
ar
X

iv
:1

30
4.

30
09

v2
  [

m
at

h.
L

O
] 

 3
0 

A
ug

 2
01

3

ITERATED HYPER-EXTENSIONS AND AN IDEMPOTENT

ULTRAFILTER PROOF OF RADO’S THEOREM

MAURO DI NASSO

Abstract. By using nonstandard analysis, and in particular iterated
hyper-extensions, we give foundations to a peculiar way of manipulating
ultrafilters on the natural numbers and their pseudo-sums. The resulting
formalism is suitable for applications in Ramsey theory of numbers. To
illustrate the use of our technique, we give a (rather) short proof of
Milliken-Taylor’s Theorem, and a ultrafilter version of Rado’s theorem
about partition regularity of diophantine equations.

Introduction

The algebraic structure on the space of ultrafilters βN as given by the
pseudo-sum operation U ⊕ V, and the related generalizations, have been
deeply investigated during the last thirty years, revealing a powerful tool for
applications in Ramsey theory and combinatorial number theory (see the
monograph [15]). The aim of this paper is to introduce a peculiar formalism
grounded on the use of the hyper-natural numbers of nonstandard analy-
sis, that allows to manipulate ultrafilters on N and their pseudo-sums in a
simplified manner. Especially, we shall be interested in linear combinations
a0U ⊕ . . .⊕ akU of a given idempotent ultrafilter U . To illustrate the use of
our technique, we shall give a nonstandard proof of Ramsey Theorem, and
a (rather) short proof of Milliken-Taylor’s Theorem, a strengthening of the
celebrated Hindman’s Theorem. Moreover, we shall also prove the following
ultrafilter version of Rado’s Theorem, that seems to be new.

Theorem. Let c1X1 + . . . + ckXk = 0 be a diophantine equation with
c1 + . . . + ck = 0 and k > 2. Then there exists a0, . . . , ak−2 ∈ N such that
for every idempotent ultrafilter U , the corresponding linear combination

V = a0U ⊕ . . . ⊕ ak−2U

witnesses the injective partition regularity of the given equation, i.e. for every
A ∈ V there exist distinct elements x1, . . . , xk ∈ A with c1x1+ . . .+ckxk = 0.

At the end of the paper, some hints are given for further possible appli-
cations and developments of the introduced nonstandard technique.
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2 MAURO DI NASSO

We assume the reader to be familiar with the notion of ultrafilter, and
with the basics of nonstandard analysis. In particular, we shall call star
map or nonstandard embedding a function A 7→ ∗A that associates to each
mathematical object A under consideration its hyper-extension ∗A, and that
satisfies the transfer principle. Excellent references for the foundations of
nonstandard analysis are [6] §4.4, where the classical superstructure ap-
proach is presented, and the textbook [12], grounded on the ultrapower
construction. The peculiarity of our nonstandard approach is that we shall
use iterated hyper-extensions (see the discussion in Section 2).

1. u-equivalent polynomials

Before starting to work in a nonstandard setting, in this section we present
a general result about linear combinations of a given idempotent ultrafilter
(see below for the definition), whose proof will be given in Section 4. As a
consequence of its, we prove an ultrafilter version of Rado’s theorem.

Throughout the paper, N will denote the set of positive integers, and
N0 = N ∪ {0} the set of non-negative integers.

Recall the pseudo-sum operation between ultrafilters on N0:

A ∈ U ⊕ V ⇐⇒ {n ∈ N0 | A− n ∈ V} ∈ U ,

where A−n = {m ∈ N0 | m+n ∈ A} is the left-ward shift of A by n. It can
be readily verified that U ⊕V is actually an ultrafilter, and that the pseudo-
sum operation is associative. If one identifies every principal ultrafilter Un =
{A ⊆ N0 | n ∈ A} with its generator n ∈ N0, then it is readily seen that the
pseudo-sum extends the usual addition, i.e. Un ⊕ Um = Un+m; moreover,
U ⊕ U0 = U0 ⊕ U = U for all U . (In fact, it can be proved that the center
of (βN0,⊕) is the family {Un | n ∈ N0} of the principal ultrafilters. A
nonstandard proof of this fact can be found in [11].)

Given an ultrafilter U on N and a natural number h, the product hU is
the ultrafilter defined by putting

A ∈ hU ⇐⇒ A/h = {n | nh ∈ A} ∈ U .

Notice that 0U = U0 and 1U = U for every U .

Particularly relevant for applications are the idempotent ultrafilters, namely
the non-principal ultrafilters U such that U ⊕U = U . We remark that their
existence is a non-trivial result whose proof requires repeated applications
of Zorn’s lemma. (To be precise, also the principal ultrafilter U0 has the
property U0 = U0 ⊕ U0, but it is not usually considered as an “idempotent”
in the literature.)

Let us now introduce an equivalence relation on the strings (i.e., finite
sequences) of integers.
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Definition 1.1. The u-equivalence ≈u between strings of integers is the
smallest equivalence relation such that:

• The empty string ε≈u 〈0〉.

• 〈a〉≈u 〈a, a〉 for all a ∈ Z.

• ≈u is coherent with concatenations1, i.e.

σ≈u σ′ and τ ≈u τ ′ =⇒ σ⌢τ ≈u σ′⌢τ ′.

Two polynomials P (X) =
∑n

i=0 aiX
i and Q(X) =

∑m
j=0 bjX

j in Z[X] are
u-equivalent when the corresponding strings of coefficients are u-equivalent:

〈a0, . . . , an〉 ≈u 〈b0, . . . , bm〉

So, ≈u -equivalence between strings is preserved by inserting or removing
zeros, by repeating finitely many times a term or, conversely, by shortening
a block of consecutive equal terms. E.g. 〈3, 0, 0,−4, 1, 1〉 ≈u 〈0, 3,−4,−4, 1〉
and 〈2, 2, 0, 0, 7, 7, 3〉 ≈u 〈2, 7, 3〉, and hence:

• X5 +X4 − 4X3 + 3 ≈u X4 − 4X3 − 4X2 + 3X

• 3X6 + 7X5 + 7X4 + 2X + 2 ≈u 3X2 + 7X + 2, etc.

As an application of nonstandard analysis, in Section 4 the following will
be proved:

Theorem 4.4 Let a0, . . . , an ∈ N0, and assume that there exist [distinct]
polynomials Pi(X) such that

P1(X) ≈u . . . ≈u Pk(X) ≈u

n∑

i=0

aiX
i and c1P1(X) + . . .+ ckPk(X) = 0.

Then for every idempotent ultrafilter U and for every A ∈ a0U ⊕ . . .⊕ anU ,
there exist [distinct] xi ∈ A such that c1x1 + . . .+ ckxk = 0.

We derive here a straight consequence of the above theorem which is a
ultrafilter version of Rado’s theorem.

Theorem 1.2. Let c1X1 + . . . + ckXk = 0 be a diophantine equation with
c1 + . . . + ck = 0 and k > 2. Then there exists a0, . . . , ak−2 ∈ N such that
for every idempotent ultrafilter U , the corresponding linear combination

V = a0U ⊕ . . . ⊕ ak−2U

witnesses the injective partition regularity of the given equation, i.e., for
every A ∈ V there exist distinct xi ∈ A such that c1x1 + . . . + ckxk = 0.

1 Recall that if σ = 〈a0, . . . , ak〉 and τ = 〈b0, . . . , bh〉, then their concatenation is defined
as σ⌢τ = 〈a0, . . . , ak, b0, . . . , bh〉.
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Proof. For arbitrary a0, . . . , ak−2, consider the following polynomials:

P1(X) = a0 + a1X + a2X
2 + . . . + ak−3X

k−3 + ak−2X
k−2 + ak−2X

k−1

P2(X) = a0 + a1X + a2X
2 + . . . + ak−3X

k−3 + 0 + ak−2X
k−1

P3(X) = a0 + a1X + a2X
2 + . . . + 0 + ak−3X

k−2 + ak−2X
k−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Pk−2(X) = a0 + a1X + 0 + a2X
3 + . . . + ak−3X

k−2 + ak−2X
k−1

Pk−1(X) = a0 + 0 + a1X
2 + a2X

3 + . . . + ak−3X
k−2 + ak−2X

k−1

Pk(X) = a0 + a0X + a1X
2 + a2X

3 + . . . + ak−3X
k−2 + ak−2X

k−1

Notice that P1(X) ≈u . . . ≈u Pk(X) ≈u
∑k−2

i=0 aiX
i. In order to apply The-

orem 4.4, we need to find suitable coefficients a0, . . . , ak−2 in such a way that
the linear combination c1P1(X) + . . . + ckPk(X) = 0. It is readily verified
that this happens if and only if the following conditions are fulfilled:





(c1 + . . .+ ck) · a0 = 0

(c1 + . . .+ ck−2) · a1 + ck · a0 = 0

(c1 + . . .+ ck−3) · a2 + (ck−1 + ck) · a1 = 0
...

c1 · ak−2 + (c3 + . . .+ ck) · ak−3 = 0

(c1 + . . .+ ck) · ak−2 = 0

The first and the last equations are trivially satisfied because of the hy-
pothesis c1 + . . . + ck = 0. Now assume without loss of generality that the
coefficients c1 ≥ . . . ≥ ck are arranged in non-increasing order. It can be
verified in a straightforward manner that the remaining k− 2 equations are
satisfied by (infinitely many) suitable a0, . . . , ak−2 ∈ N, e.g.

(∗)





a0 = c1 · (c1 + c2) · . . . · (c1 + . . .+ ck−2)

ai = bi · b
′
i for 0 < i < k − 2 where

bi = c1 · (c1 + c2) · . . . · (c1 + . . .+ ck−2−i) and

b′i = (−1)i · ck · (ck + ck−1) · . . . · (ck + . . . + ck+1−i)

ak−2 = (−1)k−2 · ck · (ck + ck−1) · . . . · (ck + . . .+ c3)

Remark that by the hypothesis c1 + . . . + ck = 0 together with the as-
sumption c1 ≥ . . . ≥ ck, it follows that all ai > 0. Finally, remark also that
since all coefficients a0, . . . , ak−2 6= 0, the polynomials Pi(X) are mutually
distinct. �

For instance, consider the diophantine equation

3X1 +X2 +X3 −X4 − 4X5 = 0

where coefficients are arranged in non-increasing order and their sum equals
zero. By using (∗) in the above proof, we obtain that a0 = 60, a1 = 48,
a2 = 60, a3 = 80. So, for every idempotent ultrafilter U and for every set

A ∈ 60U ⊕ 48U ⊕ 60U ⊕ 80U

we know that there exist distinct xi ∈ A such that 3x1+x2+x3−x4−4x5 = 0.
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2. Iterated hyper-extensions

For our purposes, we shall need to work in models of nonstandard anal-
ysis where hyper-extensions can be iterated, so that one can consider, e.g.,
the set of hyper-hyper-natural numbers ∗∗N, the hyper-hyper-hyper-natural
numbers ∗∗∗N, the hyper-extension ∗ν of an hyper-natural number ν, and
so forth. Moreover, we shall use the c

+-enlargement property, namely the
property that intersections

⋂
F∈F

∗F are nonempty for all families |F| ≤ c of
cardinality at most the continuum, and which satisfy the finite intersection
property (i.e. A1 ∩ . . . ∩An 6= ∅ for every choice of finitely many Ai ∈ F).

In full generality, all the above requirements are fulfilled by taking a c+-
enlarging nonstandard embedding

∗ : V −→ V

which is defined on the universal class V of all sets. It is now a well-
known fact in nonstandard set theory that such “universal” nonstandard
embeddings can be constructed within conservative extensions of ZFC where
the regularity axiom is replaced by a suitable anti-foundation axiom; see e.g.
[1].2 (For a comprehensive treatment of nonstandard set theories, we refer
the interested reader to the monography [16].)

A suitable axiomatic framework is the nonstandard set theory ZFC[Ω] of
[10], which includes all axioms of Zermelo-Fraenkel theory ZFC with choice
with the only exception of the regularity axiom, and where for every “∈-
definable” cardinal κ, one has a nonstandard embedding Jκ : V → V of the
universe into itself that satisfies the κ-enlargement property.3 The resulting
theory is conservative over ZFC. (See also the related axiomatics ∗ZFC [7, 8]
and Alpha-Theory [9]).

Another suitable setting where iterated hyper-extensions can be consid-
ered was introduced by V. Benci in [2]: it consists in a special version of
the superstructure approach ∗ : V (X) → V (X) where the standard universe
and the nonstandard universe coincide. The limitation here is that super-
structures V (X) only satisfies a fragment of ZFC (e.g., replacement fails
and there are no infinite ordinals in V (X)).

We stress that working with iterated hyper-extensions requires caution.
To begin with, recall that in nonstandard analysis one has that ∗n = n for
all natural numbers n ∈ N; however, the same property cannot be extended
to the hyper-naturals numbers ξ ∈ ∗N. Indeed, by transfer one can easily
show that ∗ξ > ξ for all infinite ξ ∈ ∗N; more generally, the following facts
hold:

2 In summary, one takes transitive Mostowski collapses of ultrapowers V
I/U of the

universe. For any given cardinal κ, the κ-enlargement property is obtained by picking a
κ-regular ultrafilter U .

3 Indeed, the separation and replacement schemas hold for all ∈-∗-formulas, and Jκ is
postulated to satisfy κ-saturation, a stronger property than κ-enlargement.
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• ∗N  ∗∗N.

• If ξ ∈ ∗N \N then ∗ξ ∈ ∗∗N \ ∗N.

• ∗N is an initial segment of ∗∗N, i.e. ξ < ν for every ξ ∈ ∗N and for
every ν ∈ ∗∗N \ ∗N.

Let f : N0 → N0. By transferring the fact that ∗f and f agree on N0, one
gets that

• (∗∗f)(ξ) = ∗f(ξ) for all ξ ∈ ∗N0.

Remark that ∗[∗f(ξ)] = (∗∗f)(∗ξ), but in general (∗∗f)(∗ξ) 6= (∗∗f)(ξ).

Now denote by “k∗” the k-times iterated star map, i.e.
{

0∗A = A
(k+1)∗A = ∗

(
k∗A

)
.

As a first application of iterated hyper-extensions, we now present a non-
standard proof of Ramsey theorem.

Lemma 2.1. Let A ⊆ Nk. If there exists an infinite ξ ∈ ∗N such that
(ξ, ∗ξ, . . . , (k−1)∗ξ) ∈ k∗A then there exists an infinite set of natural numbers

H = {h1 < h2 < . . . < hn < hn+1 < . . . }

such that (hn1
, hn2

, . . . , hnk
) ∈ A for all n1 < n2 < . . . < nk.

Proof. To simplify notation, let us only consider here the particular case
k = 3. The general result is proved exactly in the same fashion, only by
using a heavier notation. So, let us assume that (ξ, ∗ξ, ∗∗ξ) ∈ ∗∗∗A. For
n, n′ ∈ N, let:

• X = {n ∈ N | (n, ξ, ∗ξ) ∈ ∗∗A} ;

• Xn = {n′ ∈ N | (n, n′, ξ) ∈ ∗A} ;

• Xnn′ = {n′′ ∈ N | (n, n′, n′′) ∈ A}.

The corresponding hyper-extensions are described as follows:

• ∗X = {η ∈ ∗N | (η, ∗ξ, ∗∗ξ) ∈ ∗∗∗A} ;

• ∗Xn = {η ∈ ∗N | (n, η, ∗ξ) ∈ ∗∗A} ;

• ∗Xn,n′ = {η ∈ ∗N | (n, n′, η) ∈ ∗A}.

Notice that n ∈ X ⇔ ξ ∈ ∗Xn, and n′ ∈ Xn ⇔ ξ ∈ ∗Xnn′ . By the
hypothesis, we have that ξ ∈ ∗X, so X is an infinite set and we can pick
an element h1 ∈ X. Now, ξ ∈ ∗X ∩ ∗Xh1

implies that X ∩Xh1
is infinite,

and so we can pick an element h2 > h1 in that intersection. But then
ξ ∈ ∗X ∩ ∗Xh1

∩ ∗Xh2
∩ ∗Xh1h2

, and so we can pick an element h3 > h2
in the intersection X ∩Xh1

∩Xh2
∩Xh1h2

. In particular, (h1, h2, h3) ∈ A.
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An increasing sequence 〈hn | n ∈ N〉 that satisfies the desired property is
obtained by iterating this procedure, where at each step n one has

ξ ∈ ∗X ∩
⋂

1≤i≤n

∗Xhi
∩

⋂

1≤i<j≤n

∗Xhihj
,

and hn+1 > hn is picked in the infinite intersection

hn+1 ∈ X ∩
⋂

1≤i≤n

Xhi
∩

⋂

1≤i<j≤n

Xhihj
.

�

As a straight corollary, one obtains:

Theorem 2.2 (Ramsey). Let [N]k = C1 ⊔ . . . ⊔ Cr be a finite partition of
the k-sets of natural numbers.4 Then there exists an infinite H ⊆ N such
that all its k-sets are monochromatic, i.e. [H]k ⊆ Ci for some i.

Proof. Identify the family of k-sets [N]k with the upper-diagonal in the
Cartesian product Nk:

{
(n1, n2, . . . , nk) ∈ N

k
∣∣n1 < n2 < . . . < nk

}
.

By applying transfer to the k-iterated star map, one gets that k∗([∗N]k) =
[k∗N]k, and one has the following finite coloring:

[k∗N]k = k∗C1 ⊔ . . . ⊔ k∗Cr.

Now fix any infinite ξ ∈ ∗N, and let i be such that the ordered k-tuple
(ξ, ∗ξ, . . . , (k−1)∗ξ) ∈ k∗Ci (notice that ξ < ∗ξ < . . . < (k−1)∗ξ). By the
Lemma 2.1, we get the existence of an infinite H ⊆ N such that [H]k ⊆
[Ci]

k. �

3. Hyper-natural numbers as representatives of ultrafilters

Recall that there is a canonical way of associating an ultrafilter to every
element α ∈ ∗N0 (see e.g. [5, 19, 11]). Namely, one takes the family of those
sets of natural numbers whose hyper-extensions contain α:

Uα = {A ⊆ N0 | α ∈ ∗A}.

It is readily verified from the properties of hyper-extensions that Uα is
indeed an ultrafilter, called the ultrafilter generated by α. Notice that Uα

is principal if and only if α ∈ N0 is finite. Notice also that if U = Uα is
generated by α, then hU is generated by hα.

Definition 3.1. We say that two elements α, β ∈ ∗N0 are u-equivalent, and
write α∼u β, if they generate the same ultrafilter: Uα = Uβ.

4 A k-set is a set with exactly k-many elements.
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So, α∼u β when α ∈ ∗A ⇔ β ∈ ∗A for all A ⊆ N0. Since every ultrafilter U
on N0 is a family of c-many sets with the finite intersection property, by the
hypothesis of c+-enlargement there exists an element α ∈

⋂
A∈U

∗A. This
means that every ultrafilter U = Uα is generated by some number α ∈ ∗N0.

The following properties are readily verified:

Proposition 3.2. Let α∼u α′ be two u-equivalent hyper-natural numbers,
and let n ∈ N be finite. Then:

(1) α± n ∼u α′ ± n,
(2) n · α ∼u n · α′,
(3) α/n ∼u α′/n, provided α is divisible by n.

Remark that in general sums in ∗N0 are not coherent with u-equivalence,
i.e. it can well be the case that α∼u α′ and β∼u β′, but α+ β 6∼

u
α′ + β′.

We now extend the notion of generated ultrafilter and also consider ele-
ments ν ∈ k∗N in iterated hyper-extensions of N, by putting

Uν = {A ⊆ N0 | ν ∈ k∗A}.

The u-equivalence relation is extended accordingly to all pairs of numbers
in the following union

⋆N0 =
⋃

k∈N

k∗N0.

In general, for every A ⊆ N, the set ⋆A =
⋃

k∈N
k∗A can be seen as the

direct limit of the finitely iterated hyper-extensions of A; and similarly for
functions. In consequence, the map ⋆ itself is a nonstandard embedding, i.e.
it satisfies the transfer principle. Since ∗ is assumed to be c

+-enlarging, it
cab be easily verified that the same property also holds for ⋆.

Remark that the above definitions are coherent. In fact, by starting from
the equivalence n ∈ A ⇔ n ∈ ∗A which holds for all n ∈ N0, one can easily
show that ν ∈ k∗A ⇔ ν ∈ h∗A for all ν ∈ k∗N0 and h > k. In consequence,
for all ν ∈ ⋆N0, one has ν∼u

∗ν, and hence k∗ν∼u
h∗ν for all k, h. (A detailed

study of ∼u -equivalence in ⋆N0 can be found in [17].)

We shall use the following characterization of pseudo-sums of ultrafilters.

Proposition 3.3. Let α, β ∈ ∗N0 and A ⊆ N0. Then A ∈ Uα ⊕ Uβ if and
only if the sum α+ ∗β ∈ ∗∗A.

Proof. Consider the set Â = {n ∈ N0 | A − n ∈ Uβ}, and notice that its

hyper-extension ∗Â = ∗{n ∈ N0 | n + β ∈ ∗A} = {γ ∈ ∗N0 | γ + ∗β ∈ ∗∗A}.
Then the following equivalences yield the thesis:

A ∈ Uα ⊕ Uβ ⇐⇒ Â ∈ Uα ⇐⇒ α ∈ ∗Â ⇐⇒ α+ ∗β ∈ ∗∗A.

�
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We already mentioned that when α∼u α′ and β∼u β′, one cannot conclude
that α + β 6∼

u
α′ + β′. However, under the same assumptions, one has that

α + ∗β∼u α + ∗β′ in ∗∗N, as they generate the same ultrafilter Uα ⊕ Uβ =
Uα′ ⊕ Uβ′ .

The characterization of pseudo-sums as given above can be extended to
linear combinations of ultrafilters in a straightforward manner.

Corollary 3.4. For every ξ0, . . . , ξk ∈ ∗N0, and for every a0, . . . , ak ∈ N0,
the linear combination a0U ⊕ . . . ⊕ akU is the ultrafilter generated by the
element a0ξ + . . .+ ak

k∗ξ ∈ (k+1)∗N0.

The class of idempotent ultrafilters was first isolated to provide a simpli-
fied proof of Hindman’s Theorem, a cornerstone of combinatorics of num-
bers.

Theorem (Hindman) For every finite coloring N = C1⊔ . . .⊔Cr there exists
an infinite set X = {x1 < x2 < . . . < xn < . . .} such that all its finite sums
are monochromatic, i.e. there exists i such that:

FS(X) =

{
∑

i∈F

xi

∣∣∣F ⊂ N nonempty finite

}
⊆ Ci.

Starting from the ultrafilter proof of the above theorem, a whole body
of new combinatorial results have been then obtained by exploiting the al-
gebraic properties of the space (βN0,⊕) and of its generalizations (see the
monograph [15]).

By Proposition 3.3, it directly follows that

Proposition 3.5. Let ξ ∈ ∗N. The ultrafilter Uξ is idempotent if and only
if ξ∼u ξ + ∗ξ.

Next, we show a general result connecting linear combinations of a given
idempotent ultrafilter, and u-equivalence of the corresponding strings of
coefficients.

Theorem 3.6. Let a0, a1, . . . , ak, b0, b1, . . . , bh ∈ N0. Then the following are
equivalent:

(1) 〈a0, a1, . . . , ak〉 ≈u 〈b0, b1, . . . , bh〉.

(2) For every idempotent ultrafilter U :

a0 U ⊕ a1 U ⊕ . . .⊕ ak U = b0 U ⊕ b1 U ⊕ . . .⊕ bh U .

(3) For every ξ ∈ ∗N0 such that the generated ultrafilter Uξ is idempotent:

a0 ξ + a1
∗ξ + . . .+ ak

k∗ξ ∼u b0 ξ + b1
∗ξ + . . . + bh

h∗ξ.
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Proof. (1) ⇒ (2). For every string σ = 〈d0, d1, . . . , dn〉 of numbers di ∈ N0,
and for every idempotent ultrafilter U , denote by

⊕U(σ) = d0 U ⊕ d1 U ⊕ . . .⊕ dn U .

We have to show that σ≈u τ ⇒ ⊕U (σ) = ⊕U(τ). By agreeing that ⊕U(ε) =
U0, one trivially has ⊕U (ε) = ⊕U (〈0〉). Moreover, ⊕(〈a〉) = ⊕U(〈a, a〉)
because aU ⊕ aU = a(U ⊕ U) = aU . Now let σ≈u σ′ and τ ≈u τ ′, where we
assume by inductive hypothesis that ⊕U(σ) = ⊕U (σ

′) and ⊕U (τ) = ⊕U(τ
′).

Then, by associativity of the pseudo-sum, it follows that

⊕U (σ
⌢τ) = [⊕U (σ)]⊕ [⊕U (τ)] = [⊕U (σ

′)]⊕ [⊕U (τ
′)] = ⊕U (σ

′⌢τ ′).

(2) ⇒ (1). Assume that 〈a0, a1, . . . , ak〉 6≈u 〈b0, b1, . . . , bh〉. By the previous
implication, we can assume without loss of generality that ai 6= ai+1 for
i < k, and that and bj 6= bj+1 for j < h. Then we apply the following known
result:

• ([18] Theorem 2.19.) Let a0, . . . , ak, b0, . . . , bh ∈ N so that ai 6= ai+1

and bj 6= bj+1 for any i < k and j < h. If a0 U ⊕ . . . ⊕ ak U =
b0 U ⊕ . . . ⊕ bh U for some idempotent U then k = h and ai = bi for
all i.

(2) ⇔ (3). By the c+-enlargement property, every ultrafilter U is gener-
ated by some element ξ ∈ ∗N, i.e. U = Uξ. So, the thesis is a particular case
of Corollary 3.4. �

We shall use the above characterization to justify a neat formalism which
is suitable to handle idempotent ultrafilters and their linear combinations.
As a first relevant example, let us give a nonstandard ultrafilter proof of
Milliken-Taylor’s Theorem, a strengthening of Hindman’s Theorem.

Lemma 3.7. Let U be an idempotent ultrafilter, and let a0, . . . , ak ∈ N. For
every A ∈ a0U ⊕ . . .⊕ akU there exists an infinite set of natural numbers

X = {x1 < x2 < . . . < xn < . . . }

with the property that for every increasing sequence I0 < . . . < Ik of nonempty
finite sets of natural numbers ( i.e. max Ii < min Ii+1), the sum

∑

i∈I0

a0xi + . . . +
∑

i∈Ik

akxi ∈ A.

Proof. By the c
+-enlargement property, we can pick ξ ∈ ∗N with U = Uξ.

By Corollary 3.4,

A ∈ a0U ⊕ . . .⊕ akU ⇐⇒ a0ξ + a1
∗ξ + . . . + ak

k∗ξ ∈ (k+1)∗A,

and so we have that

ξ ∈
{
η ∈ ∗N

∣∣∣ a0η + a1
∗ξ + . . . + ak

k∗ξ ∈ (k+1)∗A
}

= ∗
{
x ∈ N

∣∣∣ a0x+ a1ξ + . . .+ ak
(k−1)∗ξ ∈ k∗A

}
.
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Since 〈a0, a1, . . . , ak〉≈u 〈a0, a0, a1, . . . , ak〉, we also have that a0ξ + a0
∗ξ +

a1
∗∗ξ + . . .+ ak

(k+1)∗ξ ∈ (k+2)∗A, and hence:

ξ ∈
{
η ∈ ∗N

∣∣∣ a0η + a0
∗ξ + a1

∗∗ξ + . . .+ ak
(k+1)∗ξ ∈ (k+2)∗A

}

= ∗
{
x ∈ N

∣∣∣ a0x+ a0ξ + a1
∗ξ + . . . + ak

k∗ξ ∈ (k+1)∗A
}
.

By transfer, there exists an element x1 such that

• a0x1 + a1ξ + . . .+ ak
(k−1)∗ξ ∈ k∗A, and

• a0x1 + a0ξ + a1
∗ξ + . . .+ ak

k∗ξ ∈ (k+1)∗A.

We now proceed by induction on n and define elements x1 < . . . < xn
in such a way that for every increasing sequence of nonempty finite sets
J0 < . . . < Jh where h ≤ k and maxJh ≤ n, the following properties are
fulfilled:

(1)
∑h

s=0

(∑
i∈Js

asxi
)

+ ahξ + ah+1
∗ξ + . . .+ ak

(k−h)∗ξ ∈ (k−h+1)∗A.

(2)
∑h

s=0

(∑
i∈Js

asxi
)
+ ah+1ξ + ah+2

∗ξ+ . . .+ ak
(k−h−1)∗ξ ∈ (k−h)∗A.

Remark that x1 actually satisfies the inductive basis n = 1, because in
this case one necessarily has h = 0 and J0 = {1}. As for the inductive step,
notice that

• 〈ah, ah+1, . . . , ak〉 ≈u 〈ah, ah, ah+1, . . . , ak〉, and

• 〈ah+1, ah+2, . . . , ak〉 ≈u 〈ah+1, ah+1, ah+2, . . . , ak〉.

So, in consequence of the inductive hypotheses (1) and (2) respectively,
one has that

(3)
∑h

s=0

(∑
i∈Js

asxi
)

+ ahξ + ah
∗ξ + ah+1

∗∗ξ + . . . + ak
(k−h+1)∗ξ ∈

(k−h+2)∗A.

(4)
∑h

s=0

(∑
i∈Js

asxi
)

+ ah+1ξ + ah+1
∗ξ + ah+2

∗∗ξ + . . .+ ak
(k−h)∗ξ ∈

(k−h+1)∗A.

Now, properties (1), (2), (3), (4) say that for every increasing sequence of
nonempty finite sets J0 < . . . < Jh where h ≤ k and maxJh ≤ n, the
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hyperinteger ξ ∈ ∗Γ(J0 < . . . < Jh) where:

Γ(J0 < . . . < Jh) =

{
m ∈ N

∣∣∣
h∑

s=0

(∑

i∈Js

asxi

)
+ ahm+ ah+1ξ + . . .+ ak

(k−h−1)∗ξ ∈ (k−h)∗A

&

h∑

s=0

(∑

i∈Js

asxi

)
+ ah+1m+ ah+2ξ + . . .+ ak

(k−h−2)∗ξ ∈ (k−h−1)∗A

&

h∑

s=0

(∑

i∈Js

asxi

)
+ ahm+ ahξ + ah+1

∗ξ . . .+ ak
(k−h)∗ξ ∈ (k−h+1)∗A

&

h∑

s=0

(∑

i∈Js

asxi

)
+ ah+1m+ ah+1ξ + ah+2

∗ξ . . .+ ak
(k−h−1)∗ξ ∈ (k−h)∗A

}

Then ξ ∈ ∗Γ, where Γ is the following finite intersection:

Γ =
⋂

J0<...<Jh
h≤k, max Jh≤n

Γ(J0 < . . . < Jh).

The set Γ is infinite because its hyper-extension contains an infinite hyper-
natural number, namely ξ; in particular, we can pick an element xn+1 >
xn in Γ. It now only takes a straightforward verification to check that
x1 < . . . < xn < xn+1 satisfy the desired properties, namely (1) and (2)
for every sequence of nonempty finite sets J0 < . . . < Jl where l ≤ k and
maxJl ≤ n+ 1. �

As a straight corollary, we obtain

Theorem 3.8 (Milliken-Taylor). Let a finite coloring N = C1 ⊔ . . . ⊔ Cr be
given. For every choice of a0, . . . , ak ∈ N there exists an infinite set

X = {x1 < x2 < . . . < xn < xn+1 < . . . }

such that the following sums are monochromatic for every increasing se-
quence I0 < . . . < Ik of nonempty finite sets:

∑

i∈I0

a0xi + . . . +
∑

i∈Ik

akxi.

Proof. Pick any idempotent ultrafilter U , and consider the linear combina-
tion W = a0U ⊕ . . . ⊕ akU . Then take i such that Ci ∈ W, and apply the
previous Lemma. �
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4. Partition regularity and Rado’s Theorem

We now aim at showing how the introduced nonstandard approach can
be used in partition regularity of linear equations. Let us start with an
example. Recall the following known fact.

Theorem 4.1 ([4] Th. 2.10). Let U be an idempotent ultrafilter. Then every
set A ∈ 2U ⊕ U contains a 3-term arithmetic progression.

A nonstandard proof of the above theorem is obtained by the following
simple observation. If the ultrafilter U = Uξ is idempotent, then the fol-
lowing three elements of the hyper-hyper-hyper-natural numbers ∗∗∗N are
arranged in arithmetic progression, and they all generate the same ultrafilter
W = 2U ⊕ U :

• ν = 2ξ + 0 + ∗∗ξ

• µ = 2ξ + ∗ξ + ∗∗ξ

• λ = 2ξ + 2∗ξ + ∗∗ξ

The property that ν∼u µ∼u λ∼u 2ξ + ∗ξ directly follows from Theorem 3.6,
since 〈2, 0, 1〉≈u 〈2, 1, 1〉≈u 〈2, 2, 1〉≈u 〈2, 1〉. Moreover, by Proposition 3.3, the
generated ultrafilter is the following:

W = U2ξ+∗ξ = U2ξ ⊕ Uξ = 2U ⊕ U .

If A ∈ W then ν, µ, λ ∈ ∗∗∗A, and the existence of a 3-term arithmetic
progression in A is proved by applying backward transfer to the following
property, which holds in ∗∗∗N:

∃x, y, z ∈ ∗∗∗A s.t. y − x = z − y > 0.

We now elaborate on this example to prove a general fact which connects
partition regularity of equations with u-equivalence in the direct limit

⋆N =
⋃

k∈N

k∗N.

Recall the following

Definition 4.2. An equation F (X1, . . . ,Xn) = 0 is [injectively] partition
regular on N0 if for every finite coloring of N0 = C1 ⊔ . . . ⊔ Cr there ex-
ist [distinct] monochromatic elements x1, . . . , xn which are a solution, i.e.
F (x1, . . . , xn) = 0 and x1, . . . , xn ∈ Ci for a suitable color Ci.

It is a well-known fact that partition regularity is intimately connected
with ultrafilters. In particular, recall the following:

• F (X1, . . . ,Xn) = 0 is [injectively] partition regular on N0 if and only
if there exists an ultrafilter V on N0 such that in every A ∈ V one
finds [distinct] elements x1, . . . , xn ∈ A with F (x1, . . . , xn) = 0.5

5 A proof of this equivalence can be found e.g. in [15] §3.1.



14 MAURO DI NASSO

When the above property is satisfied, we say that the ultrafilter V is a
witness of the [injective] partition regularity of F (X1, . . . ,Xn) = 0.

A useful nonstandard characterization holds.

Theorem 4.3. Let the nonstandard embedding ∗ satisfy the c
+-enlargement

property. Then an ultrafilter V on N0 witnesses the [injective] partition regu-
larity of the equation F (X1, . . . ,Xn) = 0 if and only if there exists [distinct]
hyper-natural numbers ξ1, . . . , ξn ∈ ∗N0 such that V = Uξ1 = . . . = Uξn and
∗F (ξ1, . . . , ξn) = 0.

Proof. Assume first that the ultrafilter V is a witness. For A ∈ V, let

Γ(A) = {(x1, . . . , xn) ∈ An | [xi 6= xj for i 6= j] & F (x1, . . . , xn) = 0}.

Since Γ(A)∩Γ(B) = Γ(A∩B), by the hypothesis it follows that the family
{Γ(A) | A ∈ V} satisfies the finite intersection property and hence, by c

+-
enlargement, we can pick (ξ1, . . . , ξn) ∈

⋂
A∈V

∗Γ(A). Then it is readily
checked from the definitions that the [distinct] components ξ1, . . . , ξn are
such that Uξ1 = . . . = Uξn = V and ∗F (ξ1, . . . , ξn) = 0.

Conversely, let A ∈ V = Uξ1 = . . . = Uξn . By applying backward
transfer to the property: “There exist [distinct] ξ1, . . . , ξn ∈ ∗A such that
∗F (ξ1, . . . , ξn) = 0”, one obtains the existence of [distinct] x1, . . . , xn ∈ A
such that F (x1, . . . , xn) = 0, as desired. �

We can finally prove the result that was used in Section 1 to prove an
ultrafilter version of Rado’s Theorem, namely Theorem 1.2.

Theorem 4.4. Let a0, . . . , an ∈ N0, and assume that there exist [distinct]
polynomials Pi(X) such that

P1(X) ≈u . . . ≈u Pk(X) ≈u

n∑

i=0

aiX
i and c1P1(X) + . . .+ ckPk(X) = 0.

Then for every idempotent ultrafilter U and for every A ∈ a0U ⊕ . . .⊕ anU ,
there exist [distinct] xi ∈ A such that c1x1 + . . .+ ckxk = 0.

Proof. For i = 1, . . . , k, let the polynomial Pi(X) =
∑ni

j=0 bijX
j correspond

to the string of coefficients 〈bi0, bi1, . . . , bini
〉. Given the idempotent ultra-

filter U , pick an hyper-natural number ξ ∈ ∗N such that Uξ = U (this is
always possible by c+-enlargement), and consider the numbers

ζi = bi0ξ + bi1
∗ξ + . . .+ bini

ni∗ξ ∈ (ni+1)∗N ⊂ ⋆N.

Since ξ∗N is infinite, for every d ∈ N0 one has d < ξ, d ξ < ∗ξ, d ∗ξ < ∗∗ξ,
and so forth. In consequence, by the hypothesis c1P1(X)+. . .+ckPk(X) = 0,
it directly follows that c1ζ1 + . . . + ckζk = 0. Moreover, by the hypotheses
Pi(X)≈u

∑n
i=0 aiX

i, Theorem 3.6 guarantees that

Uζ1 = . . . = Uζn = a0U ⊕ . . .⊕ anU .
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The thesis is finally reached applying the previous Theorem 4.3. (Recall
that the nonstandard embedding ⋆ is c

+-enlarging, because the starting
nonstandard embedding ∗ was.) �

5. Final remarks

A similar characterization of partition regularity as the one given in The-
orem 4.3 can also be proved for (possibly infinite) systems of equations. It
seems worth investigating the use of such nonstandard characterizations es-
pecially for the study of homogeneous non-linear equations (along the lines
of [17]) and of infinite systems, which are research areas where very little
is known (see [13, 14, 3]). In particular, also the notion of image partition
regularity would deserve attention. Another possible direction for further
research is to consider possible extensions of Theorem 1.2 which are closer
to the most general form of Rado’s theorem for systems.
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