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Impulsive Noise Mitigation with Interleaving Based
on MUSIC in Power Line Communication
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Abstract—In power line communication (PLC), impulsive noise
(IN) greatly degrades the performance of signal transmission.
Generally, IN model adopts Middleton Class A or Bernoulli
Gaussian model, with the assumption that IN is sparse and
memoryless. However, IN collected in fields appears in bursts.
In this paper, interleaving in time domain is applied to create
a special structure in frequency domain for IN burst. Based
on the special structure, IN support is determined by using
multiple signal classification (MUSIC) and its amplitude is
estimated by Least Squares (LS) method in frequency domain,
exploiting the noise information on null subcarriers in orthogonal
frequency division multiplexing (OFDM) system. In addition,
sparse Bayesian Learning algorithm with IN support based on
MUSIC is also investigated. Simulations are conducted to evaluate
the proposed IN estimation performance, with varying ratio of
IN power to background noise power (INR), and number of null
subcarriers.

Index Terms—impulse noise mitigation, MUSIC, interleaving,
SBL, power line communication.

I. INTRODUCTION

POWER line communications (PLC), is currently con-
sidered as an attractive communication system in smart

grid because of its ubiquitous infrastructure and low-cost
operation maintenance. It can be applied in automatic meter
reading (AMR), demand side response, real-time monitoring
and vehicle charging in smart grid [1]. However, power line
is designed for transmitting power instead of high frequency
band signals such as up to 30MHz or higher. Power line
channels suffer from multipath and frequency-selective fading
caused by diverse topologies and impedance mismatch [2]
and noise interferences mainly generated by all the connected
electrical devices [3].

Power line noise can be classified into five types includ-
ing colored background noise, narrowband interferences and
periodic IN asynchronous to the mains, periodic IN syn-
chronous to the mains and asynchronous IN [4]. In power
line communication, multicarrier modulation of orthogonal
frequency division multiplexing (OFDM) is adopted to combat
inter-symbol interferences and fading caused by multipath
and narrowband interference [5]. However, asynchronous IN
is of short-time duration and high amplitude, causing wide
bandwidth occupation up to 11MHz in frequency domain,
which degrades the quality of signal transmission [3].

To combat IN, many investigations have been done for
years. Time domain interleaving, frequency domain interleav-
ing and hybrid methods were proposed to spread IN onto
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longer time window and wider frequency bandwidth to combat
IN [6]-[9]. Besides, block channel coding also was applied to
mitigate the effects of IN by introducing redundancy [10]-
[11]. These methods above are applied at transceiver without
reducing any power of IN. They are dedicated to suppressing
impulsive noise with low occurrence and amplitude, but they
cannot perform well in the occasions of high occurrence and
amplitude.

Therefore, impulsive noise reduction and mitigation meth-
ods were proposed. Nonlinear methods, including clipping,
blanking, and combined clipping and blanking [12]-[13] were
proposed to limit IN, without giving a closed expression of
the thresholds for nonlinear processing. An adaptive threshold
clipping was proposed based on computer searching [14].
A clipping method based on receiver operating characteristic
with Bernoulli Gaussian (BG) modeled power line noise was
proposed, in which threshold was estimated using moment
estimation [15]. As a matter of fact, the optimal threshold
strongly depends on the characteristics of IN. In previous
publications, optimal threshold has been derived, given knowl-
edge about the interference statistics. In general, however, no
reliable information about the interference statistics is known
at the receiver side. Adaptive blanking threshold was estimated
based on the received signal without consideration of noise
model, depending on the receiver samples [16]. The nonlin-
ear method of combined clipping and blanking were further
developed by introducing weights based on BG model [17],
and blanking was further discussed in real-valued OFDM PLC
systems [18]. Combined with nonlinear processing at receiver,
preprocessing the transmitted signal at the transmitter was
also applied to highlight IN at the receiver, which introduced
unwanted distortions in the transmitted signal [19]-[20].

These nonlinear methods above attempt to seek an optimal
threshold to diminish the power of IN, but they distort signal
when limiting IN. Moreover, they require extra training over-
head and suffer from performance degradation when the noise
model or parameters are not in accordance with the possibly
time varying noise statistics. To get rid of the demand of
prior knowledge, the methods below attempt to recover IN by
exploiting the sparse structure of IN in the time domain. The
methods proposed in [21]-[24] applied compressive sensing
(CS) techniques to estimate the IN from null subcarriers of
the received signal. Sparse Bayesian learning (SBL) algorithm
was applied to estimate IN from both null subcarriers and data
subcarriers to improve performance and robustness, compared
with CS [25]-[26]. However, CS and SBL algorithms demand
expense computation even though they perform better than
nonlinear methods. The special structure of sensing matrix,



Fig. 1. OFDM PLC system diagram.

namely Fourier matrix, was explored to estimate IN supports,
considering that IN occurrence probability follows binominal
distribution in BG model, and IN amplitudes are estimated
using minimum mean square error (MMSE) with the prior
knowledge of IN power [27]. Compared with CS and SBL
algorithms, the method proposed in [27] requires less com-
plexity, while it depends too much on noise model. It needs
the threshold of IN occurrence probability in the process of
determining IN support, and prior knowledge of IN power in
the process of noise amplitude estimation [27]. Multiple signal
classification (MUSIC) method was applied to estimate the
candidate supports of IN coarsely and then expand support into
neighborhood locations, taking into account the effect brought
by impulsive noise to background noise ratio (INR) and sample
windows for estimation [28]-[29]. Besides, IN amplitudes were
estimated identically using MMSE with prior knowledge of IN
power as described in [27]. In [27]-[29], prior knowledge is
still required at receiver, while it is difficult to know at receiver.

Regarding the complexity of the algorithms of SBL, CS
and MMSE used in impulsive noise mitigation and assuming
that the total number of all the subcarriers is N all and that
of null subcarriers is N null , the complexity involved in each
iteration of SBL based on the information of null subcarriers is
O (N 3

null + N 2
all N null ) [25]. On the other hand, the algorithm

with the lower complexity O (N all N 2
null ) is matching pursuit,

which is considered to have the same order complexity as
smoothed L0 algorithm under CS framewok [30]. MMSE
only involves matrix multiplication and inversion operation
once. In addition, MUSIC used in this paper contains several
matrix operations, including eigenvalue decomposition, to be
performed only once.

In addition, noise models adopted in [17]-[18], [21]-[29]
were Middleton Class A (MCA) model and simplified BG
model, with the assumption that impulsive noise samples are
scattered and independent in the time domain. However, IN
measured in indoors environment occurs in bursts, presented
in [3]- [4].

In our paper, a hidden Markov Middleton (HMM) model
is adopted to characterize IN bursts instead of MCA model.
To completely get rid of IN prior knowledge, we used an
interleaving scheme to scatter IN bursts in the time domain,
offering a special structure to recover IN. IN supports are
estimated by MUSIC using only one parameter of background
noise power, without any knowledge of IN occurrence prob-
ability distribution or INR. IN spectrum is firstly recovered
in frequency domain by least square (LS) method, and then
transformed into the time domain using fast Fourier transform

(FFT). In addition, MUSIC with SBL based IN support is also
elaborated to cut off computation overhead.

II. SYSTEM MODEL

In power line communication, OFDM is adopted to combat
narrowband interference and ISI. The diagram of OFDM PLC
system is presented in Fig.1. At the transmitter, the generated
bit stream bk is mapped into complex symbols as Sk by
quadrature amplitude modulation 4 (QAM4), and then modu-
lated onto multiple carriers frequencies by OFDM technique.
The transmitted signal sk in the time domain is interleaved,
and cyclic prefix (CP) is added before transmitting over power
line channel. At the receiver, the received signal r k is de-
interleaved as S

0

k after removing CP, and then demodulated
into original transmitted symbol s

0

k , and finally it is de-mapped
into bit stream b

0

k . IN is estimated and then mitigated from
received signal. In our discussion, we mainly focus on the IN
mitigation, assuming that power line channel is frequency flat
for all the subcarriers.

Most of work regarding noise mitigation is based on MCA
model or simplified Bernoulli Gaussian (BG) Model, assuming
that IN is independent and sparsely scattered in the time
domain. As a matter of fact, most of IN in the time domain
occurs in bursts as observed in [3]-[4]. HMM Model was
proposed to characterize the memory property of IN [31]. In
our OFDM PLC system, HMM of two terms, namely hidden
Markov BG model is applied. In addition, a complex system
model is adopted that the transmitted signal and noise are
generated in complex form.

The probability of distribution (PDF) of a real valued Class
A noise nk is given by

f (n k ) =
∞X

m=0

pm N(n k ; 0, δ2
m ), (1)

where N(n k ; 0, δ2
m ) is Gaussian distribution with zero mean

and its variance of δ2
m , pm = e−A A m

m! and δ2
m = δ 2

w ( m
AΓ + 1) .

A is impulsive index and Γ is the ratio of background noise to
IN. The truncated two-term MCA model refers to BG model,
in which noise is composed of two terms: IN and background
noise. The amplitude of IN is considered to follow a Gaussian
process with zero-mean and its variance of δ2

i , while the
background noise adopts Gaussian distribution with zero-mean
and variance δ2

w . The noise sample nk can be described as

nk = i k + w k , (2)



where i k represents IN, and wk represents background noise.
Therefore, PDF of noise follows

p(nk ) = p
0

i N(n k ; 0, δ2
i + δ 2

w ) + (1 − p
0

i )N(n k ; 0, δ2
w ), (3)

where p
0

i denotes the normalized probability of IN occurrence
and can be expressed as

p
0

i =
A

1 + A
. (4)

In hidden Markov BG models, correlation index x is intro-
duced to model the memory of IN. The hidden Markov BG
model is illustrated Fig. 2. Its corresponding transition matrix
is

T =

"
x + (1 − x)(1 − p

0

i ) (1 − x)p
0

i

(1 − x)(1 − p
0

i ) x + (1 − x)p
0

i

#

.

In PLC system, OFDM technique is adopted. The received
signal in the time domain r k can be expressed as

r k = s k + i k + w k , (5)

where sk represents the desired signal, assuming that it fol-
lows a complex Gaussian distribution with zero-mean and its
variance of δ2

s . Given the noise variance, impulsive noise to
background noise ration (INR) is defined as δ2

i /δ2
w , namely

1/Γ , and signal to background noise ratio (SNR) is defined
as δ2

s /δ2
w . In OFDM PLC systems, the received signal in the

frequency domain can be modeled as

R = F s + F i + F w = F s + I + W, (6)

in which F is FFT matrix, I and W are impulsive noise and
background noise in the frequency domain respectively. In
fact, not all the subcarriers are used for signal transmission
in the frequency domain. Here unused subcarriers, referred to
null subcarriers, contain no information of desired signal but
that of noise. On null subcarriers, the model in the frequency
domain is shown as

R null = I null + W null = F null i + W null , (7)

where subscript ()null represents submatrix of the received
signal on null subcarriers.

With IN estimation î in the time domain described in the
following sections, IN can be canceled from the received
signal, and the remained signal r̂ can be expressed as

r̂ = s + (i − î) + w. (8)

III. INTERLEAVING

A. Special Structure of Pseudo-Noise Sequence

According to [27], we design a PN sequence of length J
oversampled with an equalized interval M in the time domain,
where both M and J are powers of 2, and N = JM . The
general form of the sequence in the time domain is denoted
as row vector xα in (9). In the expression of xα , we define

x̃α = x̃α
0 x̃α

1 · · · x̃α
J−1 . (10)

All J elements in x̃α are separated by M
0

zeros, except that α
zeros and M

0
−α zeros at the start and end, with M

0
= M −1

and 0 ≤ α ≤ M − 1 . The N points of the Fourier transform
of xα will be denoted as X α in the frequency domain, and
the J points of the Fourier transform of x̃α will be denoted
as X̃ α in the frequency domain. X α has M segments with J
elements in each segment. X α can be expressed as

X α (J m̃ + j̃) = X̃ α ( j̃)e −i 2π j̃α
N e−i 2π m̃α

M , (11)

where 0 ≤ ˜ m ≤ M − 1 , 0 ≤ j̃ ≤ J − 1 . From (11), the
relationship between each two segments is

X α ( m̃1) = X α ( m̃2)e−i 2π( m̃ 1 − m̃ 2 )α
M , (12)

where X α ( m̃1) and X α ( m̃2) are the m̃1th and m̃2th segment
in the frequency domain. If one segment and α are given in
advance, all the other segments can be calculated based on
(12).

B. Interleaving with Pseudo-noise Sequence

In an OFDM symbol, interleaving in the time domain is
applied to spread the impulsive noise into a wider band, in
order to combat IN. At the receiver, de-interleaving is the
inverse process of interleaving for recovering the original
transmitted signal, and it interleaves IN as well. Based on the
special structure described in Section III A, we aim to create
the special structure for IN by de-interleaving in order to use
the knowledge in (11) and (12).

Note r as one received OFDM symbol and r
0

as the de-
interleaved OFDM symbol in the time domain. The process
of de-interleaving can be described as

r
0
(n) = r(M × mod(n/J) + f loor(n/J)), (13)

where 0 ≤ n ≤ N − 1 , mod () is remainder operator, f loor ()
rounds the input value to the nearest integer less than or equal
to it. M is the interleaving interval and N = JM as presented
in the previous subsection. Imagine that IN bursts occur in the
time domain, interleaving is applied to create several similar
structures as presented in row vector xα with different α , and
thus interleaved IN can be regarded as superposition of them.

To clearly elaborate IN interleaving, it will be explained
with two detailed cases. The parameters involved in these cases
will also be used in the following sections for verification. In
one OFDM symbol, N = 512 samples are adopted in the time
domain and N = 512 subcarriers are also adopted. Interleav-
ing interval M = 16 is used, and thus J = N/M = 32 . All
the parameter notations are consistent in the whole paper. In
the following descriptions of interleaving, the desired signal
at the receiver is ignored, because IN will be estimated based
on null subcarriers without any information of the transmitted
signal.

xα =
h
0 · · · 0
| {z }

α

x̃α
0 0 · · · 0

| {z }
M 0

x̃α
1 · · · 0 · · · 0

| {z }
M 0

x̃α
J−1 0 · · · 0

| {z }
M 0−α

i
(9)



Fig. 2. a hidden Markov BG model with two terms.

Fig. 3. Interleaved IN in case I.

1) Case I: In case I, IN is interleaved and displayed as one
sequence structure like xα , as shown in Fig. 3. Consequently,
any two segments in the frequency domain satisfy the relation-
ship shown in (12). If α is determined, given one segment, all
the other segments can be obtained successively. Finally, IN
after interleaving can be derived in the time domain by inverse
FFT.

2) Case II: In case II, IN is interleaved as superpositions
of 2 sequence structures like xα , as presented in Fig. 4. The
interleaved IN in Fig. 4 is expressed as x , and can be viewed
as the summation of xα 1 and xα 2 , presented on the right side
in Fig. 4, where α1 and α2 represent the numbers of zero at
the start of two interleaved IN sequences.

x(n) = x α 1 (n) + x α 2 (n), (14)

where 0 ≤ n ≤ N − 1 . According to (11), both xα 1 and xα 2

have similar relationship between each two segments in the
frequency domain as xα . The FFT of x can be expressed as

X(k) = X α 1 (k) + X α 2 (k), (15)

where 0 ≤ k ≤ N − 1 . In light of (12), any two segments in
the frequency domain are subject to

X( m̃1) =X α 1 ( m̃1) + X α 2 ( m̃1)

X( m̃2) =X α 1 ( m̃2) + X α 2 ( m̃2)

=X α 1 ( m̃1)e−i 2π( m̃ 2 − m̃ 1 )α 1
M + X α 2 ( m̃1)e−i 2π( m̃ 2 − m̃ 1 )α 2

M

(16)

where 0 ≤ m̃1 , m̃2 ≤ M − 1 .

Fig. 4. Interleaved IN in case II.

In case II, if at least two segments of X , α1 and α2

are provided, the two corresponding segments of X α 1 and
X α 2 can be recovered based on (16), thus two interleaved IN
sequences can be recovered in time domain respectively.

Similarly, when IN occurrence is high or with longer time
duration in the time domain, the interleaved IN can be viewed
as the summation of more than two interleaved IN sequences
described above. In these cases, they are still subject to the
relationships described above.

Since IN bursts are interleaved and can be seen as the
superposition of several sequences as xα , each sequence as
xα after interleaving with IN will be called as IN interleaved
sequence in the following sections.

IV. NOISE MITIGATION BASED ON MUSIC

In OFDM PLC systems, null subcarriers are reserved and
can be used for IN estimation because they only include noise
information. Noise mitigation based on MUSIC attempts to
recover IN from the information on null subcarreirs. According
to Homeplug AV and IEEE 1901, unused or null subcarriers
are distributed in blocks or segments in the whole frequency
band. In Section III B, we described the strong relationship
between any two segments of the interleaved IN sequences
in the frequency domain. Thus, the null subcarrier blocks
represent the segments of the special structure described
above, and we shall exploit them to estimate IN. However,
we have no knowledge of the parameter α related to each IN
interleaved sequence. Therefore, the first task is to estimate
α . With FFT points N , and interleaving interval M , we
can obtain M segments in the frequency domain, and each
couple of segments have the relationship discussed in the two
cases in the last section. Now let us assume that the first S
segments of all M segments in the frequency domain act
as null subcarriers. The interleaved received signal r

0
can

be regarded as superpositions of M sequences as xα , with
0 ≤ α ≤ M − 1 . In light of (11), the interleaved received



signal in the frequency domain can be expressed as

R
0
(J m̃ + j̃) =

M−1X

α=0

X α (J m̃ + j̃)

=
M−1X

α=0

X̃ α ( j̃)e −i 2π j̃α
N e−i 2π m̃α

M ,

(17)

where R
0

represents the FFT of the interleaved received signal
r

0
. If j̃ remains unchanged, the j̃ th element in each segment

can be rewritten in matrix form in (23). MUSIC is usually
used for frequency estimation in wireless communication,
where an antenna array is used to capture multiple signals
with S directions of arrival (DOA). Compared to wireless
communication, in our case, matrix B of size S × M in (23)
can be seen as the phase delay caused by the antenna array,
and X( j̃) in (23) can be seen as the collected signal vector
by antenna arrary at timing j̃ , where j̃ varies from 0 to J − 1.
In fact, there are only p signal sources for detection. In our
cases, p signal sources are equal to p interleaved IN sequences.
Therefore, MUSIC is applied to estimate α of each interleaved
IN sequence. Our discussion is also subject to the condition
that S > p .

A. Covariance Matrix Eigenvalue Decomposition (ED)

When j̃ is fixed, R
0
( j̃) in (23) can be seen as all the

collected signals on S antenna at timing j̃ . The covariance of
the interleaved received signal at timing j̃ will be calculated
as

CRR ( j̃) = BX( j̃)X( j̃) H B H = BC XX ( j̃)B H , (18)

where CXX ( j̃) = X( j̃)X( j̃) H in (24) and ()H denotes
Hermitian operator. The expectation of CRR can be estimated
as

E{C RR } =
1
J

J−1X

j̃=0

CRR ( j̃) =
1
J

B






J−1X

j̃=0

CXX ( j̃)




 B H ,

(19)
where E{C XX } = 1

J

P J−1
j̃=0 CXX ( j̃) , and thus it is rewritten

as
E{C RR } = BE{C XX }B H . (20)

The eigenvalues of E{C RR } are equal to those of E{C XX } ,
as matrix B is a full rank matrix. After IN interleaving, the
frequency spectrum of these interleaved IN sequences can be
assumed to be independent, thus deriving

CXX ( j̃) =












X̃ 0( j̃)
2

0 0 0

0 X̃ 1( j̃)
2

0 0

· · · · · · · · · · · ·

0 0 · · · X̃ M−1 ( j̃)
2












.

(21)
according to (24). Therefore, E{C XX } can be expressed as

E{C XX } =







δ2
0 0 0 0
0 δ2

1 0 0
· · · · · · · · · · · ·
0 0 · · · δ2

M−1





 , (22)

where δ2
α is the variance related to the corresponding sequence

x̃α of α th interleaved sequence xα in the time domain, and
0 ≤ α ≤ M − 1 .

After IN interleaving in the time domain, there will be
several interleaved IN sequences. Let us assume that there are
p interleaved IN sequences, and p is less than M . Considering
background noise, most of the diagonal elements are equal
to background noise variance, while only the diagonal ele-
ments corresponding to IN interleaved sequences are relatively
high, representing the sum of the average power of the IN
interleaved sequence and background noise. Here we give an
empirical threshold of 2 for selecting the main eigenvalues,
differentiating from those of background noise. It implies that
if the averaged power of interleaved sequence is higher than
twice the power of background noise, it is detected as an
IN interleaved sequence. The estimated number of all the
selected IN interleaved sequences is marked as p̂. We select
the p̂ eigenvectors corresponding to the p̂ selected eigenvalues
to form the subspace matrix SIN . The estimation of p̂ was
discussed theoretically [32], while it doesn’t perform well in
our case because of fewer samples for estimation. Therefore,
an empirical threshold is adopted based on statistics, which
will be discussed in the simulation. In this step, we only
determine the number of IN interleaved sequence and its

R
0
( j̃) =








R
0
( j̃)

R
0
(J + j̃)
· · ·

R
0
(J(S − 1) + j̃)








=








1 1 · · · 1
1 e−i 2π

M · · · e−i 2π(M−1)
M

· · · · · · · · · · · ·
1 e−i 2π(S−1)

M · · · e−i 2π(S−1)(M−1)
M
















X̃ 0( j̃)e −i 2π j̃∗0
N

X̃ 1( j̃)e −i 2π j̃∗1
N

· · ·

X̃ M−1 ( j̃)e −i 2π j̃∗(M−1)
N









= BX( j̃) (23)

CXX ( j̃) =









X̃ 0( j̃)e −i 2π j̃∗0
N

X̃ 1( j̃)e −i 2π j̃∗1
N

· · ·

X̃ M−1 ( j̃)e −i 2π j̃∗(M−1)
N









h
X̃ 0( j̃)e i 2π j̃∗0

N X̃ 1( j̃)e i 2π j̃∗1
N · · · X̃ M−1 ( j̃)e i 2π j̃∗(M−1)

N

i
(24)



projection space in the frequency domain. Next, we need to
determine the concrete locations of these sequences.

B. Frequency Estimation (α Estimation)

In MUSIC method, frequency estimation is required to
select the p DOA corresponding to the p transmitted signals,
with the target that the interferences caused by other signals on
each DOA should be minimum. In our case, the IN projection
of each IN interlaved sequence onto time domain with the
obtained subspace suffers from minimal interferences from
others. The frequency estimation function can be expressed
in (25). Since the number of IN interleaved sequences has
been determined as p̂, α values corresponding to the p̂ largest
function values will be detected, and the detected α values are
denoted as vector α̂ of length p̂. Therefore, the corresponding
locations of all detected IN interleaved sequences will con-
tribute to the IN support.

f (α) =
1

B(α) H (I − S IN SH
IN )B(α)

, (25)

where B(α) refers to the α th column of matrix B , and 0 ≤
α ≤ M − 1 .

C. IN- estimation based on Least Squares

According to the former discussion, once all the α values
of p̂ IN interleaved sequences are selected as vector α̂ , (23)
can be reduced as

R
0
( j̃) = B p̂X p̂( j̃), (26)

where B p̂ is a submatrix of B , and all its columns are selected
from matrix B , corresponding to the all p̂ elements of vector α̂ .
Similarly, X p̂( j̃) refers to the subarray of X( j̃) , corresponding
to all p̂ elements of vector α̂ . X p̂( j̃) can be solved using LS
method as

X p̂( j̃) = (B H
p̂ B p̂)−1 B H

p̂ R
0
( j̃), (27)

where 0 ≤ j̃ ≤ J − 1 . Since all the elements of X p̂( j̃) are
recovered, we can deduce X̃ α with each estimated element in
α̂ . Therefore, each IN interleaved sequence is recovered in the
time domain by inverse FFT of X̃ α .

V. SPARSE BAYESIAN LEARNING WITH MUSIC

SBL is used for sparse signal recovery. (7) is a linear
regression problem, in which R null is an observation vector
F null is an onvercomplete basis, and i , denoting IN in the
time domain, is a sparse weight vector to be estimated. SBL
impose a parameterized Gaussian prior on i ,

p(i, Γ i ) = N (i; 0; Γ i ), (28)

where Γ i represents the diagonal matrix of i with Γ i =
diag{γ} , and γi is a vector whose nth element γn is the
variance of i n . Maximum likelihood (ML) estimator is used to
calculate the hyperparameter γ using expectation maximiza-
tion (EM), and maximum a posteriori (MAP) estimate of IN î
is obtained with its distribution of N( î; µ i , Σ i ). In the process
of iterations, the support of i is initialized to be full, and
matrix operations involved in updating Σ i are implemented

TABLE I

Input: Sampling matrix F null , Observed vector R null ,
Candidate support list List IN based on MUSIC;
Output: IN Approximation î
Initialization
diag(Γ)(List IN ) = 1 , µ i = 0 , Σ i = 0 ;
k = 1 iteration index
repeat

1. prune γ and associated components in Σ i
2. construct new F null corresponding to new γk
3. calculate new weights

µk+1
i = (δ −2

w )k Σ k
i F H

null R null

Σ k+1
i = ((δ −2

w )k F H
null F null + (Γ k )−1 )−1

4. estimate γ
γ k

i = Σ k
i,nn + (µ k

i,n )2

if halting condition true that
quit the iteration;
else k = k + 1
end if

until halting condition true;
Output: î = µ i

in full size. Then the support is updated in each iteration by
pruning γ , and all the computation in size will be reduced
subsequently.

As discussed in last section, the candidate support of IN can
be determined based on MUSIC. Therefore, we combine MU-
SIC and SBL algorithms together to reduce the computation
overhead. Besides, this also improves its performance with
a more accurate estimation. In MUSIC support estimation,
there is a condition that the number of S segments should be
larger than the p interleaved IN sequences. Prior knowledge of
the IN width can be used generally, however we don’t know
the width in advance for estimating the number of S to be
used. Besides, it is also supposed that all the subcarriers of
S segments are used as null subcarriers, since it is required
for noise estimation in LS. In summary, with fewer segments
or fewer elements in each segment, the accuracy of IN
support estimation will be decreased. Therefore, we expand
the IN candidate support by a factor of 2, based on frequency
estimation function. For example, if the primary estimation of
p is p1, we select the first 2×p1 α values corresponding to the
2×p1 largest estimation function values. If one OFDM symbol
suffers from less IN interference, the primary p1 is estimated
to be smaller and more accurately. Correspondingly, we only
select its twice size as candidate support size. Conversely,
when IN interference is heavy, the primary estimation of p1
is estimated to be larger and less accurately. IN estimation
support is enlarged to be two times of its original size, so that
all the real IN supports are not missed.

The iteration steps of SBL are shown in Tab.I. In the
iteration steps, δ2

w represents the variance of background noise,
and remains fixed in the iteration, because it can be estimated
at receiver generally. It helps to reduce much computation
overhead without updating δ2

w . Σ i,nn represents the (n, n) th
element in matrix Σ i , and µ i,n represents the nth element in
vector µ i . diag() selects the diagonal elements of a matrix.

VI. SIMULATION

According to Homeplug AV and IEEE 1901, unused or
null subcarriers are distributed in blocks or segments in the



whole frequency band. As a matter of fact, the null subcarrier
blocks are not necessarily consecutive in our method. In
order to simplify the simulation, we assume that the unused
subcarrier segments are consecutive in frequency band. In our
simulation, an OFDM system with N = 512 subcarriers is
assumed, in which the subsets of first 256 subcarriers act as
null subcarriers and the remaining 256 subcarriers are used for
signal transmission. To evaluate the proposed IN mitigation
algorithms, a frequency flat channel is considered for all
the subcarriers. Each subcarrier conveys complex symbols
that are coded with QAM 4 modulation. In the PLC OFDM
system, channel coding is not considered. As shown in Fig. 1,
interleaving is adopted in the time domain at transmitter, while
received signal is deinterleaved at receiver, which creates the
special structure for IN simultaneously. IN will be mitigated
from received signal with IN estimation at the receiver. The
noise is modeled by a hidden Markov BG model with index
parameter A = 0.005 and correlation parameter x = 0.9 , and
thus the transmission matrix is

T =
0.9995 0.0005
0.0995 0.9005

.

In addition, Γ varies corresponding to INR ranging from
20dB to 40dB. Besides, the numbers of null subcarriers
[128, 160, 192, 224, 256]are also considered to validate the
proposed method, and they are referred to as 25%, 31.25%,
37.5%, 43.75% and 50% of all the subcarriers. In addition, we
applied three algorithms to evaluate the performance, including
SBL, SBL with prior knowledge acquired from MUSIC, and
MUSIC combined with LS.

In MUSIC algorithm discussed previously, the threshold of
selecting the number of IN interleaved sequences is selected
based on statistics. All the PDFs of correctly detecting IN
interleaved sequences are presented in Fig.5 under different
conditions that INR varys from 20dB to 40dB, and different
numbers of null subcarriers are considered. It can be noted
that 2 is the optimal threshold among the range of 1 to 4 in
all conditions. The detection accuracy is improved with the
increasing number of null subcarriers, since more information
of IN is included.

Generally, it can be noted from Fig. 6-8 that the performance
of each method improves with the increase of subcarriers
because more information of IN are provided. In addition,
SBL algorithm with MUSIC performs better than the other
two methods with different INRs, because it combines the
advantages of the two methods. As presented in Fig. 6, MUSIC
with SBL achieves about 5dB gain at bit error rate (BER)
level of 10−4 with 43.75% subcarriers, while SBL achieves
3dB gain, even though MUSIC with LS shows rather poor
performance. In Fig. 8, both MUSIC with SBL and MUSIC
with LS perform much better than SBL with 50% subcarriers,
achieving 10dB and 7dB more than SBL does, respectively. It
can be seen that even though either SBL or MUSIC with LS
performs poorly, MUSIC with SBL still keeps an advantage
over any of them.

With the increase of INR, it can be observed that all of
these methods perform better, achieving a higher gain than the
conventional system without any IN mitigation techniques. In

all of these algorithms, background noise can be viewed as
inference for IN recovery, while IN is the desired signal to be
estimated. Obviously, it would be easier to recover IN with a
high INR. Actually, INR is defined in the time domain, and
IN only occurs with low probability, leading to the fact that
the averaged power of INR on each null subcarrier is lower
than the so-called INR. Therefore, when INR is equal to 20dB
as presented in Fig. 6, all the methods achieve lower gain,
compared with INR equal to 30dB and 40dB, as presented in
Fig. 7-8.

When INR are 30dB and 40dB, MUSIC with LS method
performs similarly with SBL basically, and even better with
more subcarriers, as displayed in Fig. 7-8. However, as shown
in Fig. 6, it performs poorly when SNR increases with less
than 50% subcarriers. This can be explained as IN fails
to be estimated accurately with insufficient information, and
the performance is further degraded with badly estimated IN
support with fewer subcarriers. It implies that MUSIC with
LS method is not robust to IN bursts with high width.

The previous simulations are conducted with the ideal fre-
quency flat channel assumption. However, power line channels
are frequency selective fading due to multiple branches in
power line networks. According to [33], a four-path model
in the frequency domain is adopted with all the provided
parameters. The channel transfer function is presented in Fig.9
with the sampling frequency of 20MHz and the subcarrier
bandwidth of 25 kHz that is close to the subcarrier bandwidth
of 24.414 kHz defined in IEEE 1901. MMSE channel equalizer
is used at the receiver. Similarly, the proposed method is
examined with different percentage occupations of all the
subcarriers varying from 25% to 50%, and INR varying from
20dB to 40dB. The results are presented in Fig.10-12, and
SNR is referred to as the ratio of the power of the ideal
transmitted signal to the power of background noise. As the
results in the case of ideal channel assumption presented in
Fig.6-8, the performances of the three methods improve with
respect to the conventional method with the increase of INR
and subcarriers. When SNR is below a certain value such
as 25dB in the simulation with frequency selective fading
channel, MUSIC with LS performs slightly better than SBL.
This offers a slight advantage to the method of MUSIC with
SBL. With the increase of SNR, the performance of MUSIC
with LS becomes worse than SBL gradually, and thus the
advantage of SBL combined with MUSIC provided by MUSIC
disappears and the performances of SBL and MUSIC with
SBL become similar.

With regard to the computation cost, MUSIC with LS and
MUSIC with SBL are implemented with less time overhead
than SBL algorithms due to matrix inverse operation of large
size in each iteration in SBL alogrithm. For example, all the
computations are conducted in MATLAB with i5-6600 CPU.
SBL algorithm costs 2.21s with 50% subcarriers to estimate
IN, while MUSIC with SBL costs 0.59s, because the reduced
support of IN gives rise to matrix operation of smaller size.
MUSIC with LS costs only 9 ×10 −3 s.



Fig. 5. PDF of IN sequence correct detection versus threshold

Fig. 6. BER comparison of INR=20dB

Fig. 7. BER comparison of INR=30dB

Fig. 8. BER comparison of INR=40dB

Fig. 9. Amplitude response of channel transfer function

Fig. 10. BER comparison of INR=20dB with channel



Fig. 11. BER comparison of INR=30dB with channel

Fig. 12. BER comparison of INR=40dB with channel

VII. CONCLUSION

In this paper, IN mitigation with interleaving based on
MUSIC is proposed for IN support detection based on time
domain interleaving, with IN bursts assumption. The LS
algorithm is applied for IN estimation in the frequency domain.
Besides, MUSIC with SBL based IN support detection is also
investigated. The proposed MUSIC with LS method performs
closely to SBL with higher INRs, while its performance
degrades because of inaccurate IN support estimation with
lower INR. Moreover, MUSIC with SBL holds advantages
of MUSIC with LS algorithm and SBL method, performing
best among three methods. It is also implemented with less
computation overhead compared with SBL algorithm.
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