OPEN TO A SELECT FEW? MATCHING PARTNERS AND KNOWLEDGE CONTENT FOR OPEN INNOVATION PERFORMANCE

Lars Bengtsson¹, Nicolette Lakemond², Valentina Lazzarotti³, Raffaella Manzini³, Luisa Pellegrini⁴ and Fredrik Tell²

¹University of Gävle, Sweden ²Linköping University, Sweden ³University Carlo Cattaneo, Italy ⁴University of Pisa, Italy Lars.Bengtsson@hig.se

ABSTRACT

The purpose of the paper is to illuminate the costs and benefits of crossing firm boundaries in inbound open innovation (OI) by determining the relationship between partner types, knowledge content and performance. The empirical part of the study is based on a survey of OI collaborations answered by R&D managers in 415 Italian, Finnish and Swedish firms. The results show that the depth in collaboration with different partners (academic/consultants, value chain partners, competitors and firms in other industries) are positively connected to innovation performance and efficiency while number of different partners and size have negative effects. The main result is that the knowledge content of the collaboration moderates the performance outcomes and the negative impact from having too many different kind of partners. This illustrates how successful firms use selective collaboration strategies characterised by linking explorative and exploitative knowledge content to specific partners in order to optimise the benefits and limit the costs of knowledge boundary crossing processes.

Keywords: Open innovation, Knowledge boundary, Exploration, Exploitation, Innovation performance, Survey

1. Introduction

There are several arguments for opening up firms' innovation processes to collaboration with external partners (Chesbrough, 2003, 2007). These arguments build upon several antecedents in innovation research (see e.g. West et al. 2014). One argument is that technological advancement and globalisation require external acquisition of specialised knowledge (Grant & Baden-Fuller 2004). Open innovation (OI) is further considered an alternative for sharing with partners the increasing development costs when technology becomes more complex and product life cycles shorten (Trott & Hartmann, 2009). In addition, it is expected that outbound open innovation, such as licensing out technology, may be a way to exploit innovations on a broader market and thus increase revenues (Teece, 1986).

Given the proclaimed benefits, it is not surprising that the research on how firms organise and apply open innovation has advanced in just a few years to one of the prime topics in innovation management and become an established research field that attracts numerous researchers. For instance, in an overview Gassman et al. (2010) identified nine research streams and perspectives on open innovation, ranging from questions on globalisation of research and roles of different actors to a more process-oriented perspective. The many suggestions for further research in the growing OI literature motivate a further investigation of the open innovation concept and its applications (Huizingh, 2011; West & Bogers, 2014; West et al., 2014).

One of the core questions concerns the relationship between open innovation and innovation performance (Cheng & Huizingh, 2014). Previous research does not provide a clear cut answer to this question. The attractiveness of open innovation is indeed emphasized in several studies (e.g. Remneland-Wikhamn et al. 2011; Rohrbeck et al. 2009; van de Vrande et al. 2009), but other studies are waving caution flags about the implementation of open innovation. For instance, Laursen and Salter (2006) analysed which partners firms collaborate with (breadth) and the depth of the collaboration, and showed a curvilinear relationship between breadth and depth and innovation performance. This has been confirmed in more recent studies, reporting that beyond a certain threshold, a greater share of external R&D activities reduces firm's innovation performance (Berchicci, 2013; Garriga et al., 2013).

One reason for the inconclusive findings in the extant literature regarding the impact of OI on performance is that openness is not stringently defined. Several researchers have stressed the need for further research on the concept of openness and not least how it is realised (Dahlander & Gann, 2010; West et al., 2014). Recent publications persistently stressed the importance of investigating how different organisational and contextual factors moderate the relationship between openness and performance (e.g. Cheng & Huizingh, 2014; Remneland-Wikhamn & Knights, 2012; Rass et al., 2013). These studies also point at the costs related to the acquisition and integration of external knowledge when crossing firm boundaries (Berchicci, 2013; Praest Knudsen & Bøtker Mortensen, 2011).

Taking a starting point in the view of innovation as a process by which diverse knowledge bases are recombined to create new and valuable outputs (Berggren et al., 2011; Felin & Zenger, 2014), this paper will specifically examine the costs linked to specific knowledge content when crossing firm boundaries in inbound open innovation. Several studies have identified open innovation challenges related to knowledge crossing boundaries (Ollila & Elmquist, 2011; Parmentier & Gandia, 2013). However, little attention has been paid to the knowledge content of the collaboration in relation to the costs and benefits of crossing knowledge boundaries (Felin & Zenger 2014; Huizingh 2011). Previous studies have shown the relationship between different partners and performance, but mainly lack analysis of what the partners contribute with (e.g. Brettel and Cleven, 2011). By putting forward the knowledge content in open innovation processes we focus on the actual innovation collaboration with external partners rather than the preceding search process, which has been in focus in many OI studies (see Laursen and Salter, 2014).

To sum up, previous studies of OI seem to lack analysis of how collaboration relates to different kinds of innovation performance, and specifically how this is influenced by the knowledge content. Consequently, the overall purpose of the study is to illuminate the costs and benefits of crossing firm boundaries in inbound open innovation collaborations by analysing the relationship between partner types, knowledge content and performance. The more specific aim is to use an international survey, with observations from Sweden, Italy and Finland, to empirically determine how the knowledge content of OI collaborations moderates how openness to different partners contributes to innovation

performance in terms of novelty and efficiency. This has been specified in two research questions.

- RQ 1: How does openness to different partners (breadth and depth) in OI collaborations relate to innovation performance?
- RQ 2: How does the knowledge content of OI collaborations moderate how openness to different partners contributes to innovation performance?

The study is limited to four types of partners; universities/consultants, value chain partners, competitors and firms in other industries, and two types of knowledge content brought into the collaboration by the partners: explorative content (new technology, product and processes) and exploitative content (supply chain management, project management and improvement).

The study provides two contributions to research. First, by focusing on the actual collaboration in the OI process, we add to the OI literature through the analysis of how different partners contribute to innovation performance concerning both novelty and efficiency. Secondly, the examination on how knowledge content moderates partner openness in OI processes provides additional explanations to when partner openness is beneficial for innovation. As partner types and knowledge content represent specific types of technological and organisational boundaries (Knoben and Oerlemans, 2006) that need to be bridged, the study offers insights to how different combinations of OI boundaries affect performance. The study illustrates how successful firms use strategies of selective collaboration on explorative and exploitative knowledge content with specific partners in order to optimise the benefits and limit the costs of knowledge boundary crossing processes.

The remainder of this manuscript is structured as follows. Section 2 outlines the theoretical framework, including a conceptualisation of openness and knowledge content, and presentation of the literature regarding the implications of open innovation on performance. It also presents the research framework. Section three presents the survey methodology and illustrates the constructs used. Results, discussions and conclusions are put forward in section four, five and six, respectively.

2. THEORETICAL FRAMEWORK AND HYPOTHESES

2.1 DEFINING OPEN INNOVATION AND OPENNESS

When examining the outcomes of open innovation practices, the definition and understanding of open innovation and openness is crucial. Previous research uses a number of different approaches and definitions of openness (see overviews in e.g. Dahlander and Gann, 2010; Huizingh, 2011). One important distinction has been made between inbound and outbound open innovation (Chesbrough, 2003). The former refers to the search for and incorporation of external knowledge and technologies into the innovation process of the focal firm. Outbound open innovation instead refers to the externalisation of internally developed ideas and innovation, e.g. licensing out patents, establishing spinouts etc. Later studies have also identified the conception of combined or coupled innovation processes (e.g. Enkel et al., 2009).

The increasing role of knowledge integration in internationally dispersed firms (see e.g. Berggren et al, 2011) is also reflected in the OI literature. In a recent study Chesbrough and Bogers (2014, p.24) define open innovation as "...a distributed innovation process based on purposively managed knowledge flows across organizational boundaries [...]

These flows of knowledge may involve knowledge inflows to the focal organization, knowledge outflows from a focal organization or both.". This definition suits well our study while putting forward the management of knowledge flows and organisational boundaries into focus.

Most studies seem to agree that openness should be regarded as a continuum between end points of open and closed innovation. However, the degree of openness could differ depending on what perspective is taken. The different directions of the innovation process imply that the degree of openness could differ depending on what perspective is taken. Van de Vrande et al. (2006) studied the organizational form of acquisition or commercialization in terms of level of integration and time horizon that basically define different degree of openness. In the same vein, Pisano and Verganti (2008) discuss how different forms of governance and partners' participation define different levels of openness. The extent to which firms are involved in inbound, outbound and coupled innovation processes has also been used to define openness (e.g. Colin et al, 2014). Additional ways to measure the degree of openness have been proposed in terms of partner breadth and partner depth (Laursen and Salter, 2006), innovation phases (Lazzarotti et al., 2011) or content of the collaboration (Huizingh, 2011).

In this paper we follow that stream of studies which considers the open innovation concept as linked to a collaborative behaviour. In accordance with such studies, the degree of openness reflects how various (breadth) and intensive (depth) a firm uses external information to sustain its innovation (Laursen and Salter, 2006). Particularly relevant for this study is also inbound innovation (Gassmann et al., 2010; Dahlander and Gann, 2010; Laursen and Salter, 2006), which refers to firms' use of external sources in innovation. Collaboration concerns the joint development of knowledge through relationships with external partners (Hagedoorn, 1993). Therefore, such collaboration implies that partners share their resources and knowledge, redefining the boundary between the firm and its surrounding environment (Laursen and Salter, 2006). We will focus on innovation collaboration (Laursen and Salter, 2014), not the search process, as innovation collaboration is more explicitly connected to the costs of the OI process.

2.2 OPENNESS AND PERFORMANCE

The first research question concerns the relationship between openness in OI collaboration and innovation performance.

Two of the main arguments for opening up the innovation process are to expand the firm's knowledge base, to get access to advanced technology, new products and processes but also to share innovation risks and costs for developing the new products and processes (Chesbrough, 2003, 2007; Calantone and Stanko, 2007; Huang et al., 2009). Empirical studies indicate that offensive and income oriented improvements are more common than defensive cost reduction goals (see e.g. van de Vrande et al., 2009). How these goals are realized in practice is not well understood (Gassmann et al., 2010)

However, in recent years, a number of studies have tried to empirically validate the benefits of opening up the innovation processes to external partners (Leiponen and Helfat, 2010; Wu et al., 2013; Plewa et al., 2013). For example, Fernandes and Ferreira (2013) found a positive correlation between collaboration (between universities and knowledge intensive business services) and innovation capacity. Brettel and Cleven (2011) showed that customers, suppliers, competitors and universities but not independent experts contribute to new product development (NPD) performance. However, the results are not

uniform. Laursen and Salter (2006) found a curvilinear relationship between open innovation (in terms of partner breadth and depth) and performance (in terms of the proportion of the firm's turnover that pertains to products that are new or significantly improved). The outcomes imply that openness also include costs related to the many relationships. Despite this insight, most studies have still focused on the benefits while analyses of the cost side of open innovation with some few exceptions (e.g. Praest-Knudsen and Mortensen, 2011; Keupp and Gassmann, 2009) remain quite rare and therefore have been requested (Dahlander and Gann, 2010).

These insights point to the need of differentiating the performance outcomes variables. There are some studies that distinguish between different types of outcomes as result of collaborations with different partners. As an example, Belderbos et al. (2004) found that cooperation with suppliers and competitors usually involve incremental innovations and increased productivity performance, cooperation with universities and competitors are essential for innovating and selling new products, while radical innovations are facilitated by cooperation with customers or universities. Along the same vein Faems et al. (2005) found that collaborations with customers and suppliers were positively associated with higher levels of turnover coming from improved products. Collaborations with universities and research centres are instead associated with higher turnover related to new products.

Garriga et al (2013) have also elaborated on how different search strategies affect different kinds of innovation. When replicating the findings of Laursen and Salter (2006) they conclude that (Garriga et al., 2013, p. 1140): "if firms engage in open innovation, the optimal search strategy for external knowledge may depend on the type of innovation pursued". In short they found evidence for that having many partners (breadth) is beneficial for incremental innovation while depth is significant for radical innovation.

To measure innovation performance outcomes on a scale ranging from incremental to radical, does not, however, capture the cost dimension of innovation. One example of a study that has included this is Aleger et al (2006) who use a distinction between efficacy and efficiency in their analysis of innovation outcomes. Efficacy captures how successful an innovation is, including newness of products and markets, while efficiency measures how much effort has been put into the innovation activities.

We acknowledge the value of making such a distinction by analysing innovation performance in two dimensions, which we call innovation novelty and innovation efficiency. Innovation novelty captures the radicalness and covers the outcomes of the collaboration in terms of how new products, processes and markets are, while efficiency covers if the OI collaboration has reduced development costs, risk and time-to-market (TTM)).

To sum up, as we focus on the actual collaboration with partners, which compared to search most likely requires specific and costly efforts to manage, we propose a negative effect of having too many partners. Firms have limited resources to achieve necessary interaction during collaboration (Foss et al., 2013). Therefore, the more different partners, the less likely they are able to capture and absorb new and innovative ideas from these partners. As a consequence, the costs of coordinating the collaboration with too many partners may outweigh the benefits. This leads us to the following hypothesis concerning partner breadth (or diversity):

H1: The breadth of partners in OI collaboration (partner breadth) negatively influences innovation performance in terms of both novelty and efficiency.

When it comes to depth of OI collaboration, the studies above (e.g. Wu et al., 2013) suggest that deep partner collaboration is beneficial for performance, but that the outcome can differ depending on what partners are at play (e.g. Brettel and Cleven, 2011). Therefore we stipulate the following:

H2: The depth of partner collaboration is positively related to innovation performance, but different partners have different impact on novelty and efficiency respectively.

2.3 Knowledge content in boundary crossing innovation processes

The second research question concerns how openness relates to innovation performance when taking the knowledge content into account. The content of the collaboration is reasonably the main driver and reasons for involving external partners in an inbound OI process.

When taking a knowledge integration perspective (Berggren et al, 2011) on OI processes (Chesbrough and Bogers, 2014) the impact from different knowledge contents becomes most essential to investigate, a theme that has been surprisingly neglected in the OI literature on openness and performance.

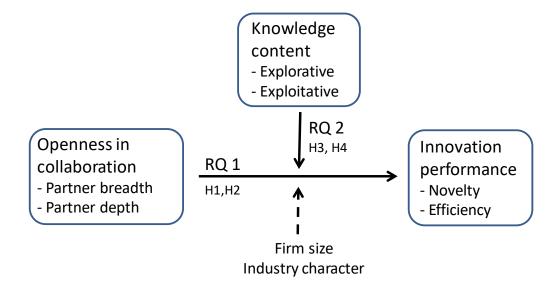
As an exception, Huizingh (2011) has in a conceptual paper explored OI in terms of content (what), context (when) and process (how). The content dimension in Huizingh's work addressed three aspects of open innovation: the richness of the concept, the distinction between inbound and outbound open innovation and finally the effectiveness. He did not, however, specifically analyse the knowledge content or the desired capabilities of the partners that are in play in the open innovation processes. For this reason we instead turned to the concepts elaborated in literature on innovative suppliers (e.g. Azadegan and Dooley, 2010) since all partners in inbound OI processes can be seen as contributors. From this literature it emerges that partners mainly contribute with mainly two types of knowledge content that we use in our analysis: (1) Explorative knowledge content in terms of access to cutting-edge technologies, new products and markets (see e.g. Azadegan and Dooley, 2010), and/or (2) exploitative knowledge content in terms of technological and production capabilities (Oh and Rhee, 2010) and supply chain management capability (Wu et al., 2006).

The notions of explorative and exploitative knowledge content follows the distinction of March (1991) stating that firms have to manage the tension between 'improving the existing' (exploitation) and 'facing the not previously experienced' (exploration) (March, 1991). Building upon this it's worth stressing that our use of exploration and exploitation does not, in contracts to for instance Faems et al. (2005), describe the type of innovation output but rather the process and the capabilities which partners bring into the OI collaboration. More specifically, our notion of knowledge content tries to capture the actual learning behaviours in two dimensions, i.e. 'exploration of new possibilities' and 'exploitation of old certainties' as described by He and Wong (2004). The main purpose of taking the knowledge content into account is that it brings further insights to the border crossing challenges that appear for the firms that open up their innovation processes. When defining OI as knowledge flows across boundaries (Chesbrough and Bogers, 2014), openness can be understood in relation to proximity. The knowledge boundaries that are crossed when involving different partners and content are more or less distant from the focal firm. Previous studies have differentiated between several proximity dimensions that are relevant for inter-organizational collaboration: geographical proximity, organizational proximity and technological proximity (Knoben and Oerlemans, 2006;

Boschma, 2005). By adding the analysis of the knowledge content we set out to capture the types of technological proximity that characterises the OI collaboration. How to optimise these boundaries is crucial for the success of OI process.

Garriga et al (2013) for instance suggest that it is beneficial to have many partners when the focusing on exploitative knowledge content, while partner breadth has no or negative effect when dealing with explorative knowledge content. Even if their studies particularly focus search strategies we suggest this insight is worth taking into account when studying the successive collaboration with these partners. From this background we propose that successful firms manage to optimise their boundary crossing activities in two ways: they limit the boundary crossing requirements by involving selected partners for specific knowledge content related to the desired outcomes, and at the same time keep the firm open to any kind of partner. The combined strategy may help firms to better manage the trade-off of having intensive collaboration with many partners.

Since we expect negative effects of partner breadth (see motivation for H1), two paired hypotheses therefore are suggested:


- H3a. The breadth of partners in OI collaboration on explorative knowledge content negatively influences innovation novelty but has limited effect on efficiency.
- H3b. The breadth of partners in OI collaboration on exploitative knowledge content negatively influences efficiency but has limited effect on innovation novelty

When combining the motivation for H2 with a suggestion that the content of the collaboration affects the outcomes the hypotheses on depth in partner collaboration become:

- H4a. The depth of partner collaboration on explorative knowledge content positively influences innovation novelty but not efficiency
- H4b. The depth of partner collaboration on exploitative knowledge content positively influences efficiency but not innovation novelty.

2.4 RESEARCH FRAMEWORK

The concluding research framework is illustrated in Figure 1. The control variables firm size and industry character is motivated in the methodology section.

Figure 1. Research framework

3. SURVEY METHODOLOGY AND CONSTRUCTS

3.1 SURVEY

In order to find answers on our research questions, we relied on a survey study developed in 2012 by a group of researchers from Finland, Italy and Sweden. In order to ensure the possibility to collect comparable data that could be pooled the research groups used common guidelines and steps for survey design in accordance with Forza (2002).

The target and frame population in this study is the manufacturing industry firms (codes 10-32 and 98 in NACE Rev. 2) in three involved countries with more than 10 employees. Even though this industry is the most investigated field in the open innovation literature the empirical evidence on open innovation practices is still limited (Tidd, 2014). We excluded services because of their particularities which likely require dedicated open innovation practices. This would have required the consideration of different variables and the definition of different constructs to be analysed. The existence of the many studies in manufacturing industry also opens up for comparisons and theory-testing.

Each research group selected a randomized stratified sample (strata defined by number of employees) of 1000 manufacturing firms. The probabilistic sampling procedure was done in order to ensure representativeness of the sample (Babbie, 1990) and thus a generalizability of results as concerns at least the three countries.

The measurement instrument was developed with specific guidelines for: (i) wording (the way questions are posed to collect specific information), (ii) respondent identification (identification of the appropriate respondents for the questionnaire) and (iii) rules of questionnaire design (following rules of courtesy, presentability and readability to help and motivate respondents to answer). With regard to wording, closed questions were used (except for those regarding the company's name, number of employees, and the previous fiscal year's turnover), and to avoid double-barrelled questions (i.e. questions with different subparts with different possible answers). Regarding respondent identification, particular R&D managers or similar. The questionnaire was drafted in conformity with the design rules and supplemented with a clear, but concise introduction providing an explanation of the aims of the survey, instructions for filling it out and the guarantee of confidentiality.

The complete questionnaire covers questions on strategy, context (size, industry, etc.), openness, relational factors (collaboration modes) and performance. The focus in this paper lies on the constructs that concern the OI choices in terms of partners, knowledge content, and the effects of openness on performance and company characteristics (in particular size and industry character).

A pilot test of the questionnaire was conducted on two groups - colleagues and target respondents - to validate the quality of questionnaire. For the target respondents, after the questionnaire was translated into the native language, each country involved a number of firms in order to gather feedback on anything that might affect the answers. These two tests were conducted independently.

The data were collected by means of questionnaires distributed by email to R&D managers or similar persons knowledgeable about open innovation. The advantages of

such method include low cost, completion at the respondent's convenience, absence of time constraints, guarantee of anonymity and reduction of interviewer bias (Forza, 2002). Its shortcomings, on the other hand, are not least the lower response rate and lack of depth compared to other methods such as interviews with open-ended questions.

After three reminders we finally obtained in total 415 complete answers from firms that state they have collaborated with external partners in innovation (i.e. development of new products, services or processes) during the past five years. Of the 415 answers used in the current analysis, 152 come from Italy, 176 from Sweden and 87 from Finland. This provides an overall response rate of about 13% (415/3000). Country-specific analysis of the non-response bias was run, which did not report any significant differences between respondents and non-respondents. The collected data can thus be regarded as representative for the manufacturing firms in the three countries.

3.2 Constructs

The core of the current analysis is the construct for measuring knowledge content and openness in terms of partner breadth and depth. All answers are measured by perceptive seven-point Likert scales, ranging from 1=not at all to 7=to a very high extent. The respondents could in addition to this choose "do not know".

	Academic/	Value	Explo-	Exploi-
	consultant	chain	rative	tative
	partners	partners	content	content
Partners Universities, R&D centres Innovation intermediaries Government agencies Customers Suppliers Consumers (Competitors) (Companies in other industries)	.799 .633 .799	.758 .810 .633		
Knowledge content Advanced technologies Innovative products Innovative processes (Access to new markets) Reliable delivery SCM responsibility Project management capability Improvement capability			.824 .829 .764	.781 .825 .802 .716
Variance explained	29.1%	28.6%	37.2%	30.6%
Cronbach's alpha	0.628	0.613	0.779	0.822
N	415	415	415	415

Table 1. Factor analysis for partner and knowledge content

The partner construct captures breadth and depth, i.e. which partners the firm collaborate with in open innovation and how intensive (deep) the collaboration is with each partner. This approach is adapted from Laursen and Salter (2006), but we have used a more fine-

grained 7-point scale to measure depth. We asked for the extent to which the firm has collaborated with eight specified stakeholders in innovation activities over the last 5 years. In order to further describe different OI approaches but also to capture the impact of partner breadth and depth on performance the eight partners were reduced by the means of a factor analysis. An exploratory factory analysis resulted in two factors representing academic/public partners and value chain partners respectively (see Table 1). The two last items measuring competitors and companies in other industries scored quite low and equally to these two factors and were thus discarded. The resulting constructs represent the depth of partner collaboration. Partner breadth was defined by the number of different types of partners that the firms have engaged in their open innovation processes (min 1 and max 8, median 5, mean 5.26 and standard deviation 1.95).

	Effi- ciency	Novelty	Innovative industry
Performance			
Less innovation risks	.833		
Decrease development costs	.881		
Decrease time-to-market (TTM)	.838		
New or significantly improved products/services		.816	
New or significantly improved processes		.841	
New markets		.751	
Industry character			
Products based on technology breakthroughs			.740
Technology changes fast			.751
Important to follow technology development			.805
Technological complexity increases			.826
High mix of scientific disciplines and technologies			.819
Surveillance of many technologies important			.837
Variance explained	72.4%	64.6%	63.6%
Cronbach's alpha	0.809	0.719	0.885
N	415	415	415

Table 2. Factor analysis for performance and industry character

The content construct specifies the knowledge that partners provide in the open innovation process. The chosen constructs are built on work on supplier innovativeness elaborated by Azadegan and Dooley (2010), Oh and Rhee (2010) and Wu et al. (2006). We defined eight items, covering access to new products, processes and markets and project and supply chain management (SCM) capabilities (see Table 1). In an exploratory factor analysis two regression factors were obtained. In line with He and Wong (2004) these correspond to either more explorative or more exploitative knowledge content. An explorative knowledge content represents new technology, product and processes as, while reliable deliveries, supply chain management (SCM), project management and improvement represent more exploitative knowledge content. The item measuring access to new markets was discarded due to equal loading on the two factors.

The performance effects of openness (see Table 2). were classified in terms of innovation novelty and efficiency inspired by the distinction between efficacy and efficiency provided by Aleger et al. (2006). The items used to operationalise innovation performance within these two groups followed the work by Lazzarotti et al. (2011). The items corresponding

to efficiency are lower development risks, costs and time-to-market (TTM) while novelty is represented by new products, processes and markets.

In order to further describe how the different dimensions of openness relate to each other, we apply a cluster analysis. The clusters are derived from the two main types of knowledge content shown in the factor analysis, i.e. explorative and exploitative knowledge content. The description of the three clusters obtained in the K-means cluster analysis is shown in Table 3.

		Explorative factor		Exploitative factor	
Cluster focus in OI collaboration	No of firms	Mean	SD	Mean	SD
1. Exploratiove focus	138	1.00	.655	.473	.656
2. Exploitative focus	114	918	.597	.673	.673
3. Other firms	163	207	.668	934	.628
Total	415	0	1	0	1

Table 3. Three clusters based on knowledge content focus in OI collaboration

Finally, we use two control variables in the regression analysis: the firm size in terms of number of employees (the natural logarithmic value) and the industry character (Table 2) which reflects the perceived innovativeness of the industry (see e.g. Gassman, 2006; Huizingh, 2011). The number of employees in our sample varies between 10 and 56 000, with a mean value of 867 employees (standard deviation 4239 and median 50 employees).

The industry character construct refers to the technological turbulence (the first three items) and the technological complementarity (the last three items) which characterize the industry in which the firm operates. More exactly, technological turbulence refers to the rate of technology change and unpredictability, which rapidly makes a firm's existing technological knowledge obsolete (Hung and Chou, 2013). Such turbulence not only leads a firm to suffer the fate of competency traps because of responsiveness to current customer (Leonard-Barton, 1992; Zahra and George, 2002), but also disrupts its synergies among accumulated knowledge accompanied by organizational inertia for the new product (Leonard-Barton, 1992). Thus, in turbulent environmental conditions, flexibly accommodating to environmental changes and relentlessly renewing knowledge bases is the best way to sustain competitive advantage (Katkalo et al., 2010). Therefore, in a turbulent technological environment a firm tends to open its innovation process because such an environment rapidly causes, on the one hand, its current technological knowledge and products to become rapidly obsolete (Eisenhardt and Martin, 2000; Grant and Baden-Fuller, 2004; Teece, 2007), and, on the other, its inability to cover all technological developments by means of internal R&D (Cesaroni, 2004). The measurements used (see Table 2) built on Lichtenthaler (2009) who measures technological turbulence by means of three items.

Technological complementarity refers to the increased complexity and intersectoral nature of new technologies, as well as the cross-fertilization of scientific disciplines and fields of technology (Hagedoorn, 1993). Such interrelationship requires the close collaboration between companies in order to create "the necessary complementary technology inputs enabling these companies to capitalize on economies of scope through joint efforts" (Hagedoorn, 1993, p. 372). The central role of obtaining complementary knowledge assets in collaboration has also been stressed by others (Grant and Baden-

Fuller 2004; Parmigiani and Rivera-Santos 2011). For the last three items of the construct (see Table 2) we build on Hagedoorn (1993) operationalization of technological complementarity.

We decided to focus on a 5-year time-frame for collaboration in order for a certain activity (in this case, collaborative activities) to provide some effect (see Grimaldi and Grandi, 2005; Hardy et al., 2003). Then we asked how well collaboration has performed against a set of objectives over the last 3 years. By this we introduced a lower-than 5 effective time-lag to grasp potential influence on performance due to collaborative activities. The three year time-frame diminishes the risk of potential distortion due to exceptional performance in one year.

4. RESULTS

4.1 OPENNESS AND PERFORMANCE

Table 4 reports the results of the regression analysis in which partner breadth and depth are the independent variables and innovation novelty and efficiency the independent ones. It shows that the depth of partner collaboration performance significantly influences performance outcomes in OI processes, while partners' breadth has a negative impact. The novelty is mainly explained by intensive collaboration with universities/consultants and firms in other industries, whereas value chain partners are most important next to universities/consultants for efficiency. The results thus provide support for both the first and second hypotheses.

	Novelty	Efficiency	
Partner breadth	252***	219**	
Universities/consultants	.247***	.279***	
Value chain partners	.114*	.215***	
Competitors	.115*	.045	
Other industry firms	.197***	.111*	
Firm size (ln)	093*	013	
Innovative industry	.351***	.239***	
Adj R2	.260	.174	
F	20.90***	12.95***	
N	415	415	

Note: Significance levels: * p<0.05; ** p<0.01, ***p<0.001

Table 4. The influence of partner breadth and depth on performance

Notable is also the strong explanatory value for firm size (negative) and firms being part of an industry where technology rapidly changes.

4.2 THE MODERATING EFFECT OF KNOWLEDGE CONTENT

The second research question concerns how the knowledge content moderates the performance impact of openness. Table 5 displays the regression analysis for the three clusters of knowledge content derived in the methodology section (see Table 3).

	Explorative content cluster		Exploitative content cluster		Other firms (Low on both)	
	Novelty	Effi- ciency	Novelty	Effi- ciency	Novelty	Effi- ciency
Partner breadth	437**	181	076	240^	 247	164
Universities/consultants	.328**	.258*	.071	.102	. 217	.281*
Value chain partners	.114	.170	.151	.252*	005	.150
Competitors	.280**	.048	.010	.074	.159	.044
Other industry firms	.111	.171	.133	.071	.272**	.077
Firm size (ln)	105	- .148	180	.018	.006	.089
Innovative industry	.442**	.270**	.453**	.288**	.138	.090
Adj R2	.326	.194	.265	.095	.090	.490
F	9.92**	5.44**	6.56**	2.61*	3.21**	2.61*
N	138	138	114	114	163	163

Note: Significance levels: * p<0.05; ** p<0.01; p<0.001

Table 5. The influence of partner breadth and depth on performance for firms with different knowledge content in OI collaboration

The results in Table 5 show that the content of the collaboration has a clear impact on what kind of openness that explains performance. For the cluster of firms that focuses on explorative knowledge content the novelty is mainly explained by deep collaboration with universities/consultants and competitors, but strong negatively connected to partner breadth. The efficiency is for the same group of firms, mainly explained by deep collaboration with universities/consultants and value chain partners, and firms in other industries. The negative impact from partner breadth is, however, not significant.

For the cluster focusing on collaboration on exploitation content, novelty is not explained by breadth or depth but rather an effect of being in an industry with such character. The efficiency is a result of deep collaboration with value chain partners, whereas partner breadth is contributing negatively. The models for thethird cluster do, as expected, explain performance to a lower extent e compared to the two other clusters.

This means that the results bring support to hypotheses 3a and 3b. The content analysis reveals a limited effect of breadth on one of the performance indicators, but for the other indicator the negative effect is even stronger compared to what is valid for all firms.

Hypotheses 4a and 4b are also supported. The impact from deep partner collaboration focused on specific knowledge content has a positive but selective effect on innovation novelty and efficiency.

Finally we can notice that the industry character maintains its explanatory value also when separating into the content clusters. The negative impact from firms size is, however, only valid for one of the performance indicators, which are different for the clusters.

5. DISCUSSION

One aim of this paper is to determine how knowledge content of OI collaborations moderates the relationship between openness to different partners and both innovation

performance in terms of novelty and efficiency. The main idea is that such an analysis can advance our understanding of the costs and the benefits of crossing firm boundaries in inbound open innovation (OI) collaborations.

We started out by investigating how openness to different partners (breadth and depth) in OI collaborations relates to innovation novelty and efficiency. The results in Table 4 gave support to the hypothesis H1 that partner breadth in OI collaboration has a negative impact on both novelty and efficiency. This result extends the findings of previous research, e.g. Laursen and Salter (2006), since our results cover OI collaboration. At the same time the findings seem to confront the study of Garriga et al. (2013) who found positive correlations between partner breadth and incremental innovation. One explanation to the different results is that incremental innovation is not the same as efficiency. But above that, as broad OI collaborations from a knowledge integration perspective (Berggren, 2011; Chesbrough and Bogers, 2014) represent crossing of multiple boundaries, the efforts needed to bridge them are connected to severe transactions costs that might exceed the benefits. Similarly, the negative effect of partners' breadth on novelty could also refer to the fact that involving a wide variety of partners increases the level of complexity of the partnership and forces managers and researchers to put their effort on organizational and managerial problems rather than on innovation issues. These explanations are elaborated below when we analyse how a focus on certain knowledge content affect the relationship between openness and performance.

Our study furthermore confirms (H2 supported) previous research stating that intensive and deep partner collaboration is beneficial for performance (e.g. Wu et al., 2013). The findings also disclosed that the different partners have dissimilar impact on novelty and efficiency, which mainly is in line with the results of Brettel and Cleven (2011). But in addition to their study, we are able to show that the performance effect of partner depth is valid for both dimensions of innovation performance, i.e. both novelty and efficiency.

The result seems quite reasonable while the more defensive motives for open innovation, such as costs, risk and time reduction, (see e.g. Calantone and Stanko, 2007; Huang et al., 2009; van de Vrande et al., 2009) to a large extent rely on the later innovation phases. Previous studies have indicated that successful innovation processes presupposes not only efficient knowledge creation processes but also the ability to build up effective production and supply chains (Rosell and Lakemond, 2012; Schiele 2006), an ability that becomes even more important as product life cycles shorten.

The partners' diverse outcomes leads us to the main purpose of the paper regarding how the knowledge content of OI collaborations moderate how openness to different partners contributes to performance. The results in Table 5 are quite clear while the stated hypotheses H3 and H4 were supported.

Building on the results in Table 5 it seems that the negative effect from partner breadth is only valid for one of the performance indicators when taking the knowledge content into account. More precise, for the firms focusing on collaboration on explorative knowledge content, such as new technology, products and processes, the number of different partners is strongly negatively correlated to novelty. Inversely, for the exploitative content cluster, i.e. firms that collaborate on supply chain, project management and improvements, breadth is negatively linked to efficiency. It thus seems more beneficial to concentrate the collaboration on targeted contents to a few partners, which are universities/consultants and competitors for the explorative cluster and value chain partners for the exploitative cluster. Another interesting finding is that the negative effect of partner breadth is only significant for one of the two performance indicators, i.e. that breadth in collaboration

focused on explorative knowledge content has limited effect on efficiency. Inversely, partner breadth has limited effect on novelty when the collaboration concerns exploitative knowledge content.

These results add further understanding to previous OI studies that have revealed negative effects and costs of having too many partners (Laursen and Salter, 2006; Garriga et al., 2013; Praest Knudsen and Bøtker Mortensen, 2011). Our results suggest that this effect is not bound to all kind of knowledge collaboration. The negative impact of partner breadth is mainly valid for specific combinations of knowledge content and performance outcomes as described above. Spelled out this means that a focus on explorative knowledge content mainly affects novelty negatively, and a focus on exploitative knowledge content affects efficiency negatively when having many partners. For the inverse combination of knowledge content and performance partner breadth has not this negative impact, and the performance is instead Igoverned by the depth of the collaboration. This leads us to the results of the fourth hypothesis.

Regarding H4 we found that the type of performance outcome of deep partner collaboration depends on the knowledge content of the OI collaboration. This finding adds to the results and literature discussed on H1. When separating firms in the different knowledge content clusters as in Table 5, the results become more consistent with the findings of Garriga et al. (2013) who claimed that "...the optimal search strategy for external knowledge may depend on the type of innovation pursued". In addition to their study we have been able to show that it is not only the search strategy, but rather the content of the OI collaboration that explain the type of performance outcome. When focusing on explorative OI collaboration on advanced technologies, products and processes, deep collaboration with a few selected partners provide novelty as performance. And inversely, when applying exploitative OI collaboration on supply chain management, project management and improvements, deep collaboration with selected partners in the value chain contributes to firms' efficiency in innovation processes.

This pattern does not seem to represent a trade-off problem. For both the explorative cluster and the exploitative cluster of firms, the partner depth has positive effects on the performance indicators, although not significant. One explanation for firms focusing on explorative knowledge content is that these firms also have some focus on exploitation (see Table 3).

A theoretical explanation to the results, specifically from the testing of H3 and H4, could be that successful firms are able to optimise and limit the boundary crossing in OI collaboration by two strategies. First, they manage to limit the requirements of boundary crossing by deeply involving a few selected partners in collaboration on knowledge content related to desired performance outcomes. While the knowledge content measured mainly represents the type of proximity that Knoben and Oerlemans (2006) call technological proximity, the strategy of selective content collaboration limits the technological boundaries that need to be bridged. Secondly, by linking knowledge contents and partner types, successful firms are at the same time able to maintain the firm open to any kind of partners. This kind of selective OI strategy therefore enables firms to better manage the trade-off of having intensive collaboration with too many partners.

The analysis of the control variables shows that the context of innovation is very important for the innovation outcomes. Of the analysed control variables, size has a negative impact on both the ability to obtain lower costs and develop new product and processes. Smaller firms thus tend to be more innovative than larger firms in OI collaboration. Further studies are needed to explain whether this is a general feature or

due to the fact that smaller firms, in an open innovation context, are more specialized than large and therefore are able to benefit more from OI in terms of innovativeness and novelty.

In contrast, the factor innovative industry relates strongly to high innovation performance. This means that firms that compete in industries characterised by technology breakthroughs, fast technology changes, increasing technological complexity and high mix of scientific disciplines and technologies are more innovative, by creating novel products, processes and markets, than other firms. This is in line with the several studies that emphasize the relevant role of industry characteristics on the companies' OI decisions and results (Fortuin and Omta, 2008; Calantone and Stanko, 2007; Ozman, 2008; Jaworski and Kohli, 1993; Hagedoorn, 1993).

This study is not without limitations. One important shortcoming is that the direct effect of openness on performance outcomes is likely moderated by the relationships strategy and methods applied by the collaborating firms (Blomqvist et al. 2005; Dyer 1997; Poppo and Zenger 2002). This analysis is, however a subject for further research. Another limitation is that our survey study is conducted on firm level. This means that the core constructs, i.e. partner breadth and depth, knowledge content and performance, represent the firms' collective OI activities. Further studies would benefit from taking project level perspective in order to validate the identified results.

6. CONCLUSIONS

The study presented in this paper illustrates the intimate linkages between partner types, knowledge content and innovation performance in open innovation (OI) collaboration. Two main conclusions can be drawn from this study. The first is that the pattern from studies on search strategies in OI is also valid when analysing OI collaboration. In line with earlier studies our results signify the problems of having too many different partners also in OI collaboration processes. In addition to previous research we have also displayed how different partners contribute to different kind of performance. More precisely our findings show that deep collaboration with mainly academia/consultants, competitors and firms in other industries contribute to innovation novelty in terms of new products, processes and markets, while intensive collaboration with value chain partners, but also universities/consultants, is most valuable for obtaining innovation efficiency in terms of lower costs, risks and time-to-market.

The second and major conclusion concerns the significance of the knowledge content of the OI collaboration. In the study we make a distinction between explorative knowledge content in terms of advanced technologies, innovative products and processes and exploitative knowledge content including reliable delivery, SCM responsibility, project management and improvement capability. By including knowledge content in the analysis of OI collaboration we have been able to provide new insights to how successful firms manage to both exploit and limit their boundaries in a beneficial way. The negative effects of having too many partners do not apply to all kind of OI collaboration. There is instead quite a clear link between the specific knowledge content of the OI collaboration and the performance outcomes. More specifically our study shows that collaboration with many types of partners on explorative knowledge content mainly affect novelty negatively, while it has limited effect on efficiency. Contrariwise, when the OI collaboration focuses on exploitative knowledge content, partner breadth has a negative effect mainly on efficiency but limited effect on novelty. The results further demonstrate that deep collaboration with few selected partners that are linked to desired performance

outcomes is most beneficial. The results therefore indicate that successful firms apply a selective OI strategy characterised by optimising and limiting boundary crossing in OI collaboration.

One managerial implication from the study is that deep collaboration with few kind of partners is more beneficial both for innovation and efficiency in OI collaborative processes than having numerous kind of partners. Firms are furthermore advised to form strategies based on conscious linkages between partner types and knowledge content to optimise breadth and depth in OI collaboration.

REFERENCES

- Azadegan. A. and Dooley, K.J. (2010). Supplier Innovativeness. Organizational Learning Styles and Manufacturer Performance: An Empirical Assessment. *Journal of Operations Management*. 28, 6, 488-505
- Babbie, E. (1990). Survey research methods. Belmont, CA: Wadsworth.
- Belderbos, R., Carree, M and Lokshin, B (2004), Cooperative R&D and firm performance. *Research Policy*, 33 (10), 1477–1492
- Berchicci, L. (2013), Towards an open R&D system: Internal R&D investment, external knowledge acquisition and innovative performance, *Research Policy*, 42 (1): 117-127.
- Berggren, C., A. Bergek, L. Bengtsson, M. Hobday and J. Söderlund, eds. (2011), *Knowledge Integration and Innovation Critical Challenges Facing International Technology-based Firms*, Oxford: Oxford University Press.
- Blomqvist, K., Hurmelinna, P., and Seppanen, R. (2005), Playing the collaboration game right balancing trust and contracting, *Technovation*, 25, 5, 497-504
- Boschma, R. (2005). Proximity and Innovation: A Critical Assessment. Regional Studies, 39 (1): 61-74
- Brettel, M. and Cleven, N.J. (2011). Innovation culture, collaboration with external partners and NPD performance. *Creativity and Innovation Management*, 20 (4), 253-272.
- Calantone, R. J. and Stanko, M. A. (2007), Drivers of Outsourced Innovation: An Exploratory Study. *The Journal of Product Innovation Management*, 24: 230–241.
- Cesaroni, F. (2004) Technological outsourcing and product diversification: do markets for technology affect firms' strategies? *Research Policy*, 33, 1547–1564.
- Cheng, C. C. and E. K. Huizingh (2014), When Is Open Innovation Beneficial? The Role of Strategic Orientation, *Journal of Product Innovation Management*. Forthcoming
- Chesbrough, H.W. and Bogers, M. (2014). Explicating Open Innovation: Clarifying an Emerging Paradigm for Understanding Innovation. In: Chesbrough, H.; Vanhaverbeke, W. and West, J. (eds.). *New Frontiers in Open Innovation*. Oxford: Oxford University Press, Forthcoming
- Chesbrough. H.W. (2003). Open Innovation: The New Imperative for Creating and Profiting from Technology. Cambridge: Harvard Business School Publishing.
- Chesbrough. H.W. (2007). Why companies should have open business models. *MIT Sloan Management Review*, 48, 2, 22–28.
- Colin C. J. Cheng and Eelko K. R. E. Huizingh (2014). When Is Open Innovation Beneficial? The Role of Strategic Orientation. *Journal of Product Innovation Management*, 31 (5). On-line version.
- Dahlander. L. and Gann.D.M. (2010). How open is innovation? Research Policy, 39, 699-709.
- Dyer, J. H. (1997), Effective interfirm collaboration: How firms minimize transaction costs and maximize transaction value, *Strategic Management Journal*, 18, 7, 535-56.
- Enkel, E., Gassmann, O. and Chesbrough, H. (2009), Open R&D and open innovation: exploring the phenomenon. *R&D Management*, 39: 311–316
- Eisenhardt, K.M., Martin, J.A. (2000). Dynamic capabilities: what are they? *Strategic Management Journal*, 21(10/11),1105–1121.

- Faems, D., van Looy, B. and Debackere, K. (2005). Interorganizational Collaboration and Innovation: Toward a Portfolio Approach, *Journal of Product Innovation Management*, Vol. 22, pp. 238–250
- Felin, T. and T. R. Zenger (2014), Closed or open innovation? Problem solving and the governance choice, *Research Policy*, 43 (5): 914-925.
- Fernandes, C. I., & Ferreira, J. J. (2013). Knowledge spillovers: cooperation between universities and KIBS. *R&D Management*, 43 (5): 461–472
- Fortuin, FTJM and Omta, SWF (2009), Innovation Drivers and Barriers in Food Processing, *British Food Journal*, 111, 8, 839-851.
- Forza, C. (2002). Survey research in operations management: a process-based perspective. *International Journal of Operations & Production Management*, 22 (2), 152–194.
- Foss, NJ., Lyngsie, J. and Zahra, SA. (2013). The role of external knowledge sources and organizational design in the process of opportunity exploitation, *Strategic Management Journal* 34 (12), 1453-1471
- Garriga, H., G. von Krogh and S. Spaeth (2013), How constraints and knowledge impact open innovation, *Strategic Management Journal*, 34 (9): 1134-1144.
- Gassmann, O. (2006), Opening up the innovation process: towards an agenda. *R&D Management*, 36: 223–228
- Gassmann. O., Enkel. E. and Chesbrough. H. (2010). The future of open innovation. *R&D Management*. 40, 3, 213-221.
- Grant, R. M. and C. Baden-Fuller (2004), A Knowledge Accessing Theory of Strategic Alliances, *Journal of Management Studies*, 41 (1): 61-84.
- Grimaldi, R., & Grandi, A. (2005). Business incubators and new venture creation: an assessment of incubating models. *Technovation*, 25(2), 111-121
- Hagedoorn J. (1993). Understanding the rationale of strategic technology partnering: interorganizational modes of cooperation and sectoral differences, *Strategic Management Journal*, 14, 371-385.
- Hardy, C., Phillips, N., & Lawrence, T. B. (2003). Resources, knowledge and influence: The organizational effects of interorganizational collaboration, *Journal of management studies*, 40(2), 321-347
- He, Z-L. and Wong, P-K. (2004). Exploration vs. Exploitation: An Empirical Test of the Ambidexterity Hypothesis, Organization Science, 15 (4): 481-494
- Huang, Y.-A., Chung, H.-J. and Lin, C. (2009). R&D sourcing strategies: Determinants and consequences. *Technovation*, 29, 155-169.
- Huizingh. KRE. (2011). Open innovation: State of the art and future perspectives. Technovation. 31, 2-9.
- Hung, K. P. and C. Chou (2013), The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence, *Technovation*, 33 (10-11): 368-380.
- Jaworski B.J. and Kohli A.K (1993) Market Orientation: Antecedents and Consequences, *Journal of Marketing*, 57, 3, 53-70
- Katkalo, V.S., Pitelis, C.N., Teece, D.J. (2010). Introduction: on the nature and scope of dynamic capabilities. *Industrial and Corporate Change*, 19 (4), 1175–1186.
- Keupp, M.M. and Gassmann, O. (2009). Determinants and archetype users of open innovation. *R&D Management*, 39 (4),331–341.
- Knoben, J. and Oerlemans, L.A.G. (2006), Proximity and inter-organizational collaboration: A literature review. *International Journal of Management Reviews*, 8: 71–89
- Laursen, K. and Salter, A., (2014), The paradox of openness: Appropriability, external search and collaboration, *Research Policy*, 43 (5): 867–878.
- Laursen. K. and Salter. A. (2006). Open for innovation: the role of openness in explaining innovation performance among UK manufacturing firms. *Strategic Management Journal*, 27, 2. 131–150.
- Lazzarotti V.. Manzini R. and Pellegrini L. (2011). Firm-specific factors and the openness degree: a survey of Italian firms. *European Journal of Innovation Management*. 14, 4, 412-434

- Leiponen, A. and Helfat, C.E. (2010). Innovation objectives, knowledge sources, and the benefits of breadth. *Strategic Management Journal* 31, 224-236.
- Leonard-Barton, D. (1992). Core capabilities and core rigidities: a paradox in managing new product development, *Strategic Management Journal*, 13(special issue), 111–127
- Lichtenthaler, U. (2009). Outbound open innovation and its effects on firm performance: examining environmental influences, *R&D management*, 39, 4, 317-330
- March, J.G. (1991). Exploration and Exploitation in Organizational Learning, *Organization Science*, Vol. 2, pp. 71 87
- Oh. J. and Rhee. S. K. (2010). Influences of supplier capabilities and collaboration in new car development on competitive advantage of carmakers. *Management Decision*. 48, 5, 756-774.
- Ollila, S. and M. Elmquist (2011), Managing open innovation: exploring challenges at the interfaces of an open innovation arena, *Creativity and Innovation Management*, 20 (4): 273-283.
- Ozman, M (2008) The two faces of open innovation: network externalities and learning, Document de Travail, 24.
- Parmentier, G. and R. Gandia (2013), Managing sustainable innovation with a user community toolkit: the case of the video game Trackmania, *Creativity and Innovation Management*, 22 (2): 195-208.
- Pisano, GP and R Verganti (2008). Which kind of collaboration is right for you? *Harvard Business Review*, December, 1-9.
- Plewa, C., Korff, N., Baaken, T. and Macpherson, G. (2013), University-industry linkage evolution: an empirical investigation of relational success factors. *R&D Management*, 43: 365–380
- Poppo, L. and Zenger, T. (2002), Do formal contracts and relational governance function as substitutes or complements?, *Strategic Management Journal*, 23, 8, pp. 707-25
- Praest Knudsen. M. and Bøtker Mortensen. T. (2011). Some immediate but negative –effects of openness on product development performance. *Technovation*, 31. 54–64.
- Rass, M., M. Dumbach, F. Danzinger, A. C. Bullinger and K. M. Moeslein (2013), Open innovation and firm performance: The mediating role of social capital, *Creativity and Innovation Management*, 22 (2): 177-194.
- Remneland-Wikhamn, B. and D. Knights (2012), Transaction Cost Economics and Open Innovation: Implications for Theory and Practice, *Creativity and Innovation Management*, 21 (3): 277-289.
- Remneland-Wikhamn, B., J. Ljungberg, M. Bergquist and J. Kuschel (2011), 'Open innovation, generativity and the supplier as peer: The case of iphone and android', *International Journal of Innovation Management*, 15 (01): 205-230.
- Rohrbeck, R., K. Hölzle and H. G. Gemünden (2009), Opening up for competitive advantage—How Deutsche Telekom creates an open innovation ecosystem, *R&D Management*, 39 (4): 420-430.
- Rosell, D. T. and Lakemond, N. (2012), Collaborative innovation with suppliers: a conceptual model for characterising supplier contributions to NPD, *International Journal of Technology Intelligence and Planning*, 8, 2, 197-21
- Schiele, H. (2006), How to distinguish innovative suppliers? Identifying innovative suppliers as new task for purchasing, *Industrial Marketing Management*, 35, 8, 925-3
- Teece, D. J. (1986), 'Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy', Research Policy, 15 (6): 285-305.
- Teece, D.J. (2007). Explicating dynamic capabilities: the nature and microfoundations of (sustainable) enterprise performance. *Strategic Management Journal*, 28 (13), 1319–1350
- Tidd, J. (2014). Series on Technology Management: Volume 23., Introduction, p.2. http://www.worldscientific.com/series/stm
- Trott, P. and Hartmann, D. (2009), Why "open innovation" is old wine in new bottles, *International Journal of Innovation Management*, 13 (4): 715-736.
- van de Vrande, V., J. P. J. de Jong, W. Vanhaverbeke and M. de Rochemont (2009), Open innovation in SMEs: Trends, motives and management challenges, *Technovation*, 29 (6-7): 423-437.

- van de Vrande, V., Lemmens, C., & Vanhaverbeke, W. (2006). Choosing Governance Modes for External Technology Sourcing. R&D Management, 36, 3, 347-363
- Van de Vrande.V., deJong.J.P.J..Vanhaverbeke.W. and deRochemont.M. (2009).Open innovation in SMEs: trends. motives and management challenges. *Technovation*. 29, 423–437.
- West, J. and M. Bogers (2013), Leveraging External Sources of Innovation: A Review of Research on Open Innovation, *Journal of Product Innovation Management*, 31 (4): 814-831.
- West, J., A. Salter, W. Vanhaverbeke and H. Chesbrough (2014), 'Open innovation: The next decade', Research Policy, 43 (5): 805-811.
- Wu, F., Yeniyurt, S., Kim. D. and Tamer Cavusgil. S. (2006). The impact of information technology on supply chain capabilities and firm performance: A resource-based view. *Industrial Marketing Management*. 35., 493 504.
- Wu, Y. C., Lin, B. W., & Chen, C. J. (2013). How Do Internal Openness and External Openness Affect Innovation Capabilities and Firm Performance? *IEEE Transactions on Engineering Management*, 60, 4.
- Zahra, S.A., George, G. (2002). Absorptive capacity: a review, reconceptualization, and extension, *Academy of Management Review*, 27(2), 185–203