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Abstract: Graphene is known to possess strong optical nonlinearity which turned out to be 

suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear 

response of graphene can be further enhanced by the presence of graphene plasmons. Here, 

we report a novel nonlinear effect observed in nanostructured graphene which comes about 

due to excitation of graphene plasmons. We experimentally detect and theoretically explain 

enhanced mixing of near-infrared and mid-infrared light in arrays of graphene nanoribbons. 

Strong compression of light by graphene plasmons implies that the described effect of light 

mixing is nonlocal in nature and orders of magnitude larger than the conventional local 

graphene nonlinearity. Both second and third order nonlinear effects were observed in our 

experiments with the recalculated third-order nonlinearity coefficient reaching values of 4.5 × 

10−6 esu. The suggested effect could be used in variety of applications including nonlinear 

light modulators, light multiplexers, light logic, and sensing devices. 

 

One Sentence Summary: A new non-linear electro-absorption effect is predicted and 

observed in arrays of graphene nanoribbons. 

 

Optical nonlinearities and inelastic light scattering observed in a continuous medium are 

normally local in nature. This means that the response of a system at a given point 𝒓 in space 

depends solely on the excitation of the system at the same point. As a result, physical 

parameters (e.g., dipole moment, polarization density, refractive index, etc.) at a point 𝒓 can 

be written as functions of light fields taken at the same point, provided that fields are not too 

large (1). The situation can be different for a nanostructured medium. Strong light-matter 

interactions in systems with material inclusions can result in compression of light inside the 

inclusions (2). In this case, optical nonlinearity or inelastic light scattering is a highly non-

local and extremely large effect mediated by the excitation of internal modes of 

electromagnetic vibrations. One of the best-known example of such kind is surface enhanced 

Raman scattering where metallic inclusions allow one to achieve unprecedented enhancement 

of Raman signals due to excitation of localized plasmon resonances (3, 4). 

 

Graphene is an ideal material (5) to study non-local optical non-linearity. Graphene possesses 

a high value of conventional optical non-linearity (6) which has been applied for pulse 

compression in femtosecond lasers (7). In addition, graphene transparency can be tuned by 

gating voltage through the effect of optical Pauli blocking (8), thus demonstrating a strong 

electro-absorption effect useful for optical modulators (9). Finally, graphene exhibits 

extremely large values of spatial light compression for intrinsic graphene plasmons (10-17). 

As a result, graphene plasmons have been used to enhance the responsivity of mid-IR 
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photodetectors (18), to sense surface-adsorbed polymers (19), to detect protein monolayers 

(20), and to modulate the emission of a terahertz quantum cascade laser (21). Recently, there 

has been a great deal of theoretical and experimental interest on the interplay between 

plasmons and the nonlinear optical properties (22) including those of graphene and its 

nanostructures (23-29). An all-optical plasmon coupling scheme, which takes advantage of 

the intrinsic nonlinear optical response of graphene, has been implemented experimentally 

(30).  

 

Here, we report non-local optical nonlinearity controlled by graphene plasmons. We predict, 

observe and describe a new electro-absorption effect in nanostructured graphene that 

generates effective nonlinear light mixing. This effect has some analogy with the quantum 

confined Stark effect (31) where light absorption of a quantum well can be governed by an 

electric field and the Franz-Keldysh effect where light absorption of a semiconductor can be 

induced by an applied electric field (32). The nonlinear light mixing by graphene plasmons 

(LMGP) depends on graphene doping, the geometry of structuring, temperature and could be 

orders of magnitude larger than that produced by the conventional local optical nonlinearity 

of graphene. In contrast to optical Pauli blocking (which requires the gating field to be 

perpendicular to the surface and the light field along the graphene surface), the light mixing 

discussed in this work happens for two fields that are both polarized in the plane of the 

nanostructured array. 

 

Figure 1 provides the rationale behind LMGP. A light wave that impinges on a graphene 

ribbon excites vibrations of graphene electron density (Fig. 1A) and electron currents (Fig. 

1B). These are quite strong for a light field which is in resonance with a nanoribbon 

“localized” plasmon. Both of vibrations can be used to achieve light mixing: vibrations of 

electron density could generate light mixing through the conventional optical Pauli blocking 

(under a proper spatial arrangement of light beams) and vibrations of electron currents 

through the current-induced birefringent absorption in graphene (33). At this stage, we 

concentrate our attention on LMGP generated by currents, see Fig. 1C. Conventional Pauli 

blocking also gives rise to a small light mixing signal at the frequency we are using to probe 

the nanostructured array, as we will discuss below. 

 

When a probe beam of angular frequency 𝜔2 passes through a graphene ribbon (at zero 

temperature) it will be partially absorbed provided the photon energy 𝜔2 is chosen to be 

larger than twice the Fermi energy (Fig. 1C). If the graphene ribbon is additionally 

illuminated by a pump beam of angular frequency 𝜔1 (chosen to be close to the plasmon 

frequency 𝜔pl) the currents excited in graphene tilt the Fermi level (the dashed yellow line) 

and forbid some transitions due to the optical Pauli blocking, see Fig. 1C. The spectral region 

in which transitions can be blocked/unblocked is defined by 
2 𝐸F/ℏ

1+𝑣𝑦/𝑣F
< 𝜔 <

2 𝐸F/ℏ

1−𝑣𝑦/𝑣F
, where 𝑣𝑦 

is the drift velocity proportional to the induced current and 𝐸F is the Fermi level. Because the 

current, and hence the drift velocity, changes periodically with the pump field (Fig. 1B), this 

implies that the absorption of the probe beam by the graphene nanoribbon will be modulated 

with the pump beam frequency resulting in effective nonlinear and non-local light mixing. 

The maximal amplitude of the modulation achieved with this mechanism is 𝜋𝛼/2, where 𝛼 ≈
1/137 is the quantum electrodynamics fine structure constant and depends on the incident 

light polarizations and frequencies, the geometry of structuring, the chemical potential of 

graphene and the electron temperature (see Supporting Information). The main advantage of 

LMGP is that the upper boundary of the spectral range can become very large if 𝑣𝑦 

approaches 𝑣F such that it is possible, at least in principle, to modulate lasers with large 



photon energy by using a system with relatively low electron concentration. Figure 1D shows 

the basic elements of LMGP used in our experiments. 

 

To demonstrate practically useful LMGP, we have chosen a telecom probe beam and a mid-

infrared pump beam. The schematic of the setup is shown in Fig. 2. A stabilized CO2 laser 

with CW output power of 200 mW and wavelength of 10.6 m was used to excite plasmons 

in graphene nanoribbons (see below). A wavelength-tunable 1520-1630 nm Agilent 81949A 

compact C+L band telecom laser was used to produce the probe beam. To image the sample, 

we have employed an ad hoc microscope consisting of 8% reflectivity pellicle beam splitter, 

a high-magnification 12X zoom lens with 12 mm fine focus system and a CMOS camera; the 

white light from the fiber illuminator was launched along the main optical axis with a 30% 

reflectivity beam splitter for simultaneous sample imaging and beam alignment. Both beam 

splitters were flip-mounted to be used only during the alignment and were removed during 

the wave-mixing measurements. 

 

The two laser beams were focused to a 50 μm spot using a low numerical aperture (NA) lens 

and a parabolic mirror (with NA = 0.12 and 0.05, respectively), were overlapped in space 

with a pinhole and then repositioned over the sample. We estimate the electric field provided 

by the CO2 laser to be ~3 kV/cm. The angle between the two lasers incident beams was 23°. 

In this geometry the resulting light mixing |𝑘𝑁𝐼𝑅 + 𝑛𝑘𝑚𝑖𝑑 𝐼𝑅| signal will propagate at a small 

angle of < 3° and < 6° to normal incidence for the first- and second-order sidebands, 

respectively. In our experiment we choose to discriminate sidebands spectrally and, therefore, 

we have used high numerical aperture collection lens (NA = 0.5) in order to ensure efficient 

light collection at angles of up to 26.5°. The collected light has been analyzed by Cornerstone 

130 monochromator with a liquid-nitrogen-cooled amplified InSb infrared detector and 

measured using a low noise lock-in detection technique. 

 

LMPG was studied in arrays of nanoribbons made out of graphene grown by chemical vapor 

deposition (CVD) with the stripe width 𝑤 ranging from 20 nm to 50 nm and a nominal 50/50 

inter-ribbon duty cycle, see Supporting Information. The set of samples with different stripe 

widths 𝑤 were fabricated by electron beam lithography and their optical properties were 

measured. The sample arrays that exhibited the localized graphene plasmon resonance at the 

wavelength of the pump laser were chosen for graphene light mixing. 

 

Figure 3A shows the representative TE and TM transmission spectra measured on a 

nanoribbon array which is resonant with the CO2 laser used in the experiments. The spectra 

were acquired using a Brucker FTIR spectrometer and microscope. (To avoid ambiguity, TE 

transmission with electric field of incident light perpendicular to the stripes is labeled T⟂(ω) 

whereas TM transmission with electric field parallel to the stripes is labeled T∥(ω).) The drop 

in T⟂(ω) light transmission at wavelengths of ~10 μm corresponds to the plasmon resonance 

of the nanoribbons. The dashed curve in Fig. 3A presents an excellent fit for T⟂(ω) calculated 

with the theory described in detail in Supporting Information. Using our knowledge of the 

geometric width (w = 50 nm) of the measured ribbons, we find an effective dielectric constant 

ϵ = 1.8 and a phenomenological plasmon broadening of ħγ = 48 meV from the fit, see below. 

(The effective dielectric constant ϵ takes into account the asymmetric dielectric environment 

surrounding graphene. In the ideal case of flat graphene on a dielectric substrate 𝜖 =
𝜖air +𝜖substrate

2
.) The chemical potential of the graphene was evaluated to be 𝐸F~0.2 eV from 

fitting the optical absorption step in Fig. 3A. In such fitting we took into account the reduced 

fractional areal coverage (𝐴fill) of graphene in the nanoribbon array compared to the 



unpatterned background. This step height is marginally smaller than the 𝜋𝛼/2 value expected 

for the 50/50 inter-ribbon duty cycle, suggesting 𝐴fill~0.7, most likely due to unintentional 

inclusion of some unpatterned graphene in the transmission measurement area. It is worth 

mentioning that the electrical width of the graphene ribbons can be different from the 

geometrical one (34). In our model, we have chosen the effective dielectric constant ϵ as a 

fitting parameter instead of the width w. The suitability of this choice is confirmed by the 

excellent fit shown in Fig. 3A. 
 

Figures 3B and C show typical LMGP results. Figure 3B plots the signal at the combination 

frequency 𝜔2 − 2𝜔1, when the pump laser is either on or off. The light mixing signal was 

measured using the probe and pump beam powers of 4 mW and 200 mW, respectively. The 

plasmon-assisted nonlinear conversion coefficient η corresponding to the measured signal is 

of the order 𝜂= 1.8 × 10−5 which is two orders of magnitude larger than the corresponding 

quantity measured in a continuous graphene sheet (6). On the basis of the data from the 

experiments, we calculate an effective third-order nonlinearity 𝜒(3) = 4.5 ×  10−6  (esu) 

which is 1 order of magnitude larger than the corresponding quantity measured in a 

continuous graphene sheet (6). The spectral dependence near the sideband 𝜔2 − 2𝜔1 is 

shown in Fig. 3C. A peak is clearly visible at the combinational wavelengths, thus 

eliminating possible thermal effects as a source of the signal in Fig. 3B. 

 

Now we describe our theoretical approach to LMGP. A graphene nanoribbon supports 

“running” plasmons that propagate along the longitudinal ribbon direction and “localized” 

transverse plasmons in which the electron liquid oscillates back and forth between the ribbon 

edges, transversally to the ribbon axis. Here, we are interested in the latter type of plasmons, 

which, for the sake of simplicity, will be referred to as “transverse” plasmons. In the realm of 

linear response theory (35), the transverse plasmon mode with the lowest energy can be 

described by the following relation 

 
ℏ𝜔pl = √

2 𝜉 𝛼ee ℏ𝑣F

𝜖 𝑤
𝐸F , (1) 

where   ℏ𝜔pl is the plasmon energy, 𝜉 = 2.31 is a numerical constant, 𝛼ee = 2.2 is the so-

called graphene fine structure constant (35), 𝑣F is the graphene Fermi velocity, 𝐸F is the 

Fermi energy, 𝑤 is the width of the nanoribbon, and  𝜖 is an effective dielectric constant. 

Macroscopically, transverse plasmons are described by space- and time-dependent current 

density 𝑗𝑦(𝒓, 𝑡) and carrier density 𝛿𝑛(𝒓, 𝑡) profiles, which can be calculated by treating the 

pump laser oscillating at frequency 𝜔1 in the framework of linear response theory (see 

Supporting Information). These quantities along with the directions of x- and y-axes are 

shown in Fig. 1A and B at different times during one cycle of the pumping field. The 

resonant response of electron plasma in graphene happens when 𝜔1 matches 𝜔pl. 

 

Our target is to analyze the response of the ribbon array in the presence of both a pump laser 

at frequency 𝜔1 and a probe laser at a frequency 𝜔2. The mixing of the two lasers generates a 

LMGP signal at the frequency combination 𝜔2 − 2𝜔1 (among others) which can be 

explained in terms of a third-order nonlinear optical process enabled by the graphene 

nanostructure. The signal measured by the spectrometer is related to the third-order 

polarization 𝑷(3)(𝜔2 − 2𝜔1), whose 𝑥 component is given by (1) 

𝑃𝑥
(3)(𝜔2 − 2𝜔1) = 

𝐷

4
∫ 𝑑𝒓 ∫ 𝑑𝒓′ ∫ 𝑑𝒓′′ 𝜒𝑥𝑦𝑦𝑥

(3)
(𝒓, 𝒓′, 𝒓′′; 𝜔2 − 2𝜔1)𝐸1,𝑦

∗ (𝒓′′, 𝜔1)𝐸1,𝑦
∗ (𝒓′, 𝜔1)𝐸2,𝑥(𝒓, 𝜔2). 

(2) 



In Eq. (2), 𝐷 = 3 is the number of distinct permutations that generate the sideband at 𝜔2 −
2𝜔1, and 𝐸1,𝑦(𝒓, 𝜔1) and 𝐸2,𝑥(𝒓, 𝜔2) are the complex amplitudes of the electric fields of the 

pump and probe laser, respectively. Notice that, in the experiment, the pump laser is 

polarized in the 𝑦-direction and the probe laser is polarized in the 𝑥-direction. Therefore, we 

are probing only the 𝜒𝑥𝑦𝑦𝑥
(3)

 element of the third-order susceptibility tensor (which is typically 

larger than 𝜒y𝑦𝑦y
(3)

). We emphasize the highly non-local nature of Eq. (2): the LMGP signal 

depends on the spatial distribution of the pump field over the whole sample. The third-order 

susceptibility which is probed in our experiment is not the local quantity of the 

form  𝜒𝑥𝑦𝑦𝑥
(3)

(𝒓, 𝒓′, 𝒓′′; 𝜔2 − 2𝜔1) ∝ 𝛿(𝒓 − 𝒓′)𝛿(𝒓 − 𝒓′′). The polarization expressed in Eq. 

(2) is the average polarization of a medium constructed by assigning an effective thickness 

𝑑gr = 0.33 nm to the graphene nanoribbons. Because graphene is a two-dimensional 

material, it is, however, more natural to calculate a current density 𝑱(𝜔2 − 2𝜔1) in the 

graphene sheet. The relation between the current density and the corresponding effective 

polarization then follows from the relation 𝑷(𝜔) = 𝑖𝑱(𝜔)/(𝜔𝑑gr).  

 

To calculate graphene plasmon light mixing, we use the following approach. We notice that 

the mixing signals arise in our system when the probe light interacts with nanoribbons whose 

local carrier density and current density are time-varying due to the excitation of transverse 

plasmons by the pump light. Because 𝜔2 ≫ 𝜔1, we can separate time scales and consider the 

graphene electron system to be in a quasi-stationary regime from the point of view of the 

probe laser. This allows us to calculate the current density 𝐽𝑥(𝒓, 𝜔2) generated by the probe 

laser at frequency 𝜔2 as  

 

𝐽𝑥(𝒓, 𝜔2) = 𝜎𝑥𝑥(𝒓, 𝜔2)𝐸2,𝑥(𝒓, 𝜔2), (3) 

 

where 𝜎𝑥𝑥(𝒓, 𝜔2) is the longitudinal optical conductivity of graphene. It is necessary to stress 

that this conductivity of graphene is a function of the local electron density 𝑛(𝒓, 𝑡) and 

current density 𝒋(𝒓, 𝑡) and the separation of time scales allows us to treat time in Eq. (3) as a 

parameter; that is, a label attached to 𝑛(𝒓, 𝑡) and 𝒋(𝒓, 𝑡). LMGP occurs because 𝑛(𝒓, 𝑡) and 

𝒋(𝒓, 𝑡) depend nonlinearly and nonlocally on the pump field and change periodically with 

frequency 𝜔1. To understand the contribution of the local electron density and current density 

to the conductivity 𝜎𝑥𝑥(𝒓, 𝜔2), we expand it up to second order these quantities as 

𝜎𝑥𝑥(𝒓, 𝜔2) ≈ 𝜎𝑥𝑥
0 (𝜔2) + 𝜎𝑥𝑥

𝑛,1(𝜔2)
𝛿𝑛(𝒓, 𝑡)

�̅�
+ 𝜎𝑥𝑥

𝑛,2(𝜔2) (
𝛿𝑛(𝒓, 𝑡)

�̅�
)

2

+ 𝜎𝑥𝑥
𝑗,2(𝜔2) (

𝑗𝑦(𝒓, 𝑡)

𝑗̅
)

2

. 

(4) 

Here �̅� is the uniform carrier density, 𝑗̅ = −𝑒𝑣F�̅� is the critical current and 𝜎𝑥𝑥
0  is the 

graphene conductivity in the absence of plasmons. The coefficients 𝜎𝑥𝑥
𝑛,1

,𝜎𝑥𝑥
𝑛,2

 and 𝜎𝑥𝑥
𝑗,2

 depend 

in general on �̅�, the probe frequency 𝜔2, the electron temperature 𝑇, and the angle between 

the probe field and the nanoribbon (28). These coefficients describe how the electron density 

and current density locally change the optical conductivity of the nanoribbons. Analytic 

expressions for these coefficients are provided in the Supporting Information (33). 

 

Eq. (4) provides the basis for the calculation of LMGP as the conductivity at the probe light 

frequency additionally oscillates with the frequency components mω1, where m is an integer. 

Substitution of Eq. (4) into Eq. (3) shows that the oscillation of the conductivity at frequency 

𝜔1 mixes with the oscillation at frequency 𝜔2 induced by the probe laser. Therefore, the total 



local current density has Fourier components at frequencies 𝜔2 ± 𝑚 𝜔1. Averaging over the 

graphene nanoribbon array can suppress some of the harmonics due to symmetry. The LMPG 

signal shown in Fig. 3 corresponds to 𝑚 = 2. This response is generated by the last two terms 

in Eq. (4), which are quadratic in the pump field 𝑬1. From these two terms, we can separate 

out the pump field dependence and identify the third-order conductivity 𝜎(3) that relates the 

current density 𝑱(3)(𝜔2 − 2𝜔1) to the product of the probe field 𝑬2 and the square of the 

pump field 𝑬1 as explained in the Supporting Information. The third-order susceptibility 

finally follows as 

𝜒𝑥𝑦𝑦𝑥
(3) (𝒓, 𝒓′, 𝒓′′; 𝜔2 − 2𝜔1) =

𝑖4𝜎𝑥𝑦𝑦𝑥
(3) (𝒓, 𝒓′, 𝒓′′; 𝜔2 − 2𝜔1)

𝐷(𝜔2 − 2𝜔1)𝑑gr
. (5) 

This analysis shows that the third-order response depends on the current density and carrier 

density profiles induced by transverse plasmons. We stress again that since plasmons are 

collective excitations of the electron liquid, these profiles depend on the response of the 

system as a whole and are, therefore, intrinsically nonlocal. We have checked that sidebands 

at 𝜔2 ± 2𝜔1 emerging from the term in Eq. (4) which is quadratic in 𝛿𝑛(𝒓, 𝑡) (corresponding 

to optical Pauli blocking) are parametrically small compared to those stemming from the last 

term in Eq. (4) (corresponding to current-induced birefringent absorption). Finally, we note 

that Eq. (4) also contains a term that is linear in 𝛿𝑛(𝒓, 𝑡). Following the same logic as above, 

this could introduce a second-order non-local signal at frequencies 𝜔2 ± 𝜔1. However, as the 

spectrometer in the experiment measures the spatial average over the entire sample, this term 

vanishes due to the oddness of the density profile 𝛿𝑛(𝒓, 𝑡) with respect to the center of the 

nanoribbon, as shown in Fig. 1A. Conversely, if inversion symmetry is broken (for example, 

by fabrication or disorder) this term does not vanish and sidebands at 𝜔2 ± 𝜔1 are expected, 

see Supporting Information.  

 

Figure 4 shows the calculated effective third-order susceptibility of a graphene nanoribbon 

array with parameters extracted from fitting the transmission data in Fig. 3A. The effective 

third-order susceptibility is shown as a function of electron temperature for different values 

of the phenomenological damping parameter 𝛾. The horizontal dashed line is the measured 

value of the third-order susceptibility. We see that our theory explains the amplitude of the 

measured effect very well, provided we assume that the electron gas is heated above room 

temperature (T ~ 600 K) and employ a damping parameter on the order of what is inferred 

from the fitting of 𝑇⊥(𝜔) discussed above, see Fig. 3A, that is, ℏ𝛾~30 meV-50 meV. Crude 

measurements of graphene temperature described in Supporting Information show that the 

graphene array reaches temperatures well above 500 K in our experiments. 

 

To conclude, we suggest, observe, and describe a new nonlinear electro-absorption effect in 

nanostructured graphene which is orders of magnitude larger than the conventional graphene 

nonlinearity. Our work provides the proof-of-principle experiment in which graphene 

plasmons strongly affect nonlinear properties of graphene metasurface. Our results stress the 

potential of graphene plasmonics for development of light modulators, light multiplexers, 

light logic that can be used in optical interconnects, and highlights the unexpected optical 

phenomena possible in a system with a collective motion of electron plasma in a two-

dimensional plane. 
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Figure Captions 

 

Fig. 1. Graphene plasmons and light mixing. (A) Snapshots of the temporal evolution of the 

electron density. (B) The current density due to the excitation of a transverse plasmon in a 

graphene nanoribbon. Results for different times (in units of the oscillation period 𝑇1) are 

illustrated. Notice that the electron density profile is antisymmetric with respect to the ribbon 

axis. On the contrary, the velocity profile is symmetric with respect to the ribbon axis. (C) 

Change of graphene light absorption due to excitation of graphene plasmons. (D) Geometry 

of a graphene array and alignment of light beams for observation of LPMG. Here n is an 

integer number that describes light mixing. 

Fig. 2. Schematic diagram of the experimental setup used for measuring LMGP. 

Fig. 3. Light mixing with graphene plasmons. (A) Transmission spectra of the array (T), 

relative to the neighboring unpatterned graphene (T0), measured at normal incidence for two 

different polarizations. The transverse plasmon absorption is visible at ~126 meV for TE 

polarized light. The small artifact around 290 meV is due to atmospheric CO2 absorption. The 

fitting of the plasmon resonance is shown as the dashed curve. The fitting parameters are 

ℏ𝛾 = 48 meV, 𝑤 = 50 nm, 𝜖 = 1.8, 𝐸F = 0.22 eV. Inset shows an optical microscope image 

of several nanoribbons arrays. Scale bar = 50 µm. (B) A mixing signal at the combination 

frequency ω2-ω1 for the probe (wavelength 1.5 µm) and pump (10.6 µm) beam powers of 4 

and 200 mW. (C) The spectral dependence near the sideband ω2-2ω1. 

Fig. 4. Dependence of the effective third-order susceptibility on the temperature 𝑇 and 

damping 𝛾. The other parameters of the system are as inferred from the fit of the data in Fig. 

3A. The experimentally measured value for effective 𝜒(3) is shown as a horizontal dashed 

line. In calculations, we assumed that the inter-ribbon distance equals its width.  
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