- The essential oil from industrial hemp (*Cannabis sativa* L.) by-products as an effective
 tool for insect pest management in organic crops
- 3
- 4 Giovanni Benelli^{1,2}*, Roman Pavela³, Riccardo Petrelli⁴, Loredana Cappellacci⁴, Giuseppe
- 5 Santini⁴, Dennis Fiorini⁵, Stefania Sut⁶, Stefano Dall'Acqua⁶, Angelo Canale¹, Filippo Maggi⁴
- 6
- ⁷ ¹ Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80,
- 8 56124 Pisa, Italy
- 9 ² The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio
- 10 34, 56025 Pontedera, Pisa, Italy
- ³ Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic
- ⁴ School of Pharmacy, University of Camerino, Camerino, Italy
- 13 ⁵ School of Sciences and Technology, University of Camerino, Camerino, Italy
- ⁶ Department of Pharmaceutical and Pharmacological Sciences, Natural Product Laboratory,
- 15 University of Padova, Padova, Italy
- 16
- 17 * Corresponding author. Phone: +39 0502216141, Fax: +39 0502216087; e-mail:
- 18 benelli.giovanni@gmail.com (G. Benelli)

- 20 Abstract

22	The inflorescences of industrial hemp (Cannabis sativa L.) represent a consistent by-
23	product that is underutilized. Moving from the concept that this plant part has evolved as a
24	natural weapon against phytophagous insects, secreting important secondary metabolites such
25	as cannabinoids and volatile terpenes, herein we assayed the potential of its essential oil as a
26	botanical insecticide. For the purpose, the essential oil was obtained by fresh inflorescences of
27	hemp (monoecious cv. Felina 32) by steam-distillation and analysed by gas chromatography
28	(GC-FID) and gas chromatography-mass spectrometry (GC-MS). The oil was tested against
29	the filariasis vector Culex quinquefasciatus, the peach-potato aphid Myzus persicae, the
30	housefly Musca domestica and the tobacco cutworm Spodoptera littoralis. To prove its
31	harmlessness on non-target invertebrates, it was tested on the multicolored Asian lady beetle,
32	Harmonia axyridis, and Eisenia foetida earthworms and compared with α -cypermethrin as the
33	positive control. The essential oil composition was dominated by monoterpene and
34	sesquiterpene hydrocarbons, with (<i>E</i>)-caryophyllene (45.4%), myrcene (25.0%) and α -pinene
35	(17.9%) as the most abundant compounds. Results from insecticidal tests showed that the
36	essential oil from inflorescences of industrial hemp cv Felina $\frac{32}{32}$ was highly toxic to M.
37	<i>persicae</i> aphids (LC ₅₀ of 3.5 mL.L ⁻¹) and <i>M. domestica</i> flies (43.3 μ g adult ⁻¹), while toxicity
38	was moderate towards S. littoralis larvae (152.3 μ g larva ⁻¹), and scarce against C.
39	<i>quinquefasciatus</i> larvae (LC ₅₀ of 252.5 mL.L ⁻¹) and adults (LC ₅₀ > 500 μ g.cm ⁻²). Contrary to
40	α -cypermethrin, the hemp cv Felina 32 essential oil was not toxic to non-target invertebrate
41	species, including 3 rd instar larvae and adults of <i>H. axyridis</i> ladybugs and adults of <i>E. foetida</i>
42	earthworms. Taken together our results shed light on the possible utilization of the crop
43	residue of industrial hemp as a source of environmental-friendly botanical insecticides to be

44 used in Integrated Pest Management and organic agriculture, particularly to manage aphid and

45 housefly populations.

- 46
- 47 Keywords: hemp; *Cannabis sativa*; essential oil; aphids; earthworms; mosquito vectors

1. Introduction

51	In the last years, the market of conventional agrochemical products to combat insects
52	and agricultural pests has experienced a significant decrement due to the explosion of
53	botanical pesticides that have conquered the trust of agricultural labourers and have been
54	increasingly employed in Integrated Pest Management (IPM) programmes (Isman and
55	Machial, 2006; Thakore, 2006; Benelli et al., 2017a, 2018a,b). In this regard, botanical
56	insecticides are favourable accepted by consumers due to their recognized efficacy, the eco-
57	friendly impact, the low toxicity on mammals and beneficial organisms (Desneux et al., 2007;
58	Benelli et al., 2016; Pavela and Benelli, 2016; Stevenson et al., 2017), and the low or none
59	possibility to cause resistance in arthropod pests. Thus, this trend is expected to still go up in
60	the next years because of marketing of new products (Isman, 2015) and of the streamlining
61	regulation operated by authorities.
62	Among various crops having the potential to be employed in IPM programmes, here
63	we focused on industrial hemp (Cannabis sativa L.).
64	Indeed, a hallmark of hemp (in both var. <i>indica</i> and <i>sativa</i>) is the presence of
65	glandular hairs concentrated on leaves and, to a major extent, on inflorescences that secrete a
66	sort of oleoresin functioning as a barrier entrapping and killing plant enemies (Potter, 2009).
67	These parts are normally discharged during the conventional hemp processing, thus
68	representing an underutilized biomass for further application. In particular, they are a rich
69	source of essential oil containing mainly monoterpene and sesquiterpene hydrocarbons
70	(Bertoli et al., 2010).
71	The exploitation of hemp by-products as a source of botanical insecticides is a matter
72	of interest for farmers, allowing them to maximise the commercial value of hemp cultivation.

73 Our idea is to obtain bioactive essential oils from the inflorescences of industrial hemp that

usually remain underutilized to manufacture natural insecticides to be employed in organic
agriculture and IPM programmes. Indeed, research in this topic area is still poor.

76 Cultivation of industrial hemp to produce insecticides displays the following strengths: 77 (i) lack of similar products (i.e. hemp-based insecticides); (ii) low costs of raw material and 78 availability of agricultural lands for its cultivation; (iii) increasing demand for eco-friendly 79 and safe products; (iv) possibility to split the end products in other fields (e.g., cosmetics and pharmaceutics). Supporting literature comes from the recent investigations by Benelli et al. 80 81 (2018a) and Bedini et al. (2016) who found that the hemp essential oil is effective against 82 larvae of mosquito vectors and moth pests, as well as against flies and snails. 83 In the present work, we used GC-MS analysis to investigate the chemical composition 84 of the essential oil from the inflorescences of industrial hemp cv. Felina 32 cultivated in central Italy. The quantification of the marker compounds α -pinene, myrcene, terpinolene, 85 86 (E)-caryophyllene and cannabidiol in the essential oil was performed by GC-FID. 87 Furthermore, we explored the insecticidal effects of industrial hemp cultivated in 88 central Italy on a panel of economically important target insects including two vectors of 89 public health importance, i.e., the mosquito *Culex quinquefasciatus* Say (Diptera: Culicidae), 90 and the house fly Musca domestica L. (Diptera: Muscidae) (Benelli & Mehlhorn 2016; 91 Davies et al., 2016), and two insect pests attacking crops of high economic interest, i.e., the 92 aphid Myzus persicae (Sulzer) (Rhyncota: Aphididae), and the tobacco cutworm Spodoptera 93 littoralis (Boisduval) (Lepidoptera: Noctuidae). In particular, C. quinquefasciatus is 94 recognized as a vector of lymphatic filariasis, West Nile and Zika virus (Benelli and Romano, 95 2017), while *M. persicae* and *S. littoralis* are able to feed on more than 400 and 80 plant 96 species, respectively (Bass et al., 2014; OEPP/EPPO, 2015), with severe economic damages 97 for farmers.

98	To prove the safety of hemp essential oil, its toxicity on beneficial organisms such as
99	the multicolored Asian lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae)
100	and the earthworm Eisenia foetida (Savigny) (Oligochaeta, Lumbricidae) has been evaluated
101	and compared with α -cypermethrin as positive control. Based on our results, a future
102	application of this multi-purpose crop as a source of botanical insecticides to combat
103	agricultural pests and vectors of public importance may be possible.
104	
105	2. Materials and methods
106	
107	2.1. Plant material
108	The inflorescences of industrial hemp cv. Felina 32 (Assocanapa, Torino, Italy) were
109	collected from a cultivated field placed in Fiuminata, central Italy (N 43°11'11", E
110	12°56'24", 318 m a.s.l.) in August 2017. The crop utilized was normally employed to produce
111	seed oil. A voucher specimen was archived and deposited in the Herbarium of the Centro
112	Ricerche Floristiche dell'Appennino (APP), Barisciano, L'Aquila, Italy, under the codex APP
113	No. 57789.
114	
115	2.2. Steam distillation
116	Fresh inflorescences of hemp (2500 g) were inserted in an Albrigi Luigi E0106
117	(Stallavena di Grezzana-Verona, Italy) stainless steel apparatus (capacity 20 L) and subjected
118	to steam-distillation for 3 h. Steam was produced from 2 L of water at the bottom of
119	apparatus. Once obtained the yellowish oil was decanted, then collected using a funnel and
120	dehydrated with anhydrous Na_2SO_4 . The yield was calculated on a dry weight basis, by
121	calculating the water content of inflorescences prior to distillation. The oil was stored in
122	amber glass vials at +4 °C before insecticidal assays.

124 2.3. GC-MS analysis

Hemp essential oil, diluted 1:100 in *n*-hexane injected into an Agilent 6890N gas 125 126 chromatograph equipped with a 5973N mass spectrometer. Separation was achieved on a HP-127 5 MS (5 % phenylmethylpolysiloxane, 30 m, 0.25 mm i.d., 0.1 µm film thickness; J & W 128 Scientific, Folsom) column. As oven temperature programme we used the following operative 129 conditions: 5 min at 60°C then increase up to 220 °C with a gradient of 4°C/min, then 130 increase up to 280 °C at 4 °C/min, held for 15 min. The temperature of injector and detector 131 was 280 °C; the carrier gas was helium (He) with a flow rate of 1 mL/min and using a split 132 ratio of 1:50. 133 The chromatograms were obtained in full scan using electron-impact (EI, 70 eV) 134 mode. The mass range scanned was 29-400 m/z. Data were elaborated by using the MSD 135 ChemStation software (Agilent, Version G1701DA D.01.00) and the NIST Mass Spectral 136 Search Program for the NIST/EPA/NIH Mass Spectral Library v. 2.0. The analysis was 137 repeated three times and the mean values reported. The peak assignment was achieved by 138 comparison with analytical standards bought from Sigma-Aldrich (Milan, Italy) (see Table 1). 139 In addition, the combination of the correspondence of the linear retention indices, 140 calculated using a mixture of C8-C30 n-alkanes (Supelco, Bellefonte, CA, USA) according to 141 the Van den Dool and Kratz formula (Van den Dool & Kratz, 1963), and mass spectra with 142 respect to those reported in ADAMS, NIST 08 and FFNSC2 libraries (Adams, 2007; NIST 143 08, 2008; FFNSC2, 2012) was used as an additional parameter for peak assignment. The 144 percentage values were obtained from the peak areas without calculating the response factors. 145 146 2.4. Quantification of the marker compounds by GC-FID

147	Quantification of α -pinene, (E)-caryophyllene, terpinolene, cannabidiol, myrcene in
148	the essential oil was performed by means of gas-chromatography coupled with flame
149	ionization detection (GC-FID) using a GC 6850 from Agilent Technologies. The analytical
150	standards of the above compounds were purchased from Sigma-Aldrich (Milan, Italy). The oil
151	was diluted with chloroform (10 mg in 1 mL of chloroform) and 0.5 μL injected in split mode
152	(split ratio 1:30) into the GC. The injector temperature was 300°C. The carrier gas was
153	hydrogen produced by a generator (PGH2-250 from DBS Analytical Instruments, Vigonza,
154	Italy). The initial gas flow in the column was 3.7 mL min ⁻¹ . Chromatographic column coating
155	was a (5%-Phenyl)-methylpolysiloxane (HP-5, 30 m, 0.32 mm i.d., 0.25 µm film thickness,
156	from Agilent Technologies). The oven temperature was held at 60°C for 3 min, then raised at
157	25°C min ⁻¹ until 350°C and held at 350°C for 1 min, for a total run time of 15.60 min. The
158	FID temperature was set at 360°C and hydrogen flow was 40 mL min ⁻¹ and air flow was 400
159	mL min ⁻¹ . The quantification was performed by using the calibration curves obtained for
160	analytes investigated which were built by preparing stock standard solutions at 6 different
161	concentrations in the range 0.225-14 mg mL ⁻¹ . Correlation coefficients ranged from 0.9944 to
162	0.9999.

164 2.5. Insect and earthworm rearing

The method by Benelli et al., (2017a) was used to rear third instar larvae and nonblood-fed females of *C. quinquefasciatus* tested in the experiments described below. In assays
testing houseflies (*M. domestica*), adult females were obtained as described by Benelli et al.
(2018a). An artificial insect diet (Stonefly Industries, Bryan, TX, USA) as reported by Sut et
al. (2017) was used to rear early 3rd instar larvae of *S. littoralis. M. persicae* adults were
reared on greenhouse potted cabbage *Brassica oleracea* convar. *capitata* (L.) ALEF.
(Brassicaceae), according to the procedure detailed by Stepanycheva et al. (2014), while *H*.

172	axyridis larvae and adults were obtained as described by Pavela et al. (2013). All the tested
173	insects were maintained at 25±1 °C, 70±3% R.H. and 16:8 h (L:D).
174	Adult earthworms (E. fetida, weight 350–500 mg) with well-developed clitella were
175	reared in laboratory (>20 generations; out-crossed once), while keeping the earthworms in
176	artificial soil according to OECD (1984), room temperature was 20±1 °C. The artificial soil
177	was as described by Pavela (2018). Maximum water-holding capacity (35%) of the soil was
178	checked weekly.
179	
180	2.6. Toxicity on Culex quinquefasciatus larvae
181	We used a WHO method (WHO, 1996) with slight adjustments as described by Pavela
182	et al. (2017) to test the acute toxicity of <i>C. sativa</i> cv Felina 32 essential oil diluted in dimethyl
183	sulfoxide (DMSO) on <i>C. quinquefasciatus</i> 3 rd instar larvae (tested concentrations: 40, 60, 70,
184	100, and 150 μ l L ⁻¹ , concentrations were calculated considering the pure essential oil as 100
185	% concentration). The tests provided mortality values ranging from 10% and 90%. Four
186	duplicate trials were performed for each concentration. Distilled water with the same amount
187	of DMSO used to test <i>C. sativa</i> cv Felina $\frac{32}{2}$ essential oil was used as the control. Larval
188	mortality was noted after 24 h. α -Cypermethrin was used as the positive control since its
189	insecticidal efficacy, as well as that of many essential oils, is based on neurotoxicity.
190	
191	2.7. Toxicity on Culex quinquefasciatus adults
192	
193	According to WHO reports (WHO, 1996), the most common method of protection
194	against adults is by means of impregnated nets or treated residential walls. Therefore, tarsal
195	tests for the development of botanical insecticides against adults are highly important. The
196	tarsal contact test was conducted to evaluate the acute toxicity of C. sativa cv Felina $\frac{32}{32}$

197	essential oil for adult females of C. quinquefasciatus. The method by WHO (1996) with
198	minor changes by Benelli et al. (2017b) was used for this test, while the C. sativa cv Felina $\frac{32}{32}$
199	oil was diluted with acetone (2 mL, Sigma-Aldrich, Germany) plus silicon oil (3.6 mg.cm ⁻²).
200	The obtained mixture was carefully applied onto filter paper (Whatman No. 1, size: 12×15
201	cm). The essential oils were tested at 5 doses ranging from 100 to 500 μ g.cm ⁻² . After a drying
202	phase of 24 h at 25 °C the treated filter paper pieces were inserted in test tubes where 20
203	female mosquitoes, 2-5 days old, were exposed for 1 h. After this period the females were put
204	in plastic cages (20×20×20 cm, 26±1 °C 16:9 L:D) and kept there for 24 h; a sucrose solution
205	was supplied to them as food. Mortality was determined at 24 h from their exposure. α -
206	Cypermethrin was used as the positive control.
207	
208	2.8. Toxicity on Musca domestica adults
209	Topical application tests were performed to test the acute toxicity of C. sativa cv
210	Felina $\frac{32}{32}$ essential oil against <i>M. domestica</i> adult females (3–6 days old). We used the
211	method reported by Pavela et al. (2018), i.e. a microelectric applicator on the pronotum of
212	houseflies anesthetized using CO_2 was used to apply 1 μ L of acetone (Sigma-Aldrich,
213	Germany) carrying the <i>C. sativa</i> cv Felina 32 essential oil at concentrations ranging from 30
214	to 250 μ g adult ⁻¹ (each replicated at least 4 times). Acetone without the <i>C. sativa</i> cv Felina 32
215	essential oil was used as the control. Subsequently, the houseflies were put into a recovery
216	box (10×10×12 cm, 26±1 °C 16:9 L:D) and kept there for 24 h before determining their
217	mortality. α -Cypermethrin was used as the positive control.
218	
219	2.9. Toxicity on Myzus persicae

Toxicity assays were conducted to test the toxicity of *C. sativa* cv Felina 32 essential
oil on *M. persicae* aphids. The toxicity was tested in adults on potted cabbage plants with 3-4

222 true leaves, as detailed by Stepanycheva et al. (2014). The C. sativa cv Felina $\frac{32}{2}$ essential oil 223 was co-formulated with Tween 80 (1:1, v:v); the concentrations of 15, 10, 5.0, 2.5 and 1.2 $ml.L^{-1}$ were used in the assays, equivalent to 7.5, 5.5, 2.5, 1.25 and 0.6 $ml.L^{-1}$ of the C. sativa 224 225 cv Felina 32 essential oil. A manual sprayer was used to apply this mixture on the cabbage plants, at 50 ml m⁻² (corresponding to approx. 500 L.ha⁻¹), while water plus Tween 80 at 7.5 226 mL.L⁻¹ was tested as the negative control (50 mL.m⁻²). For each replicate, 50 M. persicae 227 228 adults (4 replicates per tested concentration) were tested at 25 ± 1 °C, $70\pm5\%$ R.H., and using 229 the photoperiod 16:8 h (L:D). The mortality rate of *M. persicae* was noted at 48 h from 230 spraying. α -Cypermethrin was used as the positive control 231 232 2.10. Toxicity on Spodoptera littoralis larvae In this case, the toxicity of the *C. sativa* cv Felina $\frac{32}{2}$ essential oil on 3^{rd} instar larvae 233 234 of the tobacco cutworm, S. littoralis, was evaluated using a method recently described by Sut 235 et al. (2017), i.e. through topical application of the essential oil diluted in acetone on the 236 larvae. The larvae were treated on the dorsum with 1 µL of acetone, which contained five different concentrations (ranging from 100 to 400 μ g larva⁻¹) of the C. sativa cv Felina 32 237 238 essential oil. Four replicates (n=20 larvae per replicate) were used for each tested oil 239 concentration. Acetone (without any *C. sativa* cv Felina 32 essential oil) served as the control. 240 The moth larvae were then moved to a recovery box $(10 \times 10 \times 7 \text{ cm})$ with thin holes on each wall to avoid fumigation effects, and kept there at 26±1 °C, 70±3 % R.H., and 16:8 L:D for 241 242 24 h. Subsequently, the larval mortality was determined. α -Cypermethrin was used as the 243 positive control. 244

245 2.11. Toxicity on the non-target species Harmonia axyridis

246	Using the method described by Pavela et al. (2013), 3 rd instar larvae and adults (3-7
247	days old) of the ladybug H. axyridis – a non-target organism – were tested to assess the acute
248	toxicity of the C. sativa cv Felina $\frac{32}{32}$ oil. The tested concentrations (5.5, 2.5, 1.25 and 0.6
249	mL.L ⁻¹), as well as the testing procedure were the same for both the (ladybug) larvae and
250	adults as described in "Toxicity on <i>M. persicae</i> ", since the latter is a common prey of <i>H</i> .
251	axyridis, which means that they share the same ecological niche. Only one difference was
252	implemented – the C. sativa cv Felina $\frac{32}{32}$ essential oil was applied on ladybug larvae and
253	adults in open Petri dishes (9 cm in diameter; ten insects tested per replicate; 4 replicates per
254	tested concentration). The commercial insecticide Vaztak® was applied in the concentration
255	recommended for its use against aphids – 0.1% (v/v), equivalent to 0.005% (w/v) of α -
256	cypermethrin, the active substance. Subsequently, 20 mL of the application liquid was applied
257	per m ² , equivalent to about 200 L.ha ⁻¹ , while the negative control was treated only with water
258	containing the appropriate equivalent (11 ml.L ⁻¹) of Tween 85, and a 50 mL dose of the
259	application liquid was applied per m ² , equivalent to about 500 L.ha ⁻¹ . The individuals of H .
260	axyridis were moved to clean Petri dishes after the treatment, and here they were fed with M.
261	persicae aphids, while maintained at 25±1°C, 70±5% R.H., and 16:8 (L:D); mortality was
262	noted after 48 h.

264 2.12. Toxicity on non-target Eisenia fetida earthworms

The standard OECD (1984) method was followed to test the toxicity of the *C. sativa* cv Felina 32 essential oil on *E. fetida* adult earthworms. In these assays, the used artificial soil was characterized by the same composition and pH as described for *E. fetida* rearing; the soil was prepared by adding the EOs in concentrations of 200, 100 and 50 mg.kg⁻¹, mixed with Tween 80 (ratio 1:1 v:v), equivalent to 100, 50 and 25 mg EO a.i. per kg of dry weight basis soil. We used α -cypermethrin at 50.0, 25.0 and 12.5 mg.kg⁻¹ of dry soil [i.e., Vaztak® at

271	1000, 500 and 250 μ L.kg ⁻¹ (v/v)] as the positive control, while distilled water was used as the
272	negative control. An aqueous formulation containing the C. sativa cv Felina 32 essential oil,
273	pure water or α -cypermethrin was mixed into the soil (650 g) and 10 <i>E. foetida</i> adults were
274	added. Both the treated and control soil samples were then stored in glass pots (1 L) covered
275	with gauze in order to ensure aeration. The mortality rates of <i>E. foetida</i> were noted after 7 and
276	14 days of exposure to the treatments at 20 \pm 1 °C, R.H. 80-85%, 16:8 (L:D) and 600 lux.
277	
278	2.13. Statistical analysis
279	When the controlled mortality reached 20%, the observed mortality was corrected
280	using Abbott's formula (Abbott, 1925). Probit analysis was conducted to estimate the $LD_{50(90)}$
281	and $LC_{50(90)}$ values, with associated 95% confidence limits for each treatment (Finney, 1971).
282	Mortality rates (%) were transformed using the arcsine $\sqrt{\text{transformation before running}}$
283	ANOVA and Tukey's HSD test ($P \le 0.05$).
284	
284 285	3. Results and Discussion
284 285 286	3. Results and Discussion
284 285 286 287	3. Results and Discussion 3.1. Composition of hemp essential oil
284 285 286 287 288	 3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave
284 285 286 287 288 288	 3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave 0.1% of essential oil whose chemical profile is depicted in Fig. 1. A total of forty-seven
284 285 286 287 288 288 289 290	3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave 0.1% of essential oil whose chemical profile is depicted in Fig. 1. A total of forty-seven volatile constituents were identified by GC-MS, accounting for 99.8% of the total area
284 285 286 287 288 289 290 291	3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave 0.1% of essential oil whose chemical profile is depicted in Fig. 1. A total of forty-seven volatile constituents were identified by GC-MS, accounting for 99.8% of the total area percentage (Table 1). The oil was dominated by two major groups of components, namely
284 285 286 287 288 289 290 291 292	3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave 0.1% of essential oil whose chemical profile is depicted in Fig. 1. A total of forty-seven volatile constituents were identified by GC-MS, accounting for 99.8% of the total area percentage (Table 1). The oil was dominated by two major groups of components, namely monoterpene hydrocarbons (54.0%) and sesquiterpene hydrocarbons (44.2%). Overall, the
284 285 286 287 288 289 290 291 291 292 293	3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave 0.1% of essential oil whose chemical profile is depicted in Fig. 1. A total of forty-seven volatile constituents were identified by GC-MS, accounting for 99.8% of the total area percentage (Table 1). The oil was dominated by two major groups of components, namely monoterpene hydrocarbons (54.0%) and sesquiterpene hydrocarbons (44.2%). Overall, the most abundant components exhibiting percentage values above 10% were (E)-caryophyllene
284 285 286 287 288 289 290 291 292 293 293 294	 3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave 0.1% of essential oil whose chemical profile is depicted in Fig. 1. A total of forty-seven volatile constituents were identified by GC-MS, accounting for 99.8% of the total area percentage (Table 1). The oil was dominated by two major groups of components, namely monoterpene hydrocarbons (54.0%) and sesquiterpene hydrocarbons (44.2%). Overall, the most abundant components exhibiting percentage values above 10% were (<i>E</i>)-caryophyllene (23.8%), α-pinene (16.4%) and myrcene (14.2%), accounting together for more than half the
284 285 286 287 288 289 290 291 291 292 293 293 294 295	3. Results and Discussion 3.1. Composition of hemp essential oil Steam-distillation of the fresh inflorescences of industrial hemp (cv Felina 32) gave 0.1% of essential oil whose chemical profile is depicted in Fig. 1. A total of forty-seven volatile constituents were identified by GC-MS, accounting for 99.8% of the total area percentage (Table 1). The oil was dominated by two major groups of components, namely monoterpene hydrocarbons (54.0%) and sesquiterpene hydrocarbons (44.2%). Overall, the most abundant components exhibiting percentage values above 10% were (<i>E</i>)-caryophyllene (23.8%), α -pinene (16.4%) and myrcene (14.2%), accounting together for more than half the oil composition. Other components occurring at noteworthy amounts were terpinolene

296 (9.6%), α -humulene (8.3%), β -pinene (5.2%), (*E*)- β -ocimene (5.1%) and (*E*)- β -farnesene 297 (3.0%). It is worth mentioning that cannabinoids were almost missing from this oil sample; 298 they were represented only by cannabidiol (0.1%). Further, the content of caryophyllene 299 oxide, the main oxidation product of (*E*)-caryophyllene which is considered the key volatile 300 for detection of marijuana was here present in scant amounts (1.2%).

In the present work, we have also developed a GC-FID method for accurate quantification of marker compounds of the hemp essential oil, namely α -pinene, myrcene, terpinolene, (*E*)-caryophyllene and cannabidiol. The method was proven to be linear and reproducible, allowing to quantitatively determine the absolute content of these oil constituents. Indeed, (*E*)-caryophyllene was the most abundant compound accounting for 45.4% of the oil, followed by myrcene (25.0%), α -pinene (17.9%) and terpinolene (10.1%), whereas cannabidiol was found at trace levels (<0.1%).

308 Actually, the chemical composition of the essential oil from hemp inflorescences is 309 affected by several factors such as cultivar, harvesting period and extraction and processing of 310 the raw material (Benelli et al., 2018a; Calzolari et al., 2017). As a consequence, several 311 chemotypes have been reported showing different levels of monoterpene and sesquiterpene 312 hydrocarbons as well as cannabinoids (Bertoli et al., 2010). When compared with the study of 313 Bertoli et al. (2010) conducted on the same cv (Felina 32), a substantial overlapping of the 314 chemical profiles can be observed. As matter of fact, Bertoli et al. (2010) reported α -pinene 315 (20.3-20.4%), (E)-caryophyllene (19.4-19.5%), terpinolene (15.0-19.1%) and myrcene (12.3-316 13.6%) as the major constituents of the essential oils obtained from inflorescences of plants 317 cultivated during two years in Tuscany, Italy. Among the other constituents, also in these samples β -pinene (6.3-7.9%), (*E*)- β -ocimene (5.9-6.5%) and α -humulene (5.0-6.0%) were 318 319 detected as the most representative ones. On the other hand, here cannabidiol (1.7-1.9%) was 320 found at higher levels than in our sample (0.1%). We assume that the slight differences

emerged in these studies may be due to the different methods used for the extraction of
essential oils, i.e. steam-distillation vs. hydrodistillation. As a matter of fact, the latter is
known to be more aggressive than the former and produces oxidative and hydrolytic reactions
to a major extent leading to decarboxylation of the cannabinoid acids into the relative alcohol
forms (Calzolari et al., 2017). Also, when considered the yields related to the fresh matter
distilled, the two studies gave convergent values (0.1%).

327 On the other hand, the chemical profile observed in this study was quite different from

those obtained from other cultivars and/or subjected to different processing. As a matter of

fact, in our previous study performed on the hemp Felina 75, we found (E)-caryophyllene

330 (21.4%), myrcene (11.3%), cannabidiol (11.1%), α -pinene (7.8%), terpinolene (7.6%), and α -

humulene (7.1%) as the most abundant essential oil constituents (Benelli et al., 2018a). We

imputed this variance to the different cultivar utilized as well to the extraction procedure

333 (hydrodistillation) and condition of raw material (dried vs fresh).

334

335 *3.2. Insecticidal activity and impact on non-target invertebrates*

336 Essential oils have been successfully used to manage a rather wide number of insect 337 pests and vectors (Benelli and Pavela, 2018a,b). Herein, the results from insecticidal tests 338 showed that the essential oil from inflorescences of industrial hemp cv Felina 32 was highly toxic to *M. persicae* aphids (LC₅₀₍₉₀₎ of 3.5(6.2) mL.L⁻¹) and *M. domestica* flies (LD₅₀₍₉₀₎ = 339 43.3(213.5) μ g adult⁻¹) (Table 2), while toxicity was moderate towards *S. littoralis* larvae 340 (152.3 μ g larva⁻¹), and scarce against *C. quinquefasciatus* larvae (LC₅₀ of 252.5 mL,L⁻¹) and 341 342 adults ($LC_{50} > 500 \ \mu g. cm^{-2}$) (Table 2). Furthermore, the toxicity of cypermethrin, tested as 343 positive control, on the four insect species, was detailed in Table 2. The hemp cv Felina 32 essential oil was not toxic to non-target organisms, such as 3^{rd} instar larvae and adults of H. 344 345 axyridis ladybugs (Table 3) and adults of the E. foetida earthworms (Table 4).

346 Although the tested EO showed lower efficacy against the larvae of S. littoralis, C. 347 quinquefasciatus and against the adults of M. domestica, we found outstanding aphicidal 348 efficacy against *M. persicae*. As already reported, some EOs exhibit very promising effects 349 against aphids (Pavela, 2018). However, our paper provides not only the first information 350 about very good aphicidal efficacy of the EO from C. sativa, but also evidence of the fact that 351 this EO is very friendly to non-target organisms. This information is important as it indicates 352 environmental safety of residues of potential botanical insecticides developed based on this 353 EO. Generally, aphids are widely recognized as key pests in agriculture, including the tested 354 *M. persicae*, which is also one relevant insect vector of plant viruses (Blackman and Eastop, 355 2000; Blanc et al., 2011). In addition, this aphid species has been known for its ability to 356 develop populations showing resistance to synthetic insecticides (Bass and Field, 2011; Bass 357 et al., 2014). Botanical insecticides based on EOs from C. sativa can thus become a suitable 358 alternative solution for the protection against these important pests. 359 Environmental safety of EOs against natural enemies of aphids and soil organisms has 360 also been confirmed by some previous studies. For example, the EO from Foeniculum 361 *vulgare* Mill. showed no significant toxicity for earthworms, unlike a synthetic insecticide 362 based on α -cypermethrin, which killed all earthworms instantly, just like in our case (Pavela, 363 2018). Earthworms are necessary for the development and maintenance of the nutritional 364 value and structure of soil (Datta et al., 2016). As such, they play an important role in the 365 conversion of biodegradable materials and organic waste to vermicast, which is rich in 366 nutrients (Jansirani et al., 2012). Protection of these organisms thus clearly requires proper 367 attention. 368 Additionally, even though earthworms are able to consume a wide range of

- 369 contaminated organic materials including but not limited to sewage sludge and industrial
- waste (Lim et al., 2016), they are very sensitive to insecticides (Datta et al., 2016; Vasantha-

371 Srinivasan et al., 2018). Generally, insecticides have a definite negative effect on the survival
372 of earthworms, especially in concentrations higher than 25 mg.kg⁻¹ (Rodriguez-Campos et al.,
373 2014; Datta et al., 2016). In this respect, we have succeeded in finding a promising and
374 environmentally acceptable active substance for potential botanical insecticides.

375 The oleoresin secreted by hemp glandular trichomes has evoluted as a chemical 376 defence against insects (Potter, 2009). The volatile part of this secretion is mainly composed of monoterpene and sesquiterpene hydrocarbons having variable chemical structures (e.g., 377 378 linear, monocyclic, and bicyclic ones), low molecular weight and high hydrophobicity that 379 make them particularly capable of crossing easily the insect surface, diffusing through the 380 body and entering the cells. Moreover, their high lipophilicity allows them to interact with 381 behavioural, metabolic and physiological processes of insect (Jacobson, 1989). Hemp 382 essential oil is a mixture of several dozens of chemical constituents of various structure and 383 mechanism of action, having frequently a multi-target action. Indeed, synergistic effects occur 384 among the different constituents so that the crude essential oil has toxicity higher than that of 385 its major components, with none or reduced probability of inducing resistance in insects 386 (Hummelbrunner and Isman, 2001). Essential oils can produce neurotoxicity on insects by 387 interacting with different receptors such as cholinergic, gamma-aminobutyric acid (GABA) 388 and octopaminergic ones (Pavela and Benelli, 2016). In this regard, it has been reported that 389 the hemp essential oil is able to inhibit the acetylcholinesterase (AChE) enzyme in a more 390 effective manner than other oils (Benelli et al., 2018a).

391 Overall, the toxic effects of hemp essential oil on the four target insects may be 392 attributed to the main chemical constituents such as α -pinene, myrcene, (*E*)-caryophyllene 393 and terpinolene. Indeed, α -Pinene was reported as toxic against *Aedes aegypti* and *Culex* 394 *pipiens molestus* with LD₅₀ of 15.4 and 47-49 ppm, respectively (Lucia et al., 2007; Traboulsi 395 et al., 2002), while myrcene is a key component in several essential oils endowed with

396 larvicidal and/or repellent effects against mosquito vectors such as those from orange (Citrus

397 x *aurantium* L.) peel (Govindarajan et al., 2012) and lemongrass (*Cymbopogon citratus* (DC.)

398 Stapf (Bossou et al., 2013; Suwansirisilp et al., 2013).

- 399 Besides, the essential oils containing high levels of (*E*)-caryophyllene, such as those 400 from Artemisia nilagirica (C.B.Clarke) Pamp. and Pinus nigra J.F. Arnold var. italica were 401 reported as repellent against the dengue vector A. aegypti (Ali et al., 2016) and toxic against 402 C. quinquefasciatus (Benelli et al., 2017b). Assayed as a pure compound, (E)-caryophyllene 403 was toxic on larvae of Anopheles subpictus, Aedes albopictus and C. tritaeniorhynchus with 404 LD₅₀ of 41.7, 44.8 and 48.2 ppm, respectively (Govindarajan et al., 2016). More generally, it 405 has been reported that this compound is among the most active essential oil constituents with 406 larvicidal effects known so far, and its effects may be synergized by other compounds 407 occurring in mixture (Pavela, 2015). (E)-caryophyllene and α -pinene isolated from the Vitex 408 negundo seed extract exhibited toxicity and repellency against Aphis gossypii Glover along 409 with effects on fertility at sublethal doses (Liu et al., 2010). 410 Tepinolene, another main constituent of hemp essential oil, can neutralize the 411 octopaminergic system causing knockout of insect (Rattan, 2010). Terpinolene is one of the 412 major volatile constituents of Clausena excavata Burm. F. which showed inhibitory effects on 413 larvae of A. aegypti and A. albopictus (LD₅₀ of 37 and 41 ppm, respectively) (Cheng et al., 414 2009) and of *Tagetes patula* L. which exerted toxicity against larvae of A. aegypti, C. 415 *quinquefasciatus* and *Anopheles stephensi* (LD₅₀ of 37, 22 and 12 ppm, respectively) 416 (Dharmagadda et al., 2005). 417 418 4. Conclusions
- 419

420	Overall, taken together our results shed light into the possible utilization of the crop
421	residue of industrial hemp cv Felina 32 as a source of botanical insecticides to be used in
422	Integrated Pest Management programmes and organic agriculture. Although the hemp
423	essential oil marker compounds are already known, this research showed that their mixtures in
424	the form of a pure essential oil may act as a good biopesticide, notably against aphids and
425	houseflies, giving an added value to the by-product, i.e., inflorescences, obtained during hemp
426	cultivation. Its great availability following the harvesting and processing of hemp fibre and/or
427	seeds make it an additional resource to exploit and valorise at industrial level.
428	
429	Conflict of Interest
430	
431	Authors declare no conflict of interest.
432	
433	Acknowledgments
434	
435	The Authors thank Michele Grossi, Luigi Corradini and La Biologica Soc. Coop. Agr.
436	for kindly providing samples of hemp cv Felina 32. R. Pavela thanks Ministry of Agriculture
437	of the Czech Republic for its financial support concerning botanical pesticide and basic
438	substances research (Project No. RO0417). F. Maggi is grateful to University of Camerino
439	(Fondo di Ateneo per la Ricerca, FAR 2014/2015, FPI 000044) for supporting this work.
440	
441	References
442	
443	Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ.
444	Entomol. 18, 265–267.

- Adams, R.P., 2007. Identification of essential oil components by gas chromatography/mass
 spectroscopy. Carol Stream (IL): Allured.
- 447 Ali, A., Tabanca, N., Amin, E., Demirci, B., Khan, I.A., 2016. Chemical composition and
- biting deterrent activity of essential oil of *Tagetes patula* (Marigold) against *Aedes aegypti*.
- 449 Nat. Prod. Comm. 11, 1535-1538.
- 450 Bass, C., Puinean, A. M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O.,
- 451 Nauen, R., Slater, R., Williamson, M.S., 2014. The evolution of insecticide resistance in
- 452 the peach potato aphid, *Myzus persicae*. Insect Biochem. Mol. Biol. 51, 41-51.
- 453 Bass, C., Field, L.M., 2011. Gene amplification and insecticide resistance. Pest Manag. Sci.
- 454 67, 886–890.
- 455 Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O.,
- 456 Nauen, R., Slater, R., Williamson, M.S., 2014. The evolution of insecticide resistance in
- 457 the peach potato aphid, *Myzus persicae*. Insect Biochem. Mol. Biol. 51, 41–51.
- 458 Bedini, S., Flamini, G., Cosci, F., Ascrizzi, R., Benelli, G., Conti, B., 2016. Cannabis sativa
- 459 and *Humulus lupulus* essential oils as novel control tools against the invasive mosquito
- 460 *Aedes albopictus* and fresh water snail *Physella acuta*. Ind. Crops Prod. 85, 318-323.
- 461 Benelli, G., Mehlhorn, H., 2016. Declining malaria, rising dengue and Zika virus: insights for
- 462 mosquito vector control. Parasitol. Res. 115, 1747–1754.
- Benelli, G., Romano, D., 2017. Mosquito vectors of Zika virus. Entomologia Generalis 36,
 309-318.
- 465 Benelli G, Pavela R (2018a) Repellence of essential oils and selected compounds against ticks
- 466 a systematic review. Acta Trop. 179:47–54, doi: 10.1016/j.actatropica.2017.12.025
- 467 Benelli G, Pavela R (2018b) Beyond mosquitoes Essential oil toxicity and repellency
- 468 against bloodsucking insects. Ind. Crops Prod. 117:382–392, doi:
- 469 10.1016/j.indcrop.2018.02.072.

470	Benelli, G., Pavela, R., Canale, A., Mehlhorn, H. 2016. Tick repellents and acaricides of
471	botanical origin: a green roadmap to control tick-borne diseases? Parasitol. Res. 115, 2545-
472	2560.

- 473 Benelli, G., Pavela, R., Iannarelli, R., Petrelli, R., Cappellacci, L., Cianfaglione, K., Afshar,
- 474 F.H., Nicoletti, M., Canale, A., 2017a. Synergized mixtures of Apiaceae essential oils and
- 475 related plant-borne compounds: larvicidal effectiveness on the filariasis vector *Culex*

476 *quinquefasciatus* Say. Ind. Crops Prod. 96, 186-195.

- 477 Benelli, G., Pavela, R., Canale, A., Cianfaglione, K., Ciaschetti, G., Conti, F., Nicoletti, M.,
- 478 Senthil-Nathan, S., Mehlhorn, H., Maggi, F., 2017b. Acute larvicidal toxicity of five
- 479 essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and
- 480 *Pelargonium graveolens*) against the filariasis vector *Culex quinquefasciatus*: Synergistic
- 481 and antagonistic effects. Parasitol. Int. 66, 166-171.
- 482 Benelli, G., Pavela, R., Lupidi, G., Nabissi, M., Petrelli, R., Kamte, S.L.N., Cappellacci, L.,
- 483 Fiorini, D., Sut, S., Dall'Acqua, S., Maggi, F., 2018a. The crop-residue of fiber hemp cv.
- 484 Futura 75: from a waste product to a source of botanical insecticides. Environ. Sci. Poll.
- 485 Res. doi: 10.1007/s11356-017-0635-5.
- 486 Benelli, G., Pavela, R., Giordani, C., Casettari, L., Curzi, G., Cappellacci, L., Petrelli, R.,
- 487 Maggi, F., 2018b. Acute and sub-lethal toxicity of eight essential oils of commercial
- 488 interest against the filariasis mosquito *Culex quinquefasciatus* and the housefly *Musca*
- 489 *domestica*. Ind. Crops Prod. 112, 668-680.
- 490 Bertoli, A., Tozzi, S., Pistelli, L., Angelini, L.G., 2010. Fiber hemp inflorescences: from crop-
- 491 residues to essential oil production. Ind. Crops Prod. 32, 329–337.
- 492 Blackman, R.L., Eastop, V.F., 2000. Aphids on the World's crops. An identification and
- 493 information guide, 2nd edn. John Wiley & Sons Ltd, Hoboken.

- Blanc, S., Uzest, M., Drucker, M., 2011. New research horizons in vector transmission of
 plant viruses. Curr. Opin. Microbiol. 14, 483–491.
- 496 Bossou, A.D., Mangelinckx, S., Yedomonhan, H., Boko, P.M., Akogbeto, M.C., De Kimpe,
- 497 N., Avlessi, F., Sohounhloue, C.K., 2013. Chemical composition and insecticidal activity
- 498 of plant essential oils from Benin against *Anopheles gambiae* (Giles). Parasit. Vectors 6,
- 499 337.
- 500 Calzolari, D., Magagnini, G., Lucini, L., Grassi, G., Appendino, G.B., Amaducci, S., 2017.
- 501 High added-value compounds from *Cannabis* threshing residues. Ind. Crops Prod. 108,
 502 558-563.
- 503 Cheng, S.S., Chang, H.T., Lin, C.Y., Chen, P.S., Huang, C.G., Chend, W.J., Chang, S.T.,
- 2009. Insecticidal activities of leaf and twig essential oils from *Clausena excavata* against
 Aedes aegypti and *Aedes albopictus* larvae. Pest Manag. Sci. 65, 339–343.
- 506 Datta, S., Singh, J., Singh, S., Singh, J., 2016. Earthworms, pesticides and sustainable
- 507 agriculture: a review. Environ. Sci. Pollut. Res. 23, 8227–8243.
- 508 Davies, M. P., Anderson, M., Hilton, A. C., 2016. The housefly Musca domestica as a
- 509 mechanical vector of *Clostridium difficile*. J. Hosp. Infect. 94, 263-267.
- 510 Desneux, N., Decourtye, A., Delpuech, J. M., 2007. The sublethal effects of pesticides on
- 511 beneficial arthropods. Annu. Rev. Entomol. 52, 81-106.
- 512 Dharmagadda, V.S.S., Naik, S.N., Mittal, P.K., Vasudevan, P., 2005. Larvicidal activity of
- 513 *Tagetes patula* essential oil against three mosquito species. Bioresour. Technol. 96, 1235–
 514 1240.
- 515 FFNSC 2, 2012. Flavors and Fragrances of Natural and Synthetic Compounds. Mass spectral
- 516 database. Japan: Shimadzu Corps.
- 517 Finney, D.J., 1971. Probit Analysis. Cambridge University, London, pp. 68–78.

518	Govindarajan, M., Rajeswary, M., Bhattacharyya, A., Benelli, G., 2016. Eugenol, α-pinene
519	and β -caryophyllene from <i>Plectranthus barbatus</i> essential oil as eco-friendly larvicides
520	against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 115,
521	807-815.
522	Govindarajan, M., Sivakumar, R., Rajeswary, M., Yogalakshmi, K., 2012. Chemical
523	composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against
524	three mosquito species. Parasitol. Res. 110, 2023-2032.
525	Hummelbrunner, L.A., Isman, M.B., 2001. Acute, sublethal, antifeedant, and synergistic
526	effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera
527	litura (Lep., Noctuidae). J. Agric. Food Chem. 49, 715-720.
528	Isman, M.B., 2015. A renaissance for botanical insecticides. Pest Manag. Sci. 71:1587–1590.
529	Isman, M.B., Machial, C.M., 2006. Chapter 2 Pesticides based on plant essential oils: from
530	traditional practice to commercialization. In M. Rai and M.C. Carpinella (eds.), Naturally
531	Occurring Bioactive Compounds, Elsevier, BV, pp 29-44.
532	Jacobson, M., 1989. Botanical Pesticides: Past, Present and Future. Insecticides of Plant In
533	Origin. Arnason, Philogene, Bjr and Morand, P. ACS Symp. Ser., vol. 387, pp. 1-10.
534	Jansirani, D., Nivethitha, S., Singh, M.V.P., 2012. Production and utilization of vermicast
535	using organic wastes and its impact on Trigonella foenum and Phaseolus aureus. Int. Res.
536	J. Biol. Sci. 2, 187–189.
537	Lim, S.L., Lee, L.H., Wu, T.Y., 2016. Sustainability of using composting and
538	vermicomposting technologies for organic solid waste biotransformation: recent overview,
539	greenhouse gases emissions and economic analysis. J. Clean. Prod. 111, 262–278.
540	Liu, Y., Xue, M., Zhang, Q., Zhou, F., Wei, J., 2010. Toxicity of β-caryophyllene from Vitex
541	negundo (Lamiales: Verbenaceae) to Aphis gossypii Glover (Homoptera: Aphididae) and
542	its action mechanism. Acta Entomologica Sinica 53, 396-404.

- 543 Lucia, A., Audino, P.G., Seccacini, E., Licastro, S., Zerba, E., Masuh, H., 2007. Larvicidal
- 544 effect of *Eucalyptus grandis* essential oil and turpentine and their major components on
- 545 *Aedes aegypti* larvae. J. Am. Mosq. Control Assoc. 23, 299-303.
- 546 NIST 08, 2008. National Institute of Standards and Technology. Mass spectral library
- 547 (NIST/EPA/NIH). Gaithersburg (MD): National Institute of Standards and Technology.
- 548 OEPP/EPPO, 2015. EPPO standards PM 7/124(1) diagnostic protocol for Spodoptera
- 549 *littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania.* Bull.
- 550 OEPP/EPPO Bull. 34: 257–270.
- 551 Pavela, R., Benelli, G., 2016. Essential oils as eco-friendly biopesticides? Challenges and
- constraints. Trends in Plant Science 21, 1000-1007.
- 553 Pavela, R., 2015. Essential oils for the development of eco-friendly mosquito larvicides: a
- 554 review. Ind. Crops Prod. 76, 174-187.
- Potter, D.J., 2009. The Propagation, Characterisation and Optimisation of *Cannabis sativa* L.
 as a Phytopharmaceutical. Pharmaceutical Sciences, King's College, London.
- 557 Pavela, R., Zabka, M., Vrchotova, N., Triska, J., Kazda, J. 2013. Selective effects of the
- 558 extract from Angelica archangelica L. against Harmonia axyridis (Pallas)—an important
- predator of aphids. Ind. Crops Prod. 51, 87-92.
- 560 Pavela, R., 2016. History, presence and perspective of using plant extracts as commercial
- botanical insecticides and farm products for protection against insects—a review. Plant
 Protection Science 52, 229–241.
- 563 Pavela, R., Maggi, F., Lupidi, G., Cianfaglione, K., Dauvergne, X., Bruno, M., Benelli, G.,
- 564 2017. Efficacy of sea fennel (*Crithmum maritimum* L., Apiaceae) essential oils against
- 565 *Culex quinquefasciatus* Say and *Spodoptera littoralis* (Boisd.). Ind. Crops Prod. 109, 603-
- **566 610**.

- 567 Pavela, R., Maggi, F., Lupidi, G., Mbuntcha, H., Woguem, V., Womeni, H. M., Barboni, L.,
- 568 Tapondjou, L.A., Benelli, G., 2018. Clausena anisata and Dysphania ambrosioides
- sesential oils: from ethno-medicine to modern uses as effective insecticides. Environ. Sci.
- 570 Pollut. Res. doi: 10.1007/s11356-017-0267-9
- 571 Pavela, R., 2018. Essential oils from *Foeniculum vulgare* Miller as a safe environmental
- 572 insecticide against the aphid *Myzus persicae* Sulzer. Environ. Sci. Pollut. Res. doi:
- 573 10.1007/s11356-018-1398-3
- 574 Rattan, R.S., 2010. Mechanism of action of insecticidal secondary metabolites of plant origin.
 575 Crop Prot. 29, 913–920.
- 576 Rodriguez-Campos, J., Dendooven, L., Alvarez-Bernal, D., Contreras-Ramos, S.M., 2014.
- 577 Potential of earthworm to accelerate removal of organic contaminants from soil: a review.
 578 Appl. Soil Ecol. 79, 10–25.
- 579 Stepanycheva, E. A., Petrova, M. O., Chermenskaya, T. D., Pavela, R., 2014. Prospects for
- 580 the Use of *Pongamia pinnata* Oil-Based Products against the Green Peach Aphid *Myzus*

581 *persicae* (Sulzer) (Hemiptera: Aphididae). Psyche 2014, 705397

- 582 Stevenson, P.C., Isman, M.B., Belmain, S.R. 2017. Pesticidal plants in Africa: a global vision
- of new biological control products from local uses. Ind. Crops Prod. 110, 2-9.
- 584 Sut, S., Pavela, R., Kolarčik, V., Lupidi, G., Maggi, F., Dall'Acqua, S., Benelli, G., 2017.
- 585 Isobutyrylshikonin and isovalerylshikonin from the roots of *Onosma visianii* inhibit larval
- growth of the tobacco cutworm *Spodoptera littoralis*. Ind. Crops Prod. 109, 266-273.
- 587 Thakore, Y., 2006. The biopesticide market for global agricultural use. Ind. Biotechnol. 2,
- 588 194–208.
- 589 Traboulsi, A.F., Taoubi, K., El-Haj, S., Bessiere, J.M., Rammal, S., 2002. Insecticidal
- 590 properties of essential plant oils against the mosquito *Culex pipiens molestus* (Diptera:
- 591 Culicidae). Pest Manag. Sci. 58, 491–495

592	Van den Dool, H., Kratz, P.D., 1963. A generalization of the retention index system including
593	linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A
594	11, 463-471.
595	Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsankar, A., Thanigaivel, A., Chellappandian,
596	M., Edwin, E.S., Selin-Rani, S., Kalaivani, K., Hunter, W.B., Duraipandiyan, V., Al-
597	Dhabi, N.A., 2018. Acute toxicity of chemical pesticides and plant-derived essential oil on
598	the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia
599	fetida (Savigny). Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9236-6.
600	WHO, 1991. The Housefly. Training and Information Guide (intermediate Level). Geneva,
601	vol. 1211 Division of Control of Tropical Diseases, World Health Organization, Geneva
602	27, Switzerland (unpublished document WHO/VBC/90.987; available on request).
603	WHO, 1996. Report of the WHO informal consultation on the evaluation and testing of
604	insecticides. CTD/WHOPES/IC/96.1.

	29 allo-i	28 α-hui	27 α- <i>tra</i>	26 γ-elei	25 α-san	24 (E)-c	23 sesqu	22 (Z)-c	21 hexy	20 7 <i>-epi</i>	19 terpii	18 borne	17 terpii	16 γ-terp	15 (<i>E</i>)-β	14 (Z)-β	13 1,8-c	12 β-phe	11 limor	10 <i>p</i> -cyr	9 α-terj	8 δ-3-c	7 α-phe	6 myrc	5 β-pin	4 camp	3 α-pin	2 α-thu	1 tricyc	N. Com
famesene	romadendrene	nulene	<i>is</i> -bergamotene	nene	talene	aryophyllene	ithujene	ıryophyllene	hexanoate	sesquithujene	en-4-ol	ol	olene	inene	ocimene	ocimene	neole	llandrene	ene	lene	inene	ırene	llandrene	ene	ene	hene	ene	ene	lene	onent ^a
1457	1451	1445	1432	1428	1415	1411	1404	1398	1389	1387	1174	1161	1085	1056	1047	1037	1028	1025	1025	1022	1014	1008	1003	066	896	939	926	921	914	RI Exp. ^b
1454	1458	1452	1432	1434	1416	1412	1405	1399	1389	1390	1174	1165	1086	1054	1044	1032	1025	1025	1024	1020	1014	1008	1002	886	974	946	932	924	921	RI Lit. ^e
$3.0{\pm}0.5$	$0.8 {\pm} 0.2$	8.3±1.7	2.2 ± 0.3	$0.1 {\pm} 0.0$	$0.2{\pm}0.0$	23.8 ± 3.9	Ħ	$0.2{\pm}0.0$	Ħ	ť	ť	Ħ	$9.6{\pm}1.6$	$0.1 {\pm} 0.0$	5.1 ± 0.9	$0.6 {\pm} 0.2$	$0.1 {\pm} 0.0$	1.0 ± 0.2	$0.5 {\pm} 0.1$	trſ	$0.3 {\pm} 0.1$	$0.2{\pm}0.0$	0.3 ± 0.1	14.2 ± 2.6	5.2 ± 1.1	$0.2{\pm}0.0$	$16.4{\pm}2.9$	$0.1 {\pm} 0.0$	$0.1 {\pm} 0.0$	(%) ^d
Std, RI, MS	Std,RI,MS	Std,RI,MS	RI,MS	RI,MS	RI,MS	Std, RI, MS	RI,MS	RI,MS	RI,MS	RI,MS	Std,RI,MS	Std,RI,MS	Std, RI, MS	Std,RI,MS	Std,RI,MS	Std,RI,MS	Std, RI, MS	RI,MS	Std,RI,MS	Std, RI, MS	Std, RI, MS	Std,RI,MS	Std,RI,MS	Std,RI,MS	Std,RI,MS	Std,RI,MS	Std,RI,MS	RI,MS	RI,MS	ID ^e

Table 1. Chemical composition of the essential oil from the fresh inflorescences of Cannabis sativa cv Felina 32 cultivated in central Italy.

1 HP-5MS column n Adams (2007), o 3 are means of thre ased on compariso	ear retention index ou intion index taken frou area percentage values ntic compounds: RL b	IS column. ^b Lin anes. ^c Linear rete d 47). ^d Relative : arison with authe	from a HP-5M es of C ₈ -C ₃₀ alk re (for compoun- , based on comp	^a Compounds are listed in order of their elution experimentally determined using homologous seri NIST 08 (2008) and FFNSC2 (2012) and literatur determinations \pm SD. ^e Identification methods: std	0. 7 @ ª
	0.1			Others	1
	0.1			Cannabinoids	
	1.4			Oxygenated sesquiterpenes	
	44.2			Sesquiterpene hydrocarbons	
	0.2			Oxygenated monoterpenes	
	54.0			Monoterpene hydrocarbons	
				Grouped compounds (%)	
	0.3			Oil yield (%, w/w)	
	99.8			Total identified (%)	
Std,RI,MS	0.1±0.0	2430	2421	47 cannabidiol	Р
RI,MS	Ħ	1639	1626	46 caryophylla-4(12),8(13)-dien-5- β -ol	Л
Std,RI,MS	0.2 ± 0.0	1608	1598	45 humulene epoxide II	Л
Std,RI,MS	1.2 ± 0.2	1583	1572	44 caryophyllene oxide	А
Std,RI,MS	Ħ	1561	1563	43 (E) -nerolidol	А
RI,MS	0.2 ± 0.0	1559	1546	42 germacrene B	Л
RI,MS	$0.1{\pm}0.0$	1540	1541	41 (<i>E</i>)- α -bisabolene	А
RI,MS	0.9 ± 0.2	1545	1532	40 selina-3,7(11)-diene	А
RI,MS	$0.5 {\pm} 0.1$	1540	1526	39 selina-4(15),7(11)-diene	(L)
RI,MS	$0.2 {\pm} 0.0$	1521	1520	38 β-sesquiphellandrene	(L)
RI,MS	$0.1 {\pm} 0.0$	1522	1518	37 δ-cadinene	(L)
RI,MS	$0.4{\pm}0.1$	1514	1508	36 β-curcumene	(L)
RI,MS	$0.2{\pm}0.0$	1505	1506	35 β-bisabolene	(J)
RI,MS	$1.3 {\pm} 0.3$	1498	1486	34 α-selinene	(J)
RI,MS	$1.7{\pm}0.3$	1489	1477	33 β-selinene	(J)
RI,MS	$0.1{\pm}0.0$	1478	1470	32 γ-muurolene	(J)
RI,MS	Ħ	1476	1468	31 β-chamigrene	در)

of calculated RI with those reported in ADAMS, FFNSC 2 and NIST 08; MS, based on comparison with WILEY, ADAMS, FFNSC2 and NIST 08 MS databases. ^ftr, % below 0.05%. Гее оŗ,

-	<mark>2.352</mark>	0.0058-0.0095	0.0062	0.0012-0-0045	0.0025	<mark>µg larva⁻¹</mark>	<i>Spodoptera littoralis</i> 3 rd instar larva
	1.252	0.004-0.006	0.005	0.001-0-003	0.002	ml L ⁻¹	<i>Myzus persicae</i> adult
-	0.356	0.58-0.91	0.62	0.12-0.25	0.15	µg adult ⁻¹	Musca domestica adult female
		-	-	-	<0.1	µg cm ⁻²	Culex quinquefasciatus adult female
-	3.252	0.0008-0.0025	0.0009	0.0002-0.0004	0.0003	μl L ⁻¹	<i>Culex quinquefasciatus</i> 3 rd instar larva
			permethrin	<mark>α-Cy</mark>			
66.6±4.7 % mortality testing 200 μg/larva	0.271	293.8-385.6	313.1	127.1-193.8	152.3	µg larva ⁻¹	Spodoptera littoralis 3 rd instar larva
100.0 \pm 0.0 % mortality testing 15 ml L ⁻¹	0.252	5.9-6.8	6.2	3.1-4.8	3.5	ml L ⁻¹	Myzus persicae adult
80.1 ± 3.5 % mortality testing 200 µg/adult	5.844	212.1-226.7	213.5	31.6-55.7	43.3	µg adult ⁻¹	Musca domestica adult female
32.7±8.9 % mortality testing 500 μ g cm ⁻²	·			ı	>500	$\mu g \text{ cm}^{-2}$	Culex quinquefasciatus adult female
100.0±0.0 % mortality testing 1,000 $\mu l \ L^{-1}$	4.365	649.7-895.3	700.9	215.2-330.1	252.5	μl L ⁻¹	<i>Culex quinquefasciatus</i> 3 rd instar larva
		essential oil	v Felina 32	Cannabis sativa c			
Mortality (%) at maximum tested dose or concentration	Chi-square	Cl ₉₅	LC ₉₀ /LD ₉₀	Cl ₉₅	LC ₅₀ /LD ₅₀	Unit	Insect species and tested instar

n.s.= not significant (P>0.05)

Table 2. Toxicity of the essential oil from the fresh inflorescences of Cannabis sativa cv Felina 32 cultivated in central Italy on four insect pests of economic importance; acypermethrin was tested as positive control.

Table 3. Acute toxicity of the essential oil from the fresh inflorescences of *Cannabis sativa* cv Felina 32 cultivated in central Italy against larvae and adults of *Harmonia axyridis*. a-cypermethrin was tested as positive control.

$F_{5,18}=1,128$; P<0.0001	$F_{5,18}=1,228; P<0.0001$	ANOVA
$0.0{\pm}0.0^{\mathrm{a}}$	$0.0{\pm}0.0^{\mathrm{a}}$	Negative control
100.0 ± 0.0^{b}	100.0 ± 0.0^{b}	Positive control
$0.0{\pm}0.0^{\mathrm{a}}$	$0.0{\pm}0.0^{\mathrm{a}}$	0.6
$0.0{\pm}0.0^{a}$	$0.0{\pm}0.0^{\mathrm{a}}$	1.25
$0.0{\pm}0.0^{a}$	$0.0{\pm}0.0^{\mathrm{a}}$	2.5
$0.0{\pm}0.0^{a}$	$3.3{\pm}4.1^{\mathrm{a}}$	5.5
Mortality of adults $(\% \pm SD)$	Mortality of larvae (% ± SD)	Concentration of essential oil (ml.L ⁻¹)

* Means±SD within a column followed by the same letter do not differ significantly (Tukey's HSD test, P < 0.05)
 % = arcsine square root transformed data
 Negative control = water
 Positive control = 1 ml.L⁻¹ Vaztak (0.005 ml.L⁻¹ (w/v) of *a*-cypermethrin.

Table 4. Toxicity of the essential oil from the fresh inflorescences of *Cannabis sativa* cv Felina 32 cultivated in central Italy on *Eisenia fetida* eartworms. a-cypermethrin was tested as positive control.

ANOVA	Control	A-CM 12.5	A-CM 25.0	A-CM 50.0	EO 25.0	EO 50.0	EO 100.0	$(mg.kg^{-1})$	Treatment and concentration
<i>F_{6,21}</i> =391.05; P<0.0001	$0.0{\pm}0.0^{\mathrm{a}}$	89.5 ± 2.5^{b}	$100.0{\pm}0.0^{\circ}$	$100.0{\pm}0.0^{\circ}$	$0.0{\pm}0.0^{\mathrm{a}}$	$0.0{\pm}0.0^{\mathrm{a}}$	$0.0{\pm}0.0^{\mathrm{a}}$	(mortality $\% \pm SD$)	$7^{\rm th} {\rm day}^*$
F _{6,21} =559.92; P<0.0001	$2.5\pm5.0^{\mathrm{a}}$	$95.5 {\pm} 2.5^{b}$	$100.0\pm0.0^{\circ}$	$100.0 \pm 0.0^{\circ}$	$0.0{\pm}0.0^{\mathrm{a}}$	$0.0{\pm}0.0^{\mathrm{a}}$	$0.0{\pm}0.0^{ m b}$	(mortality $\% \pm SD$)	$14^{\text{th}} \text{ day}^*$

*Average mortality of *E. fetida* (\pm SD) achieved on the 7th and 14th day after application of essential oil from *Cannabis sativa* cv Felina 34 (EO) and *a*-cypermethrin (A-CM) Means \pm SD within a column followed by the same letter do not differ significantly (Tukey's HSD test, P < 0.05) % = arcsine square root transformed data Negative control = water

Fig. 1. TIC-GC/MS chromatogram of the essential oil from the fresh inflorescences of industrial hemp, Cannabis sativa, cv Felina 32.