
AD HOC NETWORKS

1

Abstract— The Constrained Application Protocol (CoAP) is an

IETF standard application protocol for the future Internet of

Things (IoT). Since IoT devices are often interconnected by net-

works characterized by high packet error rates and low through-

put, congestion control will be crucial to ensure proper and timed

communication in these networks. Therefore, CoCoA+, an ad-

vanced congestion control algorithm for CoAP, is currently being

specified by the IETF. In this work, we present a critical analysis

of CoCoA+ performance and highlight some of its shortcomings

and pitfalls. Two different scenarios are considered: one with an

increasing traffic load due to an increasing number of CoAP re-

quests, and another with an interfering traffic concurrently trans-

mitted in the network characterized by a bursty pattern. In the

former scenario, we show how CoCoA+ may be characterized by

many spurious retransmissions at some offered loads close to con-

gestion. In the latter, we show instead how the weak estimator is

not particularly effective in adapting to changing traffic loads. In

order to overcome such limitations, a number of modifications to

CoCoA+ are proposed. The resulting solution, named precise Con-

gestion Control (pCoCoA), is shown to reduce the number of re-

transmissions, while guaranteeing throughputs and delays compa-

rable to those of CoAP and CoCoA+.

Index Terms— CoAP, CoCoA, CoCoA+, Congestion Control

I. INTRODUCTION

HE Internet of Things (IoT) is getting momentum both

in academia, as a very active research topic, and in industry,

with smart objects that are meant to thoroughly affect our lives.

IoT systems are built on top of IoT devices that collect data and

interact with the physical environment. IoT devices are usually

cheap, battery-powered devices, with limited computation ca-

pabilities. Those devices are equipped with low power trans-

ceivers that, however, allow forming Low Power and Lossy

Networks (LLN), characterized by possibly large packet error

rates, and low throughput. Due to these characteristics, new

communication protocols tailored for constrained devices oper-

ating in lossy networks are required. To this aim, IETF defined

a communication protocol stack for IoT devices. In particular,

the IETF CoRE Working Group standardized the Constrained

Application Protocol (CoAP) [1], which allows applications to

exchange information with IoT devices.

C. Vallati, G. Tanganelli, and E. Mingozzi are with the Department of In-

formation Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56122,

Pisa Italy. (e-mail: g.tanganelli@iet.unipi.it, c.vallati@iet.unipi.it, enzo.min-

gozzi@unipi.it).
S. Bolettieri is with Institute of Informatics and Telematics (IIT)-CNR,

56124 Pisa, Italy (e-mail: s.bolettieri@iit.cnr.it).

Considering the limited capabilities of nodes and the limited

amount of bandwidth available in LLNs, congestion control is

crucial to ensure proper and timely delivery of data. In tradi-

tional networks, application data is usually transported by the

Transmission Control Protocol (TCP), which includes a con-

gestion control mechanism. In LLNs, instead, CoAP employs

the User Datagram Protocol (UDP), which does not provide any

congestion control mechanism. For this reason, CoAP imple-

ments optional reliable data delivery through retransmissions

and regulates the amount of data transmitted through a simple

congestion avoidance mechanism. The definition of the latter,

however, is not trivial: the shared nature of the wireless medium

results in collisions of transmissions, and the limited buffer size

of IoT devices often produces buffer overflows. Both phenom-

ena can cause frequent packet losses that lead to further mes-

sage retransmissions, which eventually lead to congestion.

Since CoAP defines only a basic congestion control mecha-

nism, a new advanced congestion control have been proposed

recently in [2], and further extended in [3]. Such algorithm,

called CoCoA, is currently under standardization within the

CoRE Working Group [8]. CoCoA exploits the measured

round-trip time (RTT) between the client and the server to ad-

just the retransmission timeout and therefore avoid too frequent

retransmissions. CoCoA has been originally evaluated against

CoAP in [2] and [3], showing that it can improve the perfor-

mance in terms of throughput, packet delivery ratio, and aver-

age delays.

In this work, we present an exhaustive performance evalua-

tion of the CoCoA congestion control algorithm1. First, we pre-

sent an evaluation of the algorithm considering two different

scenarios, the first one with only CoAP traffic, and the second

one in which CoAP traffic competes with interfering greedy

traffic that is transmitted without rate control. An in-depth anal-

ysis of these simulation results allows us to highlight some

novel critical issues of the algorithm. Consequently, we propose

a set of modifications to the original algorithm to overcome

these limitations. The resulting algorithm, named pCoCoA, is

evaluated against CoAP, CoCoA+ and two more recent algo-

rithms: 4-state-strong [7] and CoCoA-E [14]. Results demon-

strated that pCoCoA effectively mitigates the issues of the orig-

inal algorithm, reducing the overall number of retransmissions

1 A preliminary performance evaluation has been presented in a conference

paper [13]. In this initial contribution, we only considered a scenario with CoAP

traffic with periodic rate.

pCoCoA: A precise congestion control

algorithm for CoAP

Simone Bolettieri, Giacomo Tanganelli, Carlo Vallati, Enzo Mingozzi

T

AD HOC NETWORKS

2

while keeping throughputs and delays comparable to those ob-

tained with CoAP, CoCoA, CoCoA-E and 4-state-strong.

Moreover, pCoCoA can correctly handle scenarios in which

CoAP traffic competes with interfering bursty traffic, whereas

other algorithms, such as CoCoA-E, do not. To summarize, the

contributions of this work are the following:

• An extended performance evaluation of CoCoA consid-

ering two different traffic scenarios: one adopting CoAP

periodic traffic, and a second one with periodic traffic

sources competing with interfering bursty traffic

sources. The analysis of the CoCoA behavior allowed

highlighting novel issues of the CoCoA algorithm.

• A novel congestion control algorithm derived from Co-

CoA named pCoCoA, defined to overcome the limita-

tions highlighted. The proposed congestion control algo-

rithm is evaluated against protocols from the literature.

The rest of the paper is structured as follows. In Section II a

short description of CoCoA is provided. Section III highlights

the related work. Section IV introduces the methodology

adopted and analyzes the performance evaluation results. Sec-

tion V summarizes the main issues identified by their in-depth

analysis. In Section VI we present the proposed pCoCoA algo-

rithm, while in Section VII we present the results of its perfor-

mance evaluation. Finally, in Section VIII we draw the conclu-

sions.

II. COCOA+ CONGESTION CONTROL

The Simple Congestion Control/Advanced, also known as

CoCoA, is an alternative congestion control algorithm for

CoAP originally proposed in [2] and now currently under stand-

ardization within the activities of the CoRE Working Group [8].

Different versions of the algorithm have been proposed over

time, including minor modifications that helped improving the

performance. In this work we consider its last revision, Co-

CoA+ [3]. The algorithm is composed of the following three

main functions:

• a policy to calculate the retransmission timeout (RTO),

• the back-off policy to set the RTO for retransmissions,

and

• an ageing policy for the status information.

We briefly describe in the following the CoCoA+ algorithm

yet with enough details to allow the reader understand the sub-

sequent in-depth analysis. We refer to [3] for a comprehensive

illustration of the algorithm and the rationale behind it.

A. RTO calculation

In order to calculate the RTO, CoCoA+ adopts the same algo-

rithm used by TCP, which updates the RTO value based on

measured Round Trip Times (RTTs). According to Karn's al-

gorithm [9], the RTT measurements should be considered only

when the message was correctly delivered without retransmis-

sions. In the context of lossy networks, however, many trans-

missions are expected to experience retransmissions, thus re-

ducing the probability of obtaining valid RTT measurements.

For this reason, CoCoA+ considers also transactions that expe-

rienced retransmissions to obtain a more accurate RTT estima-

tion. Specifically, two RTO values are calculated: a strong

RTO, estimated using RTTs samples from transactions that did

not required any retransmission, and a weak RTO, estimated us-

ing RTT values of transactions that required no more than two

transmissions. Considering that it is not possible to know for an

ACK to which transmission it belongs to, RTT samples are col-

lected measuring the time between the first transmission and the

arrival of the response, but only if two retransmissions at most

are required.

For each destination, a node maintains the following quanti-

ties:

• two smoothed mean RTT estimators: RTTstrong and

RTTweak,

• two smoothed mean variance, called RTTVARstrong and

RTTVARweak,

• two RTO estimators, called RTOstrong and RTOweak, de-

rived from the strong and weak RTT estimators, respec-

tively, and

• a comprehensive RTO, called RTOoverall, which keeps

track of both RTOstrong and RTOweak changes.

Initially, the RTO estimators are initialized with a default

value of 2s. The value of the other RTTx and RTTVARx param-

eters are initialized when the first corresponding RTT value R

is measured as follows:

𝑅𝑇𝑇𝑥 ← 𝑅, 𝑅𝑇𝑇𝑉𝐴𝑅𝑥 ←
𝑅

2
 (1)

Every time a new RTT sample R is measured, the correspond-

ing strong or weak estimators (based on the number of retrans-

missions) are updated as follows:

𝑅𝑇𝑇𝑥 = (1 − 𝛼)𝑅𝑇𝑇𝑥 + 𝛼𝑅 (2)

𝑅𝑇𝑇𝑉𝐴𝑅𝑥 = (1 − 𝛽)𝑅𝑇𝑇𝑉𝐴𝑅𝑥 + 𝛽|𝑅𝑇𝑇𝑥 − 𝑅| (3)

𝑅𝑇𝑂𝑥 = 𝑅𝑇𝑇𝑥 + 𝐾𝑥𝑅𝑇𝑇𝑉𝐴𝑅𝑥 (4)

𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜆𝑥𝑅𝑇𝑂𝑥 + (1 − 𝜆𝑥)𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (5)

where the following values are recommended: α=0.125,

β=0.25, Kstrong =4, Kweak=1, λstrong =0.5, and λweak =0.25. RTOover-

all is used to set the initial RTO (RTOinit) for the next CON trans-

mission. The actual value is selected using a dithering approach,

i.e., RTOinit is randomly chosen from the interval [RTOoverall ,
1.5∙RTOoverall].

B. Backoff policy

CoCoA+ introduces a backoff mechanism to set the retrans-

mission timeout. Compared to CoAP, in which the RTO is dou-

bled, CoCoA+ computes the new RTO value for retransmis-

sions according to a variable backoff factor (VBF) that depends

on the initial RTO value RTOinit . Specifically, the new value of

RTO for retransmissions RTOnew is evaluated as follows:

𝑅𝑇𝑂𝑛𝑒𝑤 = 𝑅𝑇𝑂𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ∗ 𝑉𝐵𝐹(𝑅𝑇𝑂𝑖𝑛𝑖𝑡) (6)

The VBF factor is set according to RTOinit to avoid frequent

retransmissions in a short time when the RTO value is low, and

to avoid long delays in retransmissions when the RTO value is

large, instead.

C. Information aging

CoCoA+ introduces a mechanism to age RTO values when

RTT updates are not received for a certain time. The rationale

AD HOC NETWORKS

3

is that the RTO estimation becomes obsolete after a certain time

and should converge towards the initial value. Specifically, if

RTOoverall is larger than the base RTO defined in CoAP, which

is set by default to 2s, and it is not updated for more than 30s,

when a new measurement is obtained the following formula is

applied:

𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
2 + 𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙

2

(7)

If RTOoverall is, instead, less than 1s, and it is not updated for

a time that is 16 times its actual value, RTOoverall is reset to 1s.

III. RELATED WORK

Many recent works focused on evaluating the performance

of CoCoA per se. In [4], for instance, CoCoA is evaluated in a

typical large-scale IoT scenario in which GPRS is employed to

connect IoT nodes. The authors compared CoCoA against other

congestion control mechanisms defined for TCP applications.

Results showed that CoCoA performs equally or better than

TCP-based algorithms. Similar conclusions were drawn in [5],

where the authors compared CoCoA to other TCP-based con-

gestion control mechanisms on an emulated Zigbee network. In

[6], the authors evaluated CoCoA by means of simulations con-

sidering different traffic patterns. Similar to our work, the au-

thors highlighted the poor performance of CoCoA with bursty

traffic due to the improper selection of the retransmission

timeout value.

Recently, other works proposed modifications to CoCoA. In

[7] the authors proposed ‘4-states-strong’, a modification to Co-

CoA that introduces a more complex RTT estimator to distin-

guish between wireless losses and congestion losses. Results

showed an improvement of the performance in networks where

the loss rate is particularly high. In [14], instead, authors pro-

posed CoCoA-E, a modified version of CoCoA based on the

Eifel retransmission timer. Simulations showed an improve-

ment of the RTO estimation under two different RTT functions:

stair-step and saw-like. Both ‘4-states-strong’ and CoCoA-E

will be presented in details in Section VII.A, as they are adopted

as term of comparison in the performance evaluation. Finally,

in [16] the authors evaluate CoCoA-S, a version of CoCoA that

uses only the strong RTO estimator. The variant is evaluated

against other TCP congestion control algorithms such as the

Linux RTO and the peak-hopper TCP RTO estimator. In such

results, however, CoCoA is confirmed to deliver better perfor-

mance compared to CoCoA-S and the other congestion control

strategies, which are demonstrated to be unfit for CoAP.

To conclude, Table I summarizes the congestion control

strategies recently proposed in literature, along with their main

features.

IV. PERFORMANCE EVALUATION

In this section, we analyze the results of the performance

evaluation. The performance evaluation is carried out by simu-

lation. To this aim, the Cooja platform is used, leveraging a

ContikiOS implementation of CoCoA+ originally obtained

from its authors, and then updated to be in line with the latest

CoCoA+ specification [3]. Cooja motes are used to emulate

wireless sensor devices. The relevant simulation parameters are

summarized in Table II. In all scenarios, we consider a grid of

6x6 nodes, as reported in Fig. 1. In the network, one node is the

RPL border router (node ID 1), one node act as a CoAP server

(node ID 3), and, finally, the remaining nodes are CoAP clients.

The linear distance between two nodes in a row is 10m.

In all scenarios, periodic CoAP traffic with CoCoA+ conges-

tion control is considered to emulate a network of sensors that

report their measurements at a fixed period. In the first evalua-

tion scenario, only periodic traffic is transmitted. On the other

hand, in the second scenario, periodic traffic is mixed with

bursty CoAP traffic with default congestion control in order to

evaluate CoCoA+ performance when greedy competing traffic

is also present in the network.

TABLE II

SIMULATION PARAMETERS

Parameter Value

L2 protocol IEEE 802.15.4, 250 Kbps PHY rate
Channel model Unit Disk GM, tx range = 10mt, interference

range = 20mt

MAC buffer size 8 packets

MAC level max re-

transmissions

8

L3 protocol 6LoWPAN
Routing protocol RPL

CoAP base ACK-

TIMEOUT

3s

CoAP requests

buffer size

4

Periodic traffic –
Request period (T)

and corresponding

data rate

0.5s (6048 B/s), 1s (3025 B/s), 2s (1513 B/s),
3s (1010 B/s), 4s (757 B/s), 6s (505 B/s), 7s

(434 B/s), 8s (379 B/s), 9s (337 B/s), 10s (304

B/s), 12s (253 B/s), 14s (217 B/s), 16s (191
B/s), 32s (96 B/s), 64s (49 B/s), 70s (45 B/s)

Bursty traffic –

packet inter-arrival
times

10s, 30s, 40s, 60s, 90s, 100s, 120s, 140s

TABLE I
CONGESTION CONTROL ALGORITHMS

Name
Backoff

Method

RTT

Estimators

RTO

aging

Derived

from

CoAP BBF None No None
CoCoA VBF Strong &

Weak

Yes LinuxRTO

CoCoA-S VBF Strong Yes CoCoA
CoCoA-E VBF Strong &

Weak

Yes CoCoA &

Eifel

4-state-strong VBF Four
estimators

Yes CoCoA

Fig. 1, Network topology

AD HOC NETWORKS

4

A. Periodic traffic scenario

In this scenario, all CoAP clients periodically send confirm-

able POST requests towards the server with ID 3. Each request

has a size of 95B. For each successfully received request, the

server replies with a response piggybacked onto a CoAP ACK

message. All requests are addressed to an IPv6 global address,

which forces messages to be routed through the RPL border

router in order to reach the server. Before starting to transmit

CoAP requests, nodes wait for 60s to let the RPL topology sta-

bilize, and then for a further random time to avoid synchroniza-

tion effects. Finally, nodes start sending requests with a com-

mon period T, ranging from 70s to 0.5s, in order to inject in the

network an increasing amount of data. Each experiment has a

duration of 800s. In order to obtain statistically sound results,

twelve independent replicas for each scenarios are run, and met-

rics of interest are then estimated for each scenario along with

a 95% confidence interval.

Fig. 2 shows the aggregate carried load and actual offered

load as a function of the nominal offered load for both CoAP

and CoCoA+. The carried load is defined as the overall amount

of data successfully delivered at the server. The actual offered

load, instead, is defined as the overall amount of generated data

that is transmitted at least once, i.e., that is not discarded at the

client because of a buffer overflow at the application layer.

From Fig. 2 we can first observe that for both CoAP and Co-

CoA+ the respective carried and actual offered loads are very

close to each other even when the carried load stops increasing

linearly (at a nominal offered load of approximately 380 B/s),

i.e., congestion has started in the network. This means that in

both cases the server receives almost all the requests transmitted

by clients, and therefore the main bottleneck that causes con-

gestion is located at the client, and not in the network. This is

expected, as only one outstanding request for each node is al-

lowed when NSTART is set to one. When the offered load in-

creases, the network traffic increases resulting in longer times

to complete a transaction (considering that the client retransmits

a request until the ACK is received), which, consequently, re-

sults in more frequent buffer overflows at the application layer.

However, if we focus on the results obtained when congestion

has started, we can also notice that the carried load keeps in-

creasing, though at a much slower rate. This can be explained

by considering that congestion is not evenly distributed among

all nodes. In particular, nodes farther from the server start dis-

carding requests earlier, while nodes closer to the server, in-

stead, experience shorter delays to complete a transaction, con-

sequently they experience application layer overflows at higher

offered loads. Although omitted here for the sake of brevity,

this is confirmed by analyzing the carried load per node: the

increase of the carried load, after congestion has started, is

mainly due to the three clients closest to the server (nodes 4, 9,

and 10).

By comparing CoAP and CoCoA+ carried loads from Fig. 2,

we can then observe that their performance differ under conges-

tion: as expected, CoCoA+ always outperforms the CoAP sim-

ple congestion control mechanism by dynamically adapting re-

transmission timeouts. In order to get a better insight into this

result, we consider a few additional relevant metrics as a func-

tion of the nominal offered load. In particular, Fig. 3 shows the

overall MAC buffer overflows in the network, i.e., the overall

amount of requests discarded at the MAC layer in the network.

Fig. 4 shows instead the average number of transmissions (at

the client) for each successful transaction. Finally, Fig. 5 shows

the average number of ACK messages received at the client for

each successful transaction (including duplicates).

These results highlight that three different offered load inter-

vals can be identified to compare the performance of CoCoA+

and CoAP congestion control: a non-congestion interval, with

offered loads up to 250 B/s, a pre-congestion interval, with of-

fered loads ranging between 250 B/s and 380 B/s, and, finally,

a congestion interval, with offered loads above 380 B/s.

In particular, in the non-congestion interval, corresponding

to one request every 12s, or more, per node, the network is es-

sentially operating out of congestion, no buffer overflow occurs

and therefore the two algorithms behave in the same way. On

Fig. 2, Carried load vs. offered load.

Fig. 3, Overall in-network MAC buffer overflows.

Fig. 4, Average number of transmissions per successful transaction.

AD HOC NETWORKS

5

the other hand, in the congestion interval, corresponding to one

request every up to 8s per node, the network is running under

substantial congestion in most of its nodes, and the actual of-

fered load stops increasing linearly with the nominal offered

load. In this case, the amount of buffer overflows rapidly in-

creases together with packet delays. A fixed RTO value is there-

fore not efficient, as its value eventually becomes close or even

lower than round-trip times. For this reason, the timeout expires

more frequently and often unnecessarily, leading to the trans-

mission of additional traffic that further congests the network.

CoCoA+ shows instead its effectiveness in adapting to increas-

ing RTTs by using larger RTO values and therefore reducing

the amount of retransmissions per transaction (see Fig. 4). The

amount of unnecessarily retransmitted requests is also drasti-

cally reduced, as shown in Fig. 5.

Finally, we compare the performance of CoCoA+ and CoAP

in the pre-congestion interval, which corresponds to request ar-

rival periods per node between 8s and 12s. This case is interest-

ing since both CoAP and CoCoA+ achieve the same carried

load, but they clearly behave differently. In particular, we ob-

serve from Fig. 4 that CoCoA+ triggers a number of request

retransmissions that increases linearly with the offered load,

while retransmissions with CoAP are still negligible. However,

considering that the carried load is practically the same, such

retransmitted requests with CoCoA+ are unnecessary and they

only contribute to increase the traffic load in the network. In

fact, either such spurious retransmissions are dropped before

reaching the server, as shown by Fig. 3, or they produce dupli-

cate ACKs that are sent back to the client, as shown by Fig. 5.

In this range of offered loads CoCoA+ requires therefore more

network resources than CoAP to achieve the same carried load,

or, said alternatively, congestion is reached earlier than CoAP.

As a matter of facts, with a request period of 8s, the carried load

with CoCoA+ is even slightly lower than CoAP. Such behavior

is consistently exhibited by all nodes in the network - see Fig.

6, which shows the carried load per node for both protocols.

In order to understand this behavior, we provide an insight

into the operation of both the algorithms in a selected time in-

terval, in the case of a request period equal to 8s. Fig. 7 and Fig.

8 show the values of all the relevant parameters controlling the

transmission of requests over subsequent transactions in CoAP

and CoCoA+, respectively. Specifically, in both figures values

reported with blue circle marks represent the RTOinit values,

while green square marks represent the measured RTTs. More

precisely, in case of a retransmission, the RTT value is calcu-

lated as the delay between the first request transmission and the

arrival of an ACK (this is due to the RTT ambiguity problem

[5]); in this case, the measured delay between the last retrans-

mission and the ACK reception is also reported using the yel-

low triangle mark. Finally, in both figures we report with blue

cross marks the RTO values calculated as a result of a back-off

because of a retransmission, and highlight spurious retransmis-

sions with brown small circle marks.

From Fig. 7 we can observe that RTO values randomly cho-

sen by CoAP in the predetermined range are large enough to

cope with RTT variations, thus causing a negligible number of

unnecessary fluctuations. On the other hand, from Fig. 8 we can

observe that, with CoCoA+, when a series of similar RTT val-

ues is sampled, the contribution of RTTVAR to the RTO com-

putation vanishes and, consequently RTO values eventually get

very close to actual RTTs. When this occurs, small RTT varia-

tions cause spurious retransmissions, which, besides being un-

necessary, potentially further exacerbate the issue, since they

contribute to increase RTTs in the network, and therefore trig-

ger additional retransmissions.

B. Interfering Bursty Traffic

In this second scenario, we consider five nodes (with IDs 2,

8, 15, 32, and 34, respectively) that transmit bursty traffic that

interferes with periodic requests sent to the server by the re-

maining nodes. In particular, interfering nodes send CoAP re-

quests according to an ON-OFF pattern. The OFF period is set

to 120s, while the ON period is varied ranging from 10s to 140s

in the different experiments. During the ON periods, requests

are sent to the server back to back using CoAP congestion con-

trol with an RTO equal to 1s max, and one retransmission at

Fig. 5, Average number of ACKs per successful transaction.

Fig. 6, CoAP vs. CoCoA+ carried load per node, T = 8s.

Fig. 7, CoAP operation, node ID 10, T = 8s.

Fig. 8, CoCoA+ operation, node ID 10, T = 8s.

AD HOC NETWORKS

6

most (i.e., MAX_RETRANSMIT is equal to one). Such config-

uration leads to interfering nodes that are very aggressive dur-

ing their ON phase. Periodic requests from the other CoAP cli-

ents are sent with a constant period set to T = 14s, which ensures

that the network operates far from congestion when all interfer-

ing nodes are in the OFF phase. Each experiment lasts 1000s.

For each scenario twelve independent replicas are run.

The goal of this scenario is to analyze the behavior of Co-

CoA+, as compared to CoAP, in a non-steady context when the

background traffic varies back and forth between light and high

loads. Fig. 9 shows the aggregate carried load for CoAP clients

with constant periodic traffic as a function of the duration of the

ON period. On the other hand, Fig. 10 shows the average num-

ber of transmissions at the sender per successful transaction for

the same clients.

From Fig. 9 we can observe that CoAP slightly outperforms

CoCoA+ in terms of carried load when the ON period is short

(up to 60s). This seems to be in contrast with the results shown

in Fig. 2, i.e., CoCoA+ performs either equal to CoAP at light

loads, and better at high loads. However, this behavior can be

explained by the fact that CoCoA+ fails to adapt to congestion

when congestion periods (ON periods) are not long enough. In

fact, for ON periods longer than 60s, the carried load with Co-

CoA+ starts decreasing slower than CoAP, becoming then

higher than the latter.

However, Fig. 10 shows that in all scenarios CoCoA+ em-

ploys on average a larger number of transmissions per transac-

tion than CoAP. Recall that in the previous scenario we ob-

served instead (see Fig. 4) that at steady high loads CoCoA+

succeeds in reducing retransmissions with respect to CoAP by

dynamically adapting to congestion. This behavior can be ex-

plained by considering how RTOinit is updated in case of retrans-

missions, i.e., when the weak estimator plays a major role. If

more than two retransmissions occur, the weak estimator is not

updated, and therefore RTOinit is not updated as well. In addi-

tion, if an RTT is sampled after a retransmission that is close to

the previous RTOinit value, the weight associated to the weak

estimator is too small to affect the next RTOinit, which therefore

does not increase fast to respond to network congestion.

Such circumstances are both frequently observed during ON

periods with CoCoA+. Two examples are provided in Fig. 11

and Fig. 12. In particular, Fig. 11 shows that, although a se-

quence of four transactions that required at least one retrans-

mission occurred, RTOinit is not updated by CoCoA+, and its

small value contributes to increase the number of retransmis-

sions. On the other hand, in Fig. 12 it is shown how the RTOinit

is adapted, but not enough to avoid spurious retransmissions

corresponding to duplicate ACKs.

V. COCOA+ SHORTCOMINGS

The performance analysis presented in Sect. IV allowed us to

identify some weaknesses of CoCoA+ in its current definition.

We summarize our conclusions in the following, also providing

additional considerations based on the gained experience.

A. RTO too close to RTT

When a sequence of similar RTTs is sampled, the RTTVAR

variable, which measures the mean variance, tends to vanish. It

follows that RTO values get close to the measured RTT. The

problem is exacerbated when such RTTs have a very small

value, for instance because of a period in which the network is

lightly loaded that leads to small RTOs. However, even when

the network is stable, RTTs can fluctuate, consequently the

Fig. 9, Carried load – periodic traffic.

Fig. 10, Transmissions per transaction – periodic traffic.

Fig. 11, Weak estimator failing to update RTOinit.

Fig. 12, Weak estimator failing to adapt RTOinit.

AD HOC NETWORKS

7

probability of spurious retransmissions increases as RTOs get

close to small RTTs. The RTTVAR component was intended to

maintain information about network variability: when the traf-

fic pattern is bursty (e.g., an alarm triggered by sporadic

events), it might be worthwhile to avoid RTTVAR resets.

B. Lack of weak estimator update

The rule to avoid the weak estimator update when more than

two retransmissions occur has been introduced in CoCoA+ to

reduce the impact of the weak RTO on the final RTO. However,

this countermeasure can work well only under steady condi-

tions when the network load is constant or changes very slowly.

On the other hand, if competing traffic is bursty, a more timeli-

ness adaptation to the current network load is required.

C. Insufficient weak estimator weight

Setting Kweak to 1 also limits the impact of the weak RTO.

This works well under slowly varying traffic load, but not when

competing sporadic bursty traffic is transmitted in the network.

Our results showed that if the sampled RTT after a retransmis-

sion is very close to the RTO, the weak estimator is not able to

increase the RTO value effectively. Such event is particularly

frequent when spurious retransmissions occur. In this case,

even though the received response corresponds to the first trans-

mission, the weak estimator manages the sample as if it were a

response to the retransmitted request. However, its weight is

smaller than the strong estimator, and therefore it does not

change significantly the RTO value, and this may cause a se-

quence of spurious retransmissions.

D. RTO peaks in response to RTT decrease

The algorithm used to calculate the RTO suffers of the fol-

lowing issue: if the RTT rapidly decreases, the RTO, contrarily,

increases. As also shown in [14], this can be explained consid-

ering that the difference between the smoothed mean RTT and

the sampled RTT becomes negative while RTTVAR is updated

using the absolute value of such difference, thus resulting in an

artificial increase of the RTO. Fig. 13 shows an example of this

behavior observed in one simulation run of our experiments.

E. Double algorithms, double histories

The analysis of the RTO traces has highlighted some RTOinit

spikes in some experiments. Fig. 14 shows an example of such

behavior: a small increase in the RTT causes a steep increment

of the RTO value. The reason for this is due to the lack of an

aging mechanism for the weak estimator. If the weak estimator

has grown to a large value at some time in the past, it will in-

fluence the RTO whenever a retransmission occurs (even if the

retransmission is spurious), irrespectively of how much time

has passed since then. To avoid such behavior, the weak esti-

mator should be aged as well, or it should be discarded in favor

of an exact retransmission response estimation.

F. Excessive RTO growth

In CoCoA+ the RTOinit value can grow very large. If retrans-

missions occur, the back-off further increases such values, lead-

ing to very large waiting times. In fact, only the initial RTO is

limited to 60 seconds. During our experiments some transac-

tions, although a few ones, required a waiting time in between

200 and 300 seconds.

VI. COAP PRECISE CONGESTION CONTROL

The following section presents a set of modifications to the

CoCoA+ algorithm that aim at overcoming the issues high-

lighted. The proposed solution is based on two main elements:

(i) a mechanism to precisely link requests to responses even in

case of retransmissions; (ii) a set of modifications to the RTO

estimation algorithm. Specifically, the resulting precise Con-

gestion Control algorithm, pCoCoA for short, differs from Co-

CoA+ in the following points:

• It eliminates the use of the weak estimator, introducing

a transmission count option to match each ACK message

with the corresponding CON message even in case of

retransmissions;

• It introduces a different way to initialize the variable and

to update RTTVAR and the only smoothed round-trip es-

timator, SRTT;

• It employs a dynamic method to limit the minimum

RTO, thus reducing spurious retransmissions.

In the following, we present in detail the proposed modifica-

tions. First, we introduce two alternative solutions to implement

a precise mapping between CON and ACK messages when re-

transmissions occur, then we present the precise Congestion

Control algorithm and the RTO calculation procedure adopted.

A. CON-ACK precise mapping

The current CoAP and CoCoA+ implementations cannot

match a specific ACK with its CON when retransmissions oc-

cur. As a result, it is impossible to distinguish between transac-

tions completed with only one transmission and transactions

that required instead multiple retransmissions. In order to over-

come such limitation two solutions are proposed: i) introduce a
Fig. 14, Example of RTOinit spikes.

Fig. 13, Example of RTO increase as response to RTT decrease.

AD HOC NETWORKS

8

specific CoAP option, or ii) modify the Message ID semantic.

In the first case, a new CoAP option called transmission

counter (TC) is introduced. This option is used to link each

ACK message to the corresponding transmitted CON message

even in case of retransmissions. Specifically, the sender of a

CON message sets the TC option to 1 on the first transmission,

whereas for each subsequent retransmission the value is incre-

mented. The receiver echoes the CON’s TC option in the ACK.

It is worth to note that the TC option is updated on every re-

transmission in order to allow to identify which specific CON

transmission had generated the ACK.

Based on the TC value in the ACK message, the sender can

link the latter to the corresponding CON message. If the sender

stores a timestamp for each transmission, it can estimate the

round-trip time precisely. Furthermore, this mechanism allows

to detect spurious retransmissions, i.e. unnecessary retransmis-

sion of CON messages that are not lost but simply delayed in

the network, by comparing the TC value of the last retransmis-

sion with the TC value received in the ACK message. This al-

lows the sender to implement specific policies to react, i.e. by

using different factors in the update of the RTO by estimation.

The TC option is classified as elective: in this case, when the

receiver does not recognize the option, the latter can be silently

ignored and an ACK without the TC option can be sent back.

The communication is still guaranteed but the advanced con-

gestion control features are disabled.

An alternative solution to avoid the overhead introduced by

the transmission of a dedicated CoAP option is to rely on exist-

ing fields of the CoAP message, and specifically on the Mes-

sage ID. The MID is a 16-bit unsigned integer used to detect

message duplication and to match messages of type ACK/RST

to messages of type CON/NON. To support our approach, MID

could be split into a 14-bit id and a 2-bit sequence number. The

id sub-field would retain the role of the original MID, thus be-

ing the same in all retransmitted CON messages, whereas the

sequence number would be incremented at each retransmission

(supporting then up to four retransmissions). Duplicate message

detection is therefore preserved, and, in addition, the sender is

able to match each received ACK message to its corresponding

CON message among the multiple transmitted ones, in order to

precisely estimate the RTO.

Without loss of generality, in the following we adopted the

first approach.

B. Precise Congestion Control algorithm

The pseudocode of the proposed congestion control algo-

rithm is presented in Algorithm 1. The code summarizes all the

operations to be performed in sequence at each phase of a CoAP

transaction: the transmission of a CON, the retransmission, and

the reception of an ACK.

At the beginning of each transaction, the internal state is ini-

tialized. In particular, the RTO value is initialized to the default

RTO value, if the destination is unknown, (line 4) otherwise is

set to the last value measured for the least transaction towards

the same destination (line 6). In both cases, a dithering tech-

nique is applied (line 7) to avoid synchronization effects. After

the transmission of the CON, the sender stores the timestamp

and sets a retransmission timer based on the current RTO value

(line 11-13). The sender waits until the retransmission timer ex-

pires or an ACK is received. If the transmission timer expires

without receiving an ACK, the CON message is retransmitted.

Before retransmitting, however, the sender updates the CON’s

TC option (line 16) and the RTO using the Variable Back-off

(VBF) formulae adopted by CoCoA+ (line 18).

Each CON message is retransmitted until an ACK is received

or the maximum number of attempts, MAX_ATTEMPS, is

reached (line 10). In the latter case, the CON message is dis-

carded and the procedure ends. When an ACK is received, in-

stead, the algorithm computes the RTT value (R) as the differ-

ence between the timestamp of the ACK and the timestamp of

the corresponding CON (line 20). Subsequently, the value of

the TC option received with the ACK is compared with the TC

of the last sent CON (line 21). If there is a difference between

these two values, a spurious transmission occurred. In order to

take this into account in future computations, the spurious flag

is set (line 22). Once the RTT is computed, the RTOComputa-

tion algorithm is executed to update the RTO for future trans-

missions to the same destination (line 25-26).

C. RTO Computation algorithm

The proposed RTO computation mechanism is inspired by

the algorithm included in the Linux TCP congestion control

[10], which however cannot be directly applied here since the

underlying layer is UDP.

Specifically, the Linux TCP algorithm exploits the estima-

tion of the maximum mean deviance of the RTO (𝑚𝑑𝑒𝑣𝑚𝑎𝑥) to

avoid issues caused by sudden RTT variations. In detail,

𝑚𝑑𝑒𝑣𝑚𝑎𝑥 is used to limit the RTO. To this aim, the RTO is

maintained constant within a time window proportional to the

function SendAndReceive(CON)

1. 𝑇𝐶 = 1

2. 𝐶𝑂𝑁. 𝑇𝐶 = 𝑇𝐶

3. if(𝐶𝑂𝑁. 𝑑𝑒𝑠𝑡 not in 𝑘𝑛𝑜𝑤𝑛_𝑑𝑒𝑠𝑡)

4. 𝑅𝑇𝑂 = 𝐶𝑜𝐴𝑃_𝐷𝐸𝐹𝐴𝑈𝐿𝑇_𝑅𝑇𝑂

5. else

6. 𝑅𝑇𝑂 = 𝑘𝑛𝑜𝑤𝑛_𝑑𝑒𝑠𝑡[𝐶𝑂𝑁. 𝑑𝑒𝑠𝑡]

7. 𝑅𝑇𝑂 = 𝑅𝑇𝑂 + 𝑟𝑎𝑛𝑑()%
𝑅𝑇𝑂

2

8. 𝐴𝐶𝐾 = 𝑁𝑈𝐿𝐿

9. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[] = 𝐴𝑟𝑟𝑎𝑦(𝑀𝐴𝑋_𝐴𝑇𝑇𝐸𝑀𝑃𝑆)

10. while(𝑇𝐶 < 𝑀𝐴𝑋_𝐴𝑇𝑇𝐸𝑀𝑃𝑆 and 𝐴𝐶𝐾 == 𝑁𝑈𝐿𝐿)

11. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑇𝐶] = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑡𝑖𝑚𝑒()

12. 𝐴𝐶𝐾 = 𝑠𝑒𝑛𝑑(𝐶𝑂𝑁)

13. 𝑡 = 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑟(𝑅𝑇𝑂)

14. 𝑤𝑎𝑖𝑡_𝑢𝑛𝑡𝑖𝑙(𝐴𝐶𝐾 ≠ 𝑁𝑈𝐿𝐿 or 𝑡. 𝑒𝑥𝑝𝑖𝑟𝑒𝑑)

15. if(𝑡. 𝑒𝑥𝑝𝑖𝑟𝑒𝑑)

16. 𝑇𝐶 = 𝑇𝐶 + 1

17. 𝐶𝑂𝑁. 𝑇𝐶 = 𝑇𝐶

18. 𝑅𝑇𝑂 = 𝑉𝐵𝐹()

19. if(𝐴𝐶𝐾 ≠ 𝑁𝑈𝐿𝐿)

20. 𝑅 = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑡𝑖𝑚𝑒() − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝐴𝐶𝐾. 𝑇𝐶]
21. if(𝑇𝐶 ≠ 𝐴𝐶𝐾. 𝑇𝐶)

22. 𝐴𝐶𝐾. 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 = 𝑇𝑟𝑢𝑒

23. else

24. return

25. 𝑅𝑇𝑂 = 𝑅𝑇𝑂𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑅, 𝐴𝐶𝐾. 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠)

26. 𝑘𝑛𝑜𝑤𝑛_𝑑𝑒𝑠𝑡[𝐶𝑂𝑁. 𝑑𝑒𝑠𝑡] = 𝑅𝑇𝑂

Algorithm 1: pCoCoA algorithm

AD HOC NETWORKS

9

number of TCP segments currently waiting for acknowledg-

ment. Considering that by default CoAP adopts a stop-and-wait

approach, as NSTART is set to 1 by default, the algorithm must

be modified to deal with the fact that CoAP has at maximum

only one outstanding request at a time. The resulting RTO com-

putation algorithm is shown in Algorithm 2. When the first RTT

sample R is received, the algorithm performs the initialization

of the variables as follows:

𝑆𝑅𝑇𝑇 ← 𝑅, 𝑅𝑇𝑇𝑉𝐴𝑅 ←
𝑅

2

(8)

𝑚𝑑𝑒𝑣𝑚𝑎𝑥 ← 𝑚𝑎𝑥 (
𝑅

2
, 250𝑚𝑠) (9)

𝑅𝑇𝑂 ← 𝑆𝑅𝑇𝑇 + 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 (10)

The formula (10) that initializes the RTO value has been in-

ferred from the results of a set of preliminary experiments,

omitted here for the sake of brevity, which aimed at evaluating

several possible initialization strategies.

After the first RTT measurement, whenever a new value R is

measured, the steps of the RTOCalculation function are exe-

cuted. Its definition employs the following constants whose val-

ues are set according to the results available from the literature,

𝛼 =
1

8
[11], 𝛽 =

1

4
[11], 𝛾 =

1

32
[10], 𝛿 =

1

2
 [3].

The algorithm updates SRTT and RTTVAR adopting two

smoothed filters. Differently from LinuxRTO, which updates

RTTVAR through an additional filter, RTTVAR is updated di-

rectly considering two different policies (line 5) to slow down

its decrease when significant fluctuations occur. To this aim,

when the difference between SRTT and R is greater than the

current RTTVAR value, RTTVAR is updated using the parameter

β (line 6), otherwise it is updated using the parameter α (line 8).

When α is employed, the historic RTTVAR value has a greater

weight compared to the case in which β is employed, thus

avoiding a fast decrease of RTTVAR.

The maximum variability that is experienced is tracked using

𝑚𝑑𝑒𝑣𝑚𝑎𝑥. Such variable, however, is updated only if RTTVAR

increases due to an RTT sample greater than the smoothed RTT

(line 9), caused by a sudden increase of the network delay. This

choice is motivated by the fact that when the network delay in-

creases, the RTO should be increased consequently. However,

in order to limit the influence of sporadic peaks in the RTT es-

timation, a specific aging mechanism for 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 is intro-

duced. In particular, 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 is increased only if its value is

smaller than RTTVAR for three consecutive times (line 10-11).

In such case, 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 is updated to the average value of the

last three RTTVAR samples. If 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 , instead, is higher than

RTTVAR for eight consecutive times, its value is updated using

the usual smoothing algorithm to facilitate 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 to con-

verge to RTTVAR (line 12-13). This policy has been designed

based on a set of preliminary experiments that are not reported

here for the sake of brevity. The rationale behind taking into

account both 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 and RTTVAR is that they change over

time differently, i.e. RTTVAR decreases rapidly when multiple

similar RTT values are sampled in a short period, while

𝑚𝑑𝑒𝑣𝑚𝑎𝑥, requires instead more time to decrease, thus limiting

the decrease of the final RTO value.

Finally, the RTO value is updated following a two-step pro-

cedure as in the CoCoA+ algorithm. First, the estimator 𝑆𝑅𝑇𝑂

(line 18) is updated, then the new 𝑅𝑇𝑂𝑖𝑛𝑖𝑡 is computed through

a smoothed average of the new 𝑆𝑅𝑇𝑂 and the old 𝑅𝑇𝑂𝑖𝑛𝑖𝑡 val-

ues (line 19). The computation of 𝑆𝑅𝑇𝑂 depends on the value

of the spurious flag and also includes a technique to limit the

minimum 𝑆𝑅𝑇𝑂 value. The latter mechanism, adopted also by

the work in [12], increases the weight of RTTVAR when a spu-

rious transmission occurs to allow the 𝑆𝑅𝑇𝑂 estimator to grow

faster, thus limiting successive spurious transmissions.

VII. PCOCOA PERFORMANCE EVALUATION

The pCoCoA algorithm has been evaluated by means of sim-

ulations adopting the same methodology presented in Section

IV. Similarly, both traffic patterns, i.e. periodic traffic and in-

terfering bursty traffic, respectively, are considered to compare

the proposed algorithm against CoAP, CoCoA+ and two new

recent algorithms derived from CoCoA+: 4-state-strong [7] and

CoCoA-E [14], respectively. In the following, we first intro-

duce the 4-state-strong and CoCoA-E, adopted as term of com-

parison in the performance evaluation, then we present the re-

sults with periodic traffic and interfering bursty traffic.

A. 4-state-strong and CoCoA-E algorithms

The 4-state-strong algorithm, presented in [7], exploits a 4-

state estimator to improve throughput even in lossy networks.

Specifically, the 4-state-strong algorithm defines four states,

namely 1, 2, 3, 4; each CoAP transaction is assigned one of

these states depending on the number of times its message has

been retransmitted. Specifically, every time a message is re-

transmitted, the corresponding state is increased, while if the

transaction is completed within the RTO the state is decreased.

Each state has a different VBF associated, thus allowing to

compute the RTO according to the recent history of transac-

tions. Differently from CoCoA+, which has two different esti-

mators (weak and strong), the 4-state-strong has four different

estimators one per each state. The rationale behind this is that if

losses are intermittent, e.g. due to wireless interference, less

RTT samples should be included in the RTO estimation, other-

wise the RTO estimation would be highly affected by channel

losses with less correlation with network congestion. With 4-

function RTOCalculation(R, spurious)

1. 𝑆𝑅𝑇𝑇 = (1 − 𝛼)𝑆𝑅𝑇𝑇 + 𝛼𝑅

2. if(𝑅 < (𝑆𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑉𝐴𝑅))

3. 𝑅𝑇𝑇𝑉𝐴𝑅 = (1 − 𝛾)𝑅𝑇𝑇𝑉𝐴𝑅 + 𝛾|𝑆𝑅𝑇𝑇 − 𝑅|
4. else

5. if(|𝑆𝑅𝑇𝑇 − 𝑅| > 𝑅𝑇𝑇𝑉𝐴𝑅)

6. 𝑅𝑇𝑇𝑉𝐴𝑅 = (1 − 𝛽)𝑅𝑇𝑇𝑉𝐴𝑅 + 𝛽|𝑆𝑅𝑇𝑇 − 𝑅|
7. else

8. 𝑅𝑇𝑇𝑉𝐴𝑅 = (1 − 𝛼)𝑅𝑇𝑇𝑉𝐴𝑅 + 𝛼|𝑆𝑅𝑇𝑇 − 𝑅|
9. if(𝑅 > 𝑆𝑅𝑇𝑇)

10. if(𝑅𝑇𝑇𝑉𝐴𝑅 > 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 for 3 consecutive times)

11. 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 = average of the last 3 𝑅𝑇𝑇𝑉𝐴𝑅

12. else if(𝑅𝑇𝑇𝑉𝐴𝑅 < 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 for 8 consecutive times)

13. 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 = (1 − 𝛽)𝑚𝑑𝑒𝑣𝑚𝑎𝑥 + 𝛽𝑅𝑇𝑇𝑉𝐴𝑅

14. if(spurious)

15. 𝑘 = 6

16. else

17. 𝑘 = 4

18. 𝑆𝑅𝑇𝑂 = 𝑆𝑅𝑇𝑇 + max(𝑘 𝑅𝑇𝑇𝑉𝐴𝑅, 𝑚𝑑𝑒𝑣𝑚𝑎𝑥)

19. 𝑅𝑇𝑂𝑖𝑛𝑖𝑡 = (1 − 𝛿)𝑆𝑅𝑇𝑂 + 𝛿𝑅𝑇𝑂𝑖𝑛𝑖𝑡

Algorithm 2: RTOCalculation algorithm

AD HOC NETWORKS

10

state-strong, instead, when the number of retransmissions is due

to congestion a greater percentage of the measured RTT is in-

cluded in the final RTO in order to reduce the transmission rate.

Specifically, the RTO is computed as follows:
𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ← 𝑤 ∗ 𝑅𝑇𝑂𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 + (1 − 𝑤)𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (11)

where w is a weight which depends on the transaction state.

The CoCoA-E algorithm, presented in [14], takes a different

approach that involves the re-definition of the estimators

weights and gains. Indeed, CoCoA+ has been designed based

on the retransmission timer of TCP, which exploits three differ-

ent parameters: α, β, and K. In [15] the authors concluded that

the estimator gains α and β are too high and the weight K is too

low for networks with high load. Specifically they cause SRTT

and RTTVAR to decay too rapidly and, consequently, RTO to

be set aggressively. For this reason, in CoCoA-E α and β are

replaced by a single coefficient γ defined as follows:

𝛾𝑡 ←
𝑅𝑇𝑇

𝑅𝑇𝑂
 (12)

𝛾 ← {
𝛾𝑡 𝛾𝑡 ≤ 0.5

1 − 𝛾𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

Eq. (13) is introduced to avoid the rapid increase of the RTO

due to sporadic losses. When is greater than 0.5, RTT is

greater than ½ RTO, in this case Eq. (13) avoids a step incre-

ment of the RTO, thus avoiding to include in the RTO estima-

tion sporadic losses. In addition, CoCoA-E exploits the strong

and weak estimators adopted in CoCoA+, however, with a dif-

ferent strategy for the overall RTO computation. Specifically,

if the last RTO value is calculated based on the weak estimator,

the same formula adopted in CoCoA+ is used Eq (17) (b), oth-

erwise, if the last RTO is calculated based on the strong estima-

tor, the overall RTO is set equal to the strong RTO value Eq

(17) (a). Summarizing:

𝑅𝑇𝑇𝑥 = (1 − 𝛾)𝑅𝑇𝑇𝑥 + 𝛾𝑅 (14)

𝑅𝑇𝑇𝑉𝐴𝑅𝑥 = (1 − 𝛾)𝑅𝑇𝑇𝑉𝐴𝑅𝑥 + 𝛾|𝑅𝑇𝑇𝑥 − 𝑅| (15)

𝑅𝑇𝑂𝑥 = 𝑅𝑇𝑇𝑥 + 𝐾𝑥𝑅𝑇𝑇𝑉𝐴𝑅𝑥 (16)

𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = {
𝑅𝑇𝑂𝑠𝑡𝑟𝑜𝑛𝑔

𝜆𝑅𝑇𝑂𝑤𝑒𝑎𝑘 + (1 − 𝜆)𝑅𝑇𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙

(𝑎)
(𝑏)

 (17)

where 𝜆 = 0.5.

B. Periodic traffic scenario

In this section, we report the results obtained with the peri-

odic traffic pattern as described in Section IV.A. Fig. 15 shows

the carried load per node when the request period is set to 8s.

As can be seen, the pCoCoA and CoCoA-E algorithms perform

always better than CoCoA+ and guarantee a performance close

to CoAP. The 4-state-strong algorithm, instead, can be com-

pared to CoCoA+ in terms of average performance. However,

its results are influenced by a considerably high variance across

different runs. Due to their similarities, both CoCoA+ and 4-

state-strong suffer from spurious retransmissions that affect

their performance. This is confirmed by the data reported in Fig.

16, which shows the average number of retransmissions. Both

the CoCoA+ and the 4-state-strong algorithms achieve a similar

carried load but with a significantly different number of retrans-

missions. pCoCoA, instead, reduces spurious retransmissions

by leveraging the 𝑚𝑑𝑒𝑣𝑚𝑎𝑥, variable to compute the lower

bound for the computation of RTO. This mechanism reduces

the fast decrease of RTO that can occur when multiple similar

RTT samples are obtained, thus cutting the number of spurious

retransmissions. Indeed, in Fig. 16, the pCoCoA algorithm re-

sults in a number of retransmissions that is considerably lower

than CoCoA+ and 4-state-strong. The CoCoA-E algorithm

achieves a carried load close to pCoCoA but with less retrans-

missions, this is because the usage of allows the RTO to con-

verge to the actual RTT more faster and, under constant peri-

odic traffic, to remain close to the effective RTT value even

when retransmissions occur. This, however, does not happen

when bursty traffic is considered as shown in the following.

In Fig. 17, we show a detail of the behavior over time of Co-

CoA+, 4-state-strong, CoCoA-E and pCoCoA algorithms. Spe-

cifically, we report on the y-axis the Node IDs and on the x-axis

the time. For each retransmission performed by a node, a col-

ored marker is shown. Different colors for the markers are

adopted to distinguish adjacent markers from different nodes.

Due to a different and more conservative initialization of the

state variables, the pCoCoA algorithm shows a reduction of the

number of retransmissions at the beginning of the simulation.

Fig. 15, CoAP vs. CoCoA+ vs. pCoCoA carried load per node, T = 8s.

AD HOC NETWORKS

11

On the other hand, CoCoA+ and 4-state-strong require more

time to correctly estimate the RTO, thus at the beginning the

latter underestimates the RTT value causing spurious retrans-

missions. The CoCoA-E algorithm, instead, initializes the state

variables like CoCoA and thus exhibits a set of retransmissions

at the beginning, but subsequently it rapidly converges to the

correct RTO. Specifically, CoCoA+ uses the first RTT meas-

urement to set its internal variables. However, if the first RTT

sample is too low, several unnecessary retransmissions might

be triggered due to the fact that the RTO value remains close to

the RTT, as can be seen from the large set of markers around

200 seconds. Consequently, the RTO converges even more

slowly because RTT samples have lower weights in the Co-

CoA+ RTO update algorithm when retransmissions occur.

This is highlighted by Fig. 17, where CoCoA+ exhibits a first

huge group of retransmissions around 200, and another one

around 500 seconds. The latter is smaller compared to the pre-

vious one because the estimated RTO is growing, even if

slowly. In our experiments, in particular, the CoCoA+ RTO

converges to the correct value after 600 seconds of simulation,

as can be seen by the absence of groups of retransmissions. The

4-state-strong algorithm in Fig. 17 (b) exhibits a similar behav-

ior. Even if the 4-state-strong algorithm updates RTO based on

the number of consecutive losses, at the beginning of the simu-

lation it behaves like CoCoA+. The effects of the different esti-

mators can be seen considering how retransmissions disperse

over time. Each group of retransmissions is longer than the re-

transmission groups resulting from CoCoA+, this is due to the

fact that the 4-state-strong algorithm is less aggressive than Co-

CoA+. As also reported in [7], the reason behind this behavior

is that the 4-state-strong algorithm is designed mainly to handle

scenarios with a high packet loss due to wireless links, thus in

case of losses caused by congestions situations it requires more

Fig. 16, Node average retransmissions, T = 8s.

(a) CoCoA+ (b) 4-state-strong

(c) CoCoA-E (d) pCoCoA

Fig. 17, Retransmission dispersion.

AD HOC NETWORKS

12

time to converge.

Also CoCoA-E, as shown in Fig. 17 (c), presents a first re-

transmission group around 100 seconds, however, afterwards

the RTO estimation converges to the correct value around 300

seconds, thanks to its RTO estimation strategy. This confirms

that CoCoA-E converges to the actual RTT quickly under

steady conditions, in particular the RTO value is always suffi-

cient to avoid spurious timeout as also outlined in [15].

pCoCoA, instead, is reported in Fig. 17 (d) and, it exploits a

more conservative variable initialization that mitigates this is-

sue and converges to the correct RTO value approximately at

400 seconds exhibiting only a reduced set of retransmissions

around 350 seconds. Specifically, pCoCoA initializes the RTO

based on the measured RTT plus the 𝑚𝑑𝑒𝑣𝑚𝑎𝑥 contribution,

this mitigates the effects of a small RTT at the beginning which,

in the case of CoCoA+, initialize wrongly the RTO estimator.

In addition, since the pCoCoA algorithm precisely matches

each CON request to the corresponding ACK, it can detect spu-

rious retransmissions and it can compute a more accurate RTT

value. Consequently, a more proper value of k is selected to es-

timate RTO. In Fig. 18 we show that CoCoA+ does not detect

spurious retransmissions and results in the adoption of the kweak

value by relying on the weak estimator. The latter leads to a

smaller or similar RTO value that is not sufficient for the sub-

sequent transactions. Specifically, CoCoA+ generates a spuri-

ous retransmission for both transactions 58060 and 58100, as

highlighted with brown markers. Such spurious retransmissions

are due to the fact that the RTO estimation is lower than the

actual RTT, when the retransmission timer is fired a retransmis-

sion occurs even if the first one is not lost. Consequently, be-

cause of retransmissions, CoCoA+ adopts the weak estimator

to evaluate the RTO, which reduces the growing rate of RTO

generating additional spurious retransmissions. pCoCoA in-

stead converges rapidly to the actual RTT value by detecting

spurious retransmissions, this is highlighted in Fig. 18 (b) by a

steep increment in the RTO value around transaction 58100.

C. Interfering Bursty Traffic

In this section, we report the results obtained with the inter-

fering bursty traffic pattern as adopted also in Section IV.B. In

Fig. 19 we report the aggregate carried load obtained with

CoAP, CoCoA+, 4-state-strong, CoCoA-E and pCoCoA for the

CoAP clients that generate constant periodic traffic. The value

is reported as a function of the duration of the ON period. As

can be seen, the pCoCoA algorithm performs similarly to CoAP

when the burst period is short (less than 60s), while it performs

similarly to CoCoA+ when the ON period increases. This can

be explained considering that pCoCoA always updates the RTO

exploiting a precise mapping between requests and responses,

regardless of the number of retransmissions. CoCoA+, instead,

exploits the weak estimator that is not updated if more than two

retransmissions are detected, thus resulting in periods in which

the RTOinit is not updated. The 4-state-strong algorithm, instead,

updates its estimators also when multiple retransmissions oc-

cur. However, by exploiting different weights that take into ac-

count the number of retransmissions across transactions, when

the ON period increases, the algorithm behaves more aggres-

sively than CoCoA+, thus decreasing the carried load signifi-

cantly. Finally, CoCoA-E results in poor performance in this

scenario. This is mainly because when RTT changes rapidly,

for instance at the beginning of the ON period, the algorithm

adopts the value 1 − 𝛾𝑡 of Eq. 13, which limits the contribution

of the measured RTT in the RTO computation. In these cases,

sporadic packet losses are filtered by the RTO computation in

(a) CoCoA+ (b) pCoCoA

Fig. 18, Exploitation of the correct k value.

Fig. 19, Carried load – interfering bursty traffic.

Fig. 20, Transmissions per transaction – interfering bursty traffic.

AD HOC NETWORKS

13

CoCoA-E, however, when the ON period is greater than 20 sec-

onds, the value 1 − 𝛾𝑡 is used frequently, resulting in a slow in-

crease of the RTO that causes frequent retransmissions. More-

over, when a transaction is completed without retransmissions,

the overall RTO is immediately updated to the recent RTO

value using Eq. 17. However, this results in even lower RTO

values during the ON period, further exacerbating the issue.

Even if CoCoA+ and pCoCoA achieve similar performances

in terms of carried load, when long bursty periods are

considered, the number of transmissions per transaction differs

significantly between the two algorithms. This is reported in

Fig. 20 that shows the average number of transmissions per

transaction. As can be seen, CoCoA+ requires a significantly

higher number of transmissions to achieve the same carried load

of pCoCoA. As mentioned this can be explained with the fact

that CoCoA+ exploits a weak estimator instead of a precise

mapping between requests and responses.

In particular, if we analyze a specific run as reported in Fig.

21, we can see that CoCoA+ – Fig. 21 (a) – does not update the

RTO when the interfering traffic is ON, which starts in corre-

spondence of the RTT peaks. On the other side, the pCoCoA

algorithm – Fig. 21 (b) – can estimate the correct RTT value,

thus triggering proper retransmissions, thanks to a continuous

update of the RTOinit both during the ON and OFF periods of

the interfering traffic.

VIII. CONCLUSIONS

In this paper, we presented an in-depth analysis of the Co-

CoA+ advanced congestion control algorithm. Specifically, we

considered two different scenarios: one with only CoAP traffic

and another one in which CoAP traffic competes with interfer-

ing bursty traffic that is transmitted without rate control. The

simulation results allowed us to highlight some issues of the al-

gorithm, mostly related to the relationship between RTT esti-

mation and RTO calculation. In particular, we have shown that

in certain scenarios CoCoA+ unnecessarily triggers more re-

transmissions than CoAP, and it does not responsively adapt to

network load variations. In order to overcome such shortcom-

ings, a set of modifications to CoCoA+ is proposed.

The resulting algorithm, named pCoCoA, is demonstrated to

be effective in guaranteeing a carried load comparable with

CoCoA+ in all the presented scenarios, requiring a lower

number of retransmissions. Moreover, the comparison also

show that, differently from other algorithms, the pCoCoA deals

well even in scenarios with interfering bursty traffic.

REFERENCES

[1] Shelby, Z., K. Hartke, and C. Bormann. "The Constrained Application
Protocol (CoAP)." (2014).

[2] Betzler, August, et al. “Congestion control in reliable CoAP communica-

tion.” Proceedings of the 16th ACM international conference on Model-
ing, analysis & simulation of wireless and mobile systems. ACM, 2013.

[3] August Betzler, Carles Gomez, Ilker Demirkol, Josep Paradells, “Co-

CoA+: An advanced congestion control mechanism for CoAP,” Ad Hoc
Networks, Volume 33, 2015, Pages 126-139.

[4] Betzler, August, et al. “CoAP congestion control for the internet of

things.” IEEE Communications Magazine 54.7 (2016): 154-160.
[5] Järvinen, Ilpo, Laila Daniel, and Markku Kojo. “Experimental evaluation

of alternative congestion control algorithms for Constrained Application

Protocol (CoAP).” Internet of Things (WF-IoT), 2015 IEEE 2nd World
Forum on. IEEE, 2015.

[6] E. Ancillotti and R. Bruno, "Comparison of CoAP and CoCoA+ conges-

tion control mechanisms for different IoT application scenarios," 2017
IEEE Symposium on Computers and Communications (ISCC), Hera-

klion, 2017, pp. 1186-1192.

[7] Bhalerao, Rahul, Sridhar Srinivasa Subramanian, and Joseph Pasquale.
“An analysis and improvement of congestion control in the CoAP Inter-

net-of-Things protocol.” Consumer Communications & Networking Con-

ference (CCNC), 13th IEEE Annual. IEEE, 2016.
[8] Bormann, C., Betzler, A., Gomez, C., & Demirkol, I. (2017). “CoAP sim-

ple congestion control/advanced.” Working Draft, IETF Secretariat, In-

ternet-Draft draft-bormann-core-cocoa-01.
[9] Paxson, V., Allman, M., Chu, J., & Sargent, M. (2011). Computing TCP's

retransmission timer (No. RFC 6298).

[10] Sarolahti, Pasi, and Alexey Kuznetsov. "Congestion Control in Linux
TCP." USENIX Annual Technical Conference, FREENIX Track. 2002.

[11] Jacobson, Van. "Congestion avoidance and control." ACM SIGCOMM

computer communication review. Vol. 18. No. 4. ACM, 1988.
[12] A. G. A. Elrahim, H. A. Elsayed, S. E. Ramly and M. M. Ibrahim, "Im-

proving TCP congestion control for wireless sensor networks," 2011 4th

Annual Caneus Fly by Wireless Workshop, Montreal, QC, 2011, pp. 1-6.
[13] S. Bolettieri, C. Vallati, G. Tanganelli, E. Mingozzi, Highlighting Some

Shortcomings of the CoCoA+ Congestion Control Algorithm, Proceed-

ings of the 16th International Conference on Ad Hoc Networks and Wire-

less (ADHOC-NOW 2017), Messina, Italy, September 20-22, 2017.

[14] Balandina E., Koucheryavy Y., Gurtov A. (2013) Computing the Retrans-

mission Timeout in CoAP. In: Balandin S., Andreev S., Koucheryavy Y.
(eds) Internet of Things, Smart Spaces, and Next Generation Networking.

Lecture Notes in Computer Science, vol 8121. Springer, Berlin, Heidel-
berg.

[15] R. Ludwig and K. Sklower “The Eifel Retransmission Timer”, ACM

SIGCOMM Computer Communication Review, Vol. 30, Issue 3, pp. 17-
27, July 2000.

[16] A. Betzler, C. Gomez, I. Demirkol and J. Paradells, "CoAP congestion

control for the internet of things," in IEEE Communications Magazine,
vol. 54, no. 7, pp. 154-160, July 2016.

(a) CoCoA+ (b) pCoCoA

Fig. 21, Weak estimator failing to update RTOinit .

