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ABSTRACT
Motivation: Riboswitches are cis-regulatory elements in mRNA, mostly found in Bacteria, which exhibit two main secondary structure conformations. While
one of them prevents the gene from being expressed, the other conformation allows its expression, and this switching process is typically driven by the presence
of a specific ligand. Although there are a handful of known riboswitches, our knowledge in this field has been greatly limited due to our inability to identify
them based on its sequence. Indeed, current methods are not able to predict the presence of the two functionally distinct conformations just from the knowledge
of the plain RNA nucleotide sequence. Whether this would be possible, for which cases, and what prediction accuracy can be achieved, are currently open
questions.
Results: Here we show that the two alternate secondary structures of riboswitches can be accurately predicted once the “switching sequence” of the riboswitch
has been properly identified. For this aim, an algorithm to locate the switching sequence inside the complete riboswitch sequence has been developed, making
use of a generated ensemble of configurations. The proposed approach is able to model the switching behavior of riboswitches whose generated ensemble
covers both alternate configurations. Beyond structural predictions, the approach can also be paired to homology-based riboswitch searches.

1 INTRODUCTION

Gene regulation is essential to achieve organism versatility, giving cells control over structure and functions and being the basis for cellular
differentiation, morphogenesis, and adaptability. Since the discovery of ribozymes, it has become more and more evident that RNA molecules
are also actively involved in regulatory mechanisms, including the regulation of gene expression (Waters and Storz, 2009).
Riboswitches are RNA elements, mainly found in bacteria, that are embedded in 5’-untranslated regions (UTRs) of mRNA (Garst et al.,
2011). They are able to sense cellular metabolites with no involvement of protein factors, and consequently modulate either mRNA
transcription or translation by adopting one out of two possible structures (Serganov and Nudler, 2013), known as “ON” and “OFF”
conformations. Riboswitches are usually built around an aptamer domain, which binds to the ligand, and an expression platform domain,
which undergoes a structural rearrangement upon the ligand-aptamer binding (Garst et al., 2011). Furthermore, a central role in regulation
has been recognized to an overlapping region between these two domains, referred to as switching sequence (or “SwSeq” for short hereafter).
From an evolutionary standpoint, aptamers are typically highly conserved, as a consequence of its recognition specificity towards the ligand.
In contrast, expression platforms are usually far less conserved (Breaker, 2012).

Previous works have shown that riboswitches can regulate gene expression via three main mechanisms: i) transcription termination, though
the formation of a terminator hairpin or a competitive anti-terminator structure, ii) translation inhibition, by sequestering or releasing the
Shine-Dalgarno (SD) sequence, and iii) alternative splicing regulation, via sequestration/release of alternative splicing sites (Peselis and
Serganov, 2014). Understanding the mechanisms of riboswitch structural switching is of broad interest and applicable to a wide range of
scientific fields, such as systems biology or drug design, e.g., to design novel engineered genetic circuits (Wittmann and Suess, 2012), or
develop riboswitch-targeting drugs (Lünse et al., 2014).

Previous computational efforts targeting riboswitches can be categorized in riboswitch gene finders, and conformational switch predictors
(Clote, 2015). The former category includes several tools, such as Infernal, the founding component of the Rfam database (Nawrocki
et al., 2009), and more specific tools such as RibEx (Abreu-Goodger and Merino, 2005) or RiboSW (Chang et al., 2009). Such methods are
primarily used for genome-wide analyses, and are based on machine learning approaches. The second category encompasses various methods
based on a structural classification of alternative structures, such as paRNAss (Voss et al., 2004), RNAshapes (Janssen and Giegerich, 2014),
and RNAbor (Freyhult et al., 2007). Family-specific approaches for ON/OFF structure prediction have been employed as well (Clote et al.,
2012).

Here we present a novel computational method that can predict the two functional conformations of riboswitches, using merely as input the
plain RNA nucleotide sequence. Importantly, this developed procedure can also be coupled with a classifier to identify putative riboswitch
sequences, i.e. to uncover riboswitches based on its potential to generate two alternate configurations.
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Ensemble Builder

Fig. 1: Schematic view of the SwiSpot approach. Starting from an RNA sequence, a putative switching sequence is identified by the SwSeq
Extractor. Such result is exploited by the Constrained Folding module to derive the two alternate structures. Finally, a classifier decides if a
switching behavior can be associated to them.

2 SYSTEM AND METHODS

The presented work stems from investigations initially carried out to answer a simple question: Is it possible to computationally predict the two functional
conformations of a riboswitch once the SwSeq has been identified? By imposing loose constraints on the pairings of the SwSeq bases, the RNAfold tool in
the ViennaRNA package (Lorenz et al., 2011) was able to closely approximate the two reference alternative structures in ten out of twelve case studies, while
only minor errors were present in the outcomes for the other two (Table S1; further details in Section 3.2).

Such results suggest that spotting out the switching sequence may represent the basic step for the prediction of the two functional RNA conformations.
Throughout this work we used the ViennaRNA package, ver. 2.1.9, (Lorenz et al., 2011), which is based on a validated set of thermodynamic parameters

(Mathews et al., 2004) and produces precise energy models.

2.1 Overall Approach
Although it has been found that tertiary structural arrangements affect the riboswitch functionality (Greenleaf et al., 2008), their influence can hardly be
captured by a simple, handy computational model. Instead, secondary structures can be investigated and analyzed in a much more efficient way. For these
reasons, we shall focus on RNA secondary structures and their representations.

Let r = r1r2 . . . rlr be the RNA sequence of length lr over the ordinary RNA alphabet; a secondary structure can be indicated by the integer row vector
p(r) (a “pairing”) whose j-th element p(r)[j] holds either the index of the element the j-th base is paired with, or j in case of no pairing. An ensemble of
structures for r is a multiset of N pairing vectors p(r)i , i = 1 . . . N , not necessarily distinct, stacked in the N × lr matrix Er . Thus, Er[i] indicates the i-th
conformation in Er , whose j-th element is Er[i, j]. In this context, SwSeqs in the two alternate conformations show alternate pairing patterns (towards either
upstream or downstream bases), thus suggesting a pattern-based method to identify and locate SwSeqs whenever they are not known.

The processing flow that leads from the input RNA sequence down to the possible alternate conformations and the evaluation of a riboswitch-like behavior
can be structured as shown in Figure 1. It comprises three main functional modules indicated as SwSeq Extractor, Constrained Folding, and Classifier,
respectively aimed at identifying the switching sequence, at deriving the alternate configurations, and at evaluating their potential to support a typical riboswitch
behavior. Their implementations can be separately modified to improve their accuracy and/or efficiency.

The proposed method has been assessed against a set of well-known riboswitches, whose functional structures have been carefully described. Hence, a
reference dataset has been defined for this purpose.

2.2 Dataset
Currently, riboswitches have been classified in more than twenty distinct classes (Breaker, 2012), according to significant structural and/or sequence similarity.
At present, hundreds or thousands of representatives per class exist in the current RNA databases such as Rfam (Nawrocki et al., 2015). However, a proper
evaluation of the proposed approach requires a complete knowledge of both the ON and OFF conformations, and this is available only for a very small number
of cases.

For the sake of our investigation, both the aptamer and the expression platform domain have to be precisely located in the riboswitch sequences.
Unfortunately, in literature and in databases such as Rfam often only the expression platform is given. Thus, the complete sequence and the missing details
must be obtained through a systematic review of studies on single riboswitches, whenever available. The riboswitch records used as our reference dataset and
reported in Table 1 have been defined carrying out this reviewing work and, to the best of our knowledge, they can be regarded as one of the most comprehensive
riboswitch dataset to date, at least in terms of the complete sequence set (aptamer + expression platform). It covers the main riboswitch families and the major
regulatory mechanisms.

Our complete reference dataset contains forty records, divided in three groups. The first two groups include twenty riboswitches from sixteen families
(Table 1). The first group encompasses twelve sequences (some already used in previous studies (Quarta et al., 2012)) with reliable SwSeq information (first
part of Table 1). For each record in the group, whenever not explicitly reported in the literature, the switching sequences have been identified by comparing the
two known alternative secondary structures. The second group contains eight riboswitches whose SwSeq has not been identified yet (second part of Table 1);
despite this lack of information, they can be used to validate the overall method, but not the SwSeq Extractor. The twenty elements in the last group (shown
in Table S2) have been used as negative controls; they are not riboswitches, and consist of ncRNAs, in the same length range of the previous groups, selected
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Table 1. Riboswitches of the reference dataset

IDa Riboswitch Class Gene - Organism Switching Mechanism Boltzmann Cov.b

thiM TPP Thiamine Pyrophosphate thiM - Escherichia coli Translation YES
add Adenine Adenine add - Vibrio vulnificus Translation YES
folT THF Tetrahydrofolate folT - Alkaliphilus metalliredigens Translation N.A.
xpt Guanine Guanine xpt - Bacillus subtilis Transcription NO
pbuE Adenine Adenine pbuE (ydhL) - Bacillus subtilis Transcription NO
mtgE Mg Magnesium mgtE - Bacillus subtilis Transcription YES
yitJ SAM S-adenosylmethionine yitJ - Bacillus subtilis Transcription YES
lysC Lysine Lysine lysC - Bacillus subtilis Transcription YES
tenA TPP Thiamine Pyrophosphate tenA - Bacillus subtilis Transcription YES
metH SAH S-adenosylhomocisteine metH - Dechloromonas aromatica Transcription N.A.
VEGFA Het. nuclear ribonucleoprotein L VEGFA - Homo sapiens Alt. Splicing YES
thiC TPP Thiamine Pyrophosphate thiC - Arabidopsis thaliana Alt. Splicing N.A.

moaA Moco Molybdenum Cofactor moaA - Escherichia coli Translation
btuB Cobalamin Cobalamin btuB -Escherichia coli Translation
alx PH PH alx - Escherichia coli Translation
GEMM CDA Cyclic-di-Guanosine Monoph. Daud 1768 - Desulforudis audaxviator Transcription
crcB Flouride Flouride crcB - Bacillus cereus Transcription
PreQ1 Pre-Queosine glyS - Fusobacterium nucleatum Transcription
ydaO ATP ATP ydaO - Bacillus subtilis Transcription
metA SAH S-adenosylmethionine metA - Agrobacterium tumefaciens Transcription

(a) Riboswitches have been subdivided into those for which the SwSeq is known (upper panel) and not known (lower panel). (b) Boltzmann coverage has been
evaluated with the extended sampling approach described in text. List of ncRNA used as negative controls are shown in Table S2. Full description of the reference
dataset, including the annotated switching sequences, can be found in Table S1.

from the Rfam database (version 12.0, see http://rfam.xfam.org) to be representative of heterogeneous secondary structures. Among them, we have
taken care to include RNAs that exhibit other types of switching behaviors.

3 ALGORITHMS

3.1 SwSeq Extractor
A central question in the proposed approach is how to spot the switching sequence out of an RNA sequence r, using no additional information.
This task is assigned to the SwSeq Extractor module.

Scarceness of accurate structural data on riboswitches makes it impossible to follow a typical machine-learning approach. Moreover, recent
studies on entropy contents of riboswitch sequences (Manzourolajdad and Arnold, 2015) do not focus on SwSeqs. Thus, we propose to use
an ensemble (a multiset) Er of conformations, which will likely contain conformations close to the two alternative structures. Once Er has
been defined, base pairings across different conformations in Er must be analyzed to identify the SwSeq. These two tasks, named “Ensemble
Builder” and “Ensemble Analyzer”, are integral parts of the SwSeq Extractor module (Figure 1).

The actual content of Er determines the effectiveness of the whole SwSeq extraction procedure. An implicit choice for Er can be taken
by referring to the McCaskill algorithm (McCaskill, 1990) to compute the frequency of all possible base pairings at equilibrium at a given
temperature, subsumed in the matrix P . In this case, the ideal reference Er accounts for all the conformations and their specific stability. We
shall derive results according to this choice first, and then we shall compare them with results from a stochastic approach in building Er .

The SwSeq is identified by the “Ensemble Analyzer”, which searches for the subsequence in r that most frequently shows alternative
base-pairing (upstream or downstream) across structures in Er . We propose to capture this behavior by means of a proper scoring method;
the predicted SwSeq would then be the one with the maximum score. The corresponding pseudo-code is shown in Algorithm S1.

In defining the scoring method, we make use of the basic promoting score sp > 0, and the basic penalty sn < 0. Let us consider the
subsequence r[j...j + l] of length l starting at index j; its mean frequency of upstream/downstream base-pairing, indicated respectively by
Fup(j, l) and Fdo(j, l), can be calculated through the McCaskill pairing probability matrix P (the probability for base pair (x, y) is indicted
here as P [x, y]):

Fup(j, l) =
1

l

j+l−1∑
h=j

h−1∑
i=0

P [i, h] (1)

Fdo(j, l) =
1

l

j+l−1∑
h=j

N∑
i=h+1

P [i, h] (2)
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Fig. 2: In the upper two panels, upstream/downstream base pairing frequencies (respectively per single base, and over subsequences of length
l = 5), in the neighborhood of the actual SwSeq (indicated by the shaded band) for E. coli thiM TPP. In the lower panel, the corresponding
score (Eq. 4) with the indicated maximum point (in red).

A synthetic way to express the tendencies of r[j...j + l] to pair upstream and downstream is

pairUp(j, l) = sp · Fup(j, l) + sn · Fdo(j, l)
pairDown(j, l) = sp · Fdo(j, l) + sn · Fup(j, l)

(3)

and the propensity for r[j...j + l] to show both of them can be indicated by

score(j, l) = pairUp(j, l) · pairDown(j, l) (4)

According to the proposed scoring model, the pair of indices (j∗, l∗) yielding the maximum for score(j, l) indicates the putative switching
sequence.

The actual values chosen for for sp and sn may affect the overall classification performance. Thus, according to tests performed on the
reference dataset and discussed in Supplementary Material, they have been set to sp = 1 and sn = −0.9, yielding the most satisfying
classification performance (Figure S1).

Figure 2 shows how base pairing frequencies can be exploited to build the described score. The upper chart reports the plain per single
base upstream/downstream pairing frequencies. The middle chart reports the mean frequencies per target subsequence, referred to its starting
position. Finally, the lower chart shows the overall score, as per Eq. 4. The starting position of the putative SwSeq corresponds to the base
index yielding the maximum score (indicated by a red dot).

It might be argued that working with the overall pairing probability matrix P would account also for very unlikely conformations, loosing
the focus on the most representative ones for our goal. Thus another possibility is to make use of an actual Er , populating it via specific
sampling methods. In this regard, the baseline option in our work was a Boltzmann-based sampling through a well-known algorithm (Ding
and Lawrence, 2003).

For Er to be representative of the real energy landscape, a very accurate energy model is required. It must be underlined that the Turner
energy model is inherently unable to account for the ligand contributions in one of the structures. Moreover, the influence of kinetic
phenomena in the formation of some native structures cannot be easily captured. As a consequence, as shown in Figure 3, by using a plain
Boltzmann sampling not in all cases Er covers the neighborhoods of the two alternate functional conformations: for thiM TPP (a), both
neighborhoods are encompassed, while for xpt Guanine (b) one conformation is completely out of the Er landscape. In practice, whenever
conformations similar to one of the two alternatives are not adequately represented in Er , it is unlikely to identify the SwiSeq by analyzing
pairing frequencies.

In an attempt to partially address this limitation, we have chosen an ensemble size of 1200 structures and, to increase the representativeness
of samples in Er , we have applied an artifice proposed also in (Quarta et al., 2012), by performing the sampling at different temperatures.
By using the RNAsubopt tool, we sampled 300 structures at the default value of 37◦C and we added 150 structures per each temperature
value at six decile intervals towards the melting temperature of the RNA strand.

Once the reference ensemble has been built, we can refer to the same scoring method previously described. Thus, we can express Fup and
Fdo on the basis of actual structures in Er . Using the step function H(x) (defined as H(x) = 0 for x ≤ 0, H(x) = 1 otherwise), these
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values can be calculated as:

Fup(j, l) =
1

l ·N

j+l−1∑
h=j

N∑
i=1

H(h− Er[i, h]) (5)

Fdo(j, l) =
1

l ·N

j+l−1∑
h=j

N∑
i=1

H(Er[i, h]− h) (6)

This possible approach is intrinsically stochastic, thus not reproducible in principle. Although a small variance exists across predicted
SwSeqs from different runs, its effect on the two predicted conformations is minimal, with a negligible variance of the normalised bp-distance
between conformations predicted in different runs (values are reported in Table S3).

3.2 Constrained Folding
The Constrained Folding module predicts the two alternate configurations, given a putative riboswitch sequence and its corresponding SwSeq.
The founding idea is that SwSeq bases should pair with upstream bases in one case, and with downstream bases in the other: This can be
forced as a (soft) constraint within the RNA folding algorithm. We have chosen RNAfold from the ViennaRNA package, because of its
ability to accommodate the required constraint, specifying via a mask string, where a base may be paired upstream (‘<’), downstream (‘>’),
or not constrained at all (‘.’).

The implementation of this module was tested on the first group of our reference dataset, i.e. containing riboswitches with experimentally
validated SwSeqs. We have been able to closely predict the two alternate configurations in∼ 80% of the cases, and reconstruct the remaining
ones with very minor errors (Table S1). Notably, this was the result that pushed us to shape the whole approach.

In a nutshell, we can conclude that the plain knowledge of the switching sequence is generally sufficient to predict the two functional
structures of the riboswitch (Figure S3 for further consideration on switching sequences).

3.3 Classifier
Our method derives two alternative structures for a target RNA sequence and it is up to the Classifier module to determine whether they may
be associated to a typical riboswitch behavior. The proposed solution relies on the identification of secondary motifs known to be related to
specific gene regulation mechanisms in riboswitches. The extent to which such motifs are present in the input conformations is quantified by
means of specific indices, namely iSD for SD sequestering, and iTT for transcription termination. Because of its complexities and subtleties,
alternative splicing has not been directly addressed. In its current form, the Classifier can be sensibly applied only to prokaryotic sequences.

To quantify translation inhibition, we first locate the SD pattern in the sequence, and then count the fraction of unpaired bases nub in the
found SD sequence interval (Chen et al., 1994) in each of the two alternate structures. The greater nub, the lower the sequestering of the SD
site. Our search consisted on the following consensus sequence: AGGAGG, followed by a start codon (AUG), separated by 5-10 bases from the
SD site. If a given sequence does not possess a terminator (see equation 7 below), it is searched against one of the patterns in the database of
small SD, located within a small distance from the end of the sequence. Once found the SD, we measure the difference between the unpaired
fraction of the found SD in the two predicted structures. The index iSD, 0 ≤ iSD ≤ 1 can be defined as the absolute difference of nub in the
alternative conformations, over the SD length.

Transcription termination is typically determined by a “terminator hairpin” (Wilson and von Hippel, 1995), which can be detected as
a stem-loop-like motif, followed by a run of ‘U’s. In practice, this can be performed by substituting dots in the dot-bracket notation
with the symbols of the corresponding bases, and then looking for matches of one of the following patterns: the first, of the form

Fig. 3: Sampled and clustered structural ensembles for two different riboswitches. The two colours represent the clusters. The placement of
ON/OFF conformations is indicated by the +/∆ symbols. In the right panel, the ensemble does not cover both of them (for sampled structural
ensembles for the full reference dataset, see Figure S2).
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“({3,}[ACGU]{3,8}){3,}U{3,}.{,20}$” 1 to identify long hairpins, and the other, “){8,}U{3,}.{,20}$”, to catch terminators
with more complex topology2. A termination-based riboswitch is correctly predicted if at least one of the patterns is matched only in one of
the alternative structures. In this case, we set iTT = 1; iTT = 0 otherwise. It has been proposed that an RNA switch could be predicted by
analyzing its energy landscape (Clote, 2015). According to this hypothesis, an RNA switch ideally shows two distinct clouds of points in the
conformational landscape. This feature, although not exclusively held by riboswitches, could indeed be used to strengthen the classification
procedure. For this reason, to quantify how well two separate clusters can be spotted in Er , we perform a 2-medoids clustering on the
ensemble, based on pairwise bp-distances (other possible metrics would derive similar results (Barsacchi et al., 2016)). We then characterize
the result with the silhouette index isil, i.e. by computing the mean of the silhouette coefficients for all the elements in the set (Rousseeuw,
1987). This is one of the most popular indexes to quantify clustering quality, and it approaches 1 for increasing quality.

The overall classification outcome can be based on a global index that comprises the previous ones:

Ir = iSD(1− iTT) + iTT + isil (7)

A riboswitch behavior will be foreseen in all cases if Ir is beyond a given threshold value It.

3.4 Implementation
Algorithms have been initially implemented in Python, and the software have been built upon a Python wrapper from ViennaRNA library,
compiled from sources provided by TBI (http://www.tbi.univie.ac.at/RNA/). A version in C language is available as well,
suitable for faster computations. Being based on RNAsubopt and RNAfold, the current algorithm implementation does not support
pseudoknotted structures.

The runtime of the Ensemble Analyzer increases as O(lr · wlenmax) ≈ O(lr), where lr and wlenmax indicate the sequence length and the
maximum length of the SwSeq, respectively. The complexity of the McCaskill algorithm is O(lr

3), while the complexity of the suboptimal
Boltzmann sampling is O(n · lr3 + N2) (Ding and Lawrence, 2003), with N as the ensemble cardinality. In practice, in the ordinary ranges
for such parameters, the runtime shows a linear dependence on input sequence length (Figure S4), and it takes a few seconds per sequence,
thus allowing this method to be applied on large datasets in a genome-wide fashion.

4 RESULTS

The method presented here is capable of predicting the presence of a riboswitch — including its two alternate conformations — using as
input only its nucleotide sequence. The procedure consists in three major steps, including: i) prediction of the switching Sequence (SwSeq),
ii) prediction of the alternate secondary structure conformations, and iii) scoring, and consequent classification, of the sequence as a putative
riboswitch (Figure 1). The proposed approach has been tested on the reference dataset, obtaining the results reported in Table S4; moreover,
it has been used to investigate a complete set of annotated putative riboswitches from the Rfam database (Rfam 12.0). Our method is fully
applicable to any prokaryotic organism at a genome-wide level, targeting single sequences up to 300nt each.

4.1 Application to the Reference Dataset
The ability to spot out the SwSeq depends both on the analysis procedure applied to the ensemble, and on the ensemble representativeness
of the two functional conformations. Indeed, considering the computational steps in the SwSeq Extractor and the formulation of Eq. 4, the
sampling procedure itself, whenever used, affects the reliability of the outcomes in this module (Figure 3).

We first tested the SwSeq Extractor module on the first group of our reference dataset, obtaining 10 exact SwSeq predictions out of 12
cases. We then predicted SwSeqs also for sequences in the second group, obtaining the putative alternative structures for all sequences
in both groups; Figure 4 shows an example of such predicted conformations for tenA TPP, highlighting the SwSeq location. It should be
noted that, even in those cases in which an exact SwSeq prediction could not be made, the located subsequence is similar enough to the
true SwSeq, thus allowing the Constrained Folding module to correctly identify the alternate conformations (as it happens for xpt Guanine).
Therefore, although SwSeq predictions may not exactly match SwSeq annotations from the literature, they are accurate enough to be effective
in revealing the switching behavior.

Considering the complete reference dataset, the classifier module performance is summarized as a ROC curve, where sensitivity and
specificity are respectively formulated as TPR = TP/(TP + FN) and SPC = TN/(TN + FP); true positives TP are the correctly predicted
riboswitches, true negatives TN the correctly predicted non-riboswitches. Figure 5 reports the curves obtained using the McCaskill method
and the ensemble-based analysis.

We have observed that a good trade-off between accuracy and TPR is obtained choosing a threshold value It = 0.45. Hence, predictions
using the McCaskill method exhibit an accuracy of 0.6 and a true positive rate (TPR) of 0.83, while the stochastic method on average yields
an Accuracy of 0.6 and TPR = 0.7. All the outcomes of the Classifier module on the reference dataset are reported in Table S4.

1 Typically in regexes “(” and “)” are used as group delimiters; thus, parentheses symbols should be indicated by “\(” and “\(” instead.
2 Although unlikely, this pattern might introduce false positives in the case of a stem loop within a multiloop which is followed by a run of ‘U’s and is near
the end of the sequence.
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Fig. 4: Example of predicted alternate conformations ON (a) and OFF (b) for the tenA TPP riboswitch. The switching sequence is highlighted
in orange, and the terminator hairpin is highlighted in blue.

Fig. 5: ROC curve of performance on the complete reference dataset. The upper ROC curve has been obtained using base-pairing probability
matrix, while the dashed curve represents the mean of 10 runs per ensemble.

We then proceeded to quantify the influence of the ensemble coverage on the classification outcomes. For this aim, we compared the
classification outcome of all the riboswitches in the reference dataset, with the outcome of selected riboswitches that have Er coverage.
Figure 6 clearly shows that the proposed approach is more effective whenever Er coverage is present.

4.2 Application to Rfam Putative Riboswitches
Currently, several motif search methods exist to uncover riboswitches in genomes. However, they typically identify riboswitches on the
basis of the aptamer region only (Clote, 2015). Other methods search for conformational switches, avoiding specific aptamer considerations.
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Fig. 6: Influence of ensemble coverage on effectiveness, evaluated in the case of ensemble sampling. The green ROC curve refers to the set
of only riboswitches with Er coverage, while the orange ROC curve considers all riboswitches.

Fig. 7: Percentage of per-family prokaryote riboswitches identified in putative Rfam families containing riboswitches.

Our methodology can complement both of them, providing further structural insights. We applied our method upon a set of putative Rfam-
annotated riboswitches, to illustrate how homology-based riboswitch searches can be coupled with our algorithm to obtain a higher confidence
set of putative riboswitches. In practice, not only sequence similarity has to be taken into account, but also the potential of generating two
alternative structures with a SwSeq.

For this aim, we first gathered the sequences included in the seed alignment for each of such families. We then used MAFFT (Katoh
and Standley, 2013) to obtain a structure-based alignment of the seeds. Each alignment was assigned the relative “RNAz P-value” (Gruber
et al., 2012), accounting for both structural conservation and thermodynamic stability. The top-ranked families based on RNAz P-value were
selected for further analysis; they included also some of the prokaryotic sequences described in our reference dataset. The target sequences
were elongated downstream ( to include the first occurrence of a start codon ATG) to assure the inclusion of both aptamers and switching
sequences. We finally ran our algorithm on the these sequences, spotting the switching regulatory behaviour by checking either the SD
sequestering/releasing or the presence of a terminator hairpin. A list of classified riboswitches has been obtained (downloadable from the
SwiSpot website).

The histogram in Figure 7 summarizes per-family results: for each Rfam family, the percentage of sequences with a spotted switching
regulatory behaviour is shown (see also Table S6). The low percentage of potential riboswitches actually spotted may be due to the presence
of other types of switching mechanisms, an inaccurate sequence framing around the aptamer regions, or misannotations in Rfam , which may
be in part due to ignoring the presence of expression platforms for their annotation.
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4.3 Comparison with Other Approaches
Although other approaches for riboswitch prediction exist, none of them performs the two tasks that our method does, i.e. predicting if a
sequence is a riboswitch, as well as identifying its switching sequence and its alternative conformations. Nevertheless, even if RNAbor does
not produce an actual classification step, we have performed a general comparison with SwiSpot: by applying RNAbor to our reference
dataset, peaks in the probability density profiles can be coarsely compared to SwiSpot results (see Figure S5 and Table S5). In general,
multiple peaks in RNAbor profiles lead to interpretation problems, while Swispot provides clear outcomes. Considering the five RNAs with
known ON/OFF structures in our dataset, that show also 2 distinct, well-defined RNAbor peaks, the structural predictions by SwiSpot are
more accurate than those provided by RNAbor (average normalized bp-distance from reference structures: 0.319975 vs. 0.467507).

In Figure 8 we consider the particular case of thiM TPP, previously used in the RNAbor validation (Freyhult et al., 2007). The SD sequence
is highlighted in red, while SwSeq pairings are highlighted in orange. The density plot for the complete sequence displays only one larger
peak corresponding to the OFF structure, and a smaller peak for a partially formed ON structure; both conformations do not exactly match
the reference ones. SwiSpot provides better results, with relative distances from the two annotated conformations -based on literature- of
(0.00, 0.00), while RNAbor peaks structure show less similarity with the reference: (0.28, 0.09). This suggests that SwiSpot is capable of
predicting existing alternative conformations regardless of the presence of distinct peaks in the probability density profile.

Fig. 8: A) Predicted alternate riboswitch structures according to the SwiSpot approach for thiM TPP. The SD sequence is highlighted in
red, while the SwSeq is highlighted in orange. B) RNAbor results, run on the same sequence, show only one peak for the OFF structure. A
smaller peak with partially free SD is present.

5 DISCUSSION

Several methods for riboswitch prediction have been proposed, which are based on either predicting the presence of conformational switches,
or on predicting riboswitches using homology-based searches (Clote, 2015). However, none of the current methods is focused on predicting
the two riboswitch conformational structures. Such a capability would be extremely useful in driving riboswitch engineering and for synthetic
biology. For this reason, we propose SwiSpot, a novel computational method to directly address conformational prediction of riboswitches.
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The scarceness of precise data on riboswitch conformations makes it impossible to build a riboswitch predictor that merely uses a statistical
or machine learning approach. Despite the mentioned data shortage, a reference dataset has been defined to properly assess the proposed
approach. The proposed modeling effort stems from the first significant result presented in this work: we find a strong computational evidence
of the role of the switching sequence in the characterisation of the whole riboswitch system. Moreover we find that the switching sequence
incorporates most of the information required to drive the switching mechanisms.

The novelty of our approach relies on the ability to locate switching sequences, which are then used to predict the alternative conformations,
and to finally classify the target RNA sequence as a riboswitch or not. Notably, previous genome-wide methods to search for riboswitches
only looked for aptamer motifs (Clote, 2015), thus completely ignoring structural predictions. On the other hand, we show that SwiSpot
can be paired to these methods, leading to more reliable predictions of putative riboswitches. Importantly, from this experience we observe
that the quality of the results depends on the capability of selecting the proper subsequence to analyze, around the aptamer, down to the
expression platform, and not beyond.

Lessons learned in using the proposed algorithms indicate possible future improvements, although apparently difficult to apply. Neglecting
the energy contribution of the ligand and kinetic/co-transcriptional aspects of the folding process can likely lead to biased samplings of
the energy landscapes, where conformations similar to both the alternative structures are not adequately represented. This issue could be
addressed by introducing additional, diverse forms of sampling. Unfortunately, the lack of real structural data prevents any solid assessment
of this kind of improvement. Furthermore, the limitation of excluding pseudoknots could be removed, devising new algorithms for the SwSeq
Extractor and the Constrained Folder (Figure 1).

Future work will investigate possible improvements within each single module, as well as the provision of new functionalities in additional
modules.
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