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Parameter Estimation of Hybrid Sinusoidal
FM-Polynomial Phase Signal

Pu Wang, Philip V. Orlik, Kota Sadamoto, Wataru Tsujita, and Fulvio Gini, Fellow, IEEE

Abstract— This paper considers parameter estimation of a
hybrid sinusoidal frequency modulated (FM) and polynomial
phase signal (PPS) from a limited number of samples. We first
show limitations of an existing method, the high-order ambiguity
function (HAF), and then propose a new method by adopting the
high-order phase function which was originally designed for the
pure PPS. The proposed method estimates parameters of interest
from peak locations in the time-frequency rate domain, which
are less perturbed by the noise than peak values used by the
HAF-based method. Numerical evaluation shows, the proposed
method can handle the hybrid FM-PPS signal with low sinusoidal
frequency and improve estimation accuracy in terms of mean
squared error for several orders of magnitude.

Index Terms— Parameter estimation, frequency modulation,
polynomial phase signal, high-order phase function.

I. INTRODUCTION

Parameter estimation of polynomial phase signals (PPSs)
from a finite number of samples is a fundamental problem
in many applications, including radar, sonar, communications,
acoustics and optics [1]–[11]. In this paper, we consider a
special PPS model: a hybrid sinusoidal frequency modulated
(FM) and PPS signal (referred to as the hybrid sinusoidal FM-
PPS),

y(n) = x(n) + v(n), n = 0, 1, · · · , N − 1, (1)

= Aej2πb sin(2πf0n+φ0)ej2π
∑P

p=0 apn
p/p! + v(n)

where A is the unknown amplitude, b > 0 is the sinusoidal
FM modulation index, f0 is the sinusoidal FM frequency, φ0

is the initial phase, {ap}Pp=0 are the PPS phase parameters, P
is the polynomial order, v(n) is the white Gaussian noise with
an unknown variance σ2, N is the number of samples.

Compared with the vast literature on the pure PPS signal
[1]–[11], the hybrid sinusoidal FM-PPS of (1) receives less
attention [12]–[17]. As pointed out in [17], one primary
motivation to study the hybrid FM-PPS comes from Doppler
radar systems. On one hand, when a target is moving at a
time-varying acceleration, outputs at the matched filter can be
modeled as a pure PPS with the phase parameter {ap}Pp=0 as-
sociated to the kinematic parameters of the moving target. For

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

P. Wang and P. V. Orlik are with Mitsubishi Electric Research Laboratories
(MERL), 201 Broadway, Cambridge, MA 02139, USA (e-mail: {pwang,
porlik}@merl.com).

K. Sadamoto and W. Tsujita are with Mitsubishi Electric Advanced
Technology Center, Amagasaki City, 661-8661, Japan (e-mai: {sadamoto.kota,
tsujita.wataru}@ea.mitsubishielectric.co.jp).

F. Gini is with the Department of Ingegneria dell’Informazione, University
of Pisa, Pisa, Italy (e-mail: f.gini@ing.unipi.it).

instance, the initial velocity and acceleration are proportional
to a1 and a2, respectively. On the other hand, rotating parts
(e.g., rotating blades of a helicopter) and target vibration (e.g.,
jet engine) introduce the sinusoidal FM component [12]–[15].
With both effects, the matched filter outputs follow the hybrid
signal model in (1).

In this paper, we are still interested in the parameter
estimation of the hybrid sinusoidal FM-PPS of (1), but focus
on applications where a low sinusoidal FM frequency f0

is often observed. We first show limitations of an existing
method, the high-order ambiguity function (HAF), especially
when f0 is relatively small, and then propose a new approach
which makes use of the high-order phase function (HPF),
originally designed for the pure PPS, and locally approximates
the sinusoidal FM component in the nonlinear kernel by a
second-order Taylor series expansion. We discuss how to
determine the local region (over the delay) to make the
Taylor expansion error less than a given threshold. Finally,
the proposed method is numerically compared to competing
methods in terms of identifiability, computational complexity
and estimation accuracy.

II. PRIOR ARTS

We start with a brief review of existing methods for the
parameter estimation of the signal in (1). The optimal maxi-
mum likelihood (ML) estimation minimizes the negative log-
likelihood function [18] which is known to yield a multi-
dimensional search and, hence, is computationally prohibited
from practical applications.

A computational efficient estimator is based on phase un-
wrapping (PU) followed by a nonlinear least square (NLS)
fitting, referred to the PULS method here. Denote φ̂(n) the
unwrapped phase, the PULS method minimizes the function

min
b,f0,φ0,ap

N−1∑
n=0

∣∣∣∣∣ φ̂(n)

2π
− b sin(2πf0n+ φ0)−

P∑
p=0

apn
p

p!

∣∣∣∣∣
2

(2)

where the estimation of f0 involves a one-dimensional search.
Although computationally simple, this approach may show
limited performance at low signal-to-noise ratios (SNRs) due
to the phase unwrapping step. In addition, the PULS method
cannot be applied to the multi-component scenario.

Proposed for the pure PPS and as a non-parametric estimator
[19], [20], the quasi maximum likelihood (QML) method can
be extended for the hybrid FM-PPS. It fits the instantaneous
frequency (IF) extracted by the short-time Fourier transform
(STFT) with the NLS (similar to (2)). Since the STFT gives
biased estimates of the IF, the above process has to be repeated
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over a set of STFT window sizes and the one giving the
maximum estimated likelihood is chosen. With an additional
refining step [21], the QML method further reduces the bias
and show low SNR threshold. However, due to the iterative
process, its complexity may be still too high for certain
applications.

The HAF method, originally designed for the pure PPS [3],
[5], was particularly designed to jointly estimate the hybrid
sinusoidal FM-PPS in [17]. Specifically, the HAF computes a
high-order nonlinear kernel

s1(n) = y(n), s2(n; τ1) = y(n+ τ1)y∗(n− τ1), (3)
sM (n; τM−1) = sM−1(n+ τM−1; τM−2)s∗M−1(n− τM−1; τM−2),

where τM = [τ1, · · · , τM ] groups all delay coefficients.
Plugging (1) into (3) results in

sM (n; τM−1) = AMe
j[ωcn+ψc+β sin(2πf0n+ψ0)], (4)

where AM = |A|2M−1

, ωc = 2MπaMQτ , ψc =
2MπaM−1Qτ , β = 2Mπb

∏M−1
m=1 sin(2πf0τm) and ψ0 =

φ0 + (M − 1)π/2 with Qτ =
∏M−1
m=1 τm. It is seen from (4)

that this nonlinear kernel generates a single-tone FM signal
with a tone frequency at ωc and a sinusoidal FM frequency at
2πf0. In [17], this single-tone FM signal is approximated by
a superposition of multiple harmonics

sM (n; τM−1) ≈ AM
K∑

k=−K

Jk(β)ej[(ωc+2πf0k)n+ψc+kψ0] (5)

where K is the maximum order of the Bessel function of the
first kind Jk(·). (5) implies that the single-tone FM signal
can be decomposed into (2K + 1) harmonics with the tone
frequency sweeping from ωc − 2πKf0 to ωc + 2πKf0 at an
inter-peak stepsize 2πf0. As a result, one can estimate f0 and
aM (via ωc) by identifying the (2K+1) peak locations of the
FFT spectrum of sM (n; τM−1). The estimation of β can be
obtained from the peak values Jk(β).

Although the HAF-based method shows advantages over the
phase unwrapping method [17], it may have several issues.
First, it may not be an easy task to correctly identify multiple
local peaks (see the following Fig. 1). Second, the use of
peak values to estimate the sinusoidal FM index b may result
in larger estimation errors (also noted in Examples 1 and 2
of [17]). Third, the HAF may fail to handle the hybrid FM-
PPS signal when the sinusoidal FM frequency f0 is small,
a particular scenario of our interest. This is due to the FFT
spectrum resolution which is determined by 1/N . To identify
these (2k+1) peaks, the inter-peak distance of f0 has to be at
least 1/N , i.e., f0 ≥ 1/N . When f0 is small, the HAF spectra
cannot resolve these (2K+1) peaks. For example, we consider
the same hybrid FM-PPS with P = 2 in Example 2 of [17]
with parameters A = 1, b = 6, φ0 = 0, a0 = 0.5, a1 = 0.1,
a2 = 3.4722 · 10−4, N = 1024, and ω0 = 2πf0 = 0.0491.
The top plots of Fig. 1 show that the HAF-based method with
τ = {32, 129} is able to form multiple peaks which align
with the analytical locations of {ωc + 2πf0k}Kk=−K (denoted
as vertical red lines and K = 3). Specifically, the HAF spectra
with τ = 129 gives the same result shown in Fig. 1 (b)
of [17]. Next, we change the sinusoidal FM frequency to

Fig. 1. The HAF spectra of the hybrid FM-PPS with P = 2 in the noise-free
case. Vertical red lines denote the analytical peaks at {ωc + 2πf0k}Kk=−K
with K = 3. Top row: ω0 = 2πf0 = 0.0491, the same case as Example 2
of [17]; Bottom row: ω0 = 2πf0 = 0.0063, a resolution issue.

ω0 = 2πf0 = 0.0063. As shown in the bottom plots of Fig. 1,
the HAF-based method is no longer able to resolve multiple
peaks as the FFT resolution cannot support the finer separation
of peaks separated by f0.

III. PROPOSED ESTIMATOR

In this section, we first introduce another nonlinear kernel
of HPF, originally designed for pure PPS [7], [9], and propose
a local version of the HPF for the hybrid FM-PPS.

A. High-order Phase Function

The HPF employs the following nonlinear transform [7], [9]

cL(n; d, r) =

L∏
l=1

[y(n+ dlτ)y(n− dlτ)]
rl , (6)

where d = [d1, · · · , dL], r = [r1, · · · , rL], [·]rl denotes the
conjugation if rl = −1, and τ ∈ Γ(n) with Γ(n) denoting
the feasible range of τ at time n. For a pure PPS, the HPF
selects the coefficients d and r such as

∑L
l=1 rld

2
l = 1 and∑L

l=1 rld
m
l = 0 for even values of 4 ≤ m ≤ P [9, Proposition

1], and integrates the nonlinear kernel along τ2,

HL(n,Ψ) =
∑

τ∈Γ(n)

cL(n; d, r)e−j2πΨτ2

, (7)

where Ψ is the index for the instantaneous frequency rate
(IFR), i.e., the second-order phase derivative. It can be shown
that, for any given time n, the squared magnitude of HL(n,Ψ)
is centered on IFR(n) =

∑P−2
p=2 apn

p−2/(p − 2)! due to the
match filtering in (7).

B. The Proposed Estimator

For the hybrid signal in (1), the nonlinear kernel of (6) gives

cL(n; d, r) =A2Lej2πϕej2πIFR(n)τ2

ej4πb sin(2πf0n+φ0)
∑L

l=1 rl cos(2πf0dlτ). (8)

It is seen that the first two exponential terms are related to
the PPS component with ϕ independent of τ and IFR(n)
associated with τ2. The last exponential term is from the
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sinusoidal FM component and is nonlinear (via cos(·)) over
τ . Therefore, directly integrating cL(n; d, r) over τ ∈ Γ(n)
cannot coherently accumulate the signal energy along τ2.

To coherently integrate the kernel over τ2, we locally
approximate cos(2πf0dlτ) by its Taylor series expansion, i.e.,

cos(2πf0dlτ) ≈ 1− (2πf0)2τ2

2
d2
l , |τ | ≤ ε (9)

where ε defines a local region around τ = 0. With (9), the
local kernel of (8) is given as

c̃L(n; d, r) =A2Lej2πϕej4πb sin(2πf0n+φ0)
∑L

l=1 rl (10)

ej2π[IFR(n)−b sin(2πf0n+φ0)(2πf0)2]τ2

, |τ | ≤ ε,

where we have used the fact that
∑L
l=1 rld

2
l = 1. Then the

local HPF integrates the local kernel over −ε ≤ τ ≤ ε

H̃L(n,Ψ) =

ε∑
τ=−ε

c̃L(n; d, r)e−j2πΨτ2

, (11)

which achieves the maxima along the trajectory

Ψ(n) =

P∑
p=2

apn
p−2

(p− 2)!
− 4π2f2

0 b sin(2πf0n+ φ0). (12)

It is seen that the local HPF embeds the parameters of interest
({ap}Pp=2, b, f0, φ0) into peak locations. For the pure PPS, i.e.,
b = 0, the local HPF forms the peak ridge along its IFR(n).

C. Parameter Estimation
From (12), we can extract the peak locations and estimate

these parameters by the following steps. First, group K peak

locations Ψ̂ =
[
Ψ̂(n0), · · · , Ψ̂(n0 +K − 1)

]T
, construct the

matrix H(f) = [n2, · · · ,nP , s(f), c(f)] with columns given
as

np =
[
np−2

0 /(p− 2)!, · · · , np−2
n0+K−1/(p− 2)!

]T
,

s(f) = [sin(2πfn0), · · · , sin(2πf(n0 +K − 1))]
T
,

c(f) = [cos(2πfn0), · · · , cos(2πf(n0 +K − 1))]
T
, (13)

and solve the following least square problem

f̂0 = min
f
‖Ψ̂−H(f)g‖2 = min

f
Ψ̂TP⊥H(f)Ψ̂ (14)

where g is a (P +1)×1 linear parameter vector and P⊥H(f) =

I − H(f)
(
HT (f)H(f)

)−1
HT (f) is the projection matrix.

With the estimated f̂0, we have

ĝ =
(
HT (f̂0)H(f̂0)

)−1

HT (f̂0)Ψ̂. (15)

Then the remaining (P + 1) parameters can be estimated as

â2 = ĝ(1), · · · , âP = ĝ(P − 1), (16)

b̂ =

√
ĝ2(P ) + ĝ2(P + 1)

4π2f̂2
0

, φ̂0 = arctan

(
ĝ(P + 1)

ĝ(P )

)
.

With the above estimated parameters, we can
demodulate the original signal as ŷ(n) =

y(n)e−j2πb̂ sin(2πf̂0n+φ̂0)e−j2π
∑P

p=2 âpn
p/p! and estimate

the remaining parameters, {A, a0, a1}, by the conventional
single-tone parameter estimation algorithm.

Fig. 2. The Taylor series expansion of (9). Top plot: the Taylor series
expansion; Bottom plot: the approximation error over |τ | ≤ 26.

D. The Choice of ε

From the above discussion, it is clear that the Taylor series
expansion in (9) is critical to the local HPF of (12). The
number of samples included in the integration in (12) may
be limited due to the local region ε is too small. On the
other hand, ε cannot be arbitrarily large since the second-order
Taylor expansion cannot hold. In the following, we use the
remainder term of the Taylor series expansion to determine an
upper bound of ε for a given approximation error. Define z =
2πf0 and, hence, f(z) = cos(2πf0dlτ) = cos(z) ≈ 1 − z2

2 .
The remainder term R(z) = f(z)−(1−z2/2) can be shown as
R(z) = sin(zc)z

3/6 where zc is a real number between 0 and
z. As a result, we have |R(z)| =

∣∣sin(zc)z
3/6
∣∣ ≤ |z|3/6. For a

given upper bound ζ on the approximation error, the maximum
local region ε can be determined as |R(z)| ≤ |z|3/6 = ζ →
|z| ≤ (6ζ)

1/3 which is equivalent to

|τ | ≤ ε = (6ζ)
1/3
/(2πdmaxf0,max) (17)

where dmax is the largest dl and f0,max is the upper limit
on f0. As shown in Fig. 2, we compare cos(2πdlf0τ) with
its Taylor expansion of (9) over |τ | ≤ ε = 26. The local
region is determined by using (17) with a bound ζ = 0.01
and 2πdmaxf0,max = 0.015. It is seen that the second-order
Taylor expansion holds well and the approximation error (in
the bottom plot) is well below the given bound at ζ = 0.01.

E. Computational Complexity

We provide a brief comparison in terms of computational
complexity. For the ML method, it requires O(NP+3) opera-
tions and the complexity is prohibitively high when the PPS
order P is large. The PULS method requires O(N logN) for
the phase unwrapping step and O(N2) for the the one-time
NLS fitting of (2) [22]. For the proposed LHPF method, it
has similar complexity to the PULS method. The difference
is that the proposed method uses O(εN log ε) operations to
calculate the LHPF of (12) with the fast algorithm of [7],
where ε < N . The complexity of the HAF-based method is
slightly higher than the PULS and LHPF methods as it takes
O(N2 logN) operations to compute the HAF, followed by the
one-time NLS fitting. Finally, with M window sizes, the QML
method requires O(MN2 logN) operations for computing the
STFT M times and O(MN2) for implementing the NLS
fittings M times [19]. The refining step further adds more
operations. Therefore, the proposed method is computationally
much lighter than the QML and ML methods.
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Fig. 3. The local HPF of the hybrid FM-PPS with P = 2 with ω0 =
2πf0 = 0.0491, the same case as Example 2 of [17].

Fig. 4. The local HPF of the hybrid FM-PPS with P = 2 with ω0 =
2πf0 = 0.0063, the same case as in Fig. 1 (b).

IV. PERFORMANCE EVALUATION

In this section, simulation results are provided to evaluate
the proposed estimator. In the noisy scenario, the SNR is
defined as SNR = A2/σ2.

A. Example 1: Hybrid Sinusoidal FM-PPS with P = 2

We first consider the noise-free case of Fig. 1 (a) with
ω0 = 2πf0 = 0.0491. Fig. 3 shows the local HPF (with
L = 1, d = 1, r = 1) of the hybrid sinusoidal FM-PPS.
We set the upper bound on the Taylor approximation error
as ζ = 0.01 which leads to the local region ε = 7. As
shown in Fig. 3, the true peak locations Ψ(n), predicted by
(12), are denoted by blue dash lines. The estimated peak
locations Ψ̂(n), denoted by red squares, align well with the
true peak locations. By using the detected peak locations,

TABLE I
MSE OF THE LOCAL HPF WITH ζ = 0.05 IN EXAMPLE 2

SNR (dB) MSE(b̂) MSE(ω̂0) MSE(â3)
10 4.89 · 10−6 0.74 · 10−8 0.22 · 10−18

15 3.70 · 10−6 0.35 · 10−8 0.09 · 10−18

20 2.67 · 10−6 0.23 · 10−8 0.03 · 10−18

TABLE II
MSE (SQUARED BIAS) OF THE HAF-BASED METHOD IN EXAMPLE 2

SNR (dB) MSE(b̂) MSE(ω̂0) MSE(â3)
10 8.73 · 10−6 6.00 · 10−8 12.56 · 10−18

15 5.99 · 10−6 2.84 · 10−8 14.81 · 10−18

20 5.75 · 10−6 2.82 · 10−8 14.76 · 10−18

Fig. 5. The measured MSEs and CRBs as a function of SNR.

the phase parameters {a2, b, f0, φ0} are correctly estimated
from (14) and (16). Next, the sinusoidal FM frequency varies
to ω0 = 0.0063, the same case as in Fig. 1 (b). Fig. 4
shows the local HPF of the hybrid sinusoidal FM-PPS. With
ζ = 0.01, the local region is increased to ε = 62. It is seen
that, compared with those in Fig. 3, the peak locations exhibit
slower oscillation due to the smaller f0. Again, the detected
peak locations match well with the true ones and, hence, the
phase parameters are correctly estimated.

B. Example 2: Hybrid Sinusoidal FM-PPS with P = 3

We consider a hybrid FM-PPS signal with P = 3 which
is also used in Example 1 of [17]. With 500 Monte-Carlo
runs, the measured mean square errors (MSEs) of the proposed
estimator with ζ = 0.05 are shown in Table I. For the
HAF-based method, Table II shows the squared bias from
Table I of [17]. Recall that the MSE is the sum of the
squared bias and variance. As a result, the actual MSEs of
the HAF-based method are larger than the number listed in
Table II. Comparison between these two tables clearly shows
that the proposed estimator has several orders of magnitude
enhancements for these three parameters.

We also compare the measured MSEs of the proposed
method with the PULS and QML methods as well as cor-
responding CRBs in Fig. 5. The performance of the PULS
method reaches to the CRBs at high SNRs but becomes worse
than the proposed LHPF estimator when SNR is below 12.5
dB. To efficiently evaluate the QML method, we use 6 window
sizes H = [4, 8, 16, 32, 48, 64] and choose the one yielding
the largest likelihood function. Fig. 5 shows that the QML
method gives lower MSEs for estimating b, ω0 and a3 but
slightly higher MSEs for estimating a2. It appears that the
window selection step of the QML method is not optimized
for estimating a2.

V. CONCLUSION

In this paper, we proposed a local version of the HPF,
originally designed for the pure PPS, for the hybrid sinu-
soidal FM-PPS. It shows significantly improved estimation
performance than the HAF-based method. Compared with the
PULS and QML methods, the proposed estimator offers a good
trade-off between the estimation accuracy and computational
complexity.
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