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Abstract— The Constrained Application Protocol (CoAP) is an 

IETF standard application protocol for the future Internet of 

Things (IoT). Since IoT devices are often interconnected by net-

works characterized by high packet error rates and low through-

put, congestion control will be crucial to ensure proper and timed 

communication in these networks. Therefore, CoCoA+, an ad-

vanced congestion control algorithm for CoAP, is currently being 

specified by the IETF. In this work, we present a critical analysis 

of CoCoA+ performance and highlight some of its shortcomings 

and pitfalls. Two different scenarios are considered: one with an 

increasing traffic load due to an increasing number of CoAP re-

quests, and another with an interfering traffic concurrently trans-

mitted in the network characterized by a bursty pattern. In the 

former scenario, we show how CoCoA+ may be characterized by 

many spurious retransmissions at some offered loads close to con-

gestion. In the latter, we show instead how the weak estimator is 

not particularly effective in adapting to changing traffic loads. In 

order to overcome such limitations, a number of modifications to 

CoCoA+ are proposed. The resulting solution, named precise Con-

gestion Control (pCoCoA), is shown to reduce the number of re-

transmissions, while guaranteeing throughputs and delays compa-

rable to those of CoAP and CoCoA+. 

 
Index Terms— CoAP, CoCoA, CoCoA+, Congestion Control 

 

I. INTRODUCTION 

HE Internet of Things (IoT) is getting momentum both 

in academia, as a very active research topic, and in industry, 

with smart objects that are meant to thoroughly affect our lives. 

IoT systems are built on top of IoT devices that collect data and 

interact with the physical environment. IoT devices are usually 

cheap, battery-powered devices, with limited computation ca-

pabilities. Those devices are equipped with low power trans-

ceivers that, however, allow forming Low Power and Lossy 

Networks (LLN), characterized by possibly large packet error 

rates, and low throughput. Due to these characteristics, new 

communication protocols tailored for constrained devices oper-

ating in lossy networks are required. To this aim, IETF defined 

a communication protocol stack for IoT devices. In particular, 

the IETF CoRE Working Group standardized the Constrained 

Application Protocol (CoAP) [1], which allows applications to 

exchange information with IoT devices.  
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Considering the limited capabilities of nodes and the limited 

amount of bandwidth available in LLNs, congestion control is 

crucial to ensure proper and timely delivery of data. In tradi-

tional networks, application data is usually transported by the 

Transmission Control Protocol (TCP), which includes a con-

gestion control mechanism. In LLNs, instead, CoAP employs 

the User Datagram Protocol (UDP), which does not provide any 

congestion control mechanism. For this reason, CoAP imple-

ments optional reliable data delivery through retransmissions 

and regulates the amount of data transmitted through a simple 

congestion avoidance mechanism. The definition of the latter, 

however, is not trivial: the shared nature of the wireless medium 

results in collisions of transmissions, and the limited buffer size 

of IoT devices often produces buffer overflows. Both phenom-

ena can cause frequent packet losses that lead to further mes-

sage retransmissions, which eventually lead to congestion. 

Since CoAP defines only a basic congestion control mecha-

nism, a new advanced congestion control have been proposed 

recently in [2], and further extended in [3]. Such algorithm, 

called CoCoA, is currently under standardization within the 

CoRE Working Group [8]. CoCoA exploits the measured 

round-trip time (RTT) between the client and the server to ad-

just the retransmission timeout and therefore avoid too frequent 

retransmissions. CoCoA has been originally evaluated against 

CoAP in [2] and [3], showing that it can improve the perfor-

mance in terms of throughput, packet delivery ratio, and aver-

age delays.  

In this work, we present an exhaustive performance evalua-

tion of the CoCoA congestion control algorithm1. First, we pre-

sent an evaluation of the algorithm considering two different 

scenarios, the first one with only CoAP traffic, and the second 

one in which CoAP traffic competes with interfering greedy 

traffic that is transmitted without rate control. An in-depth anal-

ysis of these simulation results allows us to highlight some 

novel critical issues of the algorithm. Consequently, we propose 

a set of modifications to the original algorithm to overcome 

these limitations. The resulting algorithm, named pCoCoA, is 

evaluated against CoAP, CoCoA+ and two more recent algo-

rithms: 4-state-strong [7] and CoCoA-E [14]. Results demon-

strated that pCoCoA effectively mitigates the issues of the orig-

inal algorithm, reducing the overall number of retransmissions 

 
1 A preliminary performance evaluation has been presented in a conference 

paper [13]. In this initial contribution, we only considered a scenario with CoAP 

traffic with periodic rate. 
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while keeping throughputs and delays comparable to those ob-

tained with CoAP, CoCoA, CoCoA-E and 4-state-strong. 

Moreover, pCoCoA can correctly handle scenarios in which 

CoAP traffic competes with interfering bursty traffic, whereas 

other algorithms, such as CoCoA-E, do not. To summarize, the 

contributions of this work are the following:  

• An extended performance evaluation of CoCoA consid-

ering two different traffic scenarios: one adopting CoAP 

periodic traffic, and a second one with periodic traffic 

sources competing with interfering bursty traffic 

sources. The analysis of the CoCoA behavior allowed 

highlighting novel issues of the CoCoA algorithm.  

• A novel congestion control algorithm derived from Co-

CoA named pCoCoA, defined to overcome the limita-

tions highlighted. The proposed congestion control algo-

rithm is evaluated against protocols from the literature. 

The rest of the paper is structured as follows. In Section II a 

short description of CoCoA is provided. Section III highlights 

the related work. Section IV introduces the methodology 

adopted and analyzes the performance evaluation results. Sec-

tion V summarizes the main issues identified by their in-depth 

analysis. In Section VI we present the proposed pCoCoA algo-

rithm, while in Section VII we present the results of its perfor-

mance evaluation. Finally, in Section VIII we draw the conclu-

sions.  

II. COCOA+ CONGESTION CONTROL 

The Simple Congestion Control/Advanced, also known as 

CoCoA, is an alternative congestion control algorithm for 

CoAP originally proposed in [2] and now currently under stand-

ardization within the activities of the CoRE Working Group [8]. 

Different versions of the algorithm have been proposed over 

time, including minor modifications that helped improving the 

performance. In this work we consider its last revision, Co-

CoA+ [3]. The algorithm is composed of the following three 

main functions: 

• a policy to calculate the retransmission timeout (RTO), 

• the back-off policy to set the RTO for retransmissions, 

and 

• an ageing policy for the status information. 

We briefly describe in the following the CoCoA+ algorithm 

yet with enough details to allow the reader understand the sub-

sequent in-depth analysis. We refer to [3] for a comprehensive 

illustration of the algorithm and the rationale behind it. 

A. RTO calculation 

In order to calculate the RTO, CoCoA+ adopts the same algo-

rithm used by TCP, which updates the RTO value based on 

measured Round Trip Times (RTTs). According to Karn's al-

gorithm [9], the RTT measurements should be considered only 

when the message was correctly delivered without retransmis-

sions. In the context of lossy networks, however, many trans-

missions are expected to experience retransmissions, thus re-

ducing the probability of obtaining valid RTT measurements. 

For this reason, CoCoA+ considers also transactions that expe-

rienced retransmissions to obtain a more accurate RTT estima-

tion. Specifically, two RTO values are calculated: a strong 

RTO, estimated using RTTs samples from transactions that did 

not required any retransmission, and a weak RTO, estimated us-

ing RTT values of transactions that required no more than two 

transmissions. Considering that it is not possible to know for an 

ACK to which transmission it belongs to, RTT samples are col-

lected measuring the time between the first transmission and the 

arrival of the response, but only if two retransmissions at most 

are required.  

For each destination, a node maintains the following quanti-

ties: 

• two smoothed mean RTT estimators: RTTstrong and 

RTTweak, 

• two smoothed mean variance, called RTTVARstrong and 

RTTVARweak, 

• two RTO estimators, called RTOstrong and RTOweak, de-

rived from the strong and weak RTT estimators, respec-

tively, and 

• a comprehensive RTO, called RTOoverall, which keeps 

track of both RTOstrong and RTOweak changes. 

Initially, the RTO estimators are initialized with a default 

value of 2s. The value of the other RTTx and RTTVARx param-

eters are initialized when the first corresponding RTT value R 

is measured as follows: 

𝑅𝑇𝑇𝑥 ← 𝑅,        𝑅𝑇𝑇𝑉𝐴𝑅𝑥 ←
𝑅

2
 (1) 

Every time a new RTT sample R is measured, the correspond-

ing strong or weak estimators (based on the number of retrans-

missions) are updated as follows: 

𝑅𝑇𝑇𝑥 = (1 − 𝛼)𝑅𝑇𝑇𝑥 + 𝛼𝑅 (2) 

𝑅𝑇𝑇𝑉𝐴𝑅𝑥 = (1 − 𝛽)𝑅𝑇𝑇𝑉𝐴𝑅𝑥 + 𝛽|𝑅𝑇𝑇𝑥 − 𝑅| (3) 

𝑅𝑇𝑂𝑥 = 𝑅𝑇𝑇𝑥 + 𝐾𝑥𝑅𝑇𝑇𝑉𝐴𝑅𝑥 (4) 

𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜆𝑥𝑅𝑇𝑂𝑥 + (1 − 𝜆𝑥)𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (5) 

where the following values are recommended: α=0.125, 

β=0.25, Kstrong =4,  Kweak=1, λstrong =0.5, and λweak =0.25. RTOover-

all is used to set the initial RTO (RTOinit) for the next CON trans-

mission. The actual value is selected using a dithering approach, 

i.e., RTOinit is randomly chosen from the interval [RTOoverall , 
1.5∙RTOoverall]. 

B. Backoff policy 

CoCoA+ introduces a backoff mechanism to set the retrans-

mission timeout. Compared to CoAP, in which the RTO is dou-

bled, CoCoA+ computes the new RTO value for retransmis-

sions according to a variable backoff factor (VBF) that depends 

on the initial RTO value RTOinit . Specifically, the new value of 

RTO for retransmissions RTOnew is evaluated as follows: 

𝑅𝑇𝑂𝑛𝑒𝑤 = 𝑅𝑇𝑂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ∗ 𝑉𝐵𝐹(𝑅𝑇𝑂𝑖𝑛𝑖𝑡) (6) 

The VBF factor is set according to RTOinit to avoid frequent 

retransmissions in a short time when the RTO value is low, and 

to avoid long delays in retransmissions when the RTO value is 

large, instead. 

C. Information aging  

CoCoA+ introduces a mechanism to age RTO values when 

RTT updates are not received for a certain time. The rationale 
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is that the RTO estimation becomes obsolete after a certain time 

and should converge towards the initial value. Specifically, if 

RTOoverall is larger than the base RTO defined in CoAP, which 

is set by default to 2s, and it is not updated for more than 30s, 

when a new measurement is obtained the following formula is 

applied: 

𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
2 + 𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙

2
 

(7) 

If RTOoverall is, instead, less than 1s, and it is not updated for 

a time that is 16 times its actual value, RTOoverall is reset to 1s. 

III. RELATED WORK 

Many recent works focused on evaluating the performance 

of CoCoA per se. In [4], for instance, CoCoA is evaluated in a 

typical large-scale IoT scenario in which GPRS is employed to 

connect IoT nodes. The authors compared CoCoA against other 

congestion control mechanisms defined for TCP applications. 

Results showed that CoCoA performs equally or better than 

TCP-based algorithms. Similar conclusions were drawn in [5], 

where the authors compared CoCoA to other TCP-based con-

gestion control mechanisms on an emulated Zigbee network. In 

[6], the authors evaluated CoCoA by means of simulations con-

sidering different traffic patterns. Similar to our work, the au-

thors highlighted the poor performance of CoCoA with bursty 

traffic due to the improper selection of the retransmission 

timeout value.  

Recently, other works proposed modifications to CoCoA. In 

[7] the authors proposed ‘4-states-strong’, a modification to Co-

CoA that introduces a more complex RTT estimator to distin-

guish between wireless losses and congestion losses. Results 

showed an improvement of the performance in networks where 

the loss rate is particularly high. In [14], instead, authors pro-

posed CoCoA-E, a modified version of CoCoA based on the 

Eifel retransmission timer. Simulations showed an improve-

ment of the RTO estimation under two different RTT functions: 

stair-step and saw-like. Both ‘4-states-strong’ and CoCoA-E 

will be presented in details in Section VII.A, as they are adopted 

as term of comparison in the performance evaluation. Finally, 

in [16] the authors evaluate CoCoA-S, a version of CoCoA that 

uses only the strong RTO estimator. The variant is evaluated 

against other TCP congestion control algorithms such as the 

Linux RTO and the peak-hopper TCP RTO estimator. In such 

results, however, CoCoA is confirmed to deliver better perfor-

mance compared to CoCoA-S and the other congestion control 

strategies, which are demonstrated to be unfit for CoAP.  

To conclude, Table I summarizes the congestion control 

strategies recently proposed in literature, along with their main 

features.  

IV. PERFORMANCE EVALUATION 

In this section, we analyze the results of the performance 

evaluation. The performance evaluation is carried out by simu-

lation. To this aim, the Cooja platform is used, leveraging a 

ContikiOS implementation of CoCoA+ originally obtained 

from its authors, and then updated to be in line with the latest 

CoCoA+ specification [3]. Cooja motes are used to emulate 

wireless sensor devices. The relevant simulation parameters are 

summarized in Table II. In all scenarios, we consider a grid of 

6x6 nodes, as reported in Fig. 1. In the network, one node is the 

RPL border router (node ID 1), one node act as a CoAP server 

(node ID 3), and, finally, the remaining nodes are CoAP clients. 

The linear distance between two nodes in a row is 10m. 

In all scenarios, periodic CoAP traffic with CoCoA+ conges-

tion control is considered to emulate a network of sensors that 

report their measurements at a fixed period. In the first evalua-

tion scenario, only periodic traffic is transmitted. On the other 

hand, in the second scenario, periodic traffic is mixed with 

bursty CoAP traffic with default congestion control in order to 

evaluate CoCoA+ performance when greedy competing traffic 

is also present in the network. 

TABLE II 

SIMULATION PARAMETERS 

Parameter Value 

L2 protocol IEEE 802.15.4, 250 Kbps PHY rate 
Channel model Unit Disk GM, tx range = 10mt, interference 

range = 20mt 

MAC buffer size 8 packets 

MAC level max re-

transmissions 

8 

L3 protocol 6LoWPAN 
Routing protocol RPL 

CoAP base ACK-

TIMEOUT 

3s 

CoAP requests 

buffer size 

4 

Periodic traffic – 
Request period (T) 

and corresponding 

data rate 

0.5s (6048 B/s), 1s (3025 B/s), 2s (1513 B/s), 
3s (1010 B/s), 4s (757 B/s), 6s (505 B/s), 7s 

(434 B/s), 8s (379 B/s), 9s (337 B/s), 10s (304 

B/s), 12s (253 B/s), 14s (217 B/s), 16s (191 
B/s), 32s (96 B/s), 64s (49 B/s), 70s (45 B/s) 

Bursty traffic – 

packet inter-arrival 
times 

10s, 30s, 40s, 60s, 90s, 100s, 120s, 140s 

 

 

TABLE I 
CONGESTION CONTROL ALGORITHMS 

Name 
Backoff 

Method 

RTT  

Estimators 

RTO  

aging 

Derived 

from 

CoAP BBF None No None 
CoCoA VBF Strong & 

Weak 

Yes LinuxRTO 

CoCoA-S VBF Strong Yes CoCoA 
CoCoA-E VBF Strong & 

Weak 

Yes CoCoA & 

Eifel 

4-state-strong VBF Four  
estimators 

Yes CoCoA 

 
 

Fig. 1,  Network topology 
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A. Periodic traffic scenario 

In this scenario, all CoAP clients periodically send confirm-

able POST requests towards the server with ID 3. Each request 

has a size of 95B. For each successfully received request, the 

server replies with a response piggybacked onto a CoAP ACK 

message. All requests are addressed to an IPv6 global address, 

which forces messages to be routed through the RPL border 

router in order to reach the server. Before starting to transmit 

CoAP requests, nodes wait for 60s to let the RPL topology sta-

bilize, and then for a further random time to avoid synchroniza-

tion effects. Finally, nodes start sending requests with a com-

mon period T, ranging from 70s to 0.5s, in order to inject in the 

network an increasing amount of data. Each experiment has a 

duration of 800s. In order to obtain statistically sound results, 

twelve independent replicas for each scenarios are run, and met-

rics of interest are then estimated for each scenario along with 

a 95% confidence interval. 

Fig. 2 shows the aggregate carried load and actual offered 

load as a function of the nominal offered load for both CoAP 

and CoCoA+. The carried load is defined as the overall amount 

of data successfully delivered at the server. The actual offered 

load, instead, is defined as the overall amount of generated data 

that is transmitted at least once, i.e., that is not discarded at the 

client because of a buffer overflow at the application layer.  

From Fig. 2 we can first observe that for both CoAP and Co-

CoA+ the respective carried and actual offered loads are very 

close to each other even when the carried load stops increasing 

linearly (at a nominal offered load of approximately 380 B/s), 

i.e., congestion has started in the network. This means that in 

both cases the server receives almost all the requests transmitted 

by clients, and therefore the main bottleneck that causes con-

gestion is located at the client, and not in the network. This is 

expected, as only one outstanding request for each node is al-

lowed when NSTART is set to one. When the offered load in-

creases, the network traffic increases resulting in longer times 

to complete a transaction (considering that the client retransmits 

a request until the ACK is received), which, consequently, re-

sults in more frequent buffer overflows at the application layer. 

However, if we focus on the results obtained when congestion 

has started, we can also notice that the carried load keeps in-

creasing, though at a much slower rate. This can be explained 

by considering that congestion is not evenly distributed among 

all nodes. In particular, nodes farther from the server start dis-

carding requests earlier, while nodes closer to the server, in-

stead, experience shorter delays to complete a transaction, con-

sequently they experience application layer overflows at higher 

offered loads. Although omitted here for the sake of brevity, 

this is confirmed by analyzing the carried load per node: the 

increase of the carried load, after congestion has started, is 

mainly due to the three clients closest to the server (nodes 4, 9, 

and 10). 

By comparing CoAP and CoCoA+ carried loads from Fig. 2, 

we can then observe that their performance differ under conges-

tion: as expected, CoCoA+ always outperforms the CoAP sim-

ple congestion control mechanism by dynamically adapting re-

transmission timeouts. In order to get a better insight into this 

result, we consider a few additional relevant metrics as a func-

tion of the nominal offered load. In particular, Fig. 3 shows the 

overall MAC buffer overflows in the network, i.e., the overall 

amount of requests discarded at the MAC layer in the network. 

Fig. 4 shows instead the average number of transmissions (at 

the client) for each successful transaction. Finally, Fig. 5 shows 

the average number of ACK messages received at the client for 

each successful transaction (including duplicates).  

These results highlight that three different offered load inter-

vals can be identified to compare the performance of CoCoA+ 

and CoAP congestion control: a non-congestion interval, with 

offered loads up to 250 B/s, a pre-congestion interval, with of-

fered loads ranging between 250 B/s and 380 B/s, and, finally, 

a congestion interval, with offered loads above 380 B/s.  

In particular, in the non-congestion interval, corresponding 

to one request every 12s, or more, per node, the network is es-

sentially operating out of congestion, no buffer overflow occurs 

and therefore the two algorithms behave in the same way. On 

 
Fig. 2,  Carried load vs. offered load. 

 
Fig. 3,  Overall in-network MAC buffer overflows. 

 
Fig. 4,  Average number of transmissions per successful transaction. 
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the other hand, in the congestion interval, corresponding to one 

request every up to 8s per node, the network is running under 

substantial congestion in most of its nodes, and the actual of-

fered load stops increasing linearly with the nominal offered 

load. In this case, the amount of buffer overflows rapidly in-

creases together with packet delays. A fixed RTO value is there-

fore not efficient, as its value eventually becomes close or even 

lower than round-trip times. For this reason, the timeout expires 

more frequently and often unnecessarily, leading to the trans-

mission of additional traffic that further congests the network. 

CoCoA+ shows instead its effectiveness in adapting to increas-

ing RTTs by using larger RTO values and therefore reducing 

the amount of retransmissions per transaction (see Fig. 4). The 

amount of unnecessarily retransmitted requests is also drasti-

cally reduced, as shown in Fig. 5. 

Finally, we compare the performance of CoCoA+ and CoAP 

in the pre-congestion interval, which corresponds to request ar-

rival periods per node between 8s and 12s. This case is interest-

ing since both CoAP and CoCoA+ achieve the same carried 

load, but they clearly behave differently. In particular, we ob-

serve from Fig. 4 that CoCoA+ triggers a number of request 

retransmissions that increases linearly with the offered load, 

while retransmissions with CoAP are still negligible. However, 

considering that the carried load is practically the same, such 

retransmitted requests with CoCoA+ are unnecessary and they 

only contribute to increase the traffic load in the network. In 

fact, either such spurious retransmissions are dropped before 

reaching the server, as shown by Fig. 3, or they produce dupli-

cate ACKs that are sent back to the client, as shown by Fig. 5. 

In this range of offered loads CoCoA+ requires therefore more 

network resources than CoAP to achieve the same carried load, 

or, said alternatively, congestion is reached earlier than CoAP. 

As a matter of facts, with a request period of 8s, the carried load 

with CoCoA+ is even slightly lower than CoAP. Such behavior 

is consistently exhibited by all nodes in the network - see Fig. 

6, which shows the carried load per node for both protocols. 

In order to understand this behavior, we provide an insight 

into the operation of both the algorithms in a selected time in-

terval, in the case of a request period equal to 8s. Fig. 7 and Fig. 

8 show the values of all the relevant parameters controlling the 

transmission of requests over subsequent transactions in CoAP 

and CoCoA+, respectively. Specifically, in both figures values 

reported with blue circle marks represent the RTOinit values, 

while green square marks represent the measured RTTs. More 

precisely, in case of a retransmission, the RTT value is calcu-

lated as the delay between the first request transmission and the 

arrival of an ACK (this is due to the RTT ambiguity problem 

[5]); in this case, the measured delay between the last retrans-

mission and the ACK reception is also reported using the yel-

low triangle mark. Finally, in both figures we report with blue 

cross marks the RTO values calculated as a result of a back-off 

because of a retransmission, and highlight spurious retransmis-

sions with brown small circle marks. 

From Fig. 7 we can observe that RTO values randomly cho-

sen by CoAP in the predetermined range are large enough to 

cope with RTT variations, thus causing a negligible number of 

unnecessary fluctuations. On the other hand, from Fig. 8 we can 

observe that, with CoCoA+, when a series of similar RTT val-

ues is sampled, the contribution of RTTVAR to the RTO com-

putation vanishes and, consequently RTO values eventually get 

very close to actual RTTs. When this occurs, small RTT varia-

tions cause spurious retransmissions, which, besides being un-

necessary, potentially further exacerbate the issue, since they 

contribute to increase RTTs in the network, and therefore trig-

ger additional retransmissions. 

B. Interfering Bursty Traffic 

In this second scenario, we consider five nodes (with IDs 2, 

8, 15, 32, and 34, respectively) that transmit bursty traffic that 

interferes with periodic requests sent to the server by the re-

maining nodes. In particular, interfering nodes send CoAP re-

quests according to an ON-OFF pattern. The OFF period is set 

to 120s, while the ON period is varied ranging from 10s to 140s 

in the different experiments. During the ON periods, requests 

are sent to the server back to back using CoAP congestion con-

trol with an RTO equal to 1s max, and one retransmission at 

 
Fig. 5,  Average number of ACKs per successful transaction. 

 
Fig. 6,  CoAP vs. CoCoA+ carried load per node, T = 8s. 

 

 
Fig. 7,  CoAP operation, node ID 10, T = 8s. 

 

 
Fig. 8,  CoCoA+ operation, node ID 10, T = 8s. 
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most (i.e., MAX_RETRANSMIT is equal to one). Such config-

uration leads to interfering nodes that are very aggressive dur-

ing their ON phase. Periodic requests from the other CoAP cli-

ents are sent with a constant period set to T = 14s, which ensures 

that the network operates far from congestion when all interfer-

ing nodes are in the OFF phase. Each experiment lasts 1000s. 

For each scenario twelve independent replicas are run. 

The goal of this scenario is to analyze the behavior of Co-

CoA+, as compared to CoAP, in a non-steady context when the 

background traffic varies back and forth between light and high 

loads. Fig. 9 shows the aggregate carried load for CoAP clients 

with constant periodic traffic as a function of the duration of the 

ON period. On the other hand, Fig. 10 shows the average num-

ber of transmissions at the sender per successful transaction for 

the same clients.  

From Fig. 9 we can observe that CoAP slightly outperforms 

CoCoA+ in terms of carried load when the ON period is short 

(up to 60s). This seems to be in contrast with the results shown 

in Fig. 2, i.e., CoCoA+ performs either equal to CoAP at light 

loads, and better at high loads. However, this behavior can be 

explained by the fact that CoCoA+ fails to adapt to congestion 

when congestion periods (ON periods) are not long enough. In 

fact, for ON periods longer than 60s, the carried load with Co-

CoA+ starts decreasing slower than CoAP, becoming then 

higher than the latter.  

However, Fig. 10 shows that in all scenarios CoCoA+ em-

ploys on average a larger number of transmissions per transac-

tion than CoAP. Recall that in the previous scenario we ob-

served instead (see Fig. 4) that at steady high loads CoCoA+ 

succeeds in reducing retransmissions with respect to CoAP by 

dynamically adapting to congestion. This behavior can be ex-

plained by considering how RTOinit is updated in case of retrans-

missions, i.e., when the weak estimator plays a major role. If 

more than two retransmissions occur, the weak estimator is not 

updated, and therefore RTOinit is not updated as well. In addi-

tion, if an RTT is sampled after a retransmission that is close to 

the previous RTOinit value, the weight associated to the weak 

estimator is too small to affect the next RTOinit, which therefore 

does not increase fast to respond to network congestion. 

Such circumstances are both frequently observed during ON 

periods with CoCoA+. Two examples are provided in Fig. 11 

and Fig. 12. In particular, Fig. 11 shows that, although a se-

quence of four transactions that required at least one retrans-

mission occurred, RTOinit is not updated by CoCoA+, and its 

small value contributes to increase the number of retransmis-

sions. On the other hand, in Fig. 12 it is shown how the RTOinit 

is adapted, but not enough to avoid spurious retransmissions 

corresponding to duplicate ACKs. 

V. COCOA+ SHORTCOMINGS 

The performance analysis presented in Sect. IV allowed us to 

identify some weaknesses of CoCoA+ in its current definition. 

We summarize our conclusions in the following, also providing 

additional considerations based on the gained experience. 

A. RTO too close to RTT 

When a sequence of similar RTTs is sampled, the RTTVAR 

variable, which measures the mean variance, tends to vanish. It 

follows that RTO values get close to the measured RTT. The 

problem is exacerbated when such RTTs have a very small 

value, for instance because of a period in which the network is 

lightly loaded that leads to small RTOs. However, even when 

the network is stable, RTTs can fluctuate, consequently the 

 
Fig. 9,  Carried load – periodic traffic. 

 
Fig. 10, Transmissions per transaction – periodic traffic. 

 
Fig. 11, Weak estimator failing to update RTOinit. 

 
Fig. 12, Weak estimator failing to adapt RTOinit. 
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probability of spurious retransmissions increases as RTOs get 

close to small RTTs. The RTTVAR component was intended to 

maintain information about network variability: when the traf-

fic pattern is bursty (e.g., an alarm triggered by sporadic 

events), it might be worthwhile to avoid RTTVAR resets.  

B. Lack of weak estimator update 

The rule to avoid the weak estimator update when more than 

two retransmissions occur has been introduced in CoCoA+ to 

reduce the impact of the weak RTO on the final RTO. However, 

this countermeasure can work well only under steady condi-

tions when the network load is constant or changes very slowly. 

On the other hand, if competing traffic is bursty, a more timeli-

ness adaptation to the current network load is required. 

C. Insufficient weak estimator weight 

Setting Kweak to 1 also limits the impact of the weak RTO. 

This works well under slowly varying traffic load, but not when 

competing sporadic bursty traffic is transmitted in the network. 

Our results showed that if the sampled RTT after a retransmis-

sion is very close to the RTO, the weak estimator is not able to 

increase the RTO value effectively. Such event is particularly 

frequent when spurious retransmissions occur. In this case, 

even though the received response corresponds to the first trans-

mission, the weak estimator manages the sample as if it were a 

response to the retransmitted request. However, its weight is 

smaller than the strong estimator, and therefore it does not 

change significantly the RTO value, and this may cause a se-

quence of spurious retransmissions.  

D. RTO peaks in response to RTT decrease 

The algorithm used to calculate the RTO suffers of the fol-

lowing issue: if the RTT rapidly decreases, the RTO, contrarily, 

increases. As also shown in [14], this can be explained consid-

ering that the difference between the smoothed mean RTT and 

the sampled RTT becomes negative while RTTVAR is updated 

using the absolute value of such difference, thus resulting in an 

artificial increase of the RTO. Fig. 13 shows an example of this 

behavior observed in one simulation run of our experiments. 

E. Double algorithms, double histories 

The analysis of the RTO traces has highlighted some RTOinit 

spikes in some experiments. Fig. 14 shows an example of such 

behavior: a small increase in the RTT causes a steep increment 

of the RTO value. The reason for this is due to the lack of an 

aging mechanism for the weak estimator. If the weak estimator 

has grown to a large value at some time in the past, it will in-

fluence the RTO whenever a retransmission occurs (even if the 

retransmission is spurious), irrespectively of how much time 

has passed since then. To avoid such behavior, the weak esti-

mator should be aged as well, or it should be discarded in favor 

of an exact retransmission response estimation. 

F. Excessive RTO growth  

In CoCoA+ the RTOinit value can grow very large. If retrans-

missions occur, the back-off further increases such values, lead-

ing to very large waiting times. In fact, only the initial RTO is 

limited to 60 seconds. During our experiments some transac-

tions, although a few ones, required a waiting time in between 

200 and 300 seconds. 

VI. COAP PRECISE CONGESTION CONTROL 

The following section presents a set of modifications to the 

CoCoA+ algorithm that aim at overcoming the issues high-

lighted. The proposed solution is based on two main elements: 

(i) a mechanism to precisely link requests to responses even in 

case of retransmissions; (ii) a set of modifications to the RTO 

estimation algorithm. Specifically, the resulting precise Con-

gestion Control algorithm, pCoCoA for short, differs from Co-

CoA+ in the following points: 

• It eliminates the use of the weak estimator, introducing 

a transmission count option to match each ACK message 

with the corresponding CON message even in case of 

retransmissions; 

• It introduces a different way to initialize the variable and 

to update RTTVAR and the only smoothed round-trip es-

timator, SRTT; 

• It employs a dynamic method to limit the minimum 

RTO, thus reducing spurious retransmissions. 

In the following, we present in detail the proposed modifica-

tions. First, we introduce two alternative solutions to implement 

a precise mapping between CON and ACK messages when re-

transmissions occur, then we present the precise Congestion 

Control algorithm and the RTO calculation procedure adopted.  

A. CON-ACK precise mapping 

The current CoAP and CoCoA+ implementations cannot 

match a specific ACK with its CON when retransmissions oc-

cur. As a result, it is impossible to distinguish between transac-

tions completed with only one transmission and transactions 

that required instead multiple retransmissions. In order to over-

come such limitation two solutions are proposed: i) introduce a  
Fig. 14, Example of RTOinit spikes. 

 

 
Fig. 13, Example of RTO increase as response to RTT decrease. 
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specific CoAP option, or ii) modify the Message ID semantic.  

In the first case, a new CoAP option called transmission 

counter (TC) is introduced. This option is used to link each 

ACK message to the corresponding transmitted CON message 

even in case of retransmissions. Specifically, the sender of a 

CON message sets the TC option to 1 on the first transmission, 

whereas for each subsequent retransmission the value is incre-

mented. The receiver echoes the CON’s TC option in the ACK. 

It is worth to note that the TC option is updated on every re-

transmission in order to allow to identify which specific CON 

transmission had generated the ACK.  

Based on the TC value in the ACK message, the sender can 

link the latter to the corresponding CON message. If the sender 

stores a timestamp for each transmission, it can estimate the 

round-trip time precisely. Furthermore, this mechanism allows 

to detect spurious retransmissions, i.e. unnecessary retransmis-

sion of CON messages that are not lost but simply delayed in 

the network, by comparing the TC value of the last retransmis-

sion with the TC value received in the ACK message. This al-

lows the sender to implement specific policies to react, i.e. by 

using different factors in the update of the RTO by estimation. 

The TC option is classified as elective: in this case, when the 

receiver does not recognize the option, the latter can be silently 

ignored and an ACK without the TC option can be sent back. 

The communication is still guaranteed but the advanced con-

gestion control features are disabled.  

An alternative solution to avoid the overhead introduced by 

the transmission of a dedicated CoAP option is to rely on exist-

ing fields of the CoAP message, and specifically on the Mes-

sage ID. The MID is a 16-bit unsigned integer used to detect 

message duplication and to match messages of type ACK/RST 

to messages of type CON/NON. To support our approach, MID 

could be split into a 14-bit id and a 2-bit sequence number. The 

id sub-field would retain the role of the original MID, thus be-

ing the same in all retransmitted CON messages, whereas the 

sequence number would be incremented at each retransmission 

(supporting then up to four retransmissions). Duplicate message 

detection is therefore preserved, and, in addition, the sender is 

able to match each received ACK message to its corresponding 

CON message among the multiple transmitted ones, in order to 

precisely estimate the RTO.  

Without loss of generality, in the following we adopted the 

first approach.  

B. Precise Congestion Control algorithm 

The pseudocode of the proposed congestion control algo-

rithm is presented in Algorithm 1. The code summarizes all the 

operations to be performed in sequence at each phase of a CoAP 

transaction: the transmission of a CON, the retransmission, and 

the reception of an ACK. 

At the beginning of each transaction, the internal state is ini-

tialized. In particular, the RTO value is initialized to the default 

RTO value, if the destination is unknown, (line 4) otherwise is 

set to the last value measured for the least transaction towards 

the same destination (line 6). In both cases, a dithering tech-

nique is applied (line 7) to avoid synchronization effects. After 

the transmission of the CON, the sender stores the timestamp 

and sets a retransmission timer based on the current RTO value 

(line 11-13). The sender waits until the retransmission timer ex-

pires or an ACK is received. If the transmission timer expires 

without receiving an ACK, the CON message is retransmitted. 

Before retransmitting, however, the sender updates the CON’s 

TC option (line 16) and the RTO using the Variable Back-off 

(VBF) formulae adopted by CoCoA+ (line 18).  

Each CON message is retransmitted until an ACK is received 

or the maximum number of attempts, MAX_ATTEMPS, is 

reached (line 10). In the latter case, the CON message is dis-

carded and the procedure ends. When an ACK is received, in-

stead, the algorithm computes the RTT value (R) as the differ-

ence between the timestamp of the ACK and the timestamp of 

the corresponding CON (line 20). Subsequently, the value of 

the TC option received with the ACK is compared with the TC 

of the last sent CON (line 21). If there is a difference between 

these two values, a spurious transmission occurred. In order to 

take this into account in future computations, the spurious flag 

is set (line 22). Once the RTT is computed, the RTOComputa-

tion algorithm is executed to update the RTO for future trans-

missions to the same destination (line 25-26).  

C. RTO Computation algorithm 

The proposed RTO computation mechanism is inspired by 

the algorithm included in the Linux TCP congestion control 

[10], which however cannot be directly applied here since the 

underlying layer is UDP.  

Specifically, the Linux TCP algorithm exploits the estima-

tion of the maximum mean deviance of the RTO (𝑚𝑑𝑒𝑣𝑚𝑎𝑥) to 

avoid issues caused by sudden RTT variations. In detail, 

𝑚𝑑𝑒𝑣𝑚𝑎𝑥 is used to limit the RTO. To this aim, the RTO is 

maintained constant within a time window proportional to the 

function SendAndReceive(CON) 

1. 𝑇𝐶 = 1 

2. 𝐶𝑂𝑁. 𝑇𝐶 = 𝑇𝐶 

3. if(𝐶𝑂𝑁. 𝑑𝑒𝑠𝑡 not in 𝑘𝑛𝑜𝑤𝑛_𝑑𝑒𝑠𝑡) 

4.     𝑅𝑇𝑂 = 𝐶𝑜𝐴𝑃_𝐷𝐸𝐹𝐴𝑈𝐿𝑇_𝑅𝑇𝑂 

5. else 

6.     𝑅𝑇𝑂 = 𝑘𝑛𝑜𝑤𝑛_𝑑𝑒𝑠𝑡[𝐶𝑂𝑁. 𝑑𝑒𝑠𝑡] 

7. 𝑅𝑇𝑂 = 𝑅𝑇𝑂 + 𝑟𝑎𝑛𝑑()%
𝑅𝑇𝑂

2
 

8. 𝐴𝐶𝐾 = 𝑁𝑈𝐿𝐿 

9. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[] = 𝐴𝑟𝑟𝑎𝑦(𝑀𝐴𝑋_𝐴𝑇𝑇𝐸𝑀𝑃𝑆) 

10. while(𝑇𝐶 < 𝑀𝐴𝑋_𝐴𝑇𝑇𝐸𝑀𝑃𝑆 and 𝐴𝐶𝐾 == 𝑁𝑈𝐿𝐿) 

11.     𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑇𝐶] = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑡𝑖𝑚𝑒() 

12.     𝐴𝐶𝐾 = 𝑠𝑒𝑛𝑑(𝐶𝑂𝑁) 

13.     𝑡 = 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑟(𝑅𝑇𝑂) 

14.     𝑤𝑎𝑖𝑡_𝑢𝑛𝑡𝑖𝑙(𝐴𝐶𝐾 ≠ 𝑁𝑈𝐿𝐿 or 𝑡. 𝑒𝑥𝑝𝑖𝑟𝑒𝑑) 

15.     if(𝑡. 𝑒𝑥𝑝𝑖𝑟𝑒𝑑) 

16.         𝑇𝐶 = 𝑇𝐶 + 1 

17.         𝐶𝑂𝑁. 𝑇𝐶 = 𝑇𝐶 

18.         𝑅𝑇𝑂 = 𝑉𝐵𝐹() 

19. if(𝐴𝐶𝐾 ≠ 𝑁𝑈𝐿𝐿) 

20.     𝑅 = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑡𝑖𝑚𝑒() − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝐴𝐶𝐾. 𝑇𝐶]  
21.     if(𝑇𝐶 ≠ 𝐴𝐶𝐾. 𝑇𝐶) 

22.         𝐴𝐶𝐾. 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 = 𝑇𝑟𝑢𝑒  

23. else 

24.     return 

25.     𝑅𝑇𝑂 = 𝑅𝑇𝑂𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑅, 𝐴𝐶𝐾. 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠)  

26.     𝑘𝑛𝑜𝑤𝑛_𝑑𝑒𝑠𝑡[𝐶𝑂𝑁. 𝑑𝑒𝑠𝑡] = 𝑅𝑇𝑂 

 

Algorithm 1: pCoCoA algorithm 
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number of TCP segments currently waiting for acknowledg-

ment. Considering that by default CoAP adopts a stop-and-wait 

approach, as NSTART is set to 1 by default, the algorithm must 

be modified to deal with the fact that CoAP has at maximum 

only one outstanding request at a time. The resulting RTO com-

putation algorithm is shown in Algorithm 2. When the first RTT 

sample R is received, the algorithm performs the initialization 

of the variables as follows:  

𝑆𝑅𝑇𝑇 ← 𝑅,   𝑅𝑇𝑇𝑉𝐴𝑅 ←
𝑅

2
 

(8) 

𝑚𝑑𝑒𝑣𝑚𝑎𝑥 ← 𝑚𝑎𝑥 (
𝑅

2
, 250𝑚𝑠) (9) 

𝑅𝑇𝑂 ← 𝑆𝑅𝑇𝑇 + 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 (10) 

The formula (10) that initializes the RTO value has been in-

ferred from the results of a set of preliminary experiments, 

omitted here for the sake of brevity, which aimed at evaluating 

several possible initialization strategies.  

After the first RTT measurement, whenever a new value R is 

measured, the steps of the RTOCalculation function are exe-

cuted. Its definition employs the following constants whose val-

ues are set according to the results available from the literature, 

𝛼 =
1

8
[11], 𝛽 =

1

4
[11], 𝛾 =

1

32
[10], 𝛿 =

1

2
 [3].  

The algorithm updates SRTT and RTTVAR adopting two 

smoothed filters. Differently from LinuxRTO, which updates 

RTTVAR through an additional filter, RTTVAR is updated di-

rectly considering two different policies (line 5) to slow down 

its decrease when significant fluctuations occur. To this aim, 

when the difference between SRTT and R is greater than the 

current RTTVAR value, RTTVAR is updated using the parameter 

β (line 6), otherwise it is updated using the parameter α (line 8). 

When α is employed, the historic RTTVAR value has a greater 

weight compared to the case in which β is employed, thus 

avoiding a fast decrease of RTTVAR.  

The maximum variability that is experienced is tracked using 

𝑚𝑑𝑒𝑣𝑚𝑎𝑥. Such variable, however, is updated only if RTTVAR 

increases due to an RTT sample greater than the smoothed RTT 

(line 9), caused by a sudden increase of the network delay. This 

choice is motivated by the fact that when the network delay in-

creases, the RTO should be increased consequently. However, 

in order to limit the influence of sporadic peaks in the RTT es-

timation, a specific aging mechanism for 𝑚𝑑𝑒𝑣𝑚𝑎𝑥  is intro-

duced. In particular, 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 is increased only if its value is 

smaller than RTTVAR for three consecutive times (line 10-11). 

In such case, 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 is updated to the average value of the 

last three RTTVAR samples. If 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 , instead, is higher than 

RTTVAR for eight consecutive times, its value is updated using 

the usual smoothing algorithm to facilitate 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 to con-

verge to RTTVAR (line 12-13). This policy has been designed 

based on a set of preliminary experiments that are not reported 

here for the sake of brevity. The rationale behind taking into 

account both 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 and RTTVAR is that they change over 

time differently, i.e. RTTVAR decreases rapidly when multiple 

similar RTT values are sampled in a short period, while 

𝑚𝑑𝑒𝑣𝑚𝑎𝑥, requires instead more time to decrease, thus limiting 

the decrease of the final RTO value. 

Finally, the RTO value is updated following a two-step pro-

cedure as in the CoCoA+ algorithm. First, the estimator 𝑆𝑅𝑇𝑂 

(line 18) is updated, then the new 𝑅𝑇𝑂𝑖𝑛𝑖𝑡  is computed through 

a smoothed average of the new 𝑆𝑅𝑇𝑂 and the old 𝑅𝑇𝑂𝑖𝑛𝑖𝑡  val-

ues (line 19). The computation of 𝑆𝑅𝑇𝑂 depends on the value 

of the spurious flag and also includes a technique to limit the 

minimum 𝑆𝑅𝑇𝑂 value. The latter mechanism, adopted also by 

the work in [12], increases the weight of RTTVAR when a spu-

rious transmission occurs to allow the 𝑆𝑅𝑇𝑂 estimator to grow 

faster, thus limiting successive spurious transmissions. 

VII. PCOCOA PERFORMANCE EVALUATION 

The pCoCoA algorithm has been evaluated by means of sim-

ulations adopting the same methodology presented in Section 

IV. Similarly, both traffic patterns, i.e. periodic traffic and in-

terfering bursty traffic, respectively, are considered to compare 

the proposed algorithm against CoAP, CoCoA+ and two new 

recent algorithms derived from CoCoA+: 4-state-strong [7] and 

CoCoA-E [14], respectively. In the following, we first intro-

duce the 4-state-strong and CoCoA-E, adopted as term of com-

parison in the performance evaluation, then we present the re-

sults with periodic traffic and interfering bursty traffic.  

A. 4-state-strong and CoCoA-E algorithms 

The 4-state-strong algorithm, presented in [7], exploits a 4-

state estimator to improve throughput even in lossy networks. 

Specifically, the 4-state-strong algorithm defines four states, 

namely 1, 2, 3, 4; each CoAP transaction is assigned one of 

these states depending on the number of times its message has 

been retransmitted. Specifically, every time a message is re-

transmitted, the corresponding state is increased, while if the 

transaction is completed within the RTO the state is decreased. 

Each state has a different VBF associated, thus allowing to 

compute the RTO according to the recent history of transac-

tions. Differently from CoCoA+, which has two different esti-

mators (weak and strong), the 4-state-strong has four different 

estimators one per each state. The rationale behind this is that if 

losses are intermittent, e.g. due to wireless interference, less 

RTT samples should be included in the RTO estimation, other-

wise the RTO estimation would be highly affected by channel 

losses with less correlation with network congestion.  With 4-

function RTOCalculation(R, spurious) 

1. 𝑆𝑅𝑇𝑇 = (1 − 𝛼)𝑆𝑅𝑇𝑇 + 𝛼𝑅 

2. if(𝑅 < (𝑆𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑉𝐴𝑅)) 

3.     𝑅𝑇𝑇𝑉𝐴𝑅 = (1 − 𝛾)𝑅𝑇𝑇𝑉𝐴𝑅 + 𝛾|𝑆𝑅𝑇𝑇 − 𝑅| 
4. else 

5.     if(|𝑆𝑅𝑇𝑇 − 𝑅| > 𝑅𝑇𝑇𝑉𝐴𝑅) 

6.         𝑅𝑇𝑇𝑉𝐴𝑅 = (1 − 𝛽)𝑅𝑇𝑇𝑉𝐴𝑅 + 𝛽|𝑆𝑅𝑇𝑇 − 𝑅| 
7.     else 

8.         𝑅𝑇𝑇𝑉𝐴𝑅 = (1 − 𝛼)𝑅𝑇𝑇𝑉𝐴𝑅 + 𝛼|𝑆𝑅𝑇𝑇 − 𝑅| 
9. if(𝑅 > 𝑆𝑅𝑇𝑇) 

10.     if(𝑅𝑇𝑇𝑉𝐴𝑅 > 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 for 3 consecutive times) 

11.         𝑚𝑑𝑒𝑣𝑚𝑎𝑥 = average of the last 3 𝑅𝑇𝑇𝑉𝐴𝑅 

12.     else if(𝑅𝑇𝑇𝑉𝐴𝑅 < 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 for 8 consecutive times) 

13.         𝑚𝑑𝑒𝑣𝑚𝑎𝑥 = (1 − 𝛽)𝑚𝑑𝑒𝑣𝑚𝑎𝑥 + 𝛽𝑅𝑇𝑇𝑉𝐴𝑅 

14. if(spurious) 

15.     𝑘 = 6 

16. else 

17.     𝑘 = 4 

18. 𝑆𝑅𝑇𝑂 = 𝑆𝑅𝑇𝑇 + max(𝑘 𝑅𝑇𝑇𝑉𝐴𝑅, 𝑚𝑑𝑒𝑣𝑚𝑎𝑥) 

19. 𝑅𝑇𝑂𝑖𝑛𝑖𝑡 = (1 − 𝛿)𝑆𝑅𝑇𝑂 + 𝛿𝑅𝑇𝑂𝑖𝑛𝑖𝑡 

 

Algorithm 2: RTOCalculation algorithm 
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state-strong, instead, when the number of retransmissions is due 

to congestion  a greater percentage of the measured RTT is in-

cluded in the final RTO in order to reduce the transmission rate. 

Specifically, the RTO is computed as follows: 
𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ← 𝑤 ∗ 𝑅𝑇𝑂𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 + (1 − 𝑤)𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (11) 

where w is a weight which depends on the transaction state.  

The CoCoA-E algorithm, presented in [14], takes a different 

approach that involves the re-definition of the estimators 

weights and gains. Indeed, CoCoA+ has been designed based 

on the retransmission timer of TCP, which exploits three differ-

ent parameters: α, β, and K. In [15] the authors concluded that 

the estimator gains α and β are too high and the weight K is too 

low for networks with high load. Specifically they cause SRTT 

and RTTVAR to decay too rapidly and, consequently, RTO to 

be set aggressively. For this reason, in CoCoA-E α and β are 

replaced by a single coefficient γ defined as follows:  

𝛾𝑡 ←
𝑅𝑇𝑇

𝑅𝑇𝑂
 (12) 

𝛾 ← {
𝛾𝑡            𝛾𝑡 ≤ 0.5

1 − 𝛾𝑡        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

Eq. (13) is introduced to avoid the rapid increase of the RTO 

due to sporadic losses. When  is greater than 0.5, RTT is 

greater than ½ RTO, in this case Eq. (13) avoids a step incre-

ment of the RTO, thus avoiding to include in the RTO estima-

tion sporadic losses. In addition, CoCoA-E exploits the strong 

and weak estimators adopted in CoCoA+, however, with a dif-

ferent strategy for the overall RTO computation. Specifically, 

if the last RTO value is calculated based on the weak estimator, 

the same formula adopted in CoCoA+ is used Eq (17) (b), oth-

erwise, if the last RTO is calculated based on the strong estima-

tor, the overall RTO is set equal to the strong RTO value Eq 

(17) (a). Summarizing:  

𝑅𝑇𝑇𝑥 = (1 − 𝛾)𝑅𝑇𝑇𝑥 + 𝛾𝑅 (14) 

𝑅𝑇𝑇𝑉𝐴𝑅𝑥 = (1 − 𝛾)𝑅𝑇𝑇𝑉𝐴𝑅𝑥 + 𝛾|𝑅𝑇𝑇𝑥 − 𝑅| (15) 

𝑅𝑇𝑂𝑥 = 𝑅𝑇𝑇𝑥 + 𝐾𝑥𝑅𝑇𝑇𝑉𝐴𝑅𝑥 (16) 

𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = {
𝑅𝑇𝑂𝑠𝑡𝑟𝑜𝑛𝑔

𝜆𝑅𝑇𝑂𝑤𝑒𝑎𝑘 + (1 − 𝜆)𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙
 
(𝑎)
(𝑏)

 (17) 

where 𝜆 = 0.5.  

B. Periodic traffic scenario 

In this section, we report the results obtained with the peri-

odic traffic pattern as described in Section IV.A. Fig. 15 shows 

the carried load per node when the request period is set to 8s. 

As can be seen, the pCoCoA and CoCoA-E algorithms perform 

always better than CoCoA+ and guarantee a performance close 

to CoAP. The 4-state-strong algorithm, instead, can be com-

pared to CoCoA+ in terms of average performance. However, 

its results are influenced by a considerably high variance across 

different runs. Due to their similarities, both CoCoA+ and 4-

state-strong suffer from spurious retransmissions that affect 

their performance. This is confirmed by the data reported in Fig. 

16, which shows the average number of retransmissions. Both 

the CoCoA+ and the 4-state-strong algorithms achieve a similar 

carried load but with a significantly different number of retrans-

missions. pCoCoA, instead, reduces spurious retransmissions 

by leveraging the 𝑚𝑑𝑒𝑣𝑚𝑎𝑥, variable to compute the lower 

bound for the computation of RTO. This mechanism reduces 

the fast decrease of RTO that can occur when multiple similar 

RTT samples are obtained, thus cutting the number of spurious 

retransmissions. Indeed, in Fig. 16, the pCoCoA algorithm re-

sults in a number of retransmissions that is considerably lower 

than CoCoA+ and 4-state-strong. The CoCoA-E algorithm 

achieves a carried load close to pCoCoA but with less retrans-

missions, this is because the usage of  allows the RTO to con-

verge to the actual RTT more faster and, under constant peri-

odic traffic, to remain close to the effective RTT value even 

when retransmissions occur. This, however, does not happen 

when bursty traffic is considered as shown in the following.  

In Fig. 17, we show a detail of the behavior over time of Co-

CoA+, 4-state-strong, CoCoA-E and pCoCoA algorithms. Spe-

cifically, we report on the y-axis the Node IDs and on the x-axis 

the time. For each retransmission performed by a node, a col-

ored marker is shown. Different colors for the markers are 

adopted to distinguish adjacent markers from different nodes. 

Due to a different and more conservative initialization of the 

state variables, the pCoCoA algorithm shows a reduction of the 

number of retransmissions at the beginning of the simulation.  

 
Fig. 15,  CoAP vs. CoCoA+ vs. pCoCoA carried load per node, T = 8s. 
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On the other hand, CoCoA+ and 4-state-strong require more 

time to correctly estimate the RTO, thus at the beginning the 

latter underestimates the RTT value causing spurious retrans-

missions. The CoCoA-E algorithm, instead, initializes the state 

variables like CoCoA and thus exhibits a set of retransmissions 

at the beginning, but subsequently it rapidly converges to the 

correct RTO. Specifically, CoCoA+ uses the first RTT meas-

urement to set its internal variables. However, if the first RTT 

sample is too low, several unnecessary retransmissions might 

be triggered due to the fact that the RTO value remains close to 

the RTT, as can be seen from the large set of markers around 

200 seconds. Consequently, the RTO converges even more 

slowly because RTT samples have lower weights in the Co-

CoA+ RTO update algorithm when retransmissions occur.  

This is highlighted by Fig. 17, where CoCoA+ exhibits a first 

huge group of retransmissions around 200, and another one 

around 500 seconds. The latter is smaller compared to the pre-

vious one because the estimated RTO is growing, even if 

slowly. In our experiments, in particular, the CoCoA+ RTO 

converges to the correct value after 600 seconds of simulation, 

as can be seen by the absence of groups of retransmissions. The 

4-state-strong algorithm in Fig. 17 (b) exhibits a similar behav-

ior. Even if the 4-state-strong algorithm updates RTO based on 

the number of consecutive losses, at the beginning of the simu-

lation it behaves like CoCoA+. The effects of the different esti-

mators can be seen considering how retransmissions disperse 

over time. Each group of retransmissions is longer than the re-

transmission groups resulting from CoCoA+, this is due to the 

fact that the 4-state-strong algorithm is less aggressive than Co-

CoA+. As also reported in [7], the reason behind this behavior 

is that the 4-state-strong algorithm is designed mainly to handle 

scenarios with a high packet loss due to wireless links, thus in 

case of losses caused by congestions situations it requires more 

 
Fig. 16, Node average retransmissions, T = 8s. 

  
(a) CoCoA+ (b) 4-state-strong 

  

(c) CoCoA-E (d) pCoCoA 

 

Fig. 17, Retransmission dispersion. 
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time to converge.   

Also CoCoA-E, as shown in Fig. 17 (c), presents a first re-

transmission group around 100 seconds, however, afterwards 

the RTO estimation converges to the correct value around 300 

seconds, thanks to its RTO estimation strategy. This confirms 

that CoCoA-E converges to the actual RTT quickly under 

steady conditions, in particular the RTO value is always suffi-

cient to avoid spurious timeout as also outlined in [15]. 

pCoCoA, instead, is reported in Fig. 17 (d) and, it exploits a 

more conservative variable initialization that mitigates this is-

sue and converges to the correct RTO value approximately at 

400 seconds exhibiting only a reduced set of retransmissions 

around 350 seconds. Specifically, pCoCoA initializes the RTO 

based on the measured RTT plus the 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 contribution, 

this mitigates the effects of a small RTT at the beginning which, 

in the case of CoCoA+, initialize wrongly the RTO estimator. 

In addition, since the pCoCoA algorithm precisely matches 

each CON request to the corresponding ACK, it can detect spu-

rious retransmissions and it can compute a more accurate RTT 

value. Consequently, a more proper value of k is selected to es-

timate RTO. In Fig. 18 we show that CoCoA+ does not detect 

spurious retransmissions and results in the adoption of the kweak 

value by relying on the weak estimator. The latter leads to a 

smaller or similar RTO value that is not sufficient for the sub-

sequent transactions. Specifically, CoCoA+ generates a spuri-

ous retransmission for both transactions 58060 and 58100, as 

highlighted with brown markers. Such spurious retransmissions 

are due to the fact that the RTO estimation is lower than the 

actual RTT, when the retransmission timer is fired a retransmis-

sion occurs even if the first one is not lost. Consequently, be-

cause of retransmissions, CoCoA+ adopts the weak estimator 

to evaluate the RTO, which reduces the growing rate of RTO 

generating additional spurious retransmissions. pCoCoA in-

stead converges rapidly to the actual RTT value by detecting 

spurious retransmissions, this is highlighted in Fig. 18 (b) by a 

steep increment in the RTO value around transaction 58100. 

C. Interfering Bursty Traffic 

In this section, we report the results obtained with the inter-

fering bursty traffic pattern as adopted also in Section IV.B. In 

Fig. 19 we report the aggregate carried load obtained with 

CoAP, CoCoA+, 4-state-strong, CoCoA-E and pCoCoA for the 

CoAP clients that generate constant periodic traffic. The value 

is reported as a function of the duration of the ON period. As 

can be seen, the pCoCoA algorithm performs similarly to CoAP 

when the burst period is short (less than 60s), while it performs 

similarly to CoCoA+ when the ON period increases. This can 

be explained considering that pCoCoA always updates the RTO 

exploiting a precise mapping between requests and responses, 

regardless of the number of retransmissions. CoCoA+, instead, 

exploits the weak estimator that is not updated if more than two 

retransmissions are detected, thus resulting in periods in which 

the RTOinit is not updated. The 4-state-strong algorithm, instead, 

updates its estimators also when multiple retransmissions oc-

cur. However, by exploiting different weights that take into ac-

count the number of retransmissions across transactions, when 

the ON period increases, the algorithm behaves more aggres-

sively than CoCoA+, thus decreasing the carried load signifi-

cantly. Finally, CoCoA-E results in poor performance in this 

scenario. This is mainly because when RTT changes rapidly, 

for instance at the beginning of the ON period, the algorithm 

adopts the value 1 − 𝛾𝑡 of Eq. 13, which limits the contribution 

of the measured RTT in the RTO computation. In these cases, 

sporadic packet losses are filtered by the RTO computation in 

 

  
(a) CoCoA+ (b) pCoCoA 

Fig. 18, Exploitation of the correct k value. 
 

 

 
Fig. 19, Carried load – interfering bursty traffic. 

 
Fig. 20, Transmissions per transaction – interfering bursty traffic. 
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CoCoA-E, however, when the ON period is greater than 20 sec-

onds, the value 1 − 𝛾𝑡 is used frequently, resulting in a slow in-

crease of the RTO that causes frequent retransmissions. More-

over, when a transaction is completed without retransmissions, 

the overall RTO is immediately updated to the recent RTO 

value using Eq. 17. However, this results in even lower RTO 

values during the ON period, further exacerbating the issue. 

Even if CoCoA+ and pCoCoA achieve similar performances 

in terms of carried load, when long bursty periods are 

considered, the number of transmissions per transaction differs 

significantly between the two algorithms. This is reported in 

Fig. 20 that shows the average number of transmissions per 

transaction. As can be seen, CoCoA+ requires a significantly 

higher number of transmissions to achieve the same carried load 

of pCoCoA. As mentioned this can be explained with the fact 

that CoCoA+ exploits a weak estimator instead of a precise 

mapping between requests and responses.  

In particular, if we analyze a specific run as reported in Fig. 

21, we can see that CoCoA+ – Fig. 21 (a) – does not update the 

RTO when the interfering traffic is ON, which starts in corre-

spondence of the RTT peaks. On the other side, the pCoCoA 

algorithm – Fig. 21 (b) – can estimate the correct RTT value, 

thus triggering proper retransmissions, thanks to a continuous 

update of the RTOinit both during the ON and OFF periods of 

the interfering traffic.  

VIII.  CONCLUSIONS  

In this paper, we presented an in-depth analysis of the Co-

CoA+ advanced congestion control algorithm. Specifically, we 

considered two different scenarios: one with only CoAP traffic 

and another one in which CoAP traffic competes with interfer-

ing bursty traffic that is transmitted without rate control. The 

simulation results allowed us to highlight some issues of the al-

gorithm, mostly related to the relationship between RTT esti-

mation and RTO calculation. In particular, we have shown that 

in certain scenarios CoCoA+ unnecessarily triggers more re-

transmissions than CoAP, and it does not responsively adapt to 

network load variations. In order to overcome such shortcom-

ings, a set of modifications to CoCoA+ is proposed.  

The resulting algorithm, named pCoCoA, is demonstrated to 

be effective in guaranteeing a carried load comparable with 

CoCoA+ in all the presented scenarios, requiring a lower 

number of retransmissions. Moreover, the comparison also 

show that, differently from other algorithms, the pCoCoA deals 

well even in scenarios with interfering bursty traffic. 
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(a) CoCoA+ (b) pCoCoA 

Fig. 21, Weak estimator failing to update RTOinit . 


