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1. Introduction  

Bioinformatics can be thought of as a special case of important innovation as it comes at the 

intersection of different General-Purpose Technologies (GPTs) (Foray et al., 2009) mainly 

generated in the two domains of biological sciences and information and communications 

technology (ICT) (Majumdar et al., 2009; Lewis et al., 2016). These two domains keep on 

feeding each other. On one side, ICT, such as computers, networks and robotics, are 

nowadays playing a central role in transforming the practices of biology (Chicurel, 2002; 

Pop and Salzberg, 2008); indeed, these advancements are changing what biologists do, how 

they work, the way they carry out experiments, the universe of objects they deal with, and 

the kind of knowledge they can generate. They also have reoriented biology towards large-

scale investigations through advanced statistical methods and big data. This change marks a 

break with older kinds of biological work that mainly aimed at identifying and characterizing 

single and specific entities.  

On the other side, having seen new horizons in their research, biologists are increasingly 

accumulating data from multiple sources (Cook et al., 2015). Therefore, a key challenge for 

Bioinformatics technologies becomes the creation and maintenance of sophisticated tools 

and techniques for the storage, analysis, and mapping of this biological information. 

Therefore, it is reasonable to conceive the emergence and development of this peculiar type 

of GPT at the crossroads of science and technology. Such an intersection is made even 
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clearer by referring to the only work (Hallam, 2013) that combines historical developments 

and ethnographic perspectives on Bioinformatics. Herein, the author depicts a complex 

relationship between science and technology that contributed - and still shape – the 

Bioinformatics industry.  

However, an important gap remains in the current state of the art: large-scale investigations 

on the antecedents of the patenting activity in Bioinformatics are almost silent. Pioneering 

contributions (e.g., Park, 2012; Rasmussen, 2010; Patel, 2003; Saviotti et al., 2000) provide 

a valuable but still limited view of both the emergence and evolution of the industry, not 

shedding light on its scientific and technological knowledge recombination and diversity. 

Therefore, this research focuses on exploring the interplay of scientific and technological 

diversity in the emergence and developments of the Bioinformatics industry. Precisely, we 

draw upon GPT and knowledge recombination theory to get insights on whether – and to 

what extent – scientific and technological diversity contribute to increase the odds for a 

Bioinformatics invention to have impact and become a platform for other technological 

developments.  

This paper makes a theoretical contribution towards understanding knowledge 

recombination mechanisms and antecedents for GPTs, accounting for the fact that their 

influence on the generation of impactful inventions is nuanced. Indeed, empirical support 

reveals that different degrees of impact require different degrees of knowledge diversity. At 

the same time - and importantly for both practitioners and scholars - recombining diverse 

scientific and technological knowledge bases not always lead to impactful inventions. Our 

study may be the first revealing that for GPTs to increase their scope, inventors have to 

wisely recombine scientific and technological prior art. It is also one of the few studies 

shedding light on the relationship between diversity and recombination of the antecedents 

and impact of a special case of GPT. 



The remaining of the paper unfolds as follows: the next section discusses relevant theory 

and motivates the choice of diversity indicators. Then, a discussion about research setting is 

provided, followed by a methodological section. Finally, results and implications conclude 

the article. 

2. Theoretical background and research questions 

Since the seminal article on GPTs (Bresnahan and Trajtenberg, 1995), this concept is gaining 

momentum as it has further evolved (Carlaw and Lipsey, 2011; Bresnahan, 2010; David and 

Wright, 2006) being applied in knowledge domains such as economic history (e.g., Crafts, 

2003), industrial organization (e.g., Lindmark, 2005), economic policy (e.g., van Zon and 

Korenenberg, 2007), innovation studies (e.g., Andergassen et al., 2017), and translated into 

several models (e.g., Schultz and Joutz, 2010; Helpman, 1998). What all these approaches 

substantially share is the following key point: GPTs stand on technological solutions which, 

thanks to their high level of technological generality (Gambardella and Giarratana, 2013), 

may find applications in different markets and knowledge domains (Ardito et al., 2016). 

They are often considered as impactful innovations that pave the way to a swarm of 

incremental innovations transversally impacting several industries (Feldman and Yoon, 

2012; Coccia, 2016). They are the engine of the economic (endogenous) growth (Ardito et 

al., 2016; Schaefer et al., 2014) and increased productivity in several contexts (Feldman and 

Yoon, 2012). Overall, GPTs give birth to technological discontinuities which, for their 

inherent general scope, bring with them a broad array of applications.  

A definition which gathers together these perspectives is provided by Lipsey and co-authors 

(2005, p. 96): a GPT “is a single technology, recognizable as such over its whole lifetime 

that initially has much scope for improvement and eventually comes to be widely used, to 

have many uses, and to have many spillover effects.” Still Lipsey and co-authors (2005) 

distinguish between five classes of GPTs namely, materials, ICT, power sources, 

transportation equipment, and organizational forms.  



But Bioinformatics escapes univocal identifications: it does not seem to fit exactly in one of 

the five classes only and this is why it is identified as a special case of GPT (Foray et al., 

2009). To give the reader an idea of the wide spectrum Bioinformatics opens, it suffices to 

consider some examples of the ways it aids the experimental approaches: first, for bridging 

proteins, DNA, and RNA sequences, a number of databases have been built (e.g., NCBI’s 

SNP database1, ERGO 2.0 genome browser2) for which BLAST3 (Basic Local Alignment 

Search Tool) can be used; second, for searching for functional patterns in proteins and 

nucleic acids, the ExPASy4 (Expert Protein Analysis Model), or the ENSEMBL5 tool; 

finally, GPCRDB6 is usually used for determining if there are known interactions among 

proteins. Bioinformatics technologies, applications, and solutions touch the following fields: 

microbial genome applications, molecular medicine, personalized medicine, preventative 

medicine gene therapy, drug development, biotechnology, climate change studies, insect 

resistance, vetinary science, evolutionary studies. 

Notwithstanding its revolutionary role, and although the existence of a rich theoretical 

literature on GPTs (Feldman and Yoon, 2012), sound empirical investigations on the 

antecedents of GPTs are scant (Thoma, 2009; Lo and Sutthiphisal, 2010). As recent literature 

advocates, inventions of such a kind may require a broad search for information and the 

recombination of different knowledge bases (Kaplan and Vakili, 2014). Recombination 

mechanisms are increasingly being associated with the accomplishment of impactful 

inventions (Fleming and Sorenson, 2004; Schilling and Green, 2011; Carnabuci and Operti, 

2013): in fact, recent research shows it is going through a variety of cognitive-search 

processes (Acar and Van den Ende, 2016) that atypical (Uzzi et al., 2013) or unconventional 

combinations (Simonton, 1999) make concrete. The fact that there is a link between 

                                                      
1 https://www.ncbi.nlm.nih.gov/SNP/  
2 https://www.igenbio.com/  
3 https://blast.ncbi.nlm.nih.gov/Blast.cgi  
4 http://www.expasy.org/  
5 http://www.ensembl.org/index.html  
6 http://gpcrdb.org/  
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recombination of diverse knowledge bases and impact is increasingly recognized and 

empirical studies start to find systematic evidence on it (Keijl et al., 2016). Developing 

technologies drawing on diverse knowledge areas contribute to the creation of GPTs, since 

this enhances inventions’ technological generality. Accordingly, we take the view of 

inventions as the outcome of a recombination process over technology and scientific 

landscapes (Fleming and Sorenson, 2001; Savino et al., 2015, Nakamura et al., 2015). This 

recombination of diverse knowledge bases, if not their interplay, may play an important role 

in spanning the boundaries of GPTs (Novelli, 2015). According to Petsas (2003), the inputs 

of GPTs are basically complementary and it makes relevant looking at whether – and to what 

extent – diversity is at the basis of the impact of the Bioinformatics industry.  

To this purpose, we will have a deep look at the patents’ prior art (Trajtenberg et al., 1997; 

Chen and Hicks, 2004; Callaert et al., 2006) as they reflect the recombined knowledge at the 

basis of inventions in the field of investigation. Prior art in patents can be distinguished in 

patent references - PRs, representing the cited technological contributions - and non-patent 

references - NPRs, representing the cited scientific contributions. Analyzing their inherent 

diversity may provide us with the opportunity to systematically examine the relationships 

between scientific and technological contributions at the basis of key inventions in the 

Bioinformatics industry. 

Former contributions (Park, 2012; Rasmussen, 2010; Patel, 2003) focus on patents in 

Bioinformatics and provide valuable insights when it comes to consider the identification of 

the main technological classes and subclasses. However, they have two main limitations: 

first, they do not focus on the characteristics of prior art; second, they do not provide 

systematic evidence of the link between diversity in the prior art and GPT impact. Following 

our theorizing, two main research questions emerge: 



What is the link between knowledge recombination and the impact of Bioinformatics 

inventions? And, to what extent does diversity of scientific and technological knowledge 

bases matter? 

3. Characteristics of Bioinformatics 

3.1 Early days and growth of the industry  

The history of Bioinformatics traces back to the late 1970s when Staden, in a series of studies 

published on Nucleic Acids Research (seminal paper published in 1977), outlined the basics 

for the development of computer programs allowing researchers to analyze DNA sequences. 

However, they could be used on large mainframe computers and run with non-standard 

programming languages; these two characteristics made adapting them to small (48K) 

microcomputers tile consuming and not even economically affordable. These reasons, along 

with the need to facilitate dissemination, inspired the work of James M. Pustell (then Ostell) 

at the Kafatos Laboratory in Harvard’s Department of Cellular and Development Biology. 

He worked on – and improved – four aspects: interaction, data management, data analysis, 

and software compatibility (Pustell and Kafatos, 1982). It was a success (Hallam, 2013) and 

since its inception, the Bioinformatics industry underwent periods of technological and 

scientific challenges, feeding each other over a long period of time (Ouzonis and Valencia, 

2003).  

What follows is an overview of the challenges addressed by technological advancements. In 

the 1990s the most urgent challenge was to deploy systems able to collect huge amounts of 

data (Mushegian, 2011). At that time, the technical advancements were as such that tools 

like the Genome Sequence Database allowed scientists to process data within 13 hours; a 

performance that only few years before was of 13 months (Robbins, 1996). Since the 

beginning of the Human Genome Project in 1990, always more sequence data entered the 

databases (Robbins, 1996).  



Then, a new challenge showed up: data integration. As Robbins (1996, p. 468) puts it: 

“sequence data had to be linked to map data; protein structures, connected to metabolic 

function; species data, connected with ecosystem data.” Although progress has been made, 

still today this challenge is considered as perennial issue in that the increase in the quantity 

of data brings complexity (Goble and Stevens, 2008). Different approaches to data 

integration are nowadays available ranging from service-oriented architectures, data 

warehousing, view integration; workflows, mashups, and semantic web (Goble and Stevens, 

2008). 

Another set of challenges laid in the problem of data standardization and data indexing 

(Robbins, 1996). Recent technological advancements allow for solutions which can also 

allow standardizing and indexing big data, mainly based on supervised and unsupervised 

machine learning techniques (Greene et al., 2014).  

In terms of scientific developments, it is worth considering that it is only from the mid-1990s 

onward that new journals, new conferences, and new training programs (and textbooks) 

began to appear supporting this new domain of knowledge (Hallam, 2013): in 1994, the first 

statement on the birth of computational biology as a discipline in its own right was made by 

the new Journal of Computational Biology (Davison, 1994); in 1995, the first Bioinformatics 

textbook was published Waterman (1995); in 1998, the journal Computer Applications in 

the Biosciences (established in 1985) changed its name to Bioinformatics (Hallam, 2013) 

highlighting “the importance of Bioinformatics, a subject which is emerging as one of the 

leading scientific disciplines for the next century” (CABIOS, 1997).  

Afterwards, the need for Bioinformatics specialized curricula emerged (Altman, 1998). 

Under the headline ‘Bioinformatics: Jobs Galore’, Science Careers reports in 2000 that 

“everyone is struggling to find people with the Bioinformatics skills they need” (Taylor, 

2000). Public entities in general and particularly universities, started to pay attention to the 

rise of this new discipline (Black and Stephan, 2004). In the period 1997-2004, the number 



of Bioinformatics programs within universities more than tripled, twelve professional 

science Master’s in Bioinformatics were created, the number of Doctoral programs more 

than doubled, whereas the number of Bachelor’s programs tripled. 

Scientific projects like the Human Genome Project (HGP) strongly contributed to 

institutionalize Bioinformatics (Hallam, 2013). By the time the HGP came on the scene, 

independent initiatives spurred the growth of new institutional spaces for data work. What 

the Congress reasoned about the creation of the National Center for Biotechnology 

Information (NCBI) (Cook-Deegan, 1994) was that “knowledge in the field of biotechnology 

is accumulating faster than it can be reasonably assimilated” and that advances in 

computation were the solution (Smith, 2008). Specifically, the Congress emphasized the 

need of a distinct institutional home to deal with the different skills needed to design, 

development, implement, and manage biological information (Hallam, 2013). For the same 

reasons, in Europe, the European Bioinformatics Institute (EBI) was established as a quasi-

independent outstation of the European Molecular Biology Laboratory (EMBL). The 

acceleration and rapid completion of the HGP made it clear that, as one Nature editor put it, 

“like it or not, big biology is here to stay” (Editorial Nature, 2001, p. 545). Bioinformatics 

and HGP fed each other by enabling the production and synthesis of more and more data. 

2.2 Bioinformatics market and patents 

Already in 2000, the combination of segments characterizing Bioinformatics exceeded an 

estimated $700 million, making Bioinformatics one of the fastest growing areas of all life 

science related markets (SDI, 2001). Recent analyses confirm this picture: the global 

Bioinformatics market has been valued at $3.5 billion in 2013 and it is poised to reach $12.5 

billion by 2020 at a Compound Annual Growth Rate (CAGR) of 19.49% (Research and 

Markets, 2015). These numbers are probably underestimating the fact that certain 

pharmaceutical and biotechnology firms have extensive in-house Bioinformatics expertise, 

which never offers its services for sale (Saviotti et al., 2000). In any case - and consequently 



- the most active companies understood the impressive economic potential of this industry 

and started aggressively seeking patent protection for their Bioinformatics inventions with 

some attempting to corner the market (Vorndran and Florence, 2002; D’Souza, 2004; 

Rasmussen, 2010).  

However, patenting in Bioinformatics is complex as it deals with many dimensions such as 

lines of code, algorithms, data content, structures and user interfaces (Rasmussen, 2010). 

Despite some unique legal problems of this discipline (Ostler and Gollin, 2015; Welch, 

2002) and the persisting differences among the legal systems (McCubbin, 2003), patents are 

of greatest assistance in protecting most forms of intellectual property associated with 

Bioinformatics (Harrison, 2003). Figure 1 shows the evolution of the patenting activity in 

the Bioinformatics industry and relates it to the scientific and institutional milestones 

introduced in the former section.  

FIGURE 1 HERE 

Figure 1. Number of patents over the years and milestones 

 

As we will show in the next section, what further complicates the picture is that by entailing 

Bioinformatics a combination of GPTs, inventors potentially may come from different 

domains, relying then on diverse knowledge bases (Hallam, 2013). 

3. Methodology and data set 

3.1 Collecting Bioinformatics patents 

As there is no single and unique classification for Bioinformatics patents, a series of steps 

have been undertaken to carry out preliminary patent-based analyses by relying on the 

United States Patent and Trademark Office (USPTO)7 information. This allowed us to 

expand results stemming from former studies (Park, 2012; Rasmussen, 2010; Patel, 2003). 

The following data search and collection routine has been implemented: 

                                                      
7 http://www.uspto.gov/  

http://www.uspto.gov/


− First large-scale extraction of patents belonging to USPTO sub-classes identified in 

Park (2012) which in turn are based on Rasmussen (2010) and Patel (2003). First 

dataset generated. 

− Multiple keywords search based on Hallam (2013) (e.g., ‘Bioinformatics’, 

‘computational biology’, ‘genomics’, ‘data-based biological knowledge’) relying on 

patent title, abstract, and claims of patents to include only those which satisfied both 

the biotechnology and information technology content of Bioinformatics. Second 

dataset generated. 

− Merging of the two samples coming from the two former points. 

− Semi-automatic review and refinement of selected patents (including patent 

description), to ensure consistency. 

This routine resulted in a database of 14,754 Bioinformatics patents in the 1976-2014-time 

window. It is worthy to notice that 12% of the patents come from individual assignees 

(Appendix 1). From the distribution of the NAICS codes, we can also observe that the 

remaining assignees come from diverse industries and this confirms the fact that 

Bioinformatics is increasingly becoming an attractive field for heterogeneous actors. 

Universities are playing an important role too.   

3.2 Extracting prior art information 

Of all the Bioinformatics patents, we collected both cited non-patent references (NPRs) and 

patent references (PRs). Some problematic issues may exist in referring to patent citations 

as a way to identify knowledge linkage and recombination (Chen, 2007): the first disputation 

entails the difference between patent citations added by the applicant and examiners (e.g., 

Alcacer et al., 2009); second, some scholars point out that only NPRs self-cited by the 

inventors should be used as a way to trace the link between science and technology, as the 

ones from examiners and non-self-citations by the inventor introduce noise (e.g., Li et al., 

2014). Despite these controversial issues, by using patent citations (both NPRs and PRs), 



scholars have revealed knowledge diffusion and transfer (e.g., Nelson, 2009), trajectories 

and paradigms (Érdi et al., 2013); all in all, they provided with a more systematic 

conceptualization of innovation dynamics and related policies by building more accurate 

citations-based indicators (e.g., Callaert et al., 2006; 2012). We then follow Chen (2017) 

who argues it is reasonable to assume that patent citations are linked to knowledge. 

Several stages of data cleaning and harmonizing followed in order to extract the essential 

information allowing us to calculate indicators. A database has been built in which the 

following information showed up: patent ID; filing date; NPRs string; PRs string. This 

routine resulted in a database of 397,746 NPRs in the 1974-2013-time window and 194,288 

PRs in the 1972-2013-time window.  

Concerning the NPRs, the sources have been extracted from the entire string by creating 

specific macros in VBA Project. Appendix 2 provides the reader with an overview of the 

main NPRs. No one of the Bioinformatics journals show up in the top 1%, the reason is 

twofold: first, the Bioinformatics field is still in development and relatively recent journals 

need time to become relevant; second, it is an obvious consequence of the interdisciplinary 

nature of the field. Appendix 3 reports the main Bioinformatics journals and their 

frequencies, accounting for a 1.5% of the NPRs. 

Also, the sources needed to be classified as Science (SCI-covered) or Not Science (Not SCI-

covered) by following Callaert and co-authors (2006). To do that, we matched data in the 

Journal Citation Report’s database8. The matching was made on the basis of Journal title, 

and impact factor. We uniquely allocated 365,885 (91.98%) NPRs9 (see Table 1).  

 

TABLE 1 HERE 

Table 1. NPRs classification 
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evaluation/journal-citation-reports.html  
9 Complete list available upon request. 
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These values indicate that the sources that scientific journals are the main source to the 

development of Bioinformatics innovations are mostly. Figure 2 shows their distribution 

over the years. 

FIGURE 2 HERE 

Figure 2. Number of NPRs (green), Non-Journal (blue), SCI-covered (purple) and Not SCI-covered (red) 

references over the years (log scale) 

 

A relevant percentage of non-scientific items is present thus signaling that books, manuals, 

patent related documents, database entries, magazines (to mention just the main categories) 

have contributed to provide the necessary knowledge to bring the innovations into this 

sector. This is a first symptom of the necessary diversity of sources at the basis of the 

Bioinformatics inventions. 

Concerning the PRs, we extracted the technological sub-classes (2 and 3 digits) by following 

the IPC classification10. Table 2 shows the main technological sub-classes cited into 

Bionformatics patents11. This preliminary information confirms the interdisciplinary nature 

that lays at the basis of the growth and development of the Bioinformatics industry.  

TABLE 2 HERE 

Table 2. PRs classification 

3.3 Indicators 

A diversity index was selected to account for quantity and quality of both science (NPRs) 

and technology (PRs) in patents. Starting from a general measure of information content 

called Renyi entropy Ri of order α, we got the value of interest for this study which is the 

limit of the equation (Hill, 1973; Pielou, 1975) when α approaches 1. This yields to: 

H’ = Ri = - Σi 𝑝𝑖ln𝑝𝑖 

                                                      
10 http://www.wipo.int/classifications/ipc/en/  
11 Complete list available upon request.  

http://www.wipo.int/classifications/ipc/en/


where pi is the proportion of individuals found in the i-th species. This is the well-known 

Shannon-Wiener measure of species diversity (H’), which is widely used in a number of 

different areas (Stirling, 1998; McDonald and Dimmick, 2003; Margaleff, 1972). The 

Shannon-Wiener diversity index H’ is used to calculate the NPRs and PRs diversity. 

In order to assess the odds for a Bioinformatics invention to have impact, the number of 

Forward Citations (FCs) is used as a proxy. Indeed, the number of FCs can be thought of as 

signalling the importance of a certain technology (Albert et al., 1991; Carpenter et al., 1993; 

Jaffe et al., 2000), especially in the case of GPTs (Youtie et al., 2007). The extent to which 

a GPT is cited and adopted for the development of future inventions gives an indication of 

their importance and usefulness (Keijl et al., 2016). A number of studies also support the 

evidence that FCs are a good indicator of both the social (Trajtenberg, 1990; Sapsalis et al., 

2006) and private value (Harhoff et al., 1999; Lemley and Shapiro, 2005; Gambardella et 

al., 2008) of specific inventions. Another interesting characteristic stems from the fact that 

the distribution of FCs is highly skewed with a large share of patents receiving no citations 

and a small minority of patents with a large number of FCs (Arts et al., 2013). Linking this 

skewedness to the value of an invention allows us to argue that outliers in the distribution of 

FCs pertain to more important inventions (Arts et al., 2013), with breakthrough patents 

falling in the top 1% or 5% in terms of FCs (Ahuja and Lampert, 2001; Singh and Fleming, 

2010). 

3.4 Model 

We run a series of logistic regression models (Hosmer et al., 2013) in order to assess the 

likelihood of being highly cited (through the number of FCs at 1, 2, and 5 Standard 

Deviations).  

Pr (Y=1|X1, …, X8) = β0 + β1*H’NPRs + β2*H’PRs_class + β3*H’PRs_subclass + βk*Controls 

with k=4, …,8. Table 3 shows a summary of the variables used into the model. 

TABLE 3 HERE 



Table 3. Variables for logistic regression models 

 

Figure 3 summarizes the method and data collection process: 

FIGURE 3 HERE 

Figure 3. Flowchart to summarize method and data collection process 

 

4. Results 

4.1 Descriptive Statistics 

In terms of correlations (see Appendix 4), we may notice that diversity at the level of NPRs 

has a negative correlation with all the levels of impact we are going to use. Even though the 

coefficients are not that large, they are still highly significant. NPRs diversity’s effect is 

lower for impactful innovations at the average level of FCs (-.018, p<.05), reinforces for 

those at 1SD (-.076, p<.001) and 2SD (-.073, p<.001), lowering again for extreme cases at 

5SD (-.054, p<.001). Instead, a positive and significant correlation emerges for PRs 

regardless the fact their diversity is at the level of technological classes or subclasses. 

However, higher coefficients emerge when it comes to consider the correlation between the 

diversity at the level of subclasses and the different levels of impact (e.g., .206, p<.001 for 

0SD cases; or .116, p<.001 for 2SD cases). This is supposedly due to the hierarchical 

structure of the IPC classification (Eisinger et al., 2013). As a consequence, the measure of 

diversity at one level does not take into account diversification at the underlying levels. This 

difference may also be reflected in the opposite and significant correlations between NPRs 

and PRs diversity (both at the level of classes and subclasses). Overall, all the variables 

pertaining to the scientific knowledge bases seem to run against the odds to generate 

impactful innovations in the Bioinformatics industry; the opposite holds for the 

technological knowledge bases.  

4.2 Gaining impact by recombining science and technology? 



In Table 4 we compare different logistic regression models, according to the definition of 

impact. The regression model with the interaction effects shows that the interplay of NPRs 

diversity and PRs diversity comes along with a small (but significant) decrease in the odds 

of generating impactful inventions. Such decreases become not significant as soon as 

extreme events are taken into account: for events falling in the 5SD of the FCs distribution, 

it seems that the interplay of scientific and technological knowledge bases does not play a 

significant role. On one side, recombining diverse knowledge bases at the level of NPRs and 

PRs technological subclasses has a negative impact only on the cases at 0SD and 1SD. On 

the other side, the negative effect of recombining NPRs knowledge bases and PRs 

technological classes expands until cases at 2SD. 

NPRs diversity shows three patterns. First, it has a positive coefficient when cases at the 

average level of SD are considered. Second, for cases at 2SD it decreases the odds of getting 

impactful inventions and in a significant way as soon as there is no interplay with PRs 

diversities. Third, and regardless the presence of interaction effects, it is still negative but 

not significant for more extreme cases namely, 2SD and 5SD. 

 

TABLE 4 HERE 

Table 4. Logistic regression model results (coefficients reported) 

 

PRs diversity shows a constant pattern: it has positive, always significant, and reinforcing 

coefficients at both the level of classes and subclasses. However, PRs diversity at the level 

of technological subclasses exhibits higher coefficients only for impact at the average level. 

Always higher coefficients for PRs diversity at the level of technological classes can be 

observed for increasingly extreme cases.  

By assessing the interaction effects between the main predictors, different optimal strategies 

may be identified (see Table 5).  

TABLE 5 HERE 

Table 5. Interaction effects assessment 



 

The overall effect of NPRs diversity on the odds of generating impactful inventions in the 

Bioinformatics industry is positive when it comes to consider events at the average level of 

FCs (0SD); it ranges from -4.4% to +12.6%. The maximum level of increase (+12.6%) 

occurs when there is no interaction effect with the two PRs diversity indicators. The lower 

level instead occurs either when NPRs diverse knowledge bases are recombined with PRs 

diverse technological classes (-4.4%). Another interesting emerging aspect - which also 

reflects the results of the regression models - is that moving away from cases at the average 

level of FCs (0SD) implies that the overall effect of NPRs diversity is either negative or not 

significant. Furthermore, and although the magnitude is not so high (from -4.4% to -1.4%), 

recombination while shifting towards more extreme cases does not help in gaining impact. 

For extreme cases (1SD, 2SD, and 5SD), the overall effect of NPRs diversity is not 

significant. 

PRs diversity at the level of technological subclasses has a positive effect on the odds of 

generating impactful inventions with a magnitude ranging from +4.4% to +10.7%. For cases 

at 0SD and 1SD the PRs diversity at the level of subclasses allows for higher increase in the 

odds of generating impactful inventions (+8.7% and +5.9%). The interaction effect with 

NPRs diversity is still a good option (+8.7% and +4.4%). Instead, for more extreme cases 

(at 2SD and 5SD), either by recombining with diverse NPRs or not, there is a positive and 

significant increase in the odds (from +8.9% to 10.7%). An increase in the odds is allowed 

as soon as inventors decide to leverage on the diversity of PRs’ technological subclasses.  

PRs diversity at the level of technological classes has overall positive influence on the odds 

with a magnitude ranging from +5.9% to 18.3%. This predictor shows better performance 

when there is no interaction effect with NPRs diversity, and that happens when there is no 

recombination of technological and scientific knowledge bases. For increasingly extreme 

events (at 2SD and 5SD), the values are higher ranging from +8.5% to 18.3%. 



5. Discussion and Implications 

In this paper, we examined whether – and to what extent – scientific diversity and 

technological diversity contributed to the rise and development of the Bioinformatics 

industry. We analyzed the Bioinformatics patented inventions (USPTO) in the period 1976-

2014 and carried out a systematic assessment of their prior art (NPRs and PRs). By 

identifying scientific knowledge bases with NPRs and technological knowledge bases with 

PRs, we calculated their diversity by means of an entropy-based indicator namely, the 

Shannon-Wiener diversity index. We then performed logistic regressions in order to assess 

whether the diversity of NPRs and PRs might be considered good predictors of inventions’ 

impact. This analysis was done by considering different degrees of impact taking into 

account the characteristics of the FCs distribution. 

From the amount of both NPRs and PRs, and by looking at historical evidence of the 

development of the Bioinformatics industry, we preliminary argued that both science and 

technology play a role. In terms of quantity, the number of cited NPRs more than doubles 

the number of PRs. However, their contribution is somewhat different. Indeed, when we dug 

into the types of NPRs, we noticed the contribution of both SCI-covered references (e.g., 

indexed academic journals) and their non-scientific counterparts (e.g., books, patent related 

documents, and database accessions) were relevant. Also, the fact that most of SCI-covered 

sources are not Bioinformatics journals provided preliminary signs that diversity may matter. 

A similar trait emerges when we look at the technological classes and subclasses of PRs. 

Overall, in terms of quantity, Bioinformatics patents lay on a higher number of NPRs than 

PRs. 

When it comes to consider their diversity, descriptive statistics showed a negative correlation 

between NPRs diversity and all the levels of impact considered. On the contrary, and 

although with slightly different coefficients, PRs diversity is positively correlated with all 

the impact measures we used. Overall, diversity (or quality) of cited NPRs does not seem to 



be as important as quantity to the development of important inventions in the Bioinformatics 

industry. 

In our logistic regression models, a more nuanced picture emerged. First, by considering the 

models without interaction effects, NPRs diversity has a positive and significant effect on 

the odds of generating inventions at the average level of FCs; then, its effect becomes 

negative and highly significant concerning the inventions at 1SD of FCs giving inventors a 

decrease in the odds which amounts to -19.9%; finally, for extreme cases (2SD and 5SD in 

the FCs distribution), the coefficient is no longer significant. The coefficient concerning the 

PRs diversity at the level of technological classes and subclasses exhibited a positive sign 

and significantly contribute to increase the odds of generating impactful inventions. PRs 

diversity matters especially when dealing with extreme cases (at 5SD). But to escape the 

average impacts, inventors should leverage on PRs diversity at the level of technological 

classes in that an 18.3% increase in the odds can be reached out. 

Second, by considering the logistic regression models with the interaction effects between 

NPRs diversity and PRs diversity, results indicated another interesting aspect. The interplay 

of scientific and technological knowledge has almost always a negative coefficient, although 

its significance shades as soon as extreme cases are considered. Recombining science and 

technology does not seem to be the best option to increase the odds to gain impactful 

inventions in the Bioinformatics industry.   

This research moves a step further in the understanding the determinants of GPTs. Analyses 

of the patenting activity of the Bioinformatics industry, although valuable, only provide with 

evidence about the main technological classes of patents. To the best of our knowledge, we 

for the first time open the black-box of the Bioinformatics patents in order to shed light on 

the quantity and diversity (or quality) of the cited NPRs and PRs. Understanding how the 

latter are recombined is of fundamental importance in that insights are needed to disentangle 

the emergence and development of GPTs.  



Our findings contribute and extend the existing empirical and theoretical debate on 

knowledge recombination (Carnabuci and Operti, 2013; Gruber et al., 2013; Blackwell et 

al., 2009; Fleming and Sorenson, 2004), especially when it claims the higher the 

recombination of knowledge from areas distant to the one where someone is innovating, the 

higher the chances of generating important innovations. However, we highlight that only 

recombination occurring within scientific domains or technological domains can be 

considered, as their interplay may be detrimental to gain impactful inventions. Also, our 

contribution shows that the different degrees of impact require different degrees and types 

of knowledge recombination either within scientific domains or technological ones. NPRs 

diversity is more relevant for those inventions having a low impact; on the contrary, PRs 

diversity has impact for cases having moderate to extreme impact.  

Our findings also have important practical and policy implications. First, inventors in GPTs 

have to wisely recombine existing and diverse scientific/technological knowledge bases in 

order to increase the chances to generate impactful inventions. Within the boundaries of the 

considered industry (Bioinformatics) we can claim that it is better for inventors to rely either 

on diverse scientific knowledge bases or diverse technological knowledge bases. Their 

interaction does not represent the best recipe. Second, inventors (and the organizations they 

belong to) may reinterpret our findings in the light of the framework Murmann and Frenken 

(2006) advanced, perhaps locating Bioinformatics inventions in the radical-square 

innovation quadrant: a large scope of new knowledge mainly residing in PRs diverse sources 

increases the odds of getting high performance improvements. Third, as recombination of 

diverse PRs seems to be the strongest mechanism to gain impact, by leveraging on it 

inventors in the Bioinformatics industry could make the transition from technological 

trajectories to new paradigms potentially more concreate (Dosi, 1982). Policy makers may 

find interesting the fact that understanding what is behind the scene of GPTs, they can 

foresee better ways to prioritize investments for assuring a long-term economic growth. 



Also, they may find ways to further stimulate collaborative efforts between the 

heterogeneous actors to enact network dynamics, enabling them to better recombine their 

knowledge bases. Finally, by opening the black box of the NPRs and PRs, policy makers 

can start posing the basis for a more univocal way to identify Bioinformatics patents in the 

different patent classification systems.   

6. Limitations and Future Research 

This research does not come without limitations. First and foremost, we relied on USPTO 

patents only. Future research may extend their analyses by including European patents as 

well in order to assess whether some difference exist in both the PRs and NPRs citations 

patterns. Second, we do not dig into the content of the cited prior art; in this vein, future 

studies may investigate the semantic content of prior also by looking at their evolution. 

Therefore, new content-based indicators signaling impact of Bioinformatics inventions can 

be generated and tested. Third, our focus is on a peculiar case of GPT which may not allow 

for generalizing our results. Future researchers may further elaborate on this topic by 

comparing other GPTs and questioning or supporting our findings. Fourth, we do not dig 

into the inventor’s characteristics; this aspect may be useful to understand who the most 

prominent scientists in the Bioinformatics field are, who among them is able to play the 

ambidextrous role of producer of scientific and technological outcomes, or how their 

curricula look like. This may provide future readers with a complete picture of the necessary 

skills to survive complex industries like Bioinformatics. Fifth, studying the impact generated 

by networks of inventors and whether these networks are characterized by strong industry-

university links is worthy of further investigation. Finally, analyzing how – and to what 

extent – the impact of bioinformatics patents varies across industrial boundaries (Messeni 

Petruzzelli et al., 2015) represents an interesting research avenue. 
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