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We perform an envelope-function based numerical analysis of the effect of a sequence of randomly spaced potential
barriers on the conductance and shot noise of an armchair graphene ribbon. The behavior is dominated by Klein
tunneling and by resonant tunneling, and strongly depends on the geometrical details of the device. Klein tunneling
effectively filters the modes which can propagate through the device. For a large number of cascaded barriers, this
gives rise to different transport regimes for metallic and semiconducting ribbons, with diverging shot noise behaviors.
Resonant tunneling is instead energy selective and has quite a different effect depending on whether the barriers are
identical or not. We explore also the effect of tilting the barriers with respect to the ribbon edges, observing a transition
towards a diffusive transport regime and a one-third shot noise suppression. We investigate this effect and we find that
it takes place also in more traditional semiconducting materials. The results of our analysis could be instrumental for
the fabrication of mode-filtering and energy-filtering graphene-based nanodevices. Moreover, our study highlights the
importance of the measurement of shot noise as a probe for the nature of the transport regime.

I. INTRODUCTION

Starting from the seminal work of Geim and Novoselov1,2,
many efforts have recently focused on the study of graphene.
This two-dimensional material has many fascinating proper-
ties, including high electrical and thermal conductance, me-
chanical strength and flexibility, transparency and chemical
stability, which make it interesting in different application
fields, spanning from the fabrication of composites, coat-
ings and membranes, to energy storage systems, sensors,
electronic, optoelectronic, and phonon-based devices3–13.
Graphene is made up of an hexagonal lattice of sp2 hybridized
carbon atoms. The unit cell of this lattice contains two in-
equivalent atoms, generally specified with the letters A and
B, which give rise to two triangular sublattices14–16. Uncon-
fined monolayer graphene has no energy gap: its highest va-
lence band and lowest conduction band touch each other at
two inequivalent degeneration points K⃗ and K⃗′ (Dirac points)
of the reciprocal space. Around these points, the dispersion
relations are linear (which means that graphene has a zero ef-
fective mass) and the behavior of graphene can be approx-
imately described in terms of four envelope functions F α⃗

β
(which correspond to the two sublattices β = A,B and to the
two Dirac points α⃗ = K⃗, K⃗′)14. Due to the particular lat-
tice structure of graphene, these functions F α⃗

β have to satisfy
an envelope-function equation which formally coincides with
the Dirac-Weyl equation17,18, which also describes the be-
havior of massless spin-1/2 particles in relativistic quantum
mechanics. As a consequence, graphene exhibits very pecu-
liar properties, previously expected only at relativistic speeds.
Among these exotic phenomena are19,20 Klein tunneling21–26

(the property that a particle impinging against an orthogonal
barrier has a unitary probability to transmit across it, what-
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ever its width and height), Zitterbewegung27 (an oscillatory
behavior deriving from the interference between the compo-
nents of the wave packet with positive and negative energy),
the Anomalous Integer Quantum Hall Effect2,28–30 (an un-
usual type of Quantum Hall effect characterized, among other
peculiarities, by the presence of a zero-energy Landau level),
and Veselago lensing31,32 (an optical phenomenon based on
negative refraction).

In graphene, the conductance through a single tunnel bar-
rier is dominated by Klein tunneling and by resonant tunnel-
ing through the states which are quasi-localized inside the
barrier21,33–38.

In this paper we will focus on ribbons with armchair edges,
which can present either a (quasi-)metallic or a semiconduct-
ing behavior, depending on the exact number of dimer lines
across their width14,39,40 (while zigzag ribbons are always
(quasi-)metallic; for a discussion on the effect of a potential
step or barrier in a zigzag ribbon see Refs.41–44).

In particular, we will numerically simulate the transport be-
havior of an armchair graphene ribbon with a series of ran-
domly spaced potential barriers. This potential profile could
be obtained, for example, by negatively biasing a series of par-
allel top gates (separated from the underlying ribbon by a di-
electric layer) with random inter-gate distances (see the sketch
in Fig. 1). We will analyze the role that Klein tunneling and
resonant tunneling play in this structure and the dependence
on the specific geometrical details. Moreover, we will study
how this affects the shot noise properties of the device.

As we will show, the structure has different properties from
the case of evenly spaced tunnel barriers (the conductance be-
havior of which has been analyzed in Refs.45–54). Indeed, the
presence, in the structures we will consider, of different ran-
dom inter-barrier distances excludes the presence of oscilla-
tions due to the resonance with the states quasi-localized in
the regions between adjacent barriers and to the appearance
of new Dirac points, oscillations which instead have been
predicted and observed in the case of evenly spaced tunnel
barriers45,49–52.
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FIG. 1. Armchair graphene ribbon with a possible gate configuration
(a) leading to the potential profile (b) that we are analyzing.

In our devices, Klein tunneling will operate a selection of
the modes propagating through the ribbon, on the basis of their
angle of incidence. For a sufficiently large number of barriers
the behavior will differ depending whether the ribbon is semi-
conducting or metallic. In a semiconducting ribbon, no trans-
port mode has a wave vector (measured with respect to the
Dirac points) with zero transverse component, and thus trav-
els in a direction exactly orthogonal to the barriers. Therefore,
we will reach a localized transport regime, with zero conduc-
tance and no suppression of the shot noise power spectral den-
sity (with respect to the value 2eI predicted by Schottky55 in
the case of charge carriers propagating independently through
the device, where e is the elementary charge and I is the aver-
age current value). In a metallic ribbon, instead, one trans-
port mode is exactly orthogonal to the barriers and thus is
able to ballistically cross all the barriers with unit transmis-
sion. Therefore, the normalized conductance G will approach
the quantum of conductance G0 = 2e2/h (where h is Planck’s
constant) and shot noise will vanish.

On the other hand, resonant tunneling through the states
quasi-localized inside each barrier will operate a selection of
the charge carriers on the basis on their energy. The modes
with an energy equal to that of the quasi-bound states inside
the barrier will experience enhanced transmission, while the
others will be suppressed. If the potential profile is made up of
identical barriers, each barrier will perform the same selection
and the overall device will preserve such a dependence of the
transmission on the energy. Instead, in the case of different
barriers a more uniform behavior as a function of energy will
appear.

We will finally consider the case of barriers which are tilted
with respect to the ribbon edges, although all by the same
angle (only the analysis of the transport behavior of a single
tilted barrier has been previously reported in the literature56).
In this case, the barriers, introducing mode-mixing in the de-
vice, make it possible to reach the diffusive transport regime.
In particular, this gives rise to a shot noise suppression factor

F (Fano factor) equal to 1/3, where the Fano factor is defined
as the ratio of the actual value of the shot noise power spectral
density SI to the “full” value 2eI predicted by Schottky. We
have verified that this conclusion is valid also in devices made
up of more traditional semiconducting materials, for example
in quantum wires fabricated by confining the two-dimensional
electron gas (2DEG) of GaAs/AlGaAs heterostructures. This
behavior differs from what we reported in the past for 2DEG-
based devices57, for barriers orthogonal to the transport direc-
tion. Indeed, in that case the absence of mode-mixing made
it actually impossible to reach the diffusive regime, and thus
increasing the number of barriers a direct crossover from the
ballistic to the localized regime was observed57,58.

II. SIMULATION METHOD

We have performed our analysis using our in-house de-
veloped envelope-function based transport simulator59, which
can compute conductance and noise in graphene structures
with different geometries and potential profiles38,60,61. As
we have previously stated, around the Dirac points the wave
function of graphene can be written in terms of four enve-
lope functions, which have to satisfy the Dirac-Weyl equa-
tion. In order to simplify the calculations, the code divides
the armchair graphene ribbon into a series of sections, where
the Dirac-Weyl equation can be more easily solved. Each sec-
tion has a width W (along the transverse direction y) equal to
that of the ribbon, while its length in the transport direction x
is chosen in such a way as to be able to consider the poten-
tial U in each section approximately independent of x. With
this choice, the envelope functions inside each section can be
written as the product of a transverse component Φα⃗

β (y) and
of a plane wave propagating in the transport direction eiκxx:
F α⃗

β (x,y) = eiκxxΦα⃗
β (y). Substituting these expressions into the

Dirac-Weyl equation, with Dirichlet boundary conditions for
the graphene wave function at the ribbon edges, we obtain
a differential problem in the transverse components Φα⃗

β (y)
and in the longitudinal wave vector κx. Then, this differen-
tial problem can be transformed into an equivalent one with
periodic boundary conditions59,62,63. This makes it possible
to solve the problem in the reciprocal space, overcoming the
issue of fermion doubling and increasing the efficiency of the
numerical procedure59. In particular, everything is reduced
to an eigenproblem where the eigenvectors are made up of
the Fourier components of a quantity related to the transverse
components of the envelope functions, while the eigenvalues
are the longitudinal wave vectors. Within each of the sections,
we solve this problem, obtaining the modes which propagate
in that part of the device. Then, we compose the results ob-
tained in the different sections using a recursive scattering ma-
trix approach. At the interface between adjacent sections, we
enforce the continuity of the wave functions on both the A
and B sublattices. In particular, exploiting the linearity of the
problem, we imagine to inject a single mode at a time from
the left and from the right side of the interface, we enforce
the continuity across the interface and we project the resulting
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relations onto a basis of sine functions. In this way, we obtain
a system of linear equations in the transmission and reflection
coefficients across the interface. These coefficients represent
the elements of the scattering matrix of the region surrounding
the interface. The scattering matrices of the different regions
of the device are then combined, using standard techniques64,
in such a way as to obtain the scattering matrix of the overall
device and in particular its transmission matrix t. From the
transmission matrix, the value of the conductance G and of
the Fano factor F can be obtained using the Landauer-Büttiker
formulas65–67:

G =
2e2

h ∑
i

wi , F =
SI

2eI
=

∑i wi(1−wi)

∑i wi
, (1)

where wi is the generic eigenvalue of the matrix t†t and the
sums run over all the modes propagating in the input and out-
put leads.

The results are uniformly averaged over the energy range
delimited by the electrochemical potentials of the input and
output leads (assuming to operate at low temperature, we con-
sider a steplike behavior of the Fermi-Dirac distribution func-
tion). In the case of the Fano factor, the averages have to
be performed separately for the numerator and for the de-
nominator of the expression of F in Eq. (1) (and thus for SI
and I), consistently with the experimental procedure for its
measurement68.

In our calculations, we have included the effect of the con-
tacts considering regions with a negative potential energy Uc
(in our simulations equal to -0.2 eV) at the entrance and exit
of the device. However, the introduction of the two regions
with negative potential energies has a significant effect on the
results only in a small energy interval around zero (the inter-
val in which otherwise no mode would be injected into the
device).

For each simulation, the length of the ribbon has been cho-
sen in such a way as to accommodate the investigated number
of barriers, leaving a distance between the contacts and the
first/last barrier of the order of the average interbarrier dis-
tance.

The simulation code is written in Fortran and exploits La-
pack routines69. The simulations have been performed on a
100-core cluster based on Intel Xeon processors, parallelizing
the calculations performed for different energies.

III. NUMERICAL RESULTS

Unless otherwise specified, in our calculation we have con-
sidered graphene ribbons with a width of 200 nm, with arm-
chair edges and with a potential profile given by a series of
0.3 eV high tunnel barriers (even though we have verified that
the results are valid also for smaller ribbons). We have as-
sumed an energy difference of 0.4 meV between the Fermi
levels of the input and output leads, much greater than kBT
(with kB the Boltzmann constant and T the absolute temper-
ature, assumed less than 1 K). However, further simulations
performed at higher temperature have shown that the selective
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FIG. 2. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the semiconducting ribbon (N = 1626) with a potential consisting of
a series of identical unevenly spaced rectangular barriers.

conductance behavior that we will discuss in the following is
still visible for temperatures up to a few tens of Kelvin.

The initial simulations have been performed for a semicon-
ducting ribbon, containing N = 1626 dimer lines between the
lower and the upper edge, with a potential consisting of a se-
ries of identical barriers, with a rectangular profile, each one
40 nm long and 0.3 eV high. Using a linear congruential gen-
erator, we have randomly chosen each inter-barrier distance d,
with a uniform probability distribution, between 150 nm and
250 nm.

We have repeated the simulations for several numbers of
cascaded barriers. For each set of barriers, we have computed
the conductance and the Fano factor behavior as a function of
the injection energy E. More in detail, for each value of E we
have averaged (in the way described in the previous section)
the results obtained for 5 energy values uniformly distributed
in a 0.4 meV wide interval centered around E (in our simu-
lations 5 values are sufficient, due to the limited variability
of the results in this energy interval). Keeping the potential
profile fixed and varying the injection energy is equivalent
to keeping the injection energy fixed and shifting the poten-
tial profile (in the opposite direction). Therefore, this simu-
lation corresponds also to maintaining the Fermi levels of the
left and right contacts (differing by 0.4 meV) constant, while
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shifting the potential profile through the electrostatic action
of a bottom gate located underneath the entire device (we re-
member that the barriers are instead induced by a series of top
gates: Fig. 1). The results are shown in Fig. 2(a) and Fig. 2(b)
for the conductance G (normalized with respect to the con-
ductance quantum G0 = 2e2/h) and for the Fano factor F , re-
spectively.

The behavior obtained for a single barrier agrees with that
reported in the literature34. The conductance starts from a zero
value for E = 0, because for this energy the density of states
outside the barrier vanishes (no mode propagates for E = 0 in
a semiconducting ribbon). As E is increased, the average be-
havior of the conductance first increases and then decreases,
as an effect of the evolution of the density of states outside
and inside the barrier. Superimposed to this average behav-
ior, there are oscillations, with several local maxima and min-
ima. Finally, the conductance reaches a nonzero minimum
value when the energy E equates the height of the poten-
tial barrier (and the density of states inside the barrier van-
ishes). Such a nonzero conductance minimum, characteristic
of graphene, is an effect of the evanescent modes propagat-
ing through the barrier and is also associated to a 1/3 value
of the Fano factor27. This value (characteristic of the diffu-
sive transport regime) has been attributed to the presence of
a Zitterbewegung motion in graphene, which gives rise to a
diffusive-like behavior27.

Increasing the number of cascaded identical barriers, the
conductance drops for all the energies, but the difference be-
tween the local minima and the local maxima strongly in-
creases, i.e. the device becomes more selective in energy. Fi-
nally, for a rather large number of barriers the conductance
vanishes and a strongly localized regime is reached. Regard-
ing the Fano factor, increasing the number of barriers we ob-
serve a more irregular behavior as a function of E, which re-
flects the more complex interference pattern in the device. Fi-
nally, when transport becomes localized, i.e. for a sufficiently
large number of barriers, the Fano factor approaches F = 1 (no
shot noise suppression). Indeed, this is a characteristic feature
of the localized regime. While in general Pauli exclusion in-
troduces correlations between charge carriers, which generate
deviations in the shot noise power spectral density from the
value 2eI, when the transmission vanishes the different transi-
tion events actually become uncorrelated and the full value of
2eI is recovered.

In order to better understand the observed behavior, we
have analyzed the effect of the series of barriers on the sin-
gle modes propagating through the device. In this case, the
barriers, being orthogonal to the ribbon edges, do not intro-
duce any mixing among the different modes. Therefore, each
mode transmits across the ribbon independently of the others
and the transmission matrix is diagonal, with each element
on the diagonal corresponding to the transmission of a single
mode.

In analogy with what happens in unconfined graphene, we
evaluate the angle of incidence of each mode against the bar-
riers in the following way. Outside the barriers, we can write
the generic i-th mode in the form χi(y)exp(iκxix). We define
κxi and κyi the components (in the transport and transverse di-
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FIG. 3. Plot of the mode transmission (resulting from our numerical
simulations) as a function of the mode index i and of the injection en-
ergy E, for the considered semiconductor ribbon with a single rect-
angular barrier (a), the cascade of 10 identical unevenly spaced rect-
angular barriers (b), and the cascade of 10 different unevenly spaced
rectangular barriers (c).

rections, respectively) of the wave vector (measured from the
Dirac point) of the i-th mode outside the barriers. Exploiting
the dispersion relation (valid in the regions with zero poten-
tial) E =±h̄vF

√
κ2

xi +κ2
yi (where h̄ is the reduced Planck con-

stant and vF is the Fermi velocity of graphene), we define the
modulus of the angle of incidence of the i-th mode against the
barriers as

|θi|= arctan
(∣∣∣∣κyi

κxi

∣∣∣∣)= arctan


√
(E/(h̄vF))2 −κ2

xi

|κxi|

 .

(2)
For each fixed value of E, we order the modes by increas-

ing |θi|, i.e. by decreasing |κxi| (or increasing |κyi|). There-
fore, the lowest modes are those nearest to the condition of
orthogonality to the barriers.

In Fig. 3(a) and (b) we report a plot of the transmission
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(resulting from our numerical simulations) of each mode as
a function of the mode index i and of the injection energy
E, for the cases of a single barrier (a) and of ten cascaded
identical barriers (b). As we are going to discuss, this behavior
can be explained in terms of Klein tunneling and of resonant
tunneling through the quasi-localized states in the barriers.

First of all, we observe that the transmission is larger for
low-order modes, while decreases increasing the mode index
(and thus increasing the incidence angle |θi|). This is an effect
of Klein tunneling: modes impinging closer to orthogonality
against the barriers experience a larger transmission. There-
fore, a series of tunnel barriers could be used as a mode fil-
ter: after a certain number of barriers the highest-order modes
have substantially disappeared and only the modes with the
lowest incidence angle survive, although with reduced ampli-
tude. This could be useful whenever it is necessary to perform
a selection of the modes propagating through the graphene
structure. For example, some devices (such as that proposed
in Refs.70,71, which is based on quantum interference) work
well in the presence of a small and selected number of prop-
agating modes. Therefore, an implementation in graphene of
these devices would benefit from the upstream presence of a
mode-filtering section made up of a series of tunnel barriers.

In this case, we notice that increasing the number of barriers
also the transmission of the lowest-order mode (the mode with
i = 1) decreases, until it disappears for a large enough num-
ber of barriers. Indeed, in a semiconducting ribbon no mode
with κyi = 0 exists. More in detail, the Dirichlet boundary
conditions at the ribbon edges limit the allowed values of the
total transverse wave vector to multiples of π/W . The Dirac
point has ordinate (in the reciprocal space) 4π/(3a), while
W = (N + 1)a/2 (a is the graphene lattice constant and N is
the number of dimer lines across the ribbon width). Therefore,
in a semiconducting ribbon (where N is not equal to 3M − 1,
with M an integer) the minimum value of the modulus |κyi|
of the difference between the transverse component of the al-
lowed wave vectors and the ordinate of the Dirac point is equal
to π/(3W ). More in general, the i-th mode has

|κyi|= ℓ
π

3W
, with ℓ= i+

⌊
i−1

2

⌋
= 1,2,4,5,7, . . . (3)

(i.e., the set of values ℓ is obtained by removing the multi-
ples of 3 from the sequence of the natural numbers). Since
no mode exists with κyi = 0 (i.e., orthogonal to the barriers),
crossing the barriers all the modes (including the lowest one)
experience attenuation (although in different amounts) and, if
we sufficiently increase the number of barriers, vanish.

Beyond this average behavior, we observe a dependence on
the energy of the transmission of the single modes (a depen-
dence that we have already observed in the overall device con-
ductance, reported in Fig. 2(a)). This feature can be explained
in terms of resonant tunneling with the states quasi-localized
inside each of the barriers.

Let us consider a single LB long and UB high barrier. We
indicate with κx and κy the components (in the direction or-
thogonal and parallel to the barrier, respectively) of the wave
vector in the regions outside the barrier. In a similar way, we
define κ ′

x and κ ′
y as the components of the wave vector inside

E
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FIG. 4. Energies Ei,m (obtained from Eq. (4) and Eq. (3)) of the
states quasi-localized inside a tunnel barrier in the considered semi-
conducting ribbon, plotted as a function of the mode index i.

the tunnel barrier. Let us focus on the range of energies be-
tween 0 and UB. Outside the barrier, the carriers in the i-th
mode have an energy E = h̄vF

√
κ2

xi +κ2
yi. The barrier actu-

ally represents an LB-long potential well for the hole states34.
Therefore, inside the barrier quasi-confined states form, with
discrete values of the longitudinal component of the wave vec-
tor, given by κ ′

xm = mπ/LB (with m an integer). Moreover,
assuming sufficiently regular barrier edges, the component of
the wave vector parallel to the barrier does not change when
the carriers pass from the region outside the barrier to the re-
gion inside the barrier and vice versa72: the i-th mode outside
the barrier is coupled only to the i-th mode inside the barrier
and κ ′

yi = κyi = ℓπ/(3W ). As a consequence, the quasi-bound
states inside the barrier have the following energies:

Ei,m=UB − h̄vF

√
κ ′

xm
2 +κ ′

yi
2 =

=UB − h̄vF

√
(mπ/LB)2 +(ℓπ/(3W ))2 , (4)

with ℓ related to i by Eq. (3). Focusing on the i-th mode, when
the carriers outside the barrier impinge against it with an en-
ergy E identical to Ei,m (the energy of one of the states quasi-
localized inside the barrier), the transmission has a maximum.
As we see in Fig. 4, where we plot these values Ei,m as a func-
tion of the mode index i, these energies fit well the energies
for which the transmission maxima are observed in Fig. 3: the
generic mode i experiences a maximum transmission for the
energy values E = Ei,m. Therefore, the barrier operates an en-
ergy filtering on the wave function impinging against it.

Since we are considering the case of identical barriers, i.e.
of barriers with the same length LB and height UB, the energy
values Ei,m for which the transmission is maximum are the
same for all the barriers. Therefore, any additional barrier fur-
ther refines the energy selection already operated by the previ-
ous ones. As a consequence, increasing the number of barri-
ers, we observe (besides the general reduction of transmission
deriving from the increased backscattering) a larger energy
filtering effect, i.e., an enhanced ratio of the local maxima to
the local minima of the conductance as a function of energy.



6

G
/G

0

E (eV)

 20

 15

 10

 5

 0
 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

1 barrier
2 barriers

FIG. 5. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 for the considered semiconducting
ribbon, with a potential consisting of one or two identical rectangular
barriers.

This energy filtering effect could be useful for example for the
implementation of low-noise devices73, or more in general of
devices which require or take advantage from the injection of
charges with a limited number of well-defined energies.

A first estimation of the position of the peaks observed in
the behavior of the total conductance as a function of energy
(reported in Fig. 2(a)) can be made focusing on the modes
nearest to the orthogonality condition (due to Klein tunneling,
these modes, characterized by a small κ ′

yi, have the highest
transmission). The energies Em at which these modes expe-
rience resonant tunneling can be obtained from Eq. (4) dis-
regarding κ ′

yi and considering different values of the integer
m (corresponding to different states quasi-localized inside the
barriers): Em =UB − h̄vF(mπ/LB).

Since, through the quantity I=GV (the quantity V being the
voltage applied between the device contacts), the conductance
appears at the denominator of the Fano factor, this effect has
a direct impact also on the behavior of the Fano factor as a
function of energy (as we see in Fig. 2(b)).

We notice that, since we are considering the case of dif-
ferent inter-barrier distances, the resonant tunneling effects
deriving from the alignment of the injection energy with the
energies of the states quasi-localized in the regions between
adjacent barriers (which actually represent wells for elec-
trons) can be disregarded. Indeed, the energies of these quasi-
localized states are not the same for inter-barrier regions with
different lengths. The difference between the inter-barrier dis-
tances makes it also possible to disregard the formation of
new Dirac points that has been reported in the literature for
the case of evenly spaced barriers. The only exception is the
case of two cascaded barriers, where the resonance with the
states quasi-localized in the region between the barriers gives
rise to further oscillations, superimposed onto those deriving
from the resonance with the states quasi-localized inside the
barriers (see Fig. 5). In our case, the oscillations due to the
resonance with the states quasi-localized in the inter-barrier
regions have an energy separation smaller than those due to
the resonance with the states quasi-localized inside the barri-
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FIG. 6. Polar plot of the mode transmission as a function of the mod-
ulus of the incidence angle |θi| (represented in the figure by the coun-
terclockwise angle from the horizontal axis) for the semiconducting
ribbon (N = 1626) with: a single rectangular barrier (red dots), 10
unevenly spaced identical rectangular barriers (green squares) and
10 unevenly spaced different rectangular barriers (blue triangles).

ers, since the distance between the barriers is larger than the
length of each barrier.

In Fig. 6, on a polar plot, we report the transmission for
the various modes as a function of the modulus of their inci-
dence angle, for a fixed energy (in our case E = 0.2 eV). The
results for a single barrier and for 10 unevenly spaced identi-
cal barriers are represented with red circles and green squares,
respectively, and can be obtained from the sections, taken for
the considered energy E, of the maps reported in Fig. 3. This
plot provides further graphical evidence for the phenomenon
of Klein tunneling (modes closer to the condition of orthogo-
nality experience larger transmission), with some oscillations
due to resonant tunneling, since for a fixed value of E a dis-
crete number of modes exists for which the resonant tunneling
condition E ≈ Ei,m is reached.

We have then simulated the behavior of the same semicon-
ducting ribbon when the barriers are not identical. In par-
ticular, we have considered 0.3 eV high rectangular barriers,
differing for their length, which we have randomly chosen
(with a uniform probability distribution) between 5 nm and
75 nm. All the other parameters are left identical to those for
the previous calculations. The results are reported in Fig. 3(c),
Fig. 6 (with blue triangles), and Fig. 7. Also in this structures,
we observe a larger transmission for low-order modes, as an
effect of Klein tunneling. Regarding resonant tunneling, in-
stead, in this case the energies of the states quasi-localized in-
side one barrier differ from those of the other barriers because
the barriers have different lengths LB. Therefore, energies for
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FIG. 7. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the semiconducting ribbon (N = 1626) with a potential consisting of
a series of different unevenly spaced rectangular barriers.

which the impinging carriers experience maximum (or mini-
mum) transmission across all the barriers do not exist. As a
consequence, the behavior of the conductance as a function of
energy is smoothed out, without any evidence of local maxima
or minima between E = 0 and E =U0 (Fig. 7(a)). This clearly
affects also the behavior of the Fano factor as a function of
energy (Fig. 7(b)), the maps of the transmission as a function
of the mode index and of the energy (Fig. 3(c)), and the polar
plots of the transmission as a function of the modulus of the
incidence angle (blue triangles in Fig. 6): for more than one
barrier the effect of resonant tunneling actually disappears.

We have then analyzed the case of a metallic graphene rib-
bon with a series of unevenly spaced identical potential bar-
riers, with a rectangular profile. In this case the ribbon has
N = 1625 dimer lines across its width and thus N is equal to
3M−1, with M an integer (M = 542).

In Figs. 8-11 we report results analogous to those previ-
ously shown for the case of the semiconducting ribbon. In
Fig. 8 we plot the behavior of the conductance and of the Fano
factor as a function of the injection energy E, in Fig. 9(a) and
(b) we report the maps of the mode transmission as a func-
tion of the mode index i and of the injection energy E, and
in Fig. 11 we represent a polar plot of the transmission of the
modes as a function of the modulus of their incidence angle
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FIG. 8. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the metallic ribbon (N = 1625) with a potential consisting of a series
of identical unevenly spaced rectangular barriers.

for a fixed injection energy E = 0.2 eV.
Also in this case, modes with a smaller angle of incidence

against the barriers experience a much larger transmission,
due to Klein tunneling. We observe also the effect of resonant
tunneling, with a transmission that strongly depends on the
injection energy (and in particular on the presence or absence
at that energy of a state quasi-localized inside the barriers).
Again, the dependence on energy increases with the number
of identical barriers, as a consequence of the combined filter-
ing action of the barriers.

The difference with respect to the case of the semiconduct-
ing ribbon is that in this case, being N = 3M − 1, the modu-
lus |κyi| of the difference between the allowed values of the
transverse wave vector (enforced to multiples of π/W by the
Dirichlet boundary conditions at the ribbon edges) and the or-
dinate of the Dirac point takes on the following values:

|κyi|= ℓ
π

3W
, with ℓ= 3

⌊
i
2

⌋
= 0,3,3,6,6, . . . (5)

(which replaces in this case Eq. (3)). Substituting this expres-
sion into Eq. (4) we obtain the energies for which the transmis-
sion for the different modes reaches its local maxima. These
values, reported in Fig. 10 as a function of the mode index i,
fit well the energies for which we have found the transmis-
sion maxima (see Fig. 9). In particular, the lowest mode (with
i = 1) has κyi = 0. This means that this mode propagates also
for E = 0 (and actually in our simulations G = G0 for E = 0,
as shown in Fig. 8(a)) and also that it has θi = 0, i.e. this
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FIG. 9. Plot of the mode transmission as a function of the mode index
i and of the injection energy E, for the metallic ribbon (N = 1625)
with a single rectangular barrier (a), the cascade of 10 identical un-
evenly spaced rectangular barriers (b), and the cascade of 10 different
unevenly spaced rectangular barriers (c).
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FIG. 10. Energies Ei,m (obtained from Eq. (4) and Eq. (5)) of the
states quasi-localized inside a tunnel barrier in the considered metal-
lic ribbon, plotted as a function of the mode index i.
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FIG. 11. Polar plot of the mode transmission as a function of the
modulus of the incidence angle |θi| for the metallic ribbon (N =
1625) with: a single rectangular barrier (red dots), 10 unevenly
spaced identical rectangular barriers (green squares) and 10 unevenly
spaced different rectangular barriers (blue triangles).

mode impinges orthogonally against the barriers. As a con-
sequence of Klein tunneling, this mode does not experience
any backscattering and is transmitted perfectly by the device,
for any number of barriers. Therefore, sufficiently increasing
the number of barriers, one propagating mode remains and
ballistically transmits across the structure, giving a total nor-
malized conductance G/G0 equal to 1 (see Fig. 8(a)). As a
consequence, the Fano factor approaches zero (see Fig. 8(b)),
which is the value characteristic of perfect transmission. In-
deed, in this case the effect of Pauli exclusion regularizes the
transport dynamics across the device (because each state can
be occupied by one electron at a time and there is a finite num-
ber of available states) and shot noise vanishes74. Therefore,
the behavior of the Fano factor is heavily dependent on the
exact width of the ribbon, as a result of a significant change in
the transport regime.

In Fig. 9(c), Fig. 11 (with blue triangles), and Fig. 12, we
report the results for the same metallic ribbon when the bar-
riers are not identical and in particular differ for their length,
randomly chosen between 5 nm and 75 nm. The conclusion
is analogous to that reached in the case of the semiconduct-
ing ribbon: when the cascaded barriers differ, the effect of
resonant tunneling disappears (while Klein tunneling is still
present).

It is also interesting to consider what happens around E = 0
in the cases we have reported. For semiconducting ribbons,
no propagating mode exists for E = 0: therefore, the conduc-
tance is zero and the Fano factor is 1. Instead, for metallic
ribbons, for E = 0 the lowest mode can propagate, giving rise
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FIG. 12. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the metallic ribbon (N = 1625) with a potential consisting of a series
of different unevenly spaced rectangular barriers.

to a nonzero conductance G = G0 and to a vanishing Fano
factor. It can be interesting to compare these results with what
has been observed for a single barrier by Tworzydło et al.27.
Indeed, for E = 0 the overall device extending from the left
lead to the right one can be seen as a single long barrier with
respect to the regions with negative potential that represent the
contacts. In this case the length of the overall equivalent bar-
rier (i.e. the length of the device) is not much smaller than the
width of the ribbon, Therefore, we are exactly in the condi-
tions in which Tworzydło et al. predicted a behavior different
for metallic and semiconducting ribbons, with conductance
zero for semiconducting ribbons (for structures with a length
much larger than the width, the evanescent modes are not able
to give a nonzero contribution) and nonzero for metallic ones
(where a propagating mode exists for zero energy), in agree-
ment with our results. The presence of barriers inside the de-
vice does not alter these results: neither in the semiconduct-
ing ribbons (where the barriers represent a further obstacle to
the transmission, which is zero already in the their absence),
nor in the metallic ribbons (where the mode with zero energy,
having κyi = 0, is orthogonal to the barriers and thus does
not experience any scattering from the barriers themselves).
Note that the situation is different from what is observed for
E = U0 for the case of a single barrier: in that case, the bar-
rier that we have to consider is the real barrier, which has a
length much smaller than the ribbon width. In those condi-
tions, Tworzydło et al. predict a nonzero conductance (equal
to (4e2/(πh))(W/LB)) and a 1/3 Fano factor both for semi-

1 barrier
5 barriers
10 barriers
50 barriers
100 barriers

G
/G

0

E (eV)

 15

 10

 5

 0
 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

E (eV)

 1

 0.8

 0.6

 0.4

 0.2

 0
 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

F

a

b

FIG. 13. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the semiconducting ribbon (N = 1626) with a potential consisting of
a series of identical unevenly spaced Lorentzian barriers.

conducting and for metallic ribbons, in agreement with our
numerical results.

We have performed analogous simulations on barriers that
are not rectangular. We report the results for a semiconducting
ribbon with N = 1626 (see Figs. 13 and 14) and for a metallic
ribbon with N = 1625 (see Fig. 15) considering barriers with a
Lorentzian profile, with a 0.3 eV peak. The half-width at half-
maximum of the barriers is equal to 20 nm in the case of iden-
tical barriers, while it is a random value extracted with a uni-
form probability distribution between 2.5 nm and 37.5 nm in
the case of different barriers. For the inter-barrier distances we
have chosen values similar to those considered in the simula-
tions for rectangular barriers. Due to the longer computational
times required by the simulation of ribbons with smoothly
varying potential barriers, in this case we have considered a
smaller number of cascaded barriers.

In Figs. 13 and 15 we show the behavior of the conductance
and of the Fano factor as a function of the injection energy for
different numbers of Lorentzian barriers in the case of iden-
tical barriers in a semiconducting and in a metallic ribbon,
respectively. The results obtained in the case of different bar-
riers differ from these for the absence of strong oscillations
with energy.

Apart from the values of the energies of the quasi-confined
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FIG. 14. Polar plot of the mode transmission as a function of the
modulus of the incidence angle |θi| for the semiconducting ribbon
(N = 1626) with: a single Lorentzian barrier (red dots), 10 unevenly
spaced identical Lorentzian barriers (green squares) and 10 unevenly
spaced different Lorentzian barriers (blue triangles).
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FIG. 15. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the metallic ribbon (N = 1625) with a potential consisting of a series
of identical unevenly spaced Lorentzian barriers.
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FIG. 16. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the semiconducting ribbon (N = 1626) with a potential consisting
of a series of identical unevenly spaced rectangular barriers, in the
presence of potential disorder.

states inside the barriers, which depend on the specific barrier
profiles, we see that the main features observed in the case
of rectangular barriers are preserved. However, in this case
the oscillations of the conductance and of the Fano factor as
a function of energy are much larger: indeed, barriers with a
smoother potential profile are known to present a more selec-
tive Klein tunneling effect33,75. This is confirmed by the polar
plot of the mode transmission as a function of the modulus of
the incidence angle, that we show in Fig. 14 for the case of
a semiconducting ribbon with identical or different unevenly
spaced Lorentzian barriers.

In order to assess if our conclusions can survive in a re-
alistic scenario, we have repeated the simulations performed
on rectangular barriers adding disorder to the previously con-
sidered potential profile. This disorder, which can repre-
sent the electrostatic effect of the charged impurities unavoid-
ably present near the graphene ribbon, has been simulated
through a superposition of randomly located Gaussian scat-
terers76. We have assumed a scatterer concentration equal to
5× 1010 cm−2, and for each Gaussian function a half-width
at half-maximum of 35 nm and a random height uniformly
distributed between -10 meV and 10 meV (values which are
consistent with a low but still realistic level of disorder). As
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FIG. 17. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the metallic ribbon (N = 1625) with a potential consisting of a series
of identical unevenly spaced rectangular barriers, in the presence of
potential disorder.

we show (for example for the case of identical barriers) in
Figs. 16 and 17, in this case the main features obtained in the
previous simulations are still clearly visible. Therefore, these
effects (that would be washed out by a sufficiently strong po-
tential disorder) should however be observable in a practical
experiment on very clean samples.

Finally, we have performed a simulation for barriers that are
at an angle different from 90◦ with respect to the ribbon edges,
although all at the same angle. In particular, we have con-
sidered 0.3 eV high barriers with a rectangular profile, tilted
by 45◦ with respect to the ribbon edges. In Figs. 18 and 19
we show the results of our simulations, performed for a semi-
conducting ribbon with N = 1626 and for a metallic ribbon
with N = 1625, in the case of identical barrier lengths (analo-
gous considerations are valid in the case of different barriers).
The lengths, measured in the x direction, are identical to those
considered in the previous simulations. Therefore, as a result
of the 45◦ tilt, the barriers we have simulated have a thick-
ness of 40 nm/

√
2, with inter-barrier distances varying from

150 nm/
√

2 to 250 nm/
√

2.
Analyzing the behavior of the conductance as a function

of energy and comparing it with that observed in the case of
barriers orthogonal to the ribbon edges, we observe a larger
conductance suppression, besides the presence (already no-
ticed in Ref.56 for a single tilted barrier) of a greater number
of fine structures in the G(E) curve in the low-energy range
(and especially for a small number of barriers).
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FIG. 18. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for
the semiconducting ribbon (N = 1626) with a potential consisting of
a series of identical unevenly spaced rectangular barriers, tilted by a
45◦ angle with respect to the ribbon edges.

Apart from this, we still observe features qualitatively simi-
lar to those seen in the case of barriers orthogonal to the ribbon
edges, with mode-filtering (in particular, note that in the case
of a metallic ribbon one transmission mode still passes unal-
tered through the series of barriers, as it was observed for a
single tilted barrier in Ref.56) and, in case of identical barri-
ers, energy filtering. Indeed, if here we focus our attention on
the states that diagonalize the transmission matrix, we observe
that the physical phenomena (Klein tunneling and resonant
tunneling) which dominated transport for barriers orthogonal
to the ribbon edges are still important in the case of tilted bar-
riers.

However, looking at the behavior of the Fano factor as a
function of energy (reported in the panels (b) of Figs. 18 and
19) we notice an interesting feature: for a large range of ener-
gies the Fano factor approaches 1/3, the value typical of diffu-
sive transport. The presence of a diffusive transport regime is
confirmed by the fact that we have observed a linear behavior
of the resistance as a function of the length of the region with
potential barriers.

In general, diffusive transport takes place when the de-
vice length is much larger than the mean free path and much
smaller than the localization length (which is of the order of
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FIG. 19. Behavior, as a function of the injection energy E, of the
normalized conductance G/G0 (a) and of the Fano factor F (b) for the
metallic ribbon (N = 1625) with a potential consisting of a series of
identical unevenly spaced rectangular barriers, tilted by a 45◦ angle
with respect to the ribbon edges.

the mean free path times the number of propagating modes).
When the device length is much smaller than the mean free
path, transport is ballistic, while when the device is much
longer than the localization length, transport is strongly lo-
calized.

However, in the case of barriers orthogonal to the transport
direction, the barriers do not introduce any mixing among the
modes and thus the different modes independently propagate
along the ribbon. Therefore, the system can be considered
as a superposition of several single-mode systems, for which
the localization length is of the order of the mean free path
and thus reaching the diffusive regime is practically impos-
sible. This is, indeed, what we have seen in the simulations
with non-tilted barriers, where no trend towards 1/3 has been
observed in the behavior of the Fano factor.

Instead, when the barriers are tilted, they introduce mix-
ing among the modes and thus the ribbon, instead of being
a collection of single-mode systems, represents a real multi-
mode channel. Therefore, the localization length can be much
greater than the mean free path and the diffusive regime (with
the 1/3 suppression of the Fano factor) can be reached, as we
have indeed observed in our simulations.

The situation is analogous to the one previously investi-
gated in the literature57,58 for a series of unevenly spaced bar-
riers in a wire obtained confining the two-dimensional elec-
tron gas (2DEG) in a semiconductor heterostructure (for ex-
ample GaAs/AlGaAs). In that case, for barriers orthogonal to

the transport direction a quantum simulation found a transport
behavior changing from ballistic to localized as the number
of barriers was increased, without experiencing the diffusive
regime57.

Since the arguments that we have used to explain our nu-
merical results in a graphene ribbon in the presence of tilted
barriers are quite general, they should be valid also for a wire
in a GaAs/AlGaAs heterostructure. In order to test the valid-
ity of this conjecture, we have performed some simulations
for a 800 nm wide wire with a number (varying from 1 to 20)
of 45◦ tilted rectangular barriers, with a 0.25 eV height and
a 0.2 nm length. The distance between the adjacent barriers
has been chosen randomly between 90 nm and 110 nm. We
have considered an injection energy E = 9 meV, averaging
the results over 41 energy values uniformly distributed be-
tween 8.96 meV and 9.04 meV. The simulations have been
performed using an envelope-function model and a numerical
approach based on recursive Green’s function, written using
a mixed representation: in the real space along the transport
direction and in the space of the eigenmodes in the transverse
direction70,77. We have found that for more than 4 barriers the
Fano factor is close to 1/3. This confirms that also in semi-
conductors more traditional than graphene the tilting of the
barriers and the mode-mixing it generates can give rise to a
diffusive transport regime.

IV. CONCLUSION

We have studied an armchair graphene ribbon with a series
of randomly spaced tunnel barriers, observing the influence
of the geometric details of the device on its conductance and
shot noise behavior, which is dominated by Klein tunneling
and resonant tunneling through the states quasi-localized in
the barriers.

From the results of our simulations, we conclude that the
effect of resonant tunneling strongly depends on the similar-
ity between the barriers: in the case of identical barriers, this
structure actually represents an energy filter for the impinging
carriers. Instead, Klein tunneling gives rise to mode-filtering,
since modes with a smaller incidence angle experience larger
transmission. For a high number of barriers two different
transport regimes are reached, depending on the exact width
of the ribbon: in semiconducting ribbons transport is strongly
localized, while in metallic ribbons the lowest mode passes
unaltered through the device.

We have analyzed also the case of tilted barriers, where we
have shown that transport can become diffusive. Furthermore,
we have verified that this is true not only in graphene, but also
in more traditional semiconductors.

As we have shown in our simulations, this multiplicity of
behaviors has a strong impact on the shot noise suppression
factor, which approaches the values 0, 1/3, or 1 when per-
fect transmission, diffusive dynamics, or strong localization
are reached, respectively. Therefore, the analysis and mea-
surement of shot noise turns out to be a very useful tool for
the study of the transport regime taking place in the device.

Since we have found that these effects should persist also in
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the case of barriers with a smooth profile and in the presence
of low levels of potential disorder, they should be detectable
in actual measurements. Experiments performed on graphene
ribbons biased by a series of unevenly spaced negatively bi-
ased top gates would be useful to validate our analysis and
could represent an important step forward towards the appli-
cation of these devices as energy and mode filters in graphene-
based electronics.
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