3

A1

Figure 2. A set ∆ with four (coloured) primary sectors.

Notice that the above definition makes sense, because the points Ai are all on the boundary

of “B and “B does not intersect ∂∆, and thus the open segments AiAi+1 are entirely contained
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in ∆. Moreover, by the claim of Lemma 2.1 it follows that the sectors S(AiAi+1) are pairwise

disjoint. The set ∆ is thus the essentially disjoint union of the sectors S(AiAi+1) and of the

polygon whose vertices are A1, A2, . . .AN , as Figure 2 illustrates.

2.3. Step III: Partition of a sector into triangles.

In view of the preceding steps, we aim to extend the function u in order to cover a whole

given sector. This extension of the function u, which is the main part of the proof, will be

quite delicate and long, being the scope of the Steps III–VII. Later on, in Step VIII, we will use

this result to cover all the primary sectors and we also will have to take care of the remaining

polygon. In this step, we describe a method to partition a given sector into triangles. Let us

then start with a technical definition.

Definition 2.9. Let S(AB) be a sector, and let P , Q and R be three points in ĀB such that

the triangle PQR is not degenerate and is contained in ∆. We say that PQR is an admissible

triangle if each of its sides has interior entirely contained either in ∂∆, or in ∆. If PQR is an

admissible triangle, we say that PR is its exit side if P̄R = P̄Q ∪ Q̄R.

1

B

A

2

3

5
4

Figure 3. Some (admissible or not) triangles in a sector.

Figure 3 shows a sector S(AB), drawn in black, with five numbered triangles, having dotted

sides. Triangles 1 and 3 are not admissible because they contain an open side which is neither

all contained in ∂∆, nor all in ∆, in particular triangle 1 has an open side which is half in ∂∆

and half in ∆, while triangle 3 has an open side which is entirely contained in ∆ except for a

point. On the other hand, triangles 2, 4 and 5 are admissible, and an arrow indicates the exit

side for each of them.
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Remark 2.10. It is important to observe that each admissible triangle has exactly one exit side.

As the figure shows, an admissible triangle can have all the three sides inside ∆, as triangle 2,

or two, as triangle 5, or just one, as triangle 4. In any case, the exit side is always in ∆.

It is also useful to understand the reason for the choice of the name. Consider a point

T ∈ P̄R, with PR being the exit side of the admissible triangle PQR, and consider the segment

TO which connects T = u−1(T ) to the center O of the square D. If v : D → ∆ is an extension

as required by Theorem A, then the image of the open segment TO under v must be an open

path inside ∆ which connects T to O. If O does not belong to the sector S(PQ), then this path

must clearly leave the triangle PQR through the exit side PR.

We can now state and prove the main result of this step.

Lemma 2.11. Let S(AB) be a sector. Up to possibly adding new vertices in the sense of

Remark 2.3, there exists a partition of S(AB) into a finite number of admissible triangles such

that:

a) the vertices in ĀB are the vertices of the triangles of the partition,

b) for each triangle PQR of the partition, denoting by PR its exit side, the orthogonal

projection of Q on the straight line through PR lies in the segment PR (equivalently,

the angles P “RQ and R“PQ are at most π/2).

In the above claim, by “partition of the sector into triangles” we mean that the sector

is essentially the disjoint union of the triangles, and every two different triangles have either

disjoint closures, or a common side, or a common vertex.

To show this result, it will be convenient to associate to any possible sector a number, which

we will call “weight”.

Definition 2.12. Let S(AB) be a sector, and for any point P ∈ ĀB different from A and

B let us call P⊥ the orthogonal projection of P onto the straight line through AB. We will

say that AB sees P if P⊥ belongs to the segment AB and the interior of the segment PP⊥

is entirely contained either in ∆ or in ∂∆. Let now ω be the number of sides of the path ĀB.

We will say that the weight of the sector S(AB) is ω if AB sees at least a vertex P in ĀB.

Otherwise, we will say that weight of S(AB) is ω + 1
2 .

In other words, the weight of any sector is an integer or a half-integer corresponding to the

number of sides of the sector, augmented of a “penalty” 1/2 in case the segment AB does not

see any vertex of ĀB. For instance, Figure 4 shows some simple sectors and the corresponding

weights. Notice that the last sector has a non-integer weight because AB does not see the

vertex V , since the segment V V ⊥ does not entirely lie inside ∆. We now show a simple

technical lemma, and then pass to the proof of Lemma 2.11.

Lemma 2.13. If the sector S(AB) has a non-integer weight, then there exists a side A+B−

in ĀB such that AB sees only points of the side A+B−.

Proof. First, notice that the property that we are going to show appears evident from the last

three examples of Figure 4.
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V ⊥

A

ω = 2 ω = 2 ω = 2.5 ω = 3.5 ω = 6.5

B

A

B

A

B

A

B

A

B

V

Figure 4. Some simple sectors and their weights.

Let us now pass to the proof. For any point D in the open segment AB, there exists exactly

one point C ∈ ĀB such that AB sees C and C⊥ = D. This point is simply obtained by taking

the half-line orthogonal to AB, starting from D and going inside the sector: C is the first point

of this half-line which belongs to ∂∆, and in particular it belongs to ĀB by construction.

The proof is then concluded once we show that, if the sector has non-integer weight, then

all such points C are on a same side of ĀB. Indeed, by definition of side, if it were not so there

would clearly be some such C which is a vertex, contradicting the assumption about the weight

of the sector.

�

Proof of Lemma 2.11. We will show the result by induction on the (half-integer) weight of the

sector.

If S(AB) has weight 2, which is the least possible weight, then the two sides of the sector

must be AC and CB for a vertex C. Moreover, AB sees C, because otherwise the weight

would be 2.5. Hence, the sector coincides with the triangle ABC, which is a (trivial) partition

as required.

Let us now consider a sector of weight ω > 2, and assume by induction that we already know

the validity of our claim for all the sectors of weight less than ω. In the proof, we distinguish

three cases.

Case 1. ω ∈ N.

In this case, there are by definition some vertices which are seen by AB. Among these

vertices, let us call C one of those which are closest to the segment AB. Let us momentarily

assume that neither AC nor BC is entirely contained in ∂∆. Then, by the minimality property

of C, the open segments AC and BC lie entirely in ∆, as depicted in Figure 5 (left). Hence, one

can consider the sectors S(AC) and S(BC), as ensured by Remark 2.5. Moreover, the weights

of both S(AC) and S(BC) are of course strictly less than ω, so by inductive assumption we

know that it is possible to find a suitable partition into triangles for both the sectors S(AC)

and S(BC). Finally, since by construction the sectors S(AC) and S(BC) are disjoint, and

the union of them with the triangle ABC is the whole sector S(AB), putting together the two

decompositions and the triangle ABC we get the desired partition of S(AB).



12 SARA DANERI AND ALDO PRATELLI

Let us now consider the possibility that AC ⊆ ∂∆ (if, instead, BC ⊆ ∂∆, then the

completely symmetric argument clearly works). If it is so, we can anyway repeat almost exactly

the same argument as before. In fact, the open segment BC is entirely contained in ∆, again

by the minimality property of C and by the fact that ω > 2. Moreover, the sector S(BC) has

weight strictly less than ω, so by induction we can find a good partition of S(BC), and adding

the triangle ABC we get the desired partition of S(AB).

C

A

C

B

A

C

B

A

B

Figure 5. The three possible cases in Lemma 2.11.

We pass now to the case when ω 6∈ N, and call A+B− the side given by Lemma 2.13, with

A, A+, B−, B in anticlockwise order.

Case 2. ω 6∈ N, A+ 6= A, B− 6= B.

In this case, we can use the same idea of Case 1 with a slight modification. In fact, define

C ∈ A+B− as the point such that C⊥ is the middle point of the segment AB (this point is

well-defined as shown in the proof of Lemma 2.13). Again, by definition and by Lemma 2.13 we

have that the open segments AC and BC are in ∆, see Figure 5 (center).

Let us then decide that the point C is a new vertex of ∂∆. This means that from now on

we consider the point C as a vertex, and consequently we stop considering A+B− as a side

of ∂∆, instead, we think of it as the union of the two sides A+C and CB−. However, notice

carefully that this choice modifies the weight of S(AB)! In fact, the number of sides of S(AB)

is increased by 1, and since AB sees C by construction, the new weight of S(AB) is ω+ 1
2 ∈ N.

We can now argue as in Case 1. In fact, again the sector S(AB) is the union of the triangle

ABC with the two sectors S(AC) and S(BC), so it is enough to put together the triangle

ABC and the two partitions given by the inductive assumption applied on the sectors S(AC)

and S(BC). To do so, we have of course to be sure that the weight of both sectors is strictly less

than the original weight of S(AB), that is, ω (and not ω+ 1
2 !). This is clear by the assumption

that A+ 6= A and B− 6= B, since then the side A+B− is neither the first nor the last of the

path ĀB, and thus the weights of both sectors are at most ω − 1.
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Case 3. ω 6∈ N and A+ = A or B− = B.

By symmetry, let us assume that A+ = A. In this case, we cannot argue exactly as in

Case 2, because if we did so the sector S(BC) might have weight either ω or ω − 1
2 , and in the

first case we could not use the inductive hypothesis.

Anyway, it is enough to make a slight modification to the argument of Case 2. Define C,

as in Figure 5 (right), the point of AB− such that BC is orthogonal to AB−, so that clearly

the open segment BC lies inside ∆. Let us now decide, exactly as in Case 2, that the point C

is from now on a vertex, thus changing the weight of S(AB) from ω to ω + 1
2 .

By construction, the segment AB sees the point C, and the sector S(AB) is the union

of the sector S(BC) and of the triangle ABC. Hence, we conclude exactly as in the other

cases if we can use the inductive assumption on the sector S(BC). Notice that the number of

sides of S(BC) equals exactly the original number of sides of S(AB), that is, ω− 1
2 . Hence, in

principle, the weight of S(BC) could be either ω − 1
2 or ω, as observed before. But in fact, by

our definition of C, we have that the segment BC sees the vertex B−, so that the actual weight

of S(BC) is ω− 1
2 , hence strictly less than ω, and then we can use the inductive assumption. �

To give some examples, let us briefly consider the three cases drawn in Figure 5. In the left

case, the weight of S(AB) was ω = 8, and the weights of the sectors S(AC) and S(BC) are

both 4. In the central case, the weight of S(AB) was ω = 5.5, then it becomes 6 because we

add the new vertex C, and the weights of the sectors S(AC) and S(BC) are respectively 3 and

3.5. Finally, in the right case, the weight of S(AB) was ω = 7.5, it becomes 8 as we add C,

and the weight of the sector S(BC) is 7.

An explicit example of a sector with a partition into triangles done according with the

construction of Lemma 2.11 can be seen in Figure 6.

We conclude this step by setting a natural partial order on the triangles of the partition

given by Lemma 2.11 and by adding some remarks and a last definition.

Definition 2.14. Let S(AB) be a sector, and consider a partition satisfying the properties of

Lemma 2.11. We define a partial order ≤ between the triangles of the partition as the partial

order induced by letting PQR ≤ STU if the exit side of PQR is one of the sides of STU .

Equivalently, let PQR and STU be two triangles of the partition, SU being the exit side of the

latter. Then one has PQR ≤ STU if and only if the points P , Q and R belong to the path

S̄U .

Remark 2.15. Notice that the relation defined above admits as greatest element the unique

triangle having AB as its exit side. Moreover, each triangle T except the maximizer has a

unique successor.

We remark also that, since the triangles are finitely many, in all the future constructions

we will always be allowed to consider a single triangle of the partition and to assume that the

construction has been done in all the triangles which are smaller in the sense of the order.
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P

T10
T6

T7

T8
T9

T2

A

B

T1

Figure 6. Partition of a sector into triangles, and the natural sequence of tri-

angles related to some P .

Definition 2.16. Let S(AB) be a sector subdivided into triangles according to Lemma 2.11,

and consider a point P ∈ ĀB. We will call natural sequence of triangles related to P the

sequence
Ä
T 1, T 2, . . . , T N

ä
of triangles of the partition satisfying the following requirements:

• T 1 is the maximal triangle containing P (maximality is intended with respect to ≤),

• T N is the triangle having AB as its exit side,

• T i+1 is the successor of T i for all 1 ≤ i ≤ N − 1.

It is immediate, thanks to the above remarks, to observe that this sequence is univoquely

determined. Figure 6 shows a sector subdivided into triangles and a point P with the related

natural sequence of triangles
Ä
T 1, . . . , T 10

ä
.

2.4. Step IV: Definition of the paths inside a sector.

In this step we define non-intersecting piecewise affine paths starting from any vertex P ∈
ĀB and ending on AB, where S(AB) is a given sector. This is the most important and delicate

point of our construction. The goal of this step is to provide the “first part” of the piecewise

affine path from a vertex P to the center O which will eventually be the image of PO under v;

namely, the part which is inside the primary sector S(AiAi+1) to which P belongs. Of course,

to obtain the bi-Lipschitz property for the function v, we have to take care that all the paths

starting from different points P 6= Q do not become neither too far nor too close to each other.

We can now give a simple definition and then state and prove the result of this step.

Definition 2.17. Let S(AB) be a sector, and let P ∈ ĀB. Let moreover
Ä
T 1, T 2, . . . , T N

ä
be the natural sequence of triangles related to P , according to Definition 2.16. We will call good



A PLANAR BI-LIPSCHITZ EXTENSION THEOREM 15

path corresponding to P any piecewise affine path PP 1P 2 · · ·PN such that each P i belongs

to the interior of the exit side of the triangle T i (in particular, PN belongs to the interior of

AB). We will denote for brevity the good path PP 1P 2 · · ·PN also as ṖPN (this does not

lead to confusion with the already defined notation since P j does not belong to ∂∆ for j > 0),

and more generally, for any 1 ≤ i < j ≤ N , we will denote by Ṗ iP j the piecewise affine path

P iP i+1 . . .P j. Moreover, we set P 0 ≡ P for consistency of notation. Notice that N depends

on P .

Figure 7 shows a sector S(AB) subdivided into triangles as in Lemma 2.11 and shows two

good paths corresponding to the points P and Q.

P 6

Q

Q2

Q1

E

C

D

P

P 1

P 3 P 4

P 2 P 5
P 7

Q3

B

A

Figure 7. A sector with two good paths corresponding to P and Q.

Lemma 2.18. Let S(AB) be a sector. Then there exist good paths PP 1P 2 · · ·PN corresponding

to each vertex P of ĀB, with N = N(P ), satisfying the following properties:

(i) for any P and for any 1 ≤ i ≤ N(P ), the segment P i−1P i makes an angle of at

least arcsin
Ä

1
8L2

ä
with the side of T i to which P i−1 belongs, and an angle of at least

π/12 = 15◦ with the exit side of T i;

(ii) for any P , `
Ä
ṖPN

ä
= `(PP 1) + `(P 1P 2) + · · ·+ `(PN−1PN ) ≤ 4 `

Ä
ĀB
ä

;

(iii) for any P , Q, if for some 0 ≤ i ≤ N(P ) and 0 ≤ j ≤ N(Q) one has that P i and Qj

belong to the same exit side of some triangle, then

`
Ä
P̄Q
ä

10L
≤ `
Ä
P iQj

ä
≤ `
Ä
P̄Q
ä
,

and moreover, if i < N(P ), then

`
Ä
P i+1Qj+1

ä
≤ `
Ä
P iQj

ä
;

(iv) the piecewise affine paths PP 1P 2 · · ·PN are pairwise disjoint .
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For the sake of clarity, let us briefly discuss the meaning of the requirements of Lemma 2.18,

having in mind the example of Figure 7. Condition (i), considered for the point P and with

i = 3 (so that T i = CDE) means that

sin
(
P 3
”P 2D

)
≥ 1

8L2
, sin

(
P 3
”P 2E

)
≥ 1

8L2
, P 2

”P 3C ≥
π

12
, P 2

”P 3E ≥
π

12
.

Condition (ii) just means that `
Ä
P̆P 7

ä
≤ 4 `

Ä
ĀB
ä
, and similarly, `

Ä
Q̆Q3

ä
≤ 4 `

Ä
ĀB
ä
. Condi-

tion (iii) ensures that

`
Ä
P̄Q
ä

10L
≤ `
Ä
P 7Q3

ä
≤ `
Ä
P 6Q2

ä
≤ `
Ä
P̄Q
ä
.

In particular, concerning the second half of (iii), notice that by construction if P i and Qj

belong to the same exit side of a triangle, then also the points P i+1 and Qj+1 belong to the

same exit side of a triangle and so on. Hence, the second half of (iii) is saying that the function

l 7→ `
Ä
P i+lQj+l

ä
is a decreasing function of l for 0 ≤ l ≤ N(P )− i = N(Q)− j.

Finally, condition (iv) illustrates the main idea of the construction of this step, that is,

the piecewise affine paths starting from the curve ĀB and arriving to the segment AB do not

intersect each other, as in Figure 7.

Proof of Lemma 2.18. We will show the thesis arguing by induction on the weight of the sector

S(AB), as in Lemma 2.11. In fact, instead of proving that the thesis is true for sectors of weight

2 (recall that this is the minimal possible weight) and then giving an inductive argument, we

will prove everything at once. In other words, we take a sector S(AB) and we assume that

either S(AB) has weight 2, or the result has been already shown for all the sectors of weight

less than the weight of S(AB).

Let us call C ∈ ĀB the point such that ABC is the greatest triangle of the partition of

S(AB) with the order of Definition 2.14.

Consider now the segment BC, whose interior lies entirely either inside ∆ or on ∂∆. In the

first case, S(BC) is a sector of weight strictly less than that of S(AB). Then, by the inductive

assumption, there are piecewise affine good paths PP 1 · · ·PN−1 for each vertex P ∈ B̄C, with

PN−1 ∈ BC, satisfying conditions (i)–(iv) with S(BC) in place of S(AB). We have then to

connect the point PN−1 on BC with the segment AB. In the second case, i.e., if BC ⊆ ∂∆, and

hence B̄C = BC, we have to connect all the vertices contained in BC (which, by construction,

are necessarily only B and C!) with the segment AB. The same considerations hold for AC

in place of BC.

The construction of the segments between AC ∪BC and AB will be divided, for clarity,

in several parts.

Part 1. Definition of C1.

By definition, C is a vertex of ∂∆. Hence, the first thing to do is to define the good path

corresponding to C, that is a suitable segment CC1 with C1 in the interior of AB. Let us first

define two points C+ and C−, on the straight line containing AB, as in Figure 8. These two
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points are defined by

`(BC+) = `(BC) , `(AC−) = `(AC) .

In the figure, C± both belong to the segment AB, but of course it may even happen that C+

stays above A, and/or that C− stays below B. Let us now give a tentative definition of C1 by

letting ‹C1 be the point of AB such that

`
Ä
ĀC
ä

`
Ä
ĀB
ä =

`(A‹C1)

`
Ä
AB
ä . (2.2)

Taking C1 = ‹C1 would be a good choice from many points of view, but unfortunately one would

eventually obtain estimates weaker than (i)–(iv).

Instead, we give the following definition: we let C1 be the point of the segment C−C+

which is closest to ‹C1. In other words, we can say that we set C1 = ‹C1 if ‹C1 belongs to

C+C−, while otherwise we set C1 = C+ (resp. C1 = C−) if ‹C1 is above C+ (resp. below

C−).

C1C

A

B

C+

C−

Figure 8. The triangle ABC with the points C+, C− and C1.

Notice that C1 belongs to AB, since so does ‹C1 thanks to (2.2). It is also important to

underline that

`
Ä
ĀC
ä
≤ 2L `

Ä
AC1

ä
, `

Ä
B̄C
ä
≤ 2L `

Ä
BC1

ä
. (2.3)

By symmetry, let us only show the first inequality. Recall that by (2.1) we know

`
Ä
ĀC
ä
≤ 2L `

Ä
AC
ä
, `

Ä
ĀB
ä
≤ 2L `

Ä
AB
ä
.

As a consequence, either C1 = C−, and then

`
Ä
AC1

ä
= `
Ä
AC−

ä
= `
Ä
AC
ä
≥
`
Ä
ĀC
ä

2L
,

or `
Ä
AC1

ä
≥ `
Ä
A‹C1

ä
, and then by (2.2)

`
Ä
AC1

ä
≥ `
Ä
A‹C1

ä
= `
Ä
ĀC
ä `ÄAB

ä
`
Ä
ĀB
ä ≥ `

Ä
ĀC
ä

2L
.
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Recall now that, to show the thesis, all we have to do is to take each point D ≡ PN−1 ∈
AC ∪BC corresponding to some vertex P ∈ ĀB and to find a suitable corresponding point

D′ ∈ AB, in such a way that the requirements (i)–(iv) are satisfied. Having defined C1, we

have then to send the points PN−1 in AC to AC1 and those in BC to BC1.

We claim that the two segments can be considered independently, that is, we can limit

ourselves to describe how to send BC on BC1 and check that the properties (i)–(iv) hold for

vertices of B̄C. Indeed, if we do so, by symmetry the same definitions can be repeated for AC,

and the properties (i)–(iv) hold separately for vertices of B̄C and ĀC. The only thing which

would be missing, then, would be to check the validity of (iii) for two vertices P ∈ ĀC and

Q ∈ B̄C. Moreover, this will be trivially true, because since C belongs to both the segments

AC and BC, then it is enough to use (iii) once with P and C, and once with C and Q, recalling

that clearly

`
Ä
P̄Q
ä

= `
Ä
P̄C
ä

+ `
Ä
C̄Q
ä
, `

Ä
P iQj

ä
= `
Ä
P iC1

ä
+ `
Ä
C1Qj

ä
.

For this reason, from now on we will concentrate ourselves only on the segment BC. We will

call D the point of BC which equals PN−1 for a generic P ∈ B̄C, as discussed at the beginning

of the proof.

Part 2. Construction for the case C1 = C+.

In this case, for any D ∈ BC we set its image as the point D′ ∈ BC1 for which `(BD) =

`(BD′). Then in particular all the segments DD′ are parallel to CC1. Let us now check the

validity of (i)–(iii), since (iv) is trivially true.

We start with (i). Given D ∈ BC, and D′ its image, call β = AB̂C ∈ (0, π/2]. Then one

has

D”D′B = D′D̂B =
π − β

2
, D”D′A = D′D̂C =

π + β

2
,

thus (i) holds true.

Let us now consider (ii). Given a point D ∈ BC, by construction one has

`
Ä
DD′

ä
≤ `
Ä
CC1

ä
≤ `
Ä
AC
ä
≤ `
Ä
ĀC
ä
. (2.4)

We can then consider separately two cases. If BC ⊆ ∂∆, then one simply has D ≡ P and

D′ ≡ PN , so clearly

`
Ä
ṖPN

ä
= `
Ä
DD′

ä
≤ `
Ä
ĀC
ä
≤ `
Ä
ĀB
ä

(actually, the unique vertices in BC are B and C, in this case). On the other hand, if the open

segment BC lies inside ∆, then one has

`
Ä¸�PPN−1

ä
≤ 4`

Ä
B̄C
ä

(2.5)

by inductive assumption, and thus (2.4) and (2.5) give

`
Ä
ṖPN

ä
= `
Ä¸�PPN−1

ä
+ `
Ä
DD′

ä
≤ 4`

Ä
B̄C
ä

+ `
Ä
ĀC
ä
≤ 4`

Ä
ĀB
ä
,

and hence also (ii) is done.
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It remains now to consider (iii). Thus we take two points D ≡ PN−1 and E ≡ QN ′−1 on

BC, denoting for brevity N = N(P ) and N ′ = N(Q). If BC ⊆ ∂∆, then D ≡ P and E ≡ Q

(actually, P and Q must coincide with B and C), so by the Lipschitz property of u we have

`
Ä
P̄Q
ä

L
≤ `
Ä
P̄Q
ä

= `
Ä
DE

ä
= `
Ä
D′E′

ä
,

and then (iii) is trivially true. Otherwise, if the open segment BC lies in ∆, then `
Ä
D′E′

ä
=

`
Ä
DE

ä
, so (iii) is true by inductive assumption.

To conclude the proof, we now have to see what happens when C1 6= C+. We will make a

further subdivision of this last case depending on whether β ≥ 15◦, for β = AB̂C.

Part 3. Construction for the case C1 6= C+, β ≥ 15◦.

In this case, for any D ∈ BC we define D′ ∈ BC1 as the point satisfying

`
Ä
BD′

ä
= min

®
`
Ä
BD

ä
, `
Ä
BC1

ä
−
`
Ä
P̄C
ä

10L

´
, (2.6)

with P ∈ B̄C being as usual the vertex such that D = PN−1. Observe that this definition

makes sense since, also using (2.3), one has that the minimum in (2.6) is between 0 and `
Ä
BC1

ä
for each D ∈ BC. In particular, the minimum is strictly increasing between 0 and `

Ä
BC1

ä
as

D moves from B to C, so (iv) is already checked. Let us then check the validity of (i)–(iii).

We first concentrate on (i). Just for a moment, let us call D∗ ∈ BC+ the point for which

`
Ä
BD

ä
= `
Ä
BD∗

ä
, so that the triangle BDD∗ is isosceles. Therefore, one immediately has

D”D′B ≥DD̂∗B =
π − β

2
≥ π

4
, D′D̂C ≥D∗D̂C =

π + β

2
≥ π

2
. (2.7)

Moreover, by construction it is clear that

D”D′A ≥DB̂A = β ≥ π

12
. (2.8)

To conclude, we have to estimate D′D̂B, and we start claiming the bound

`
Ä
BD′

ä
≥
`
Ä
BD

ä
2L2

. (2.9)

In fact, recalling (2.6), either `
Ä
BD′

ä
= `
Ä
BD

ä
, and then (2.9) clearly holds, or otherwise

by (2.3) and the Lipschitz property of u

`
Ä
BD′

ä
= `
Ä
BC1

ä
−
`
Ä
P̄C
ä

10L
≥
`
Ä
B̄C
ä

2L
−
`
Ä
P̄C
ä

10L
≥
`
Ä
B̄C
ä
− `
Ä
P̄C
ä

2L
=
`
Ä
B̄P
ä

2L
≥
`
Ä
B̄P
ä

2L2

≥
`
Ä
BD

ä
2L2

,

thus again (2.9) is checked. Concerning the last inequality, namely `
Ä
B̄P
ä
≥ `
Ä
BD

ä
, this is an

equality if the segment BC is included in ∂∆, while otherwise it is true by inductive assumption
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on the sector S(B̄C), applying (iii) to the points P and Q ≡ B. Consider now the triangle

DBD′: immediate trigonometric arguments tell us that

`
Ä
DD′

ä
sin
Ä
D′D̂B

ä
= `
Ä
BD′

ä
sinβ , `

Ä
BD

ä
sinβ = `

Ä
DD′

ä
sin
(
D′D̂B + β

)
,

from which we get, using also (2.9),

sin
Ä
D′D̂B

ä
=
`
Ä
BD′

ä
`
Ä
BD

ä sin
(
D′D̂B + β

)
≥ sin 15◦

2L2
≥ 1

8L2
. (2.10)

Putting together (2.7), (2.8) and (2.10), we conclude the inspection of (i).

Concerning (ii), it is enough to observe that

`
Ä
DD′

ä
`
Ä
ĀC
ä ≤ `

Ä
DD′

ä
`
Ä
AC
ä ≤ sin

Ä
C“AB

ä
sin
Ä
D”D′Aä ≤ 1

sin 15◦
≤ 4 . (2.11)

Therefore, as in Part 2, either BC ⊆ ∂∆, and then

`
Ä
ṖPN

ä
= `
Ä
DD′

ä
≤ 4`

Ä
ĀC
ä
≤ 4`

Ä
ĀB
ä
,

or thanks to the inductive assumption one has

`
Ä
ṖPN

ä
= `
Ä¸�PPN−1

ä
+ `
Ä
DD′

ä
≤ 4`

Ä
B̄C
ä

+ 4`
Ä
ĀC
ä

= 4`
Ä
ĀB
ä
,

so (ii) is again easily checked.

Let us now consider (iii). As in Part 2, we take on BC two points D ≡ PN−1 and E ≡
QN ′−1 with N = N(P ) and N ′ = N(Q), and we assume by symmetry that `

Ä
BD

ä
≤ `
Ä
BE
ä
.

Since it is surely `
Ä
DE

ä
≤ `
Ä
P̄Q
ä
, either as a trivial equality if BC ⊆ ∂∆, or by inductive

assumption otherwise, showing (iii) consists in proving that

`
Ä
P̄Q
ä

10L
≤ `
Ä
D′E′

ä
≤ `
Ä
DE

ä
. (2.12)

We start with the right inequality. Recalling the definition (2.6), if `
Ä
BD′

ä
= `
Ä
BD

ä
then,

since `
Ä
BE′

ä
≤ `
Ä
BE
ä
, one has

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≤ `
Ä
BE
ä
− `
Ä
BD

ä
= `
Ä
DE

ä
.

On the other hand, if

`
Ä
BD′

ä
= `
Ä
BC1

ä
−
`
Ä
P̄C
ä

10L
,

then we get

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≤
(
`
Ä
BC1

ä
−
`
Ä
Q̄C
ä

10L

)
−
(
`
Ä
BC1

ä
−
`
Ä
P̄C
ä

10L

)

=
`
Ä
P̄Q
ä

10L
≤ `
Ä
DE

ä
,

where again the last inequality is true either by the Lipschitz property of u if PQ = DE, or by

inductive assumption otherwise. Thus, the right inequality in (2.12) is established, and we pass

to consider the left one.
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Still recalling (2.6), if `
Ä
BE′

ä
= `
Ä
BE
ä

then

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≥ `
Ä
BE
ä
− `
Ä
BD

ä
= `
Ä
DE

ä
≥
`
Ä
P̄Q
ä

10L
,

the last equality being again true either by the Lipschitz property of u or by inductive assump-

tion. Finally, if

`
Ä
BE′

ä
= `
Ä
BC1

ä
−
`
Ä
Q̄C
ä

10L
,

then again we get

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≥
(
`
Ä
BC1

ä
−
`
Ä
Q̄C
ä

10L

)
−
(
`
Ä
BC1

ä
−
`
Ä
P̄C
ä

10L

)
=
`
Ä
P̄Q
ä

10L
,

so the estimate (2.12) is completely shown and this part is concluded.

Part 4. Construction for the case C1 6= C+, β < 15◦.

We are now ready to consider the last—and hardest—possible situation, namely when C1 6=
C+ and the angle β is small. Roughly speaking, the fact that C1 is below C+ tells us that the

segment BC has to shrink, in order to fit into BC1. On the other hand, the fact that β is small

makes it hard to obtain simultaneously the estimate (iii) on the lengths and (i) on the angles.

As in Figure 9, we call H the orthogonal projection of C on AB.

Since β < π/12, the point C− belongs to the segment AB, and then we obtain, by a trivial

geometrical argument, that

`
Ä
BC1

ä
≥ `
Ä
BC−

ä
≥ `
Ä
BH

ä
− `
Ä
CH

ä
= `
Ä
BC
ä(

cosβ − sinβ
)
≥
√

2

2
`
Ä
BC
ä
. (2.13)

Let us immediately go into our definition of PN for every vertex P ∈ B̄C. First of all,

since we need to work with consecutive vertices, let us enumerate all the vertices of B̄C as

P 0 = B, P 1, P 2, . . . , PM = C. The simplest idea to define the points P i
N would be to shrink

all the segment BC so as to fit BC1, thus getting, for any pair P i, P i+1 of consecutive vertices,

`
Ä
P i
NP

i+1
N ′

ä
=
`
Ä
BC1

ä
`
Ä
BC
ä `ÄP i

N−1P
i+1
N ′−1

ä
,

again calling for brevity N = N(P i), N ′ = N(P i+1). Unfortunately, this does not work, since

from the inductive assumption

`
Ä
P i
N−1P

i+1
N ′−1

ä
≥ 1

10L
`
Ä¸�P iP i+1

ä
one would be led to deduce

`
Ä
P i
NP

i+1
N ′

ä
≥
`
Ä
BC1

ä
`
Ä
BC
ä 1

10L
`
Ä¸�P iP i+1

ä
≥
√

2

20L
`
Ä¸�P iP i+1

ä
,

by (2.13), so the induction would not work.
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However, our idea to overcome the problem is very simple, that is, among all the pairs

P i, P i+1 of consecutive vertices we will shrink only those which are still “shrinkable”, that is,

for which the ratio

%i :=
`
Ä
P i
N−1P

i+1
N ′−1

ä
`
Ä¸�P iP i+1

ä (2.14)

is not already too small, more precisely, not smaller than 1/(4L). Let us make this formal.

Define

δ :=
∑®

`
Ä
P i
N−1P

i+1
N ′−1

ä
: %i ≤

1

4L

´
, (2.15)

and notice that

`
Ä
B̄C
ä
≥
∑®

`
Ä¸�P iP i+1

ä
: %i ≤

1

4L

´
≥ 4Lδ ;

then by (2.1)

δ ≤
`
Ä
B̄C
ä

4L
≤
`
Ä
BC
ä

2
. (2.16)

Finally, we define the points P i
N in such a way that any segment P i

NP
i+1
N ′ has the same length

as P i
N−1P

i+1
N ′−1 if %i is small, and otherwise it is rescaled by a factor λ < 1 (constant through

all BC). In other words, defining the increasing sequence {δj} as

δj :=
∑®

`
Ä
P i
N−1P

i+1
N ′−1

ä
: i < j, %i ≤

1

4L

´
, (2.17)

so that comparing with (2.15) one has δ0 = 0 and δM = δ, we define P i
N to be the point of BC1

such that

`
Ä
BP i

N

ä
= δi + λ

(
`
Ä
BP i

N−1

ä
− δi

)
. (2.18)

The constant λ is easily estimated by the constraint that PM
N = C1 and by (2.13) and (2.16),

getting

1 > λ =
`
Ä
BC1

ä
− δ

`
Ä
BC
ä
− δ

≥

√
2

2 `
Ä
BC
ä
− δ

`
Ä
BC
ä
− δ

≥
√

2− 1 . (2.19)

For future reference, it is also useful to notice here another estimate of λ which depends on β,

obtained exactly as the one above from (2.13) and (2.16), that is,

λ =
`
Ä
BC1

ä
− δ

`
Ä
BC
ä
− δ

≥
`
Ä
BC
äÄ

cosβ − sinβ
ä
− δ

`
Ä
BC
ä
− δ

≥ 2
Ä

cosβ − sinβ
ä
− 1 . (2.20)

Notice that by (2.17) and (2.18) one readily gets

`
Ä
P i
NP

i+1
N ′

ä
=

 `
Ä
P i
N−1P

i+1
N ′−1

ä
if %i ≤

1

4L
,

λ `
Ä
P i
N−1P

i+1
N ′−1

ä
otherwise .

(2.21)

Now that we have given the definition of the points P i
N , we only have to check the validity

of (i)–(iii), since (iv) is again trivial by definition.
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D′

A

B

β

C H
C+

D

C∗

Figure 9. The triangle ABC in Part 4.

Let us start with (i). Take 0 ≤ i ≤M and call, as before, D = P i
N−1 and D′ = P i

N . Since

by construction `
Ä
BD′

ä
≤ `
Ä
BD

ä
, one immediately gets D”D′B ≥ D′D̂B, from which one

directly derives

D”D′B ≥ π − β
2
≥ 11

24
π , D′D̂C = π −D′D̂B ≥ π + β

2
≥ π

2
, (2.22)

so that the first two angles are checked and we need to estimate D′D̂B and D”D′A. To do so,

let us call C∗ ∈ AB the point such that `
Ä
BC∗

ä
= λ `

Ä
BC
ä
, so that by construction

D′D̂B ≥ C∗“CB , D”D′A ≥ CĈ∗A . (2.23)

The point C∗ must lie either between H and C+ or between B and H. In the first case also

the other two angles are immediately estimated, since then by (2.23) one has

D′D̂B ≥ C∗“CB ≥H“CB =
π

2
− β ≥ 5

12
π , D”D′A ≥ CĈ∗A ≥ π

2
. (2.24)

Assume then that, as in Figure 9, C∗ is between B and H. Then we can estimate, also

recalling (2.20),

`
Ä
C∗H

ä
= `
Ä
BH

ä
− `
Ä
BC∗

ä
= `
Ä
BC
ä(

cosβ − λ
)

≤ `
Ä
BC
äÇ

cosβ −
(
2
Ä

cosβ − sinβ
ä
− 1

)å
= `
Ä
BC
äÇ sinβ

1 + cosβ
+ 2

å
sinβ

=

Ç
sinβ

1 + cosβ
+ 2

å
`
Ä
CH

ä
.

As a consequence, we have

H“CC∗ = arctan

Ç
`
Ä
C∗H

ä
`
Ä
CH

ä å ≤ arctan

Ç
sinβ

1 + cosβ
+ 2

å
≤ arctan

Ç
sin 15◦

1 + cos 15◦
+ 2

å
< 65◦ .
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Finally, from this estimate and (2.23) we get

D′D̂B ≥ C∗“CB =
π

2
− β −H“CC∗ >

π

18
> arcsin

Ç
1

8L2

å
,

D”D′A ≥ CĈ∗A =
π

2
−H“CC∗ ≥ 25◦ .

(2.25)

Putting together the first two estimates from (2.22), and the last two estimates either from (2.24)

or from (2.25), we conclude the proof of (i).

Let us now check (ii). Repeating the argument of Part 3, we have that (ii) follows at once as

soon as one shows (2.11), that is, `
Ä
DD′

ä
≤ 4 `

Ä
ĀC
ä
. But in fact, using (2.25), we immediately

get

`
Ä
DD′

ä
≤

`
Ä
CH

ä
sin
Ä
D”D′Aä ≤ `

Ä
AC
ä

sin
Ä
D”D′Aä ≤ `

Ä
ĀC
ä

sin 25◦
< 4 `

Ä
ĀC
ä
.

Let us then consider (iii). It is of course sufficient to check the validity of the inequality only

when P and Q are two consecutive vertices of B̄C. Let us then take 0 ≤ i < M and recall that

we have to show

`
Ä¸�P iP i+1

ä
10L

≤ `
Ä
P i
NP

i+1
N ′

ä
≤ `
Ä
P i
N−1P

i+1
N ′−1

ä
(2.26)

knowing, again either by inductive assumption or by the Lipschitz property,

`
Ä¸�P iP i+1

ä
10L

≤ `
Ä
P i
N−1P

i+1
N ′−1

ä
≤ `
Ä¸�P iP i+1

ä
. (2.27)

The right inequality in (2.26) is an immediate consequence of (2.21), being λ < 1. Concerning

the left inequality, it is also quick to check, distinguishing whether %i is small or not. In fact, if

%i ≤ 1/(4L), then by (2.21) also the left inequality in (2.26) derives from the analogous inequality

in (2.27). Otherwise, if %i > 1/(4L), then one directly has by (2.21), (2.14) and (2.19) that

`
Ä
P i
NP

i+1
N ′

ä
= λ `

Ä
P i
N−1P

i+1
N ′−1

ä
= λ%i `

Ä¸�P iP i+1
ä
>

√
2− 1

4L
`
Ä¸�P iP i+1

ä
>

1

10L
`
Ä¸�P iP i+1

ä
,

thus concluding the proof. �

2.5. Step V: Bound on the lengths of the paths ṖPN .

In Step IV, we have described how to get a piecewise affine path PP 1P 2 · · ·PN which starts

from any vertex P ∈ ĀB and ends on the segment AB, for a given sector S(AB). In this

step, we want to improve the estimate from above of the length of this path. This is important

because this path will be (up to a small correction in the future) a part of the image of the

segment PO ⊆ D under the extension v of u that we are building, and then its length gives a

lower bound to the Lipschitz constant of the map v. Let us state the main result of this step.

Lemma 2.19. Let S(AB) be a sector. Then, for any vertex P ∈ ĀB one has

`
Ä
ṖPN

ä
≤ 193 min

{
`
Ä
ĀP
ä
, `
Ä
P̄B
ä}
.
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Before entering into the proof, which is quite involved, let us quickly give a rough idea of how

it works, together with some useful notation. Let us fix a generic vertex P ∈ ĀB. The proof

of the lemma will require a detailed analysis of the different triangles of the natural sequence of

triangles related to P . Recall that the natural sequence of triangles, according to Definition 2.16,

is the sequence
Ä
T 1, T 2, . . . , T N

ä
such that every P i of the path ṖPN belongs to the exit

side of T i. In particular, P is the vertex of the triangle T 1 which does not belong to its exit

side. We call for simplicity AiBi the exit side of the triangle T i, with Ai ∈ ĀP and Bi ∈ P̄B,

so that in particular AN = A and BN = B. Moreover, for consistency of notation, we will call

A0 = P = P 0 and B0 = B1. Notice that, by the construction of the triangles done in Step III,

for any i the exit side of the triangle T i is a side of the triangle T i+1, thus the exit sides of T i

and T i+1 have exactly one point in common. In other words, either Ai+1 = Ai, or Bi+1 = Bi.

Let us then assume, by symmetry, that `(P̄B) ≤ `(ĀP ), so that the claim of Lemma 2.19 can

be rewritten as
N−1∑
i=0

`(P iP i+1) ≤ 193

Ç
`(P 0B0) +

N−1∑
i=0

`(BiBi+1)

å
. (2.28)

Pick now a generic 0 ≤ i < N : on one hand, if Bi+1 6= Bi, then we will see that property (i) of

Lemma 2.18 implies

`(P iP i+1) ≤ 4`(BiBi+1) ,

and this is clearly in accordance with the validity of (2.28). But if, instead, Bi = Bi+1,

then the length of the segment P iP i+1 does not apparently contribute to the increase of the

path `(˚�P 0BN ). However, since by (iii) of Lemma 2.18 one has `(P i+1Bi) = `(P i+1Bi+1) ≤
`(P iBi), it is reasonable to guess that the total length `(Ṗ iP j) for Bi = Bj cannot be too

large: obtaining such a precise estimate is basically what we need to show Lemma 2.19. To

do so, our strategy will be to group the triangles T i in a suitable way, in order to get the

information that we need. In particular, we will first subdivide the natural sequence of trianglesÄ
T 1, T 2, . . . , T N

ä
into sequences of consecutive triangles U =

Ä
T i, T i+1, . . . , T i+j

ä
called

“units”, then we will group consecutive sequences of “units” into “systems of units” S =Ä
U i, U i+1, . . . , U i+j

ä
, and finally consecutive sequences of “systems of units” into “blocks of

systems” B =
Ä
S i, S i+1, . . . , S i+j

ä
. At the end, this construction will lead to the validity

of (2.28).

We can now start our construction introducing the first category.

Definition 2.20. Let 0 ≤ i ≤ j ≤ N be such that {i, i+ 1, · · · , j− 1, j} is a maximal sequence

with the property that Bl is the same point for all i ≤ l ≤ j (by “maximal” we mean that

either i = 0 or Bi−1 6= Bi, as well as either j = N or Bj 6= Bj+1). We will then say that

U =
Ä
T i+1, T i+2, . . . , T j+1

ä
is a unit of triangles, where j + 1 is substituted by j if j = N ,

and then no unit is defined if i = j = N . To any unit we associate two angles, namely,

θ+ := Ai
”BiAj , θ− := Bj

”AjBj+1 ,

with the convention that θ− = 0 if j = N .
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B10−12 ≡ B

B0−5

T 5

T 4
T 3T 2

T 1

B6−8

T 6

T 7
T 8

A8−10

B9

T 9

T 12

A11
A1

A2 A3
A4

A5−6

A7

T 10

T 11

P ≡ A0

A12 ≡ A

Figure 10. A natural sequence of triangles T i with the points Ai and Bi and

the angles θ±.

The reason for this strange definition with i + 1 and j + 1 will soon become clear. The

meaning of the definition is quite simple: the first unit starts with T 1 and ends with T j ,

where j is the smallest index such that Bj 6= B1. The second unit starts with T j+1 and ends

with T j′ , where j′ ≥ j + 1 is the smallest index, possibly j + 1 itself, for which Bj 6= Bj′ .

And so on, until one reaches T N , and then one has to stop regardless of whether or not BN

is different from BN−1. It is immediate from the definition to observe that the sequence of

triangles
Ä
T 1, T 2, . . . , T N

ä
is the concatenation of the units of triangles. To understand how

the units work, it can be useful to check the example of Figure 10, where N = 12 and the units

of triangles are
Ä
T 1, T 2, T 3, T 4, T 5, T 6

ä
,
Ä
T 7, T 8, T 9

ä
,
Ä
T 10

ä
and

Ä
T 11, T 12

ä
. Notice

also that for any unit of triangles one has θ+ > 0, unless the unit is made by a single triangle,

as
Ä
T 10

ä
in the figure. Similarly, one has that θ− > 0, unless j = N , as for

Ä
T 11, T 12

ä
in the

figure.

The role of the units is contained in the following result.

Lemma 2.21. Let U =
Ä
T i, T i+1, . . . , T j

ä
be a unit of triangles. Then one has

`
Ä¸�P i−1P j

ä
≤
Ä
1 + θ+

ä
`
Ä
P i−1Bi−1

ä
− `
Ä
P jBj

ä
+ 5 `

Ä
Bi−1Bj

ä
, (2.29)

`
Ä
Bi−1Bj

ä
≥ θ−

π
`
Ä
P jBj

ä
, (2.30)

`
Ä
P jBj

ä
≤ `
Ä
P i−1Bi−1

ä
+ `
Ä
Bi−1Bj

ä
. (2.31)

Proof. The proof will follow from simple geometric considerations thanks to Lemma 2.18. To

help the reader, the situation is depicted in Figure 11. First of all, one has by definition

`
Ä¸�P i−1P j

ä
= `
Äˇ�P i−1P j−1

ä
+ `
Ä
P j−1P j

ä
. (2.32)

We claim that

`
Äˇ�P i−1P j−1

ä
≤
Ä
1 + θ+

ä
`
Ä
P i−1Bi−1

ä
− `
Ä
P j−1Bi−1

ä
. (2.33)
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Ai−1

Aj−1 ≡ Aj

Bj

Bi−1 ≡ Bj−1

P i−1
θ+

θ−

T j

B′j−1

P j

P j−1

P j−2

T i

P i

Figure 11. Situation in Lemma 2.21.

In fact, if i = j, then `
Äˇ�P i−1P j−1

ä
= 0 and thus (2.33) is trivially true. Otherwise, let us

consider the triangle P i−1Bi−1P i. Thanks to property (iii) in Lemma 2.18, one has

`
Ä
P iBi−1

ä
≤ `
Ä
P i−1Bi−1

ä
,

and then an immediate trigonometric argument tells us that

`
Ä
P i−1P i

ä
≤ 2`

Ä
P i−1Bi−1

ä
sin

Ç
P i−1

’Bi−1P i

2

å
+ `
Ä
P i−1Bi−1

ä
− `
Ä
P iBi−1

ä
≤ `
Ä
P i−1Bi−1

ä
· P i−1

’Bi−1P i + `
Ä
P i−1Bi−1

ä
− `
Ä
P iBi−1

ä
.

We can repeat the same argument more generally. In fact, for any i ≤ l ≤ j − 1 one has from

Lemma 2.18 that

`
Ä
P lBi−1

ä
≤ `
Ä
P l−1Bi−1

ä
≤ · · · ≤ `

Ä
P i−1Bi−1

ä
, (2.34)

hence the previous trigonometric argument implies

`
Ä
P l−1P l

ä
≤ `
Ä
P i−1Bi−1

ä
· P l−1

’Bi−1P l + `
Ä
P l−1Bi−1

ä
− `
Ä
P lBi−1

ä
.

Adding this inequality for all i ≤ l ≤ j − 1 one gets

`
Äˇ�P i−1P j−1

ä
=

j−1∑
l=i

`
Ä
P l−1P l

ä
≤

j−1∑
l=i

Ç
`
Ä
P i−1Bi−1

ä
· P l−1

’Bi−1P l + `
Ä
P l−1Bi−1

ä
− `
Ä
P lBi−1

äå
= θ+`

Ä
P i−1Bi−1

ä
+ `
Ä
P i−1Bi−1

ä
− `
Ä
P j−1Bi−1

ä
,

which is (2.33).
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Let us now point our attention to the triangle T j . First of all, let us call H (resp. B⊥) the

orthogonal projection of P j−1 (resp. Bi−1) on the straight line passing through AjBj (these

two points are not indicated in the figure, for the sake of clarity). Since by (i) of Lemma 2.18

we have P j−1
”P jH ≥ 15◦, it holds that

`
Ä
P j−1P j

ä
=

`
Ä
P j−1H

ä
sin
(
P j−1

”P jH
) ≤ 1

sin 15◦
`
Ä
P j−1H

ä
≤ 4 `

Ä
P j−1H

ä
, (2.35)

and similarly

`
Ä
Bi−1Bj

ä
≥ `
Ä
Bi−1B⊥

ä
= `
Ä
Aj−1Bi−1

ä
sin θ− ≥ `

Ä
P j−1Bi−1

ä
sin θ−

≥ 2θ−

π
`
Ä
P j−1Bi−1

ä
,

(2.36)

recalling that by definition of the triangles of the sectors one has θ− ≤ π/2. Moreover, since

P j−1 ∈ Aj−1Bi−1, clearly `
Ä
P j−1H

ä
≤ `
Ä
Bi−1B⊥

ä
, so (2.35) and (2.36) imply

`
Ä
P j−1P j

ä
≤ 4 `

Ä
Bi−1Bj

ä
. (2.37)

Let us now call, as in the figure, B′j−1 the first point of the piecewise affine path which starts from

Bj−1 and arrives to AB according to Lemma 2.18—with the notation of the proof of Lemma 2.18

we should have called that point (Bj−1)1. Applying twice condition (iii) of Lemma 2.18 we get

`
Ä
P jBj

ä
= `
Ä
P jB

′
j−1

ä
+ `
Ä
B′j−1Bj

ä
≤ `
Ä
P j−1Bi−1

ä
+ `
Ä
Bi−1Bj

ä
.

This inequality allows us to conclude. Indeed, together with (2.32), (2.33) and (2.37) it concludes

the proof of (2.29). Moreover, together with (2.34), it yields (2.31). And finally, together

with (2.36), it gives (2.30) since

2`
Ä
Bi−1Bj

ä
≥ 2θ−

π
`
Ä
Bi−1Bj

ä
+ `
Ä
Bi−1Bj

ä
≥ 2θ−

π

(
`
Ä
P jBj

ä
− `
Ä
P j−1Bi−1

ä)
+

2θ−

π
`
Ä
P j−1Bi−1

ä
=

2θ−

π
`
Ä
P jBj

ä
.

�

After this result, we can stop thinking about triangles, and we can start working only with

units. In fact, notice that any unit of triangles, say U =
Ä
T i, T i+1, . . . , T j

ä
, starts with the

exit side of T i−1 and finishes with the exit side of T j and that the estimates (2.29), (2.30)

and (2.31) are already written only in terms of points of those sides. Let us then number the

units as U 1, U 2, . . . , U M , with M ≤ N , and let us define il and jl, for 1 ≤ l ≤M , in such a

way that U l =
Ä
T il , T il+1, . . . , T jl

ä
. Notice that i1 = 1, jM = N , and jl + 1 = il+1 for each

1 ≤ l < M . Let us give, for 1 ≤ l ≤M , the definitions

Ql := P jl , C l := Ajl , Dl := Bjl , Q0 := P 0 = P , D0 := B0 , (2.38)

where the last two definitions are done to be consistent. Call also θ±l the angles θ± related to

the unit U l. Hence, the claim of Lemma 2.21 can be rewritten as

`
Ä¸�Ql−1Ql

ä
≤
Ä
1 + θ+

l

ä
`
Ä
Ql−1Dl−1

ä
− `
Ä
QlDl

ä
+ 5 `

Ä
Dl−1Dl

ä
, (2.29’)
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`
Ä
Dl−1Dl

ä
≥
θ−l
π
`
Ä
QlDl

ä
, (2.30’)

`
Ä
QlDl

ä
≤ `
Ä
Ql−1Dl−1

ä
+ `
Ä
Dl−1Dl

ä
. (2.31’)

Before passing to the definition of “systems” of units, and in order to help understanding its

meaning, it can be useful to give a proof of Lemma 2.19 in a very peculiar case.

Lemma 2.22. The claim of Lemma 2.19 holds true if

`
Ä˛�D0DM−1

ä
≤
`
Ä
Q0D0

ä
4

, (2.39)

`
Ä
QlDl

ä
≥
`
Ä
Q0D0

ä
2

∀ 1 ≤ l ≤M − 1 . (2.40)

Proof. First of all we claim that, by an easy geometrical argument, one has

M−1∑
l=1

θ+
l −

M−1∑
l=1

θ−l ≤
13

6
π . (2.41)

Indeed, assuming for simplicity that Q0 ≡ (−1, 0) and D0 ≡ (0, 0), for any 1 ≤ l ≤ M − 1 the

direction of QlDl is (the opposite of)
∑l
j=1 θ

+
j −

∑l
j=1 θ

−
j . Moreover, all the points Dl stay in

the closure of the ball B1/4 centered at D0 and with radius 1/4 by (2.39), hence all the points

Ql stay outside B1/4 by (2.40); by construction, each open segment QlDl lies in ∆, hence it

cannot intersect the curve ˛�D0DM−1 ⊆ ∂∆, and it is clear that the points QlDl ∩ ∂B1/4 move

either all in the clockwise sense or all in the counterclockwise sense on the circle ∂B1/4 when l

increases from 1 to M − 1. As a consequence, the minimal possible direction of QM−1DM−1

(so, the worst case for proving (2.41)) corresponds to the limit case when DM−1 ≡ (0,−1/4)

and QM−1 is the point on Q0D0 having distance 1/2 from DM−1. The corresponding angle is

then 2π + arcsin(1/2) = 13
6 π, and this establishes (2.41). Moreover, by (2.31’) and (2.39), one

gets

`
Ä
QlDl

ä
≤ 5

4
`
Ä
Q0D0

ä
∀ 0 ≤ l ≤M − 1 . (2.42)

We can now evaluate, using (2.29’), (2.42), (2.41), (2.40) and (2.30’),

`
Ä ˚�Q0QM

ä
=

M∑
l=1

`
Ä¸�Ql−1Ql

ä
≤

M∑
l=1

(Ä
1 + θ+

l

ä
`
Ä
Ql−1Dl−1

ä
− `
Ä
QlDl

ä
+ 5 `

Ä
Dl−1Dl

ä)
≤ 5

4
`
Ä
Q0D0

äÇM−1∑
l=1

θ+
l + θ+

M

å
+ `
Ä
Q0D0

ä
− `
Ä
QMDM

ä
+ 5`

Ä¸�D0DM

ä
≤ `
Ä
Q0D0

äÇ
1 +

125

24
π

å
+

5

4
`
Ä
Q0D0

äM−1∑
l=1

θ−l + 5`
Ä¸�D0DM

ä
≤ 18 `

Ä
Q0D0

ä
+

5

2

M−1∑
l=1

θ−l `
Ä
QlDl

ä
+ 5`

Ä¸�D0DM

ä
≤ 18 `

Ä
Q0D0

ä
+

5

2
π
M−1∑
l=1

`
Ä
Dl−1Dl

ä
+ 5`

Ä¸�D0DM

ä
≤ 18 `

Ä
Q0D0

ä
+
Ä
5 +

5

2
π
ä
`
Ä¸�D0DM

ä
≤ 18 `

Ä
Q0D0

ä
+ 13`

Ä¸�D0DM

ä
.

(2.43)
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Finally, recall that

`
Ä
P̄B
ä

= `
Ä
PB0

ä
+ `
Ä˚�B0BN

ä
= `
Ä
Q0D0

ä
+ `
Ä¸�D0DM

ä
;

hence from (2.43) we directly get `
Ä
ṖPN

ä
= `
Ä ˚�Q0QM

ä
≤ 18`

Ä
P̄B
ä
. And in turn, since we are

assuming by symmetry that `
Ä
P̄B
ä
≤ `
Ä
ĀP
ä
, this concludes the proof of Lemma 2.19 under

the assumptions (2.39) and (2.40). �

It is to be noticed carefully that the key point in the above proof is the validity of (2.41),

which is a simple consequence of (2.39) and (2.40), but which one cannot hope to have in general.

Basically, (2.41) fails whenever the sector S(AB) has a spiral shape, and in fact (2.39) and (2.40)

precisely prevent the sector to be an enlarging and a shrinking spiral respectively.

Since the assumptions (2.39) and (2.40) do not hold, in general, through all the units, we

will group the units in “systems” in which they are valid.

Definition 2.23. Let k0 = 0. We define recursively an increasing finite sequence {k1, · · · , kW }
as follows. For each j ≥ 0, if kj = M then we conclude the construction (and thus W = j),

while otherwise we define kj < kj+1 ≤M to be the greatest number such that

`
Ä ˇ�DkjDkj+1−1

ä
≤
`
Ä
QkjDkj

ä
4

, (2.39’)

`
Ä
QlDl

ä
≥
`
Ä
QkjDkj

ä
2

∀ kj < l < kj+1 . (2.40’)

Notice that the sequence is well-defined, since if kj < M then the assumptions (2.39’) and (2.40’)

emptily hold with kj+1 = kj + 1. Hence, W ≤ M ≤ N . We define then system of units each

collection of units of the form S j =
Ä
U kj−1+1, U kj−1+2, . . . , U kj

ä
, for 1 ≤ j ≤W .

Thanks to this definition, we can rephrase the claim of Lemma 2.22 as follows: “the claim

of Lemma 2.19 holds true if there is only one system of units”. But in fact, the argument of

Lemma 2.22 still gives some useful information for each different system, as we will see in a

moment with Lemma 2.24. Before doing so, in order to avoid too many indices, it is convenient

to introduce some new notation in order to work only with systems instead of with units. Hence,

in analogy with (2.38), for 1 ≤ j ≤W we set

Rj := Qkj , Ej := Ckj , F j := Dkj , R0 := Q0 = P , F 0 := D0 = B0 . (2.44)

We can now observe an estimate for the systems which comes directly from the argument of

Lemma 2.22.

Lemma 2.24. Let S j be a system of units. Then one has

`
Ä¸�Rj−1Rj

ä
≤ 13 `

Ä¸�F j−1F j

ä
+ 18 `

Ä
Rj−1F j−1

ä
, (2.45)

and moreover

`
Ä
RjF j

ä
≤ `
Ä
Rj−1F j−1

ä
+ `
Ä¸�F j−1F j

ä
. (2.46)
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Proof. First of all, repeat verbatim, replacing 0 with kj−1 andM with kj , the proof of Lemma 2.22

until the estimate (2.43), which then reads as

`
Ä˛�Qkj−1

Qkj

ä
≤ 18 `

Ä
Qkj−1

Dkj−1

ä
+ 13 `

Äˇ�Dkj−1
Dkj

ä
.

This estimate is exactly (2.45), rewritten with the new notation (2.44). On the other hand,

concerning (2.46), it is enough to add the inequality (2.31’) with all kj−1 + 1 ≤ l ≤ kj , thus

obtaining
kj∑

l=kj−1+1

`
Ä
QlDl

ä
≤

kj∑
l=kj−1+1

`
Ä
Ql−1Dl−1

ä
+

kj∑
l=kj−1+1

`
Ä
Dl−1Dl

ä
,

which is equivalent to

`
Ä
QkjDkj

ä
≤ `
Ä
Qkj−1

Dkj−1

ä
+ `
Äˇ�Dkj−1

Dkj

ä
.

This estimate corresponds to (2.46) when using the new notation. �

Notice that, by adding (2.45) for all 1 ≤ j ≤W , one obtains

`
Ä
ṖPN

ä
= `
Ä ˚�Q0QM

ä
= `
Ä ˚�R0RW

ä
≤ 13 `

Ä˚�F 0FW

ä
+ 18

W−1∑
j=0

`
Ä
RjF j

ä
,

and since ˚�F 0FW = ˚�B0BN ⊆ P̄B, to conclude Lemma 2.19 one needs to estimate the last sum.

Having done this remark, we can now introduce our last category, namely the “blocks”

of systems. To do so, notice that by Definition 2.23 of systems of units and using the new

notation (2.44), for any 1 ≤ j < W one must have, by maximality of kj ,

either `
Ä¸�F j−1F j

ä
>
`
Ä
Rj−1F j−1

ä
4

, or `
Ä
RjF j

ä
<
`
Ä
Rj−1F j−1

ä
2

. (2.47)

We can then give our definition.

Definition 2.25. Let p0 = 0. We define recursively an increasing sequence {p1, · · · , pH} as

follows. For each i ≥ 0, if pi = W then we conclude the construction (and thus H = i), while

otherwise we define pi < pi+1 ≤W to be the greatest number such that

`
Ä
RjF j

ä
<
`
Ä
Rj−1F j−1

ä
2

∀ pi < j < pi+1 .

Notice again that this strictly increasing sequence is well-defined since the inequality is emp-

tily true for pi+1 = pi + 1. We then define block of systems each collection B i =Ä
S pi−1+1, S pi−1+2, . . . , S pi

ä
, for 1 ≤ i ≤ H.

We can now show the important properties of the blocks of systems.

Lemma 2.26. For any 0 ≤ i < H, the following estimate concerning the block B i holds true:

`
Ä˛�RpiRpi+1

ä
≤ 13 `

Ä˛�F piF pi+1

ä
+ 36 `

Ä
RpiF pi

ä
. (2.48)

Moreover, for any 0 ≤ i < H − 1, one also has

`
Ä
Rpi+1F pi+1

ä
≤ 5 `

Ä˛�F piF pi+1

ä
. (2.49)
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Proof. It is enough to add (2.45) for pi + 1 ≤ j ≤ pi+1 to get

`
Ä˛�RpiRpi+1

ä
=

pi+1∑
j=pi+1

`
Ä¸�Rj−1Rj

ä
≤ 13

pi+1∑
j=pi+1

`
Ä¸�F j−1F j

ä
+ 18

pi+1∑
j=pi+1

`
Ä
Rj−1F j−1

ä
= 13 `

Ä˛�F piF pi+1

ä
+ 18

pi+1−1∑
j=pi

`
Ä
RjF j

ä
< 13 `

Ä˛�F piF pi+1

ä
+ 36 `

Ä
RpiF pi

ä
;

thus (2.48) is already obtained.

Consider now (2.49). Recalling the definition of the blocks, the maximality of pi+1 tells us

that either pi+1 = W (and this is excluded by i < H − 1) or

`
Ä
Rpi+1F pi+1

ä
≥
`
Ä
Rpi+1−1F pi+1−1

ä
2

.

Hence, keeping in mind (2.47) with j = pi+1, we have that

`
Ä ˇ�F pi+1−1F pi+1

ä
>
`
Ä
Rpi+1−1F pi+1−1

ä
4

.

Let us apply now (2.46) with j = pi+1, to get

`
Ä
Rpi+1F pi+1

ä
≤ `
Ä
Rpi+1−1F pi+1−1

ä
+ `
Ä ˇ�F pi+1−1F pi+1

ä
≤ 5 `

Ä ˇ�F pi+1−1F pi+1

ä
≤ 5 `

Ä˛�F piF pi+1

ä
,

and so also (2.49) is proved. �

We finally end this step with the proof of Lemma 2.19.

Proof of Lemma 2.19. Using (2.48) and (2.49), we estimate

`
Ä˚�P 0PN

ä
= `
Ä ˚�Q0QM

ä
= `
Ä ˚�R0RW

ä
=

H−1∑
i=0

`
Ä˛�RpiRpi+1

ä
≤

H−1∑
i=0

13 `
Ä˛�F piF pi+1

ä
+
H−1∑
i=0

36 `
Ä
RpiF pi

ä
= 13

H−1∑
i=0

`
Ä˛�F piF pi+1

ä
+ 36 `

Ä
R0F 0

ä
+ 36

H−2∑
i=0

`
Ä
Rpi+1F pi+1

ä
≤ 13

H−1∑
i=0

`
Ä˛�F piF pi+1

ä
+ 36 `

Ä
R0F 0

ä
+ 180

H−2∑
i=0

`
Ä˛�F piF pi+1

ä
≤ 193

H−1∑
i=0

`
Ä˛�F piF pi+1

ä
+ 36 `

Ä
R0F 0

ä
= 193 `

Ä˚�F 0FW

ä
+ 36 `

Ä
R0F 0

ä
= 193 `

Ä˚�B0BN

ä
+ 36 `

Ä
P 0B0

ä
≤ 193 `

Ä˚�P 0BN

ä
= 193 `

Ä
P̄B
ä
.

Since we are assuming that min
{
`
Ä
ĀP
ä
, `
Ä
P̄B
ä}

= `
Ä
P̄B
ä
, the proof is then concluded. �
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2.6. Step VI: Setting the speed of the piecewise affine paths inside a sector.

Keep in mind that we have to define a piecewise affine path from P to O as the image under

v of the segment PO ⊆ D. This path will start with the curve ṖPN that we defined in Step IV.

However, sending the (beginning of the) segment PO onto the path ṖPN at constant speed is

not the right choice. Basically, the reason is the following: if two points P and Q in ĀB have

distance ε > 0, the lengths of ṖPN and of Q̇QM may differ by Kε for any big constant K (e.g.,

when S(AB) has a spiral shape); thus if we use the constant speed in the definition of v we end

up with a piecewise affine function with triangles having arbitrarily small angles, thus with an

arbitrarily large bi-Lipschitz constant. For this reason, we parameterize the paths ṖPN with a

non constant speed. Choosing the correct speed is precisely the aim of this step.

Let us start with the definition of a “possible speed function”.

Definition 2.27. Let S(AB) be a sector, and let Σ be the union of the paths ṖPN for all the

vertices P of ĀB (such a union is disjoint by Lemma 2.18). We say that τ : Σ → R+ is a

possible speed function if for any vertex P ∈ ĀB one has

• τ(P ) = 0 ,

• for each 0 ≤ i < N(P ), the restriction of τ to the closed segment P iP i+1 is affine .

Moreover, for any S belonging to the open segment P iP i+1, we shall write

τ ′(S) :=
τ(P i+1)− τ(P i)

`
Ä
P iP i+1

ä . (2.50)

To avoid misunderstandings in the following result, we point the reader’s attention to the

fact that, if one considers τ(S) as the time at which the curve ṖPN passes through S, then in

fact τ ′(S) corresponds to the inverse of the speed of the curve. Let us now state and prove the

main result of this step.

Lemma 2.28. There exists a possible speed function τ such that

1

40L
≤ τ ′(S) ≤ 1 ∀S ∈ Σ , (2.51)

if P i and Qj belong to the same exit side of a triangle, then

|τ(P i)− τ(Qj)| ≤ 400L `
Ä
P̄Q
ä
.

(2.52)

Proof. We start noticing that, in order to define τ , it is enough to fix τ ′ within the whole path

ṖPN for any vertex P ∈ ĀB. We argue again by induction on the weight of the sector.

Case I. The weight of S(AB) is 2.

In this case, the sector is a triangle ABC, and we directly set τ ′ ≡ 1 within all Σ, so

that (2.51) is clearly true. Consider now (2.52). Since there is only a single triangle, one

necessarily has that i, j ≤ 1 and P i and Qj belong to AB, so that

τ(P i) = `
Ä
PP i

ä
, τ(Qj) = `

Ä
QQj

ä
,
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by the choice τ ′ ≡ 1. It is then enough to recall Lemma 2.18 (iii) and to use the triangular

inequality to get

|τ(P i)− τ(Qj)| =
∣∣∣`ÄPP i

ä
− `
Ä
QQj

ä∣∣∣ ≤ `ÄPQ
ä

+ `
Ä
P iQj

ä
≤ 2`

Ä
PQ
ä
,

so that (2.52) holds true.

Case II. The weight of S(AB) is at least 3.

In this case, let us consider the maximal triangle ABC. Then, we can assume that τ has

been already defined in the sectors S(AC) and S(BC), emptily if the segment AC (resp. BC)

belongs to ∂∆ and by inductive assumption otherwise, and with the properties that 1/(40L) ≤
τ ′(S) ≤ 1 for every S ∈ S(AC) ∪ S(BC) and∣∣∣τ(PN−1)− τ(QM−1)

∣∣∣ ≤ 400L `
Ä
PQ
ä

(2.53)

for every P , Q ∈ ĀB. Here we write for brevity N = N(P ) and M = N(Q), so that both

PN−1 and QM−1 belong to AC ∪BC. Notice that (2.53) follows by inductive assumption even

if PN−1 ∈ AC and QM−1 ∈ BC, just applying (2.52) once to PN−1 and C, and once to QM−1

and C.

Thus, we only have to define τ in the triangle ABC and by definition of possible speed

function it is enough to set τ on the segment AB or, equivalently, to set τ ′ on the triangle

ABC.

Let us begin with a tentative definition, namely, we define τ̃ by putting τ̃ ′ ≡ 1/(40L)

in ABC, and we will define τ as a modification—if necessary—of τ̃ . Notice that, for any

PN−1 ∈ AC ∪BC, our definition consists in setting

τ̃(PN ) = τ(PN−1) +
1

40L
`
Ä
PN−1PN

ä
. (2.54)

Of course the function τ̃ satisfies (2.51), but in general it is not true that (2.52) holds.

We can now define the function τ by setting

τ(PN ) := τ̃(PN ) ∨max
{
τ̃(QM )− 400L `

Ä
P̄Q
ä

: Q ∈ ĀB
}
, (2.55)

for any vertex P ∈ ĀB. Since by definition τ ≥ τ̃ , it is also τ ′ ≥ τ̃ ′ = 1/(40L) in the triangle

ABC, so the first inequality in (2.51) holds true also for τ .

It is also easy to check (2.52). Indeed, take P and Q in ĀB, and consider two possibilities:

if τ(QM ) = τ̃(QM ), then

τ(PN ) ≥ τ̃(QM )− 400L `
Ä
P̄Q
ä

= τ(QM )− 400L `
Ä
P̄Q
ä
.

On the other hand, if τ(QM ) = τ̃(RK)− 400L `
Ä
Q̄R
ä

for some R ∈ ĀB with K = N(R), then

τ(PN ) ≥ τ̃(RK)− 400L `
Ä
P̄R
ä
≥ τ̃(RK)− 400L `

Ä
P̄Q
ä
− 400L `

Ä
Q̄R
ä

= τ(QM )− 400L `
Ä
P̄Q
ä
,

so that τ(PN ) ≥ τ(QM )− 400L `
Ä
P̄Q
ä

is true in both cases. Exchanging the roles of P and Q

immediately yields (2.52).
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Summarizing, to conclude the thesis we only have to check that τ ′ ≤ 1 on ABC, which by

induction amounts to check that for any P ∈ ĀB one has

τ(PN )− τ(PN−1) ≤ `
Ä
PN−1PN

ä
.

Let us then assume the existence of some vertex P ∈ ĀB such that

τ(PN )− τ(PN−1) > `
Ä
PN−1PN

ä
, (2.56)

and the searched inequality will follow once we find a contradiction. By symmetry, we assume

that PN−1 ∈ AC. Of course, if τ(PN ) = τ̃(PN ) then (2.54) already prevents the validity

of (2.56). Therefore, keeping in mind (2.55), we obtain the existence of some vertex Q ∈ ĀB

such that

τ(PN ) = τ̃(QM )− 400L `
Ä
P̄Q
ä
, (2.57)

which gives

τ(PN ) = τ(QM−1) +
1

40L
`
Ä
QM−1QM

ä
− 400L `

Ä
P̄Q
ä
.

Recalling (2.53) and (2.56), we deduce

τ(PN−1) ≥ τ(QM−1)− 400L `
Ä
P̄Q
ä

= τ(PN )− 1

40L
`
Ä
QM−1QM

ä
> τ(PN−1) + `

Ä
PN−1PN

ä
− 1

40L
`
Ä
QM−1QM

ä
,

so that

`
Ä
QM−1QM

ä
> 40L `

Ä
PN−1PN

ä
. (2.58)

Call now, as in Figure 12, P⊥ and Q⊥ the orthogonal projections of PN−1 and QM−1 on the

B

C

QM−1

PN−1

QM

Q⊥

PN

P⊥

A

Figure 12. The triangle ABC with the points PN−1, PN , P⊥ and QM−1, QM , Q⊥.

segment AB, and note that by a trivial geometrical argument—recalling that PN−1 ∈ AC—one

has
`
Ä
PN−1P⊥

ä
`
Ä
QM−1Q⊥

ä ≥ `
Ä
APN−1

ä
`
Ä
AQM−1

ä ,
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where the inequality is an equality if QM−1 ∈ AC as in the figure, while it is strict if QM−1 ∈
BC. Then, recalling Lemma 2.18 (i) and (2.58), one has

`
Ä
PN−1PN

ä
≥ `
Ä
PN−1P⊥

ä
≥ `
Ä
QM−1Q⊥

ä `ÄAPN−1

ä
`
Ä
AQM−1

ä
= `
Ä
QM−1QM

ä
sin
Ä
QM−1

‘QMA
ä `ÄAPN−1

ä
`
Ä
AQM−1

ä ≥ sin 15◦ `
Ä
QM−1QM

ä `ÄAPN−1

ä
`
Ä
AQM−1

ä
> 40L sin 15◦ `

Ä
PN−1PN

ä `ÄAPN−1

ä
`
Ä
AQM−1

ä ≥ 238

23
L`
Ä
PN−1PN

ä `ÄAPN−1

ä
`
Ä
AQM−1

ä ,
which means

`
Ä
AQM−1

ä
≥ 238

23
L `
Ä
APN−1

ä
.

Making again use of Lemma 2.18 (iii) and of the Lipschitz property of u, we then have

`
Ä
P̄Q
ä
≥ `
Ä
PN−1QM−1

ä
≥ `
Ä
AQM−1

ä
− `
Ä
APN−1

ä
≥ 215

23
L `
Ä
APN−1

ä
≥ 215

230
`
Ä
ĀP
ä

≥ 43

46L
`
Ä
ĀP
ä
,

so that

89L `
Ä
P̄Q
ä
≥
Ä
46L+ 43

ä
`
Ä
P̄Q
ä
≥ 43

(
`
Ä
ĀP
ä

+ `
Ä
P̄Q
ä)
≥ 43 `

Ä
ĀQ
ä
.

Hence, by (2.57) (which in particular implies that A 6= Q, keeping in mind that τ(PN ) > 0),

τ̃(QM ) ≥ 400L `
Ä
P̄Q
ä
≥ 400 · 43

89
`
Ä
ĀQ
ä
> 193 `

Ä
ĀQ
ä
. (2.59)

On the other hand, by definition and inductive assumption,

τ̃(QM ) = τ(QM−1) +
1

40L
`
Ä
QM−1QM

ä
≤ `
Ä˝�QQM−1

ä
+

1

40L
`
Ä
QM−1QM

ä
≤ `
Ä
Q̇QM

ä
,

which recalling Lemma 2.19 of Step V gives τ̃(QM ) ≤ 193 `
Ä
ĀQ
ä
. Since this is in contradiction

with (2.59), the proof of the lemma is concluded. �

2.7. Step VII: Definition of the extension inside a primary sector.

We are finally ready to define the extension of u inside a primary sector. The goal of this

step is to take a primary sector S(AB), where A = u(A) and B = u(B) and A, B ∈ ∂D
are as usual, and to define a piecewise affine bi-Lipschitz extension uAB of u which sends a

suitable subset DAB of the square D onto S(AB) (see Figure 13). First we observe a simple

trigonometric estimate for the bi-Lipschitz constant of an affine map between two triangles and

then we state and prove the main result of this step.

Lemma 2.29. Let T and T ′ be two triangles in R2, and let φ be a bijective affine map sending

T onto T ′. Call a, b and α the lengths of two sides of T and the angle between them, and let
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a′, b′ and α′ be the corresponding lengths and angle in T ′. Then, the Lipschitz constant of the

map φ can be bounded as

Lip(φ) ≤ a′

a
+
b′ sinα′

b sinα
+

∣∣∣∣∣b′ cosα′

b sinα
− a′ cosα

a sinα

∣∣∣∣∣ ≤ a′

a
+

√
2b′

b sinα
+

a′

a sinα
. (2.60)

Proof. Let {(x1, x2)} be the standard orthonormal coordinate system of R2. Up to an isometry

of the plane, we can assume that the two sides of lengths a and a′ are both on the half-line

{x1 ≥ 0, x2 = 0}, that the two triangles T and T ′ both lie in the half-space {x2 ≥ 0} and that

the vertices whose angles are given by α, α′ coincide with the point (0, 0). Hence, one has that

φ(x) = M x, for some 2× 2 matrix M . We have then

Lip(φ) = |M | = sup
ν 6=0

|Mν|
|ν|

.

With our choice of coordinates, we have clearly

M
Ä
a, 0
ä

=
Ä
a′, 0
ä
, M

Ä
b cosα, b sinα

ä
=
Ä
b′ cosα′, b′ sinα′

ä
,

which immediately gives

M =

á
a′

a

b′ cosα′

b sinα
− a′ cosα

a sinα

0
b′ sinα′

b sinα

ë
,

from which the estimate (2.60) directly follows. �

O

A

uAB
DAB

B B
S(AB)

A

Figure 13. The function uAB : DAB → S(AB).

Lemma 2.30. Let S(AB) be a primary sector. Then there exist an open polygonal subset DAB
of D, and a piecewise affine map uAB : DAB → S(AB), affine and bi-Lipschitz on every triangle

of a suitable partition of D(AB), such that:

(i) For any vertex P ∈ ∂D, one has DAB ∩ OP = ∅ if P /∈ ĀB, DAB ∩ OP = {P} if

P ∈ {A, B}, and DAB ∩ OP = PPN with PN = tO + (1− t)P and 0 < t = t(P ) ≤ 4/5

if P ∈ ĀB \ {A, B} .
(ii) The continuous extension of uAB on ĀB = ∂D ∩DAB coincides with u.
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(iii) On every triangle of the partition of DAB, uAB is Lipschitz with constant 230000L3, and

u−1
AB is Lipschitz with constant 3000L4.

(iv) For any two consecutive vertices P, Q ∈ ĀB, one has sin
Ä
PN(P )

◊�QN(Q)O
ä
≥ 1

202L
.

Proof. We will divide the proof in three parts.

Part 1. Definition of Γ, Γ, uAB : ∂Γ→ ∂Γ, and validity of (i) and (ii).

First of all, we take a vertex P ∈ ĀB and, for any 1 ≤ i ≤ N = N(P ), we set

Pi = tP,iO + (1− tP,i)P , with tP,i =
τ(P i)

10L
, (2.61)

where τ is the function defined in Lemma 2.28. Then, we define uAB on the segment PPN as

the piecewise affine function such that for all i one has uAB(Pi) = P i. It is important to observe

that, for any vertex P ∈ ĀB, one has

0 ≤ tP,i ≤
4

5
, ∀ 0 ≤ i ≤ N = N(P ) . (2.62)

Indeed, using (2.51) in Lemma 2.28, (ii) in Lemma 2.18, and the Lipschitz property of u, one

has that

τ(P i) ≤ τ(PN ) ≤
N∑
j=1

`
Ä
P j−1P j

ä
= `
Ä
ṖPN

ä
≤ 4 `

Ä
ĀB
ä
≤ 4L `

Ä
ĀB
ä
≤ 8L ,

so by (2.61) we get (2.62).

We are now ready to define the set DAB. Let us enumerate, just for one moment, the

vertices of ĀB as P 0 ≡ A, P 1, P 2, . . . , PW−1, PW ≡ B, following the order of ĀB. The

set DAB is then defined as the polygon whose boundary is the union of ĀB with the path

AP 1
N(1)P

2
N(2) · · ·P

W−1
N(W−1)B, as in Figure 13, where for each 0 < i < W we have written N(i) =

N(P i). Hence, property (i) is true by construction and by (2.62).

P 5
uAB

A

B
O

A

B

Q

P
P5

Q2

P

Q

Q2

Figure 14. The sets Γ and Γ.

Then we take two generic consecutive vertices P, Q ∈ ĀB, and we call Γ ⊆ DAB the

quadrilater PQQMPN , and Γ ⊆ S(AB) the polygon whose boundary is PQ∪Q̇QM ∪QMPN ∪
ṖNP , where we have set N = N(P ) and M = N(Q). Notice that, varying the consecutive



A PLANAR BI-LIPSCHITZ EXTENSION THEOREM 39

vertices P and Q, DAB is essentially the union of the different polygons Γ, while S(AB) is the

union of the polygons Γ. We will then define the function uAB so that uAB(Γ) = Γ. Let us start

with the definition of uAB from ∂Γ to ∂Γ. The function uAB has been already defined from the

segment PPN onto the path ṖPN and from the segment QQM onto the path ˚�QQM . Hence we

conclude defining uAB to be affine from the segment PQ to the segment PQ, and from PNQM

to PNQM . Notice that, as a consequence, also property (ii) is true by construction.

Now we see how to extend uAB from the interior of Γ to the interior of Γ satisfying proper-

ties (iii) and (iv).

Recalling the partition of S(AB) into triangles done in Step III, PQ is a side of some

triangle PQR, and since PQ ⊆ ∂∆ it cannot be the exit side. Let us then assume, without

loss of generality, that the exit side is QR. Hence, it follows that N > M . Moreover, ifÄ
T 1, T 2, . . . , T N

ä
is the natural sequence of triangles related to P , as in Definition 2.16,

then it is immediate to observe that Q belongs to the exit side of T i for all 1 ≤ i ≤ N −M .

Figure 14 shows an example in which N = 5 and M = 2. In the following two parts, we will

define uAB separately on the triangle PPN−MQ and on the quadrilateral PN−MPNQMQ, whose

union is the quadrilateral PPNQMQ, i.e., Γ.

Part 2. Definition of uAB in the triangle PPN−MQ, and validity of (iii) and (iv).

In this second part we define uAB from the triangle PPN−MQ onto the polygon in ∆

whose boundary is ˝�PPN−M ∪ PN−MQ ∪QP . The definition is very simple, namely, for any

0 ≤ i < N − M we let uAB be the affine function sending the triangle PiPi+1Q onto the

triangle P iP i+1Q, as shown in Figure 15. We now have to check the validity of (iii) and (iv)

in the triangle PPN−MQ. Keeping in mind Lemma 2.29, to show (iii) it is enough to compare

the lengths of PiPi+1 and P iP i+1, those of Pi+1Q and P i+1Q, and the angles Pi’Pi+1Q and

P i
’P i+1Q.

PN

QM
O

A

B

P

Q

P i+1
PN

QM

PN−M

Q

P

Pi+1

PN−M

Pi

P i

uAB

Figure 15. The situation in Part 2.

We start recalling that (iii) in Lemma 2.18, together with the Lipschitz property of u, ensures

`
Ä
PQ
ä

10L
≤ `
Ä
P i+1Q

ä
≤ `
Ä
PQ
ä
≤ L`

Ä
PQ
ä

(2.63)
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(keep in mind that, since P and Q are consecutive vertices, PQ = P̄Q and PQ = P̄Q).

Recalling now (2.61) and (2.52) of Lemma 2.28, we get

tP,i+1 = tP,i+1 − tQ,0 =
τ(P i+1)− τ(Q0)

10L
≤ 40 `

Ä
PQ
ä
≤ 40L `

Ä
PQ
ä
. (2.64)

We want now to estimate `
Ä
Pi+1Q

ä
. To do so, let us assume, as in Figure 15 and without loss

of generality, that P and Q belong to the left side of the square D and that P is above Q. Call

also V ≡ (−1
2 ,−

1
2) the southwest corner of D, and let δx and δy be the horizontal and vertical

components of the vector Pi+1 −Q, so that

`
Ä
Pi+1Q

ä
=
»
δ2
x + δ2

y .

By construction one clearly has δx = tP,i+1/2. We claim that
√

2

2
`
Ä
PQ
ä
≤ `
Ä
Pi+1Q

ä
≤ 29L `

Ä
PQ
ä
. (2.65)

In fact, since Pi+1 belongs to the segment PO, one surely has

`
Ä
Pi+1Q

ä
≥ `
Ä
PQ
ä

sin
Ä
O“PV ä ≥ √2

2
`
Ä
PQ
ä
,

so that the left inequality in (2.65) holds. To show the right inequality in (2.65), notice that

3

4
π ≥ Pi+1

“PQ = O“PV ≥ π

4
,

so that by an immediate geometric argument |δy| ≤ `(PQ) + δx. Thus, by (2.64)

`
Ä
Pi+1Q

ä
=
»
δ2
x + δ2

y ≤

ÃÇ
tP,i+1

2

å2

+

Ç
tP,i+1

2
+ `
Ä
PQ
äå2

≤ `
Ä
PQ
ä…Ä

20L
ä2

+
Ä
20L+ 1

ä2 ≤ 29L `
Ä
PQ
ä
,

(2.66)

and so also the right inequality in (2.65) is established.

Keeping in mind (2.63), from (2.65) we obtain

√
2

2L
≤

`
Ä
Pi+1Q

ä
`
Ä
P i+1Q

ä ≤ 290L2 . (2.67)

It is much easier to compare `
Ä
PiPi+1

ä
and `

Ä
P iP i+1

ä
. Indeed, by an immediate geometrical

argument, recalling (2.61), (2.50) and condition (2.51) of Lemma 2.28, and letting S be any

point in the interior of P iP i+1, one has

`
Ä
PiPi+1

ä
≤
√

2

2

Ä
tP,i+1 − tP,i

ä
=

√
2

20L

Ä
τ(P i+1)− τ(P i)

ä
=

√
2

20L
τ ′(S) `

Ä
P iP i+1

ä
≤
√

2

20L
`
Ä
P iP i+1

ä
,

and analogously

`
Ä
PiPi+1

ä
≥ tP,i+1 − tP,i

2
=
τ(P i+1)− τ(P i)

20L
=
τ ′(S)

20L
`
Ä
P iP i+1

ä
≥ 1

800L2
`
Ä
P iP i+1

ä
.
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Thus, we have

1

800L2
≤

`
Ä
PiPi+1

ä
`
Ä
P iP i+1

ä ≤ √2

20L
. (2.68)

Let us finally compare the angles Pi’Pi+1Q and P i
’P i+1Q. Concerning P i

’P i+1Q, it is enough

to recall (i) of Lemma 2.18 to obtain

15◦ ≤ P i
’P i+1Q ≤ 165◦ . (2.69)

On the other hand, concerning Pi’Pi+1Q, we start observing that

Pi’Pi+1Q = P’Pi+1Q ≤ π −O“PQ ≤ 3

4
π . (2.70)

To obtain an estimate from below to Pi’Pi+1Q, instead, we call for brevity α := Pi’Pi+1Q =

P’Pi+1Q and θ := O“PV − π
2 ∈
î
−π/4, π/4

ä
, so that an immediate trigonometric argument gives

`
Ä
PQ
ä

=
tP,i+1

2

(
tan(θ + α)− tan θ

)
. (2.71)

We aim then to show that

α ≥ 1

42L
. (2.72)

In fact, if

θ + α ≥ π

4
+

1

42
,

then since θ ≤ π/4 we immediately deduce the validity of (2.72). On the contrary, if

θ + α <
π

4
+

1

42
,

then recalling (2.71), the fact that θ ≥ −π/4, and (2.64), we get

`
Ä
PQ
ä

=
tP,i+1

2

(
tan(θ + α)− tan θ

)
≤ tP,i+1

2

α

cos2
(
π
4 + 1

42

) ≤ 20L `
Ä
PQ
ä α

cos2
(
π
4 + 1

42

) ,
from which it follows

α ≥
cos2

(
π
4 + 1

42

)
20L

≥ 1

42L
,

so that (2.72) is concluded. Putting it together with (2.70), we deduce

1

42L
≤ Pi’Pi+1Q ≤

3

4
π . (2.73)

Finally we show the validity of (iii), simply applying (2.60) of Lemma 2.29. Indeed, let us call φ

the affine map which sends the triangle PiPi+1Q onto P iP i+1Q and, for brevity and according

with the notation of Lemma 2.29, let us write

a = `
Ä
Pi+1Q

ä
, b = `

Ä
PiPi+1

ä
, α = Pi’Pi+1Q ,

a′ = `
Ä
P i+1Q

ä
, b′ = `

Ä
P iP i+1

ä
, α′ = P i

’P i+1Q .

Then, the estimates (2.67), (2.68), (2.69) and (2.73) can be rewritten as
√

2

2L
≤ a

a′
≤ 290L2 ,

1

800L2
≤ b

b′
≤
√

2

20L
, sinα′ ≥ 1

4
, sinα ≥ 1

43L
, (2.74)



42 SARA DANERI AND ALDO PRATELLI

where for the last estimate we used that

sinα ≥ sin

Ç
1

42L

å
=

1

42L

Ç
42L sin

Ç
1

42L

åå
≥ 1

42L

Ç
42 sin

Ç
1

42

åå
≥ 1

43L
. (2.75)

Therefore, (2.60) and (2.74) give us

Lip(φ) ≤ a′

a
+

√
2b′

b sinα
+

a′

a sinα
≤
√

2L+ 48650L3 + 43
√

2L2 .

On the other hand, exchanging the roles of the triangles, we get

Lip(φ−1) ≤ a

a′
+

√
2b

b′ sinα′
+

a

a′ sinα′
≤ 290L2 +

2

5L
+ 1160L2 .

To conclude this part, we want to check (iv) for the pairs of consecutive vertices P, Q such

that the side PNQM is in the triangle PPN−MQ. Notice that this happens only when M = 0,

or in other words, if Q ≡ A or Q ≡ B. Let us then assume that Q is either A or B, and let us

show that (iv) holds, that is,

sin
Ä
QP̂NO

ä
≥ 1

202L
, sin

Ä
PN “QOä ≥ 1

202L
. (2.76)

Taking i = N − 1 and applying the second inequality in (2.73), we immediately find

QP̂NO = π − PN−1P̂NQ ≥
π

4
> arcsin

Ç
1

202L

å
.

In the same way, applying the first inequality in (2.73) and recalling Remark 2.3, one has

PN “QO = π −QP̂NO −Q“OPN = PN−1P̂NQ− P “OQ ≥ 1

42L
− 1

60L
> arcsin

Ç
1

202L

å
.

Hence, (2.76) is checked.

Part 3. Definition of uAB in the quadrilateral PN−MPNQMQ, and validity of (iii) and (iv).

The definition is again trivial: we take any N −M ≤ i < N and, setting j = i−N +M ∈
[0,M), we have to send the quadrilateral PiPi+1Qj+1Qj on the quadrilateral P iP i+1Qj+1Qj .

To do so, we send the triangle PiPi+1Qj+1 (resp. Qj+1QjPi) onto the triangle P iP i+1Qj+1

(resp. Qj+1QjP i) in the bijective affine way, as depicted in Figure 16. Then, we have to check

the validity of (iii) and (iv). As in Part 2, checking (iii) basically relies, thanks to Lemma 2.29,

on a comparison between the lengths of the corresponding sides and between the corresponding

angles. The argument will be very similar to that already used in Part II, but for the sake of

clarity we are going to underline all the changes in the proof.

First of all, the argument leading to (2.68) can be verbatim repeated for both the segments

PiPi+1 and QjQj+1, leading to

1

800L2
≤

`
Ä
PiPi+1

ä
`
Ä
P iP i+1

ä ≤ √2

20L
,

1

800L2
≤
`
Ä
QjQj+1

ä
`
Ä
QjQj+1

ä ≤ √2

20L
. (2.77)

The argument that we used in Part 2 to bound the length of the segment Pi+1Q works, with

minor modifications, to estimate the lengths of PiQj and Pi+1Qj+1. Let us do it in detail

for PiQj , the case of Pi+1Qj+1 being exactly the same. First of all, assuming without loss of

generality that P and Q lie on the left side of D and that P is above Q, and recalling (2.62), let
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A

B

PN

QM

P i

Qj
Qj+1

PN−M

O
Pi

P i+1PN

P

Q

Qj+1

QM

V Vj

Qj

Pi+1

QP

P⊥ uAB

Figure 16. The situation in Part 3.

us call xj ∈ (−1/2,−1/10 ] the first coordinate of Qj , set Vj ≡ (xj ,−1/2), V ≡ (−1/2,−1/2),

and define P⊥ as the point of the segment OP having first coordinate equal to xj .

As in (2.64), then, we obtain

|tP,i − tQ,j | ≤ 40L `
Ä
PQ
ä
, |tP,i+1 − tQ,j+1| ≤ 40L `

Ä
PQ
ä
. (2.78)

We claim that √
2

10
`
Ä
PQ
ä
≤ `
Ä
PiQj

ä
≤ 29L `

Ä
PQ
ä
. (2.79)

—notice the presence of
√

2/10 in the left hand side, while there was
√

2/2 in the corresponding

term in (2.65). To show the left inequality in (2.79) we start observing that, Pi being in OP ,

one has

`
Ä
PiQj

ä
≥ `
Ä
P⊥Qj

ä
sin
Ä
O”P⊥Qjä = `

Ä
P⊥Qj

ä
sin
Ä
O“PV ä ≥ √2

2
`
Ä
P⊥Qj

ä
.

Moreover, as the segment P⊥Qj is parallel to PQ, (2.62) immediately gives `
Ä
P⊥Qj

ä
≥ `
Ä
PQ
ä
/5.

Hence, we get `
Ä
PiQj

ä
≥
√

2
10 `
Ä
PQ
ä
, that is the left inequality of (2.79).

Let us now pass to the right inequality. To do so we call again δx and δy the horizontal and

vertical components of PiQj , so that `(PiQj) =
»
δ2
x + δ2

y . Notice that by construction

|δx| =
|tP,i − tQ,j |

2
≤ 20L `

Ä
PQ
ä
.

Moreover,

π

4
≤ Pi”P⊥Qj ≤ 3

4
π ,

π

4
≤ O“PV ≤ 3

4
π ,

hence |δy| ≤ `(P⊥Qj) + |δx| ≤ `(PQ) + |δx|. As a consequence, exactly as in (2.66) we get,

using (2.78),

`
Ä
PiQj

ä
=
»
δ2
x + δ2

y ≤ `
Ä
PQ
ä…Ä

20L
ä2

+
Ä
20L+ 1

ä2 ≤ 29L `
Ä
PQ
ä
.
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Thus, (2.79) is proved. Since (iii) of Lemma 2.18 gives

`
Ä
PQ
ä

10L
≤ `
Ä
P iQj

ä
≤ `
Ä
PQ
ä
≤ L `

Ä
PQ
ä
,

from (2.79) we immediately obtain
√

2

10L
≤

`
Ä
PiQj

ä
`
Ä
P iQj

ä ≤ 290L2 . (2.80)

The same argument, exchanging i and j with i+ 1 and j + 1 respectively, gives also
√

2

10L
≤

`
Ä
Pi+1Qj+1

ä
`
Ä
P i+1Qj+1

ä ≤ 290L2 . (2.81)

We now have to consider the angles Pi’Pi+1Qj+1, Qj+1
”QjPi and their corresponding ones in ∆.

By Lemma 2.18 (i), we already know that

Pi

O

Q

P

Qj+1

P ′
P⊥

Qj

Pi+1

Figure 17. Position of the points Pi, Pi+1, Qj , Qj+1, P⊥ and P ′.

15◦ ≤ P i
’P i+1Qj+1 ≤ 165◦ , sin

(
Qj+1

”QjP i

)
≥ 1

8L2
. (2.82)

As in Figure 17, let us then call P ′ the orthogonal projection of Qj+1 on the segment OP , and

P⊥ the point of the segment OP with the same first coordinate as Qj+1. Assume for a moment

that, as in the figure, P ′ does not belong to PPi+1. By (2.78) and by (2.62) we have

`
Ä
Pi+1P

⊥
ä

=
|tP,i+1 − tQ,j+1|

2 sin
Ä
O“PQä ≤ 20

√
2L `
Ä
PQ
ä
, `
Ä
P⊥Qj+1

ä
≥
`
Ä
PQ
ä

5
,

`
Ä
P⊥P ′

ä
= `
Ä
P⊥Qj+1

ä
cos
Ä
O“PQä , `

Ä
Qj+1P

′
ä

= `
Ä
P⊥Qj+1

ä
sin
Ä
O“PQä .(2.83)

Therefore, we can evaluate

tan
Ä
P ′’Pi+1Qj+1

ä
=
`
Ä
Qj+1P

′
ä

`
Ä
Pi+1P ′

ä ≥ `
Ä
Qj+1P

′
ä

`
Ä
P⊥P ′

ä
+ `
Ä
Pi+1P⊥

ä ≥ √
2

2 `
Ä
P⊥Qj+1

ä
√

2
2 `
Ä
P⊥Qj+1

ä
+ 20
√

2L `
Ä
PQ
ä

=
`
Ä
P⊥Qj+1

ä
`
Ä
P⊥Qj+1

ä
+ 40L `

Ä
PQ
ä ≥ 1

201L
,

which immediately gives

Pi’Pi+1Qj+1 = π − P ′’Pi+1Qj+1 ≤ π − arctan

Ç
1

201L

å
. (2.84)
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Notice that, if P ′ belongs to PPi+1, then Pi’Pi+1Qj+1 ≤ π/2, so (2.84) holds true. Repeating

exactly the same argument, just swapping P and i with Q and j, we obtain that

Qj’Qj+1Pi+1 ≤ π − arctan

Ç
1

201L

å
.

We can then deduce that

Pi’Pi+1Qj+1 = π −O’Pi+1Qj+1 = Pi+1
’Qj+1O + Pi“OQj+1 ≥ Pi+1

’Qj+1O

= π − Pi+1
’Qj+1Qj ≥ arctan

Ç
1

201L

å
,

and this, together with (2.84) and also again swapping P and i with Q and j, finally implies

sin
Ä
Pi’Pi+1Qj+1

ä
≥ 1

202L
, sin

Ä
Qj’Qj+1Pi+1

ä
≥ 1

202L
. (2.85)

We are finally in position to check the validity of (iii) by making use of (2.60) of Lemma 2.29.

Indeed, let us call φ (resp. φ̃) the affine map which sends PiPi+1Qj+1 onto P iP i+1Qj+1 (resp.

Qj+1QjPi onto Qj+1QjP i). According with the notation of Lemma 2.29, let us write

a = `
Ä
Pi+1Qj+1

ä
, b = `

Ä
PiPi+1

ä
, α = Pi’Pi+1Qj+1 ,

a′ = `
Ä
P i+1Qj+1

ä
, b′ = `

Ä
P iP i+1

ä
, α′ = P i

’P i+1Qj+1 ,

ã = `
Ä
PiQj

ä
, b̃ = `

Ä
QjQj+1

ä
, α̃ = Qj+1

”QjPi ,
ã′ = `

Ä
P iQj

ä
, b̃′ = `

Ä
QjQj+1

ä
, α̃′ = Qj+1

”QjP i .

The estimates (2.77), (2.80) and (2.81) for the sides, and (2.82) and (2.85) for the angles, give
√

2

10L
≤ a

a′
≤ 290L2 ,

1

800L2
≤ b

b′
≤
√

2

20L
, sinα′ ≥ 1

4
, sinα ≥ 1

202L
, (2.86)

√
2

10L
≤ ã

ã′
≤ 290L2 ,

1

800L2
≤ b̃

b̃′
≤
√

2

20L
, sin α̃′ ≥ 1

8L2
, sin α̃ ≥ 1

202L
; (2.87)

notice that the estimate for α̃ comes directly from (2.85) if j ≥ 1, while if j = 0 then α̃ =

PN−M “QO ≥ 1/(42L) − 1/(60L) > arcsin(1/(202L)) by (2.73) and Remark 2.3. As in Part 2,

then, we can apply (2.60) together with (2.86) and (2.87) to obtain

Lip(φ) ≤ a′

a
+

√
2 b′

b sinα
+

a′

a sinα
≤ 5
√

2L+ 161600
√

2L3 + 1010
√

2L2 ≤ 230000L3 ,

Lip(φ−1) ≤ a

a′
+

√
2 b

b′ sinα′
+

a

a′ sinα′
≤ 290L2 +

2

5L
+ 1160L2 ≤ 3000L4 ,

Lip(φ̃) ≤ ã′

ã
+

√
2 b̃′

b̃ sin α̃
+

ã′

ã sin α̃
≤ 5
√

2L+ 161600
√

2L3 + 1010
√

2L2 ≤ 230000L3 ,

Lip(φ̃−1) ≤ ã

ã′
+

√
2 b̃

b̃′ sin α̃′
+

ã

ã′ sin α̃′
≤ 290L2 +

4

5
L+ 2320L4 ≤ 3000L4 .

Thus, we have checked the validity of (iii).

Concerning (iv), we have only to show that

sin
Ä
PN‘QMOä ≥ 1

202L
, sin

Ä
QM P̂NO

ä
≥ 1

202L
,

which in turn comes directly from (2.85) with i = N − 1 and j = M − 1. �
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2.8. Step VIII: Definition of the piecewise affine extension v.

We finally come to the explicit definition of the piecewise affine map v. It is important to

recall now Lemma 2.1 of Step I. It provides us with a central ball “B ⊆ ∆ which is such that

the intersection of its boundary with ∂∆ consists of N points A1, A2, . . . , AN , with N ≥ 2.

Moreover, for each 1 ≤ i ≤ N one has that the path ˚�AiAi+1 does not contain other points Aj

with j 6= i, i+ 1. Or, in other words, that for each 1 ≤ i ≤ N the anticlockwise path connecting

Ai and Ai+1 on ∂D has length at most 2 (keep in mind Remark 2.2). Notice that this implies,

in the case N = 2, that the points A1 and A2 are opposite points of ∂D. The set ∆ is then

essentially subdivided into N primary sectors S(AiAi+1), plus the remaining polygon Π (see,

e.g., Figure 18, where Π is a coloured quadrilateral).

Moreover, thanks to Step VII, we have N disjoint polygonal subsets Di as in the Figure,

and N extensions ui : Di → S(AiAi+1). It is then easy to guess a possible definition of v, that is

setting v ≡ ui on each Di and then sending in the obvious piecewise affine way the set D \⋃iDi
(dark in the figure) into the polygon Π, defining u(O) as the center of “B. Unfortunately, this

strategy does not always work. For instance, if N = 2, then Π is a degenerate empty polygon,

thus it cannot be the bi-Lipschitz image of the non-empty region D \ ⋃iDi. Also for N ≥ 3, it

may happen that the polygon Π does not contain the center of “B, which is instead inside some

sector S(AiAi+1). In that case, obviously, the center of “B can not be the point u(O). Having

these possibilities in mind, we are now ready to give the proof of the first part of Theorem A,

that is, the existence of the bi-Lipschitz piecewise affine extension v of u.

Actually, in order to check the bi-Lipschitz property for v, it will be enough to prove that

v is bi-Lipschitz in every triangle of the partition. To be more precise, let us introduce the

following simple notation: a map ϕ : X → Y is said piecewise L-Lipschitz (or piecewise L bi-

Lipschitz ) if there exists a locally finite closed cover of X such that the restriction of ϕ to any

of the sets of the cover is L-Lipschitz (or L bi-Lipschitz). In the remaining of the paper, we will

use this notion for maps which are defined in a region which is already subdivided in a finite

cover of triangles; hence, for the sake of shortness, when we write that a map is piecewise L

bi-Lipschitz, we will always intend that the map is L bi-Lipschitz on any of the triangles of the

given partition, without need of specifying this every time. The utility of this notion relies on

the following easy and well-known fact.

Lemma 2.31. Let X and Y be two closed subsets of a normed space, and let ϕ : X → Y be a

continuous function, piecewise Lipschitz with constant L, and such that the restriction of ϕ to

∂X is also Lipschitz with constant L. Then, ϕ is globally L-Lipschitz.

Observe that, if X is convex, then for the above result the assumption about ∂X is not

needed. Observe also the fundamental consequence that this result has for our purposes: since

we already know the bi-Lipschitz property of v on ∂D (since v = u on ∂D), then in order to

obtain the global bi-Lipschitz property for v on the whole D it is enough to check it on each of

the triangles of the partition.
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A1

A4

A2

O

D4D3

D2 D1

A3

Pj

Pj+1
Qj

Qj+1

A2

A1

A4

O

A3

Π
Qj

Qj+1

v

Figure 18. The sets Di in D and the set Π in ∆.

Proof of Theorem A (piecewise affine extension). We need to consider three possible situations.

To distinguish between them, let us start with a definition. For any 1 ≤ i ≤ N , we call di the

signed distance between the segment AiAi+1 and the center of “B, where the sign is positive if

the center does not belong to S(AiAi+1), and negative otherwise—for instance, in the situation

of Figure 18 all the distances di are positive. Let us also call r the radius of “B, and observe that

2

3L
≤ r ≤ 2L

π
. (2.88)

The first inequality has been already pointed out in Remark 2.2. Concerning the second one, it

immediately follows by observing that the perimeter of ∆ is at least 2πr by geometric reasons,

and on the other hand it is at most 4L since it is the L−Lipschitz image of the square D which

has perimeter 4. We can then give our proof in the different cases.

Case A. For each 1 ≤ i ≤ N , one has di ≥ r/4.

This is the simplest of the three cases, and the situation is already shown in Figure 18. We

start by calling O the center of “B. Then, for all 1 ≤ i ≤ N , let us define v ≡ ui on Di. We have

now to send D \ ⋃iDi onto Π. In order to do so, consider all the vertices Pj of ∂D. For each

vertex Pj , which belongs to some set Di for a suitable i = i(j), there exists a point Qj which

is the last point of the segment PjO which belongs to ∂Di. In fact, the segment PjO intersects

∂Di only at Pj and at Qj , and the two points are the same if and only if Pj ≡ Ai or Pj ≡ Ai+1.

By the construction of Step VII, we know that v(Qj) = (P j)N(Pj), and we will write for brevity

Qj := (P j)N(Pj). Notice now that D\⋃iDi is the essential union of the triangles QjQj+1O, and

on the other hand Π is the union of the triangles QjQj+1O. We then conclude our definition of

v by letting v send in the affine way each triangle QjQj+1O onto the triangle QjQj+1O. Hence,

it is clear that v is a piecewise affine homeomorphism between D and ∆, and that it extends

the original function u. Thus, to finish the proof we only have to check that v is bi-Lipschitz

with the right constant and, as observed above, Lemma 2.31 ensures that it is enough to check

this on the generic triangle of the partition. Since this has already been done in Lemma 2.30

for the triangles contained in a primary sector, it remains now only to consider a single triangle

QjQj+1O. Using again Lemma 2.29 from Step VII to estimate the bi-Lipschitz constant of the
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affine map on the triangle, we have to give upper and lower bounds for the quantities

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,

a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = O”QjQj+1 .

Let us then collect all the needed estimates: first of all, notice that the ratio a/a′ has already

been evaluated in Lemma 2.30, either in Part 2 or in Part 3. Thus, recalling (2.74) and (2.86),

we already know that √
2

10L
≤ a

a′
≤ 290L2 . (2.89)

Concerning the ratio b/b′, notice that by geometric reasons and recalling (2.62), we have

1

10
≤ b ≤

√
2

2
, (2.90)

while by (2.88) and the assumption of this case

1

6L
≤ r

4
≤ b′ ≤ r ≤ 2L

π
. (2.91)

Thus,
π

20L
≤ b

b′
≤ 3
√

2L . (2.92)

Finally, concerning the angles α and α′, we have

1

sinα
≤ 202L ,

1

sinα′
≤ 4 , (2.93)

where the first inequality is given by property (iv) of Lemma 2.30, and the second directly

follows by the assumption of this case. We can then apply (2.60) making use of (2.89), (2.92)

and (2.93) to get

Lip(φ) ≤ a′

a
+

√
2b′

b sinα
+

a′

a sinα
≤ 5
√

2L+
4040
√

2

π
L2 + 1010

√
2L2 ,

Lip(φ−1) ≤ a

a′
+

√
2b

b′ sinα′
+

a

a′ sinα′
≤ 290L2 + 24L+ 1160L2 ;

thus the claim of the theorem is obtained in this first case.

Case B. There exists some 1 ≤ i ≤ N such that −r/2 ≤ di < r/4.

Also in this case, we set u(O) = O to be the center of “B. Let us write now D =
⋃
iAi, where,

setting by consistency AN+1 = A1, each Ai is the subset of D whose boundary is AiO∪Ai+1O∪˚�AiAi+1. Notice that for each i, one has Di ⊆ Ai, and in particular we set Ii = Ai \ Di, i.e., the

“internal part” of Ai. Our definition of v will be done in such a way that, for each 1 ≤ i ≤ N ,

v(Ai) will be the union of the sector S(AiAi+1) and the triangle AiAi+1O if di ≥ 0, and the

difference between the sector S(AiAi+1) and the triangle AiAi+1O ⊆ S(AiAi+1) if di ≤ 0.

Observe that, in the Case A, we had defined v so that for each i one had v(Di) = S(AiAi+1)

and v(Ii) = AiAi+1O.

Let us fix a given 1 ≤ i ≤ N , and notice that either di ≥ r/4, or −r/2 ≤ di < r/4: indeed,

since we assume the existence of some i for which −r/2 ≤ di < r/4, it is not possible that there

exists some other i with di < −r/2.
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If di ≥ r/4, then we define v exactly as in Case A, that is, we set v ≡ ui on Di, and for

any two consecutive vertices Pj , Pj+1 ∈ ˚�AiAi+1 we let v be the affine function transporting the

triangle QjQj+1O of D onto the triangle QjQj+1O of ∆, where Qk = (P k)N(Pk). In this case,

v is piecewise bi-Lipschitz on Ai with constant at most 5
√

2L + 4040
√

2L2/π + 1010
√

2L2, as

we already showed in Case A.

A1

A4

A2

O

D4D3

D2 D1

I2

I4

I1

I3
A3

A4

A1

O

C

M

D

A3A2

v

Figure 19. The situation for Case B and the points M , D and C.

Consider then the case of an index i such that −r/2 ≤ di < r/4, as it happens for i = 2 in

Figure 19 (where d2 is positive but smaller than r/4). As in the figure, let us call C ∈ ∂“B the

point belonging to the axis of the segment AiAi+1 and to the sector S(AiAi+1), and let also

D ∈ OC be the point such that `
Ä
OD

ä
= r/4. We now introduce a bi-Lipschitz and piecewise

affine function Φ: AiAi+1C → AiDAi+1C. If we call M the mid-point of AiAi+1, the function

Φ is simply given by the affine map between the triangle AiMC and AiDC, and by the affine

map between Ai+1MC and Ai+1DC. The fact that Φ is piecewise affine is clear, Φ being

defined gluing two affine maps. Moreover, by the fact that −r/2 ≤ di < r/4, Φ is piecewise

2−Lipschitz and Φ−1 is piecewise 3−Lipschitz. We will extend Φ: S(AiAi+1) → S(AiAi+1),

without need of changing the name, as the identity out of the triangle AiAi+1C. Of course also

the extended Φ is piecewise 2−Lipschitz and its inverse is piecewise 3−Lipschitz.

We are now ready to define v in Ai. First of all, we set v ≡ Φ ◦ ui on Di. Thanks

to Lemma 2.30 and the properties of Lipschitz functions, we have that v is piecewise affine

and piecewise bi-Lipschitz with constant max
¶

2 · 230000L3, 3 · 3000L4
©
≤ 460000L4 onto its

image, which is S(AiAi+1) \AiAi+1D. To conclude, we need to send Ii onto the quadrilater

AiOAi+1D. To do so, consider all the vertices Pj ∈ ˚�AiAi+1, and define Qj ∈ ∂Di as in Case A.

This time, we will not set Qj = ui(Qj): instead, Qj will be defined as Qj := Φ
Ä
ui(Qj)

ä
, so that

v(Qj) = Qj as usual. Notice that, again, Ii is the union of the triangles QjQj+1O, while the

quadrilateral AiOAi+1D is the union of the triangles QjQj+1O (up to the possible addition

of a new vertex corresponding to D). The map v on Ii will be then the map which sends each

triangle QjQj+1O onto QjQj+1O in the affine way. Clearly the map v is then a piecewise affine

homeomorphism and so, again by Lemma 2.31, we only have to check its bi-Lipschitz constant on
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the generic triangle of the partition (Figure 20 may help the reader to follow the construction).

As usual, we will apply (2.60) of Lemma 2.29, so we set the quantities

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,

a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = O”QjQj+1 .

Recall that, studying Case A, we have already found in (2.89) that for each vertex Pj ∈ ˚�AiAi+1

Qj+1

v
O

C

A3

O

A2 Pj Pj+1

Qj+1

Qj

A3

Qj
D

u2(Qj)
u2(Qj+1)

A2

Figure 20. A zoom for Case B, with Qj , Qj+1, u2(Qj), u2(Qj+1), Qj and Qj+1.

one has √
2

10L
≤

`
Ä
QjQj+1

ä
`
(
ui(Qj)ui(Qj+1)

) ≤ 290L2 . (2.94)

Notice also that now we have `
Ä
QjQj+1

ä
= a, exactly as in Case A, but it is no more true that

`
(
ui(Qj)ui(Qj+1)

)
= a′. However, since Φ is 2−Lipschitz and Φ−1 is 3−Lipschitz, we have

a′ = `
Ä
QjQj+1

ä
= `

(
Φ
Ä
ui(Qj)

ä
Φ
Ä
ui(Qj+1)

ä)
≤ 2 `

(
ui(Qj)ui(Qj+1)

)
,

a′ = `
Ä
QjQj+1

ä
= `

(
Φ
Ä
ui(Qj)

ä
Φ
Ä
ui(Qj+1)

ä)
≥
`
(
ui(Qj)ui(Qj+1)

)
3

,

which by (2.94) ensures
√

2

20L
≤ a

a′
≤ 870L2 . (2.95)

To bound the ratio b/b′, we have to estimate both b and b′. Concerning b, we already know

by (2.90) that

1

10
≤ b ≤

√
2

2
.

On the other hand, let us study b′. The estimate from above, exactly as in (2.91), is simply

obtained by (2.88) as

b′ ≤ r ≤ 2L

π
.
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Instead, to get the estimate from below, it is enough to recall that Qj belongs to the segment

AiD (or Ai+1D). Thus, as di ≤ r/4, an immediate geometric argument and again (2.88) give

b′ ≥ 1

2
√

7
r ≥ 1

3
√

7L
.

Collecting the inequalities that we just found, we get

π

20L
≤ b

b′
≤ 3

2

√
14L . (2.96)

Concerning the angles, we have

1

sinα
≤ 202L ,

1

sinα′
≤ 6 . (2.97)

The first inequality comes again, as in (2.93), by property (iv) of Lemma 2.30. Concerning the

second one, an immediate geometric argument ensures that sinα′ is minimal if α′ = O”AiD,

and in turn this last angle depends only on di and it is minimal when di = −r/2: a simple

calculation ensures that, in this extremal case, one has

α′ = arctan
3/4√
3/2
− arctan

1/2√
3/2

> 10◦ ,

and then also the second inequality in (2.97) is established. Therefore, by applying (2.60)

having (2.95), (2.96) and (2.97) at hand, we get

Lip(φ) ≤ a′

a
+

√
2b′

b sinα
+

a′

a sinα
≤ 10

√
2L+

4040
√

2

π
L2 + 2020

√
2L2 ≤ 460000L4 ,

Lip(φ−1) ≤ a

a′
+

√
2b

b′ sinα′
+

a

a′ sinα′
≤ 870L2 + 18

√
7L+ 5220L2 ≤ 460000L4 ,

and thus the proof of the theorem is obtained also in Case B.

Case C. There exists some 1 ≤ i ≤ N such that di < −r/2.

In this last case, notice that the index i such that di < −r/2 is necessarily unique, since if

di < −r/2 then for all j 6= i one has dj ≥ r/2. For simplicity of notation, let us assume that

the index is i = 1. In this case, differently from the preceding ones, we will not set O to be the

center of “B. Instead, as in Figure 21, let us call M the midpoint of A1A2, C ∈ “B the point such

that the triangle A1A2C is equilateral, and D and O the two points which divide the segment

CM into three equal parts. We will define the extension v in such a way that v(O) = O.

Before starting, we need to underline a basic estimate, namely,

4

3L
≤ `
Ä
A1A2

ä
≤ 2
√

3

π
L . (2.98)

The right estimate is an immediate consequence of the assumption d1 < −r/2 and of (2.88).

Concerning the left estimate, recall that, as noticed in Remark 2.2, there must be two points

Ai, Aj ∈ ∂“B such that `
Ä
AiAj

ä
≥ 4/(3L). Thus the left estimate follows simply by observing

that the distance `
Ä
AiAj

ä
is maximal, under the assumption of this Case C, for i = 1 and j = 2.

We can now start our construction. Exactly as in Case B, call Φ: S(A1A2)→ S(A1A2) the

piecewise affine function which equals the identity out of A1A2C and which sends in the affine

way the triangle A1MC (resp. A2MC) onto the triangle A1DC (resp. A2DC). Also in this
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case, one easily finds that Φ is piecewise 2−Lipschitz, while Φ−1 is piecewise 5−Lipschitz. We

are now ready to define the function v. As in Case B, for any i 6= 1 our definition will be so that

v(Ai) = S(AiAi+1) ∪AiAi+1O, while v(A1) = S(A1A2) \A1A2O.

Qj+1

A2 A1

A4A3

D

O

C

M

Qj

Figure 21. Situation in Case C, with A1, A2, C, D, M and O.

Let us start with i = 1. First of all, we define v : D1 → ∆ as v = Φ ◦u1, which is, exactly as

in Case B, a piecewise affine homeomorphism between D1 and S(A1A2)\A1A2D with piecewise

bi-Lipschitz constant at most

max
¶

2 · 230000L3, 5 · 3000L4
©
≤ 460000L4 .

Moreover, defining Qj and Qj as in Case B, the internal part I1 is the union of the triangles

QjQj+1O, while A1OA2D is the union of the triangles QjQj+1O (again, possibly adding a

vertex corresponding to D). We will then define again v : I1 → ∆ by sending in the affine way

each triangle onto its corresponding one, and since v is again a piecewise affine homeomorphism

by definition we have to check its bi-Lipschitz constant on the generic triangle. To do so, we

define as in Case B the constants

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,

a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = O”QjQj+1 .

The very same arguments which lead to (2.95) and (2.97) (left) give again
√

2

20L
≤ a

a′
≤ 1450L2 ,

1

sinα
≤ 202L . (2.99)

Since (2.90) is still true, to estimate b/b′ we again need to bound b′ from above and from below.

By easy geometric arguments, since Qj belongs to A1D or to A2D, we find

√
7

14
`
Ä
A1A2

ä
≤ b′ ≤ `

Ä
A1O

ä
=

√
3

3
`
Ä
A1A2

ä
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(recall that Figure 21 depicts the situation and the position of the points). Thanks to (2.98),

then, we deduce

2
√

7

21L
≤ b′ ≤ 2

π
L ,

which by (2.90) yields

π

20L
≤ b

b′
≤ 3

4

√
14L . (2.100)

Finally, we have to estimate sinα′. As is clear from Figure 21, sinα′ is minimal if Qj ≡ A1,

thus if α′ = O”A1D. Since in this extremal case one has

α′ = arctan
2
√

3

3
− arctan

√
3

3
> 15◦ ,

we obtain

sinα′ ≥ 1

4
. (2.101)

Applying then once more (2.60), thanks to (2.99), (2.100) and (2.101) we get

Lip(φ) ≤ a′

a
+

√
2b′

b sinα
+

a′

a sinα
≤ 10

√
2L+

4040
√

2

π
L2 + 2020

√
2L2 ≤ 460000L4 ,

Lip(φ−1) ≤ a

a′
+

√
2b

b′ sinα′
+

a

a′ sinα′
≤ 1450L2 + 6

√
7L+ 5800L2 ≤ 460000L4 .

To conclude, we have now to consider the case i 6= 1. Notice that now we cannot simply

rely on the calculations done in Case A as we did in Case B, because this time O is not the

center of “B. Nevertheless, we still define v ≡ ui on Di, which is piecewise 230000L4 bi-Lipschitz

by Step VII, and again, to conclude, we have to send Ii onto AiAi+1O. Since the first set is

the union of the triangles QjQj+1O, while the latter is the union of the triangles QjQj+1O, we

define v on Ii as the piecewise affine map which sends each triangle onto its corresponding one,

and to conclude (recalling again Lemma 2.31, as for Case A and Case B) we only have to check

the bi-Lipschitz constant of v on all the triangles of Ii. As usual, we set

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,

a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = O”QjQj+1 .

Let us now make the following observation. Even though the situation is not the same as in

Case A, as we pointed out above, the only difference is in fact that now O is not the center of“B. And this difference clearly affects only b′ and α′, thus (2.89), (2.90) and (2.93) already tell

us
√

2

10L
≤ a

a′
≤ 290L2 ,

1

10
≤ b ≤

√
2

2
,

1

sinα
≤ 202L .

Concerning b′, since any point Qj is below A1A2 in the sense of Figure 21 by construction (recall

that we are considering the case i 6= 1, so that Qj belongs to the side AiAi+1), we immediately

deduce that

b′ ≥ `
Ä
MO

ä
=

√
3

6
`
Ä
A1A2

ä
≥ 2
√

3

9L
,
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also using (2.98). On the other hand, by the assumption d1 < −r/2 and by construction it

immediately follows that O is below the center of “B; then, keeping in mind (2.88), we have

b′ ≤ r ≤ 2L

π
.

Finally, concerning α′, it is clear by construction that both α′ and π−α′ are strictly bigger than

A1
”A2O, thus

sinα′ ≥ sinA1
”A2O = sin

Ç
arctan

√
3

3

å
=

1

2
.

Summarizing, we have

√
2

10L
≤ a

a′
≤ 290L2 ,

π

20L
≤ b

b′
≤ 3
√

6L

4
, sinα ≥ 1

202L
, sinα′ ≥ 1

2
.

Now, it is enough to use (2.60) for a last time to obtain

Lip(φ) ≤ a′

a
+

√
2b′

b sinα
+

a′

a sinα
≤ 5
√

2L+
4040
√

2

π
L2 + 1010

√
2L2 ≤ 460000L4 ,

Lip(φ−1) ≤ a

a′
+

√
2b

b′ sinα′
+

a

a′ sinα′
≤ 290L2 + 3

√
3L+ 580L2 ≤ 460000L4

and then the proof of the first part of Theorem A is finally concluded. �

2.9. Step IX: Definition of the smooth extension v.

In this last step, we show the existence of the smooth extension v of u, thus concluding

the proof of Theorem A. The proof is an immediate corollary of the following recent result by

Mora-Corral and the second author (see [2, Theorem A]; in fact, that result is actually wider,

but for the sake of shortness we prefer to claim here only the part that we need).

Theorem 2.32. Let Ω ⊆ R2 be an open set, and let v : Ω→ R2 be a (countably) piecewise affine

homeomorphism, bi-Lipschitz with constant L. Then, for every ε > 0 and every 1 ≤ p < +∞
there exists a smooth diffeomorphism v̂ : Ω→ v(Ω) such that v̂ ≡ v on ∂Ω, v̂ is bi-Lipschitz with

constant at most 50L7/3, and

‖v̂ − v‖L∞(Ω) + ‖Dv̂ −Dv‖Lp(Ω) + ‖v̂−1 − v−1‖L∞(v(Ω)) + ‖Dv̂−1 −Dv−1‖Lp(v(Ω)) ≤ ε .

Having this result at hand, the conclusion of the proof of Theorem A is immediate.

Proof of Theorem A (smooth extension). Let v be a piecewise affine extension of u having bi-

Lipschitz constant at most CL4, which exists thanks to the proof of the first part of the Theorem,

Step VIII. By Theorem 2.32, there exists a map ṽ which is smooth, coincides with v on ∂D,

and has bi-Lipschitz constant at most 50C7/3L28/3. This map ṽ is a smooth extension of u as

required. �
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3. Proof of Theorem B

In this last Section we present the proof of Theorem B, which will be obtained from Theo-

rem A by a quick extension argument, basically just applying the following geometric result.

Lemma 3.1. Let ϕ : ∂D → R2 be an L bi-Lipschitz map. Then, for any ε > 0, there exists a

piecewise affine map ϕε : ∂D → R2 which is 4L bi-Lipschitz and such that

|ϕ(P )− ϕε(P )| ≤ ε ∀P ∈ ∂D .

The proof of a quite similar result, the only difference being that the statement is on a

segment instead than on the boundary of a square, can be found in the very recent paper [1,

Lemma 5.5]. It is interesting to underline here that the main result of that paper, Theorem 3.2

below, uses our Theorem A in a crucial way.

Theorem 3.2 ([1, Theorem 1.1]). If Ω ⊆ R2 is a bounded open set and v : Ω → ∆ ⊆ R2 is an

L bi-Lipschitz homeomorphism, then for all ε > 0 and 1 ≤ p < +∞ there exists a bi-Lipschitz

homeomorphism ω : Ω→ ∆, such that ω = v on ∂Ω,

‖ω − v‖L∞(Ω) + ‖ω−1 − v−1‖L∞(∆) + ‖Dω −Dv‖Lp(Ω) + ‖Dω−1 −Dv−1‖Lp(∆) ≤ ε ,

and ω is either countably piecewise affine or smooth. In particular, the piecewise affine map can

be taken K1L
4 bi-Lipschitz, and the smooth one K2L

28/3 bi-Lipschitz, K1 and K2 being purely

geometric constants.

For the sake of completeness, we give here a proof of Lemma 3.1, even if the idea is quite

similar to that of [1, Lemma 5.5].

Proof of Lemma 3.1. Let us start by fixing ρ small with respect to ε/L2 and 1/L5, and t0 ∈ ∂D
close to the center of a side of the square. Start defining recursively the sequence

ti+1 := max
{
t ∈ [ti, ti + 1] : |ϕ(t)− ϕ(ti)| ≤ ρ

}
,

where by “[ti, ti + 1]” we denote the closed curve of length 1 in ∂D which starts from ti and

moves clockwise. Notice that, since |ϕ(ti+1)− ϕ(ti)| = ρ and ϕ is L bi-Lipschitz, we have

ρ

L
≤ |ti+1 − ti| ≤ Lρ ,

ρ

L
≤ d(ti, ti+1) ≤

√
2Lρ , (3.1)

where d denotes the length-distance in ∂D. Since Lρ � 1, we obtain that every point ti+1 is

actually very close to the preceding point ti, and in particular∣∣∣ϕ(s)− ϕ(ti)
∣∣∣ ≤ L|s− ti| ≤ L|ti+1 − ti| ≤ L2ρ ∀s ∈ (ti, ti+1) . (3.2)

On the other hand, the lower bound for d(ti, ti+1) ensures that, after finitely many steps, the

sequence will arrive again close to t0.

Since we want to avoid overlapping, we argue as follows. We define K = 4L4 and then we

stop the recursive definition at tN , where N is the first index bigger than 3K such that

min
0≤i≤K

∣∣∣ϕ(tN )− ϕ(ti)
∣∣∣ ≤ 2L2ρ ;
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thanks to (3.2) and to the lower bound in (3.1), the existence of such an N is clear. Observe

also that, whenever N ≥ j′ > j +K, by (3.1) it holds that

j′−1∑
j

d(ti, ti+1) >
Kρ

L
= 4L3ρ

and then, if the above sum is less than 2, we deduce

∣∣∣ϕ(tj)− ϕ(tj′)
∣∣∣ ≥ |tj − tj′ |

L
≥
d(tj , tj′)

2L
=

∑j′−1
j d(ti, ti+1)

2L
> 2L2ρ . (3.3)

In particular, sinceKLρ� 1, the upper bound in (3.1) implies thatN � K, and then comparing

the definition of N and (3.2) we deduce that tN is very close to t0 but strictly “before” it; in

other words,
∑N−1
i=0 d(ti, ti+1) < 4 and then we have actually stopped the recursive definition

before an overlapping could occur.

We claim now that it is admissible to assume

min
0≤i≤K

∣∣∣ϕ(tN )− ϕ(ti)
∣∣∣ =

∣∣∣ϕ(tN )− ϕ(t0)
∣∣∣ ; (3.4)

indeed, if the minimum is realized at tj for some 0 < j ≤ K, to get the validity of (3.4) it is

enough to “throw away” all the points ti with 0 ≤ i < j. Formally speaking, we restart all the

procedure with first point t̃0 := tj (which is still very close to the center of a side of the square);

it is obvious from the construction and the above estimates that t̃1 = tj+1, t̃2 = tj+2 and so

on, that the new sequence will stop exactly with the point t̃N−j = tN , and that for the new

sequence the validity of (3.4) holds true.

We underline now that

ρ ≤ |ϕ(tN )− ϕ(t0)| ≤ max
{
|ϕ(ti)− ϕ(t0)| , |ϕ(tN )− ϕ(ti)|

}
∀ 0 < i < N . (3.5)

Indeed, by the definition of N we get that

|ϕ(tN )− ϕ(t0)| ≥ |ϕ(tN−1)− ϕ(t0)| − |ϕ(tN )− ϕ(tN−1)| > 2L2ρ− ρ ≥ ρ .

On the other hand, the second inequality readily follows from (3.4) and (3.3): in particular, for

1 ≤ i ≤ K one has surely |ϕ(tN ) − ϕ(t0)| ≤ |ϕ(tN ) − ϕ(ti)|, for N − K ≤ i ≤ N − 1 one has

|ϕ(tN )− ϕ(t0)| < |ϕ(ti)− ϕ(t0)|, and for K < i < N −K both the inequalities are true.

We are now ready to define the approximating function ϕε : ∂D → R2. For each 0 ≤ i ≤ N ,

we let ϕε be the affine (or piecewise affine) function which sends the curve titi+1 ⊆ ∂D onto

the segment ϕ(ti)ϕ(ti+1). More precisely, whenever titi+1 is a segment, ϕε is simply the affine

function such that

ϕε(ti) = ϕ(ti) , ϕε(ti+1) = ϕ(ti+1) ; (3.6)

instead, if titi+1 is not a segment (and so, one of the corners of the square, say A, is in the

interior of the curve titi+1), the function ϕε still sends the curve onto the segment ϕ(ti)ϕ(ti+1)

satisfying (3.6), it is affine on the two segments tiA and Ati+1, and |ϕ′ε| is constant in the curve

titi+1. Of course, we consider 0 ≡ N + 1.
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It is clear by construction that this function satisfies ‖ϕε − ϕ‖L∞ ≤ ε, recalling (3.2) and

since ρ � ε/L2. Moreover, the function is obviously piecewise L-Lipschitz, so it is globally

2L-Lipschitz because it is defined on the boundary of a square. Thus, we only have to check

that ϕε satisfies the inverse 4L-Lipschitz property.

To this aim, let us take t, s ∈ ∂D, and keep in mind that we have to check that

|t− s| ≤ 4L|ϕε(t)− ϕε(s)| . (3.7)

If both points belong to a same curve titi+1 ⊆ ∂D, this is immediate because on that curve ϕε

is
√

2L bi-Lipschitz.

Assume now that s and t belong to two consecutive curves, say s ∈ ti−1ti and t ∈ titi+1.

Then we have

|ϕε(ti−1)− ϕε(ti+1)| ≥ |ϕε(ti−1)− ϕε(ti)| , |ϕε(ti−1)− ϕε(ti+1)| ≥ |ϕε(ti)− ϕε(ti+1)| ,

as follows directly from the construction, regardless whether or not i ∈ {N, 0}—for the case

i = 0, just keep in mind (3.5). This implies that ϕ(s)’ϕ(ti)ϕ(t) = ϕ(ti−1)’ϕ(ti)ϕ(ti+1) ≥ 60◦,

from which we deduce

|ϕε(t)− ϕε(s)| ≥
|ϕε(t)− ϕε(ti)|+ |ϕε(ti)− ϕε(s)|

2
≥ |t− ti|+ |ti − s|

2
√

2L
≥ |t− s|

4L
,

and hence (3.7) is again established.

To conclude, consider the situation when t and s belong to two different and not consecutive

curves, say t ∈ titi+1 and s ∈ tjtj+1. Up to swap i and j, we can assume that the curve

titi+1 ⊆ ∂D is a segment (so ϕε is L bi-Lipschitz, instead than
√

2L bi-Lipschitz, on titi+1) and

that j 6= N . Indeed, since one has

|t− s| ≤ L|ϕ(t)− ϕ(s)| ≤ L
Ä
|ϕε(t)− ϕε(s)|+ 2ε

ä
,

the inequality (3.7) is always obvious unless s and t are very close to each other. Hence, since

tN is very close to the center of a side of the square, if both s and t are close to tN , then at least

one of i and j is different from N and both the curves titi+1 and tjtj+1 are segments, while if

both are close to a same corner of the square, then at least one of titi+1 and tjtj+1 is a segment,

and both i and j are different from N .

Since j 6= N , we have |ϕ(tj)−ϕ(tj+1)| = ρ, and then we assume that |ϕε(s)−ϕε(tj)| ≤ ρ/2
(otherwise it must be |ϕε(s)− ϕε(tj+1)| ≤ ρ/2 and the following argument works just swapping

j and j + 1 everywhere). Observe now the estimate∣∣∣ϕε(ti)− ϕε(ti+1)
∣∣∣ ≤ max

{∣∣∣ϕε(tj)− ϕε(ti)∣∣∣ , ∣∣∣ϕε(tj)− ϕε(ti+1)
∣∣∣} , (3.8)

which is obvious by construction if i 6= N , while for i = N it was established in (3.5). As a

consequence, we can assume that

ϕε(t)
÷ϕε(ti)ϕε(tj) = ϕε(ti+1)÷ϕε(ti)ϕε(tj) ≥ 60◦ ;

indeed, by (3.8) we obtain that at least one of the two angles ϕε(ti+1)÷ϕε(ti)ϕε(tj) and

ϕε(ti)
ÿ�ϕε(ti+1)ϕε(tj) is at least 60◦, and if the second angle is the bigger one then one just
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has to swap i and i+ 1 in the following estimate. We can then evaluate

|t− s| ≤ |t− ti|+ |ti − tj |+ |tj − s|

≤ L
(
|ϕε(t)− ϕε(ti)|+ |ϕε(ti)− ϕε(tj)|+

√
2|ϕε(tj)− ϕε(s)|

)
≤ L

(
2|ϕε(t)− ϕε(tj)|+

√
2|ϕε(tj)− ϕε(s)|

)
≤ L

(
2|ϕε(t)− ϕε(s)|+ (2 +

√
2)|ϕε(tj)− ϕε(s)|

)
.

(3.9)

Moreover, we claim that

|ϕε(t)− ϕε(s)| ≥
√

3

2
ρ . (3.10)

This estimate is an immediate geometric consequence of the following inequalities: if i 6= N ,

then

|ϕε(ti)− ϕε(ti+1)| = ρ , |ϕε(ti)− ϕε(tj)| ≥ ρ , |ϕε(ti+1)− ϕε(tj)| ≥ ρ ,

|ϕε(tj)− ϕε(tj+1)| = ρ , |ϕε(ti)− ϕε(tj+1)| ≥ ρ , |ϕε(ti+1)− ϕε(tj+1)| ≥ ρ ;

if i = N , and 0 < j < K, then

|ϕε(ti)− ϕε(tj)| ≥ |ϕε(ti)− ϕε(ti+1)| , |ϕε(ti+1)− ϕε(tj)| ≥ ρ ,
|ϕε(ti)− ϕε(tj+1)| ≥ |ϕε(ti)− ϕε(ti+1)| , |ϕε(ti+1)− ϕε(tj+1)| ≥ ρ ;

(3.11)

if i = N and N −K < j + 1 < N , then

|ϕε(ti+i)− ϕε(tj)| ≥ |ϕε(ti)− ϕε(ti+1)| , |ϕε(ti)− ϕε(tj)| ≥ ρ ,
|ϕε(ti+1)− ϕε(tj+1)| ≥ |ϕε(ti)− ϕε(ti+1)| , |ϕε(ti)− ϕε(tj+1)| ≥ ρ ;

(3.12)

and lastly, if i = N and K ≤ j ≤ N −K − 1, both (3.11) and (3.12) are true.

Inserting (3.10) and the inequality |ϕε(s)− ϕε(tj)| ≤ ρ/2 into (3.9), we finally get

|t− s| ≤
Ç

2 +
2 +
√

2√
3

å
L |ϕε(t)− ϕε(s)| ≤ 4L |ϕε(t)− ϕε(s)| ,

so (3.7) is obtained also in this last case, and the proof is concluded. �

We can now show our Theorem B.

Proof of Theorem B. Let u : ∂D → R2 be an L bi-Lipschitz map. Fix ε > 0 and ap-

ply Lemma 3.1, obtaining a 4L bi-Lipschitz and piecewise affine map uε : ∂D → R2, with

‖uε − u‖L∞(∂D) ≤ ε. Theorem A, applied to uε, gives then an extension vε : D → R2 which is

256CL4 bi-Lipschitz and satisfies vε = uε on ∂D. By a trivial compactness argument, there is a

sequence vεj which uniformly converges to a 256CL4 bi-Lipschitz function v. By construction,

one clearly has that v ≡ u on ∂D, thus the thesis is obtained. �

Corollary 3.3. Under the assumptions of Theorem B, there exists an extension ω : D → R2 of

u which is countably piecewise affine (resp. smooth), and which is K1C
′′4L16 bi-Lipschitz (resp.

K2C
′′28/3L112/3 bi-Lipschitz).
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Proof. This immediately follows from Theorem B and Theorem 3.2. In fact, if v is a C ′′L4 bi-

Lipschitz function given by Theorem B, then Theorem 3.2 provides us with a countably piecewise

affine function ω which is very close to v, coincides with v on ∂D, and is K1

Ä
C ′′L4

ä4
bi-Lipschitz,

and with a smooth function ω̃, again very close to v, coinciding with v on ∂D and K2(C ′′L4)28/3

bi-Lipschitz. These two functions ω and ω̃ are the searched extensions of u. �

We conclude the paper with a last observation.

Remark 3.4. One need not rest satisfied with the situation that when passing from Theorem B

to Corollary 3.3 we had to pass from L4 to L16 (resp. L112/3). In fact, it is possible to modify

the construction of Theorem A so as to directly obtain, in the case of a general L bi-Lipschitz

function u : ∂D → R2, a countably piecewise affine extension v of u which is ‹CL4 bi-Lipschitz.

And then, thanks to Theorem 2.32, one would also get a smooth extension v which is 50‹C7/3L28/3

bi-Lipschitz.
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