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Abstract

As location-based services emerge, many people feel exposed to high privacy threats.
Privacy protection is a major challenge for such services and related applications. A
simple approach is perturbation, which adds an artificial noise to positions and returns
an obfuscated measurement to the requester. Our main finding is that, unless the noise
is chosen properly, these methods do not withstand attacks based on statistical analysis.
In this paper, we propose UniLO, an obfuscation operator which offers high assurances
on obfuscation uniformity, even in case of imprecise location measurement. We also deal
with service differentiation by proposing three UniLO-based obfuscation algorithms that
offer multiple contemporaneous levels of privacy. Finally, we experimentally prove the
superiority of the proposed algorithms compared to the state-of-the-art solutions, both
in terms of utility and resistance against inference attacks.

Keywords: privacy, location-based services, obfuscation techniques, uniform
obfuscation

1. Introduction

Recent years have seen the widespread diffusion of cheap localization technologies.
The most known is GPS, but there are many other examples, like cellular positioning,
ultra-wide band positioning, etc. [1, 2, 3] The emergence of such technologies has brought
to the development of location-based services (LBS ) [4, 5, 6], which rely on the knowledge
of location of people or things. The retrieval of people’s location raises several privacy
concerns, as it is personal, often sensitive, information. The indiscriminate disclosure of
such data could have highly negative effects, from undesired location-based advertising
to personal safety attempts.

A classic approach to the problem is to introduce strict access-control policies in the
system [7, 8]. This approach has a main drawback: if the entity does not need complete
(or exact) information, granting the access to it is a useless exposure of personal data.
The “permit-or-deny” outcome of access control is often too rigid.
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Samarati and Sweeney [9, 10] proposed the concept of k-anonymity : a system offers a
k-anonymity to a user if his identity is undistinguishable from at least k−1 other users. k-
anonymity concepts have been applied to location privacy [11, 12, 13] by obfuscating the
user’s position in such a way to confuse it with the positions of other k−1 users. Location
k-anonymity offers high levels of privacy, because it protects the user’s identity. However,
since k-anonymity does not permit the identification of the user, it is not applicable in
services in which the user authenticates, e.g. payable services or location-based social
networks. In addition, they require the presence of k − 1 users in the proximity, that
could be missing, and a central anonymizer, that could not be fully trusted by the users.

A different and promising approach is data obfuscation [14, 15]. The aim is not to
reach anonymity, but rather to artificially reduce the precision of location data before
disclosing it. In this way, the service can still be delivered, but an adversary cannot infer
other sensitive information. We focus on obfuscation through noise perturbation [16, 17].
An underrated problem in the literature is how to choose a suitable noise to effectively
perturb data. We found that, if noise is not chosen properly, perturbation will not resist
to attacks based on statistical inference. In particular, an obfuscation operator must
offer a spacial uniformity of probability. Such a requirement is often postulated, rather
than fulfilled, by state-of-the-art perturbation methods.

We propose UniLO, a location obfuscation operator able to guarantee uniformity
even in the presence of imprecise location measurements. UniLO does not require a
centralized and trusted obfuscator. We deal with service differentiation by proposing and
comparing three UniLO-based obfuscation algorithms offering multiple contemporaneous
levels of privacy. Finally, we experimentally prove that UniLO outperforms state-of-the-
art perturbation algorithms both in terms of utility and resistance against inference
attacks. This paper extends our previous work [18] with multiple levels of privacy and
an in-depth analysis of the utility and the resistance against inference attacks. All the
simulations scripts of the present paper can be downloaded from [19].

The rest of the paper is organized as follows. Section 2 analyzes some related works
and the differences with UniLO techniques. Section 3 introduces some basic concepts
concerning the system model and the terminology. Section 4 formally describes the ag-
nostic adversary model, the concept of uniformity, and a way to quantify it. Section 5
presents the basic UniLO operator and show its properties in terms of uniformity. Sec-
tion 6 presents the problem of offering multiple levels of privacy and three algorithms to
adapt UniLO in this sense. Section 7 evaluates UniLO algorithms in terms of utility
on an example location-based service. Section 8 evaluates UniLO algorithms in terms
of resistance against inference attacks. Finally, the paper is concluded in Section 9.

2. Related works

Approaches for location privacy can be roughly divided in identity protection and
data protection. Identity protection avoids the re-identification of anonymous users.
Data protection avoids the disclosure of precise locations.

2.1. Identity-protection approaches

Gruteser and Grunwald [11] first applied k-anonymity approach in location-based
services. The proposed solution involves the subdivision of the map in quadrants with
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different granularities. The user does not release his precise position, but a quadrant of
the grid containing other k − 1 users, in such a way his identity is confused with theirs.
The k-anonymity approach is broadly used in many research works [12, 13, 20, 21, 22].
However, these methods require the presence of k − 1 users in the proximity, that could
be missing, and a central anonymizer, that could not be fully trusted by the users. In
addition, they do not permit the identification of the user, so that they are not applicable
in those cases in which the user authenticates himself, e.g. payable services or location-
based social networks. Our approach aims at protecting the position, rather than the
identity, and it is suitable also for authenticated users.

[23] and [24] approach the problem of trajectory k-anonymity, offering methods to
protect user’s privacy in continuous tracking systems. Although it could be extended in
that sense, the present work focuses on single-position queries, as they encompass a wide
range of location-based applications.

A problem complementary to anonymity is pseudonym unlinkability in tracking sys-
tems, usually approached with the technique of mix zones [25, 26, 27]. Mix zones are
areas of the map where users cannot be tracked and change their pseudonym. By care-
fully placing and dimensioning such mix zones it is possible to thwart the adversary from
linking two consecutive pseudonyms of the same user.

2.2. Data-protection approaches

Location obfuscation aims at reducing the precision of location data before disclosing
it. This can be done by adding noise [14] (noise-based obfuscation) as well as with other
methods, for example by replacing the exact position with a quadrant of a grid [15].
Research on this topic has focused mainly on what kind of service can be delivered with
imprecise positions [15, 28, 29, 30]. The problem of generating such imprecise positions
in a proper way is often underrated. In particular, the uniformity of the noise-based
obfuscation is often postulated, rather than evaluated. As a result, the proposed solutions
turn out to be poorly resistant against inference attacks. In this paper we focus entirely
on noise-based obfuscation, so from now on we will omit the “noise-based” specification
as implicit.

Ardagna et al. [14] proposed a set of obfuscation operators that perturb the location:
radius enlargement, radius restriction, center shift. These operators transform a mea-
surement area into an obfuscated one. Our approach guarantees both more private and
more useful obfuscated areas. More private because UniLO noise significantly increases
the uniformity of the resultant privacy areas. More useful because we always guarantee
that the privacy areas contain the user’s position. A service provider can thus rely on
more powerful assumptions and offer more quality of service. In addition, in [14] the
resistance against attacks relies on the fact that the adversary is unaware of the privacy
preference of the user. This could be an optimistic assumption, which features a form of
“security by obscurity” that should be avoided [31].

Krumm [16] surveyed many different obfuscation methods and applied them to real-
life GPS traces. The objective was to prevent an attacker from inferring users’ home
positions. Krumm tried also a noise-based method, which involved noise with a Gaussian
magnitude. He found that this method requires a high quantity of noise (σ = 5 Km)
in order to effectively prevent inference attacks. Our approach offers higher levels of
uniformity, and reduces the amount of noise needed to resist to inference attacks.

3



Dürr et al. [17] proposed an obfuscation approach with multiple levels of privacy.
They build different “shares” which are random vectors concatenated to the user’s po-
sition. They store the shares in different servers to avoid a single point of trust. Each
service provider reconstructs the position by “fusing” one or more shares from one or
more servers. The privacy level is proportional to the number of shares the service
provider is allowed to access. The authors generate the shares as random vectors hav-
ing uniform magnitude. Our obfuscation operators guarantee more resistance against
inference attacks.

Inspired by differential privacy [32], Andrés et al. [33] introduced the concept of ε-geo-
indistinguishability. The idea is that the user obtains more privacy in the surroundings
of his true position, and less farther. To achieve this, they perturb the true position with
a 2-dimensional extension of the Laplacian noise. Such a noise is highly non-uniform.
As a consequence, geo-indistinguishability offers far less resistance to inference attacks
compared to UniLO.

Other notable obfuscation-based approaches are [28, 29, 30]. All these works postulate
uniformity rather than providing for it. In contrast, our approach offers guarantees on
the obfuscation uniformity, even in presence of imprecise location measurements.

Another research track [34, 35, 36, 37, 38] applies private information retrieval (PIR)
techniques to protect user’s location. The objective is to provide a location-based service
without disclosing the user’s location at all. While PIR approaches offer strong and
provable security, they are quite resource-demanding at the server side. Actually, they
require complex, computational intensive cryptographic operations or the employment
of trusted hardware architectures. In contrast obfuscation techniques only provide for
statistical guarantees in terms of privacy, but they are more affordable for the service
provider.

3. System Model

In our system, a user is someone whose location is measured by a sensor. A service
provider is an entity that receives the user’s location in order to provide for a location-
based service. The user applies an obfuscation operator to location information prior to
releasing it to the service provider. The obfuscation operator purposefully reduces the
precision to guarantee a certain privacy level. Such a precision is defined by the user and
reflects his requirements in terms of privacy. The more privacy the user requires, the less
precision the obfuscation operator returns.

A location measurement is affected by an intrinsic error that limits its precision. Such
an error depends on several factors including the localization technology, the quality of
the sensor, the environment conditions. If the measurement error is small compared to
the obfuscation, as it happens in professional GPS receivers, it can be approximated
to zero. Otherwise, as it happens in cheap GPS receivers mounted on smartphones, or
in Wi-Fi and cellular positioning, we cannot neglect it. This implies that the location
cannot be expressed as a geographical point but rather as a neighborhood of it. We
assume that locations are always represented as planar circular areas, because it is a
good approximation for many location techniques [14, 39, 40]. We will use the notation
A = 〈C, r〉 to mean that A is a circle with center C and radius r. A measurement area
(Fig. 1) is defined as follows:
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Figure 1: Measurement area

Definition 1 (Measurement area). Let X be the actual position of the user. A mea-
surement area is a circle A0 = 〈X0, r0〉, such that X ∈ A0 (Accuracy Property). We call
X0 the measured position and r0 the error radius.

The Accuracy Property guarantees that the measurement area contains the user, or,
equivalently, that the distance XX0 does not exceed the error radius. We assume that
the error radius is constant over time. This means either that the precision does not
change over time, or that we consider the worst-case precision.

A user specifies his privacy preference in terms of a privacy radius r1 > r0, meaning
that he wishes to be located with a precision not better than r1. The privacy radius is
quite an easy metric to be understood by the users. This improves the overall usability
of the obfuscation system. The task of an obfuscation operator is to produce a privacy
area A1 with radius r1, appearing to the provider as a measurement area with a lower
precision.

Definition 2 (Privacy area). Let X be the actual position of the user. A privacy area
is a circle A1 = 〈X1, r1〉 with r1 > r0, such that X ∈ A1 (Accuracy Property). We call
X1 the obfuscated position and r1 the privacy radius.

Definition 3 (Obfuscation operator). Let A0 be a measurement area, and r1 > r0 a
privacy radius. An obfuscation operator obf(·) transforms A0 into a privacy area A1:

A1 = obf (A0) (1)

Figure 2: Obfuscation and shift vector

5



(a) fX|A0
(b) fX0|A1

(c) fX|auxinfo

Figure 3: Adversarial information

With reference to Fig. 2, in order to produce a privacy area, the obfuscation operator
applies both an enlargement and a translation of the measurement area. The enlargement
aims at decreasing the precision and thus achieving the desired privacy radius. The
translation is made through a randomly selected shift vector d1, i.e., X0 +d1 = X1. The
obfuscator has to keep the shift vector secret.

The enlargement and translation operations must be such that, when composed, the
resulting privacy area satisfies the Accuracy Property. We state the following:

Proposition 1. A privacy area A1 fulfills the Accuracy Property iff:

‖d1‖ ≤ (r1 − r0) (2)

Proof. The proof stems directly from geometrical considerations (cfr. Fig. 2).

4. Agnostic adversary and uniformity index

For the scope of the present paper, every service provider receiving an obfuscated
position is a potential adversary. We assume the adversary knows the privacy area and
the error radius. She aims at discovering the actual user’s position. Since it cannot be
known with infinite precision, the result of the attack will have a probabilistic nature.
From now on, we will use the notation fa|b to refer to the conditional probability density
function of the random variable a given the information b.

Three pieces of information could help the adversary: (1) the employed localization
technology; (2) the employed obfuscation operator; (3) other auxiliary information. They
are modeled by three probability densities in R2:

1. The error density fX|A0
(Fig. 3a), which describes the actual position given a

measurement of it. We have no control over this density. Our obfuscation operators
are supposed to be unaware of it. As a consequence, they are flexible enough to
be applicable with every kind of density (i.e. with every kind of measurement
technology), as long as it is bounded by the error radius. On the contrary, the
adversary is supposed to know the error density. For example she should assume
it is Gaussian, as it is usually done in GPS measurements [41].
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2. The obfuscation density fX0|A1
(Fig. 3b), which describes the measured position

given an obfuscated version of it. We can control this density, and this is our main
weapon against the adversary. The adversary can compute this density by analyzing
the obfuscation operator, which is considered to be publicly known. She starts from
the inverse density fA1|X0

, which describes the possible output of the obfuscation
operator, and then applies Bayesian inference. In noise-based obfuscation, fA1|X0

depends on the density of d1, while fX0|A1
depends on the density of −d1.

3. The auxiliary information density fX|auxinfo (Fig. 3c), which describes the position
given a set of auxiliary information. Examples of auxiliary information are the
street map where the users are moving, the average distribution of the users in a
given city at a given hour, the average daily behavior of a particular user, etc. We
have no control over this density and it is hard to make hypotheses on it. The
adversary could have much or little information.

Dealing with auxiliary information is a recurring problem in privacy topics [9, 32].
The adversary could use it in several ways. A simple attack consists in cutting away
the zones of the privacy area where the user cannot be, basing on a public street map.
In this way, the adversary restricts the effective privacy area of the user. A common
approach [42, 43] involves enlarging the privacy radius to “compensate” the area loss.
However, this comes at a price on data utility. Depending on the street map, the privacy
radius could become much larger, and this could make it useless for the aim of providing
the service. In this paper we preferred not to do that, and let the user free of choosing
his final privacy radius. In practice, we provide an assurance on the radius, rather than
on the area. We believe that a radius (e.g. being cloaked within 500 m) is a more
understandable and usable privacy metric than an area (e.g. being cloaked inside 1 Km2,
irregularly shaped on a street map).

We cannot suppose how much auxiliary information the adversary knows, and we
cannot make the adversary “forget” it. Therefore, our true aim is to give her no additional
information other than the simple one: “X is inside A1.” We model such a requirement
with the concept of ideal obfuscation:

Definition 4 (Ideal obfuscation).

fX|auxinfo,A1
(x, y) = fX|auxinfo,X∈A1

(x, y) (3)

An obfuscator which performs ideal obfuscation is an ideal obfuscator. Note that “given
A1” in the left term of Equation 3 differs from “given X ∈ A1” in the right term. The
former means that the adversary knows the privacy area generated by the obfuscation
operator. The latter means that the adversary knows that the user is inside an area A1,
not necessarily generated by an obfuscation operator. Intuitively, in order Equation 3
to hold, the obfuscation operator should produce a privacy area in such a way that the
actual position is uniformly distributed inside it. We state the following:

Definition 5 (Uniformity Property). A privacy area A1 fulfills the Uniformity Prop-
erty iff fX|A1

(x, y) is uniform over A1. An obfuscator fulfills the Uniformity Property
iff all the produced privacy areas fulfill the Uniformity Property.

Theorem 1. An obfuscator which offers Uniformity Property is ideal.
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Proof. From the definition of conditional probability, we have that:

fX|auxinfo,X∈A1
=

{ fX|auxinfo∫∫
A1
fX|auxinfo dxdy

in A1

0 outside
(4)

On the other hand, if Uniformity Property holds:

fX|A1
=

{
1

size(A1) in A1

0 outside
(5)

Combining (5) with the auxiliary information:

fX|auxinfo,A1
=

fX|auxinfo · fX|A1∫∫
R2fX|auxinfo · fX|A1

dxdy

=

{ fX|auxinfo∫∫
A1
fX|auxinfo dxdy

in A1

0 outside

= fX|auxinfo,X∈A1
(6)

Theorem 1 tells us that Uniformity Property is important regardless of the auxiliary
information the adversary has, because it gives her no additional one.

No obfuscation system can provide uniformity against an adversary holding some
auxiliary information. This is because the adversary will have a non-uniform fX|auxinfo,
which is an a-priori probability density of the user’s position. In order to study the
uniformity of a generic obfuscation operator, we suppose an adversary who ignores any
auxiliary information, i.e. whose fX|auxinfo is uniform over the whole world map. We will
call such an adversary the agnostic adversary. The agnostic adversary is purely theoretic,
however: (a) it permits us to study the uniformity of obfuscation operators; and (b) if an
obfuscation operator enjoys Uniformity Property against the agnostic adversary, it also
gives no additional information to a real adversary (it is ideal).

4.1. Uniformity index

We use the agnostic adversary to measure the uniformity of a generic obfuscation
method. Basing on the error density and the obfuscation density, the agnostic adversary
computes the pdf fX|A1

(x, y) of the user’s position. After that, she defines a confidence

goal c ∈ (0, 1] and computes the smallest area Âc ⊆ A1 which contains the user with a
probability c. We call this area the smallest c-confidence area.

Definition 6 (Smallest c-confidence area).

Âc = arg min
A∈Ac

{size(A)} (7)

where:

Ac =
{
A|A ⊂ R2, P {X ∈ A|A1} = c

}
(8)

P {X ∈ A|A1} =

∫∫
A

fX|A1
(x, y) dxdy (9)
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The smallest c-confidence area is the adversary’s most precise estimation of the ac-
tual position, and it will cover the zones where fX|A1

(x, y) is more concentrated. The
adversary can find it by means of a Monte Carlo approach. First, she synthesizes many
“measurement-plus-obfuscation” operations, finding many tuples with the form:

〈actual pos.,measured pos., obfuscated pos.〉

Then, she selects only those tuples whose obfuscated position matches with the one she
wants to deobfuscate. The actual positions of the selected tuples follows fX|A1

(x, y).
Finally, the adversary determines the smallest c-confidence area by connecting the zones
having highest concentrations. The smaller Âc, the more precisely the adversary locates
the user. A good obfuscation operator should keep Âc as larger as possible. This is
done by making the obfuscation as uniform as possible. The best case occurs when
the Uniformity Property is fulfilled, and the obfuscator is ideal. Unfortunately, it is
impossible to provide for Uniformity Property in the general case. As an example, think
about a measurement with a Gaussian error density, followed by a small obfuscation
(r1 ≈ r0). Independently of which noise the obfuscator adds, the final pdf will be
dominated by the Gaussian component, thus it will be strongly non-uniform. Depending
on the error density, every obfuscation will produce some “irregularities,” over which the
pdf is not perfectly uniform. Thus, we developed a way to quantify the uniformity of an
obfuscation.

Another way to state the Uniformity Property is the following:

Proposition 2. A privacy area A1 fulfills the Uniformity Property iff:

∀A ⊆ A1, P {X ∈ A|A1} =
size(A)

size(A1)
(10)

That is, each region of the privacy area contains the user with a probability proportional
to its size. In such a case:

size(Âc) = c · size(A1) (11)

Otherwise:
size(Âc) ≤ c · size(A1) (12)

The uniformity can be quantified by means of Eq. 12, by measuring how much, for a
given c, size(Âc) gets close to c · size(A1). We define the following uniformity index by
fixing c = 90%:

Definition 7 (Uniformity index).

unif (A1) =
size(Â90%)

90% · size(A1)
(13)

The uniformity index ranges from 0% (worst case), if the user’s position is perfectly
predictable, to 100% (best case), if the user’s position is perfectly uniform. A uniformity
index of 100% is necessary and sufficient for the Uniformity Property.

Uniformity index is proportional to the lack of precision of the attack. For example,
if a privacy area of 400 m2 has a uniformity index of 80%, the agnostic adversary cannot
find his position (with 90% confidence) with more precision than 80%·90%·400 = 288 m2.
Note that the uniformity index is not our privacy metric, but rather an estimator of the
obfuscation resistance. Our true privacy metric is still the privacy radius, which is chosen
by the user as a preference.
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4.2. Time-correlation of user’s position

An adversary could use past and present privacy areas in order to infer the current
position. For example, she could take two privacy areas generated very close in time and
locate the user inside their intersection, supposing that he has not moved too much in
the meanwhile. Another possibility is to do the same with two privacy areas generated
at times when the user visits a recurring place (e.g. his home at 8:00 and at 18:00).
All these attacks are based on the fact that positions at different instants are similar
or strictly correlated (time-correlation attacks). This problem is orthogonal to the one
of providing uniformity within the single privacy area, and can be addressed separately.
The simplest way to counteract time-correlation attacks is to provide for reuse policies,
i.e. algorithms to reuse past privacy areas in certain cases. For example, the obfuscator
could reuse the same privacy area in case of two queries close in time and space, or in case
of queries from a recurring place. In this way we avoid the possibility of intersections.
The reuse policies should be tailored and evaluated depending on the kind of user: his
average query frequency, his daily mobility model, etc. Some simulators can help in
doing this [44]. Though these aspects are interesting, we did not investigate them in the
present paper. We focused on developing a set of high-resistant obfuscation operators
that are flexible enough to be extended with reuse policies. The operators we present are
ready to be deployed if the queries can be assumed to be uncorrelated (e.g. randomly
walking users making sporadic queries), and they should be integrated with reuse policies
otherwise.

5. UniLO obfuscation operator

UniLO (Uniform Location Obfuscation) [18] adds to the measured position a shift
vector d1 = (µ cosϕ, µ sinϕ), where µ is the magnitude and ϕ is the angle. µ and ϕ have
the following probability densities (Fig. 4):

fΦ (ϕ) =

{
1

2π ϕ ∈ [0, 2π)

0 otherwise
(14)

fM (µ) =

{
2µ/(r1 − r0)2 µ ∈ [0, r1 − r0]

0 otherwise
(15)

These densities produce shift vectors with magnitude less than or equal to r1 − r0, and
a perfectly uniform spacial probability density. This produces a good level of uniformity
of fX|A1

. However, remind that fX|A1
also depends on the error density, over which we

have no control. So fX|A1
will not be perfectly uniform in the general case.

UniLO fulfills the following properties:

• Accuracy Property. The privacy area always contains the user (Theorem 2).

• High uniformity index. UniLO outperforms all the other noise shapes used in the
literature in terms of uniformity index, for all values of r1/r0.

• Uniformity Property as r0 → 0. With highly precise sensors, UniLO tends to be
an ideal obfuscator. (Theorem 3).
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Figure 4: ϕ and µ pdf ’s of a UniLO vector

Theorem 2. UniLO fulfills Accuracy Property.

Proof. By construction, ‖d1‖ ≤ r1 − r0. Hence, from Prop. 1, Accuracy holds.

Theorem 3. As r0 → 0, UniLO fulfills Uniformity Property.

Proof. If r0 → 0, A0 will narrow to a point, with X ≡ X0, and the probability density
of the magnitude in Eq. 15 will become:

fM (µ) =

{
2µ/r2

1 µ ∈ [0, r1]

0 otherwise
(16)

To show the Uniformity, we have to pass from the polar representation to the Carte-
sian representation. So we have to transform the densities fM (µ), fΦ (ϕ) to the joint
density fX,Y (x, y). In order to perform this variable change, we equal the areas of the
rectangle spaced by dx and dy, and of the annulus sector spaced by dµ and dϕ:

dxdy =
(µ+ dµ)2 − µ2

2
dϕ = µ · dµdϕ (17)

Then, we equal the probabilities inside them:

fX,Y (x, y) dxdy = fM (µ) dµ · fΦ (ϕ) dϕ (18)

=

{
2µ/r2

1dµ · 1
2πdϕ µ ≤ r1

0 otherwise
(19)

From Equations 17 and 19, we have:

fX,Y (x, y) =

{
1
r21π

√
x2 + y2 ≤ r1

0 otherwise
(20)

which is spatially uniform in A1.
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Figure 5: UniLO spatial distribution (2000 Monte Carlo runs)

We will use the following notation:

d1 = UniLO(r1, r0)

to say that d1 is a shift vector created by the UniLO operator with privacy radius r1

and precision radius r0. UniLO operator will be our basic block to build more complex
obfuscators.

We evaluated the uniformity index of UniLO on simulated location measurements.
The error on the location measurements was assumed to follow a Gaussian distribution,
as it is usually done in GPS [41]. We truncated the distribution at r0 = 3σ, so that
no sample falls outside the measurement area. Such a truncated Gaussian distribution
differs from the untruncated one for only 1% of samples. The tests aim at evaluating the
uniformity of UniLO with respect to the ratio r1/r0 (radius ratio).

Figure 5 shows the statistical distribution of X in A1 for different values of the radius
ratio. We note that the distribution tends to be perfectly uniform as r1/r0 → ∞. The
inner areas are the smallest 90%-confidence areas.

We compared UniLO with other state-of-the-art obfuscation noises1:

• Gaussian noise, used for modeling 2-dimensional measurement errors.

• Krumm’s noise, used by Krumm to perturb GPS data [16]. Krumm’s noise has a
uniformly distributed angle and a magnitude drawn from a Gaussian distribution.

• Andrés’ noise, used by Andrés et al. [33]. This noise is a 2-dimensional extension of
the Laplacian noise, and it is used to achieve geo-indistinguishability. Refer to [33]
for further information.

• Dürr’s noise, used by Dürr et al. in their “a-posteriori share generation algo-
rithm” [17]. This is the simplest 2-dimensional noise: it has a uniformly distributed

1In case of unbounded noises (e.g. Gaussian), we fulfilled Accuracy Property by truncating their
magnitude at (r1 − r0). To make meaningful comparisons, we tailored the parameters in such a way
to truncate always 1% of the samples. Namely, we tailored σ = (r1 − r0)/3 for Gaussian noise, σ =
(r1 − r0)/2.6 for Krumm’s noise [16], and ε = 6.5/(r1 − r0) for Andrés’ noise [33].
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Figure 6: unif (A1) wrt the radius ratio (500K Monte Carlo runs for each point)

angle and a uniformly distributed magnitude. We compare UniLO with this be-
cause it is the obfuscation method most similar to ours.

• Ardagna’s noise, used by Ardagna et al. in their location obfuscation operators [14].
These are a set of obfuscation operators that reduce/enlarge/shift the measurement
area to produce the privacy area. The user expresses his privacy preference in
terms of final relevance, which is assumed to be unknown by the adversary. With
“Ardagna’s noise” we refer here to the cumulative effect of (a) the random selection
of the final relevance, (b) the random selection of the obfuscation operator, and
(c) the random selection of the shift angle. These obfuscation operators do not
guarantee the Accuracy Property, and the user could be outside the privacy area.
Refer to [14] for further information.

Figure 6 shows the uniformity indexes of the noises. We can see that UniLO outperforms
all the other noises for all the radius ratii. In the average case, Ardagna’s noise is
particularly easy to predict, because it has not been designed to thwart statistical attacks.
On the other hand, it enjoys quite a high uniformity for very small privacy radii (r1 <
2r0). However, such an improved uniformity is obtained at the cost of violating the
Accuracy Property, and thus possibly degrading the utility of the service. Krumm’s and
Gaussian noises are not so good at obfuscating. We believe this is the reason why Krumm
needed a surprisingly high quantity of noise (σ = 5 Km) to effectively withstand inference
attacks [16]. Andrés’ noise for geo-indistinguishability is quite predictable too.

6. Multiple levels of privacy

A user may require different privacy radii for different services. He can require high
levels of privacy for some services, for instance a friend-finder service, and small levels
of privacy for others, for instance safety-related services. In general, an obfuscator must
offer a user a set of N possible privacy radii, and must create a set of N random shift vec-
tors, one for each privacy radius. The error radius of the sensor can be considered as the
minimum privacy radius. In other words, the smallest privacy area is the measurement
itself.
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Figure 7: Collusion attack

Let ρ = {r0, r1, r2, · · · , rN}, with r0 < r1 < r2 < · · · < rN , be the privacy radius set,
i.e. the set of the privacy radii provided by the obfuscator. Then:

• {di : i = 1, 2, · · · , N} = δ is the shift vector set,

• {Xi = X0 + di : i = 1, 2, · · · , N} is the center set,

• {Ai = 〈Xi, ri〉 : i = 1, 2, · · · , N} is the privacy area set.

We will refer to ri−1 and ri+1 as, respectively, the previous and the successive privacy
radii of ri. The same convention holds for shift vectors and privacy areas. We will use
the notation Âci to refer to the smallest c-confidence area found by an agnostic adversary
able to access to the i-th privacy level.

6.1. On collusion attack

A subtle attack is possible when two or more service providers collude. Let us suppose
that a service provider knowing A1 colludes with a service provider knowing A2. If the
shift vectors are not chosen wisely, the adversaries can intersect A1 and A2 (Fig. 7) to
find a smaller area containing the user. To avoid this possibility, an obfuscator should
force each privacy area to enclose all the smaller ones. We state the following:

Definition 8 (Inclusion Property). A privacy area Ai (i ≥ 2) fulfills the Inclusion
Property iff Ai−1 ⊂ Ai. An obfuscator fulfills the Inclusion Property iff all the produced
privacy areas fulfill the Inclusion Property.

With Inclusion Property, we assure that a group of adversaries (even unlimited in num-
ber) has not more power than the most powerful of them, i.e. the one accessing to the
smallest privacy area.

If a privacy area must enclose the previous one, the distance between the centers must
not be larger than the radii difference. Formally:

Proposition 3. A privacy area Ai (i ≥ 2) fulfills the Inclusion Property iff:

‖di − di−1‖ ≤ (ri − ri−1) (21)
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Figure 8: IV-UniLO example

It is worth to stress that the Inclusion Property is not mandatory. In particular, it
can be released if both the system prevents service providers from accessing different
privacy levels, and different service providers do not collude. The Inclusion Property
lowers the uniformity index of the privacy areas.

6.2. UniLO for multiple levels of privacy

We will now adapt the basic UniLO operator for offering a set ρ of N shift vectors.
The simpler solution is to apply N times UniLO, obtaining N shift vectors independent
of each other. Formally:

di = UniLO(ri, r0) ∀i

We will refer to this solution as Independent Vectors UniLO (IV-UniLO). Figure 8
shows an example with ρ = {r0, r1 = 4r0, r2 = 16r0}.

IV-UniLO trivially fulfills the Accuracy Property for all the privacy areas. It also
offers a good level of uniformity, especially for large privacy radii (ri � r0). Figure 8
shows that A2 does not enclose A1. Thus, IV-UniLO does not fulfill the Inclusion
Property and does not defend against collusion.

6.3. VC-UniLO: Vector Chain UniLO

The idea of VC-UniLO is to fulfill Inclusion by assuring that the distance between
X1 and X2 never goes beyond (r2−r1). To do this, we create d2 as the sum of d1 and an
incremental vector d1,2, which is a random vector with maximum magnitude (r2 − r1).
The incremental vector represents in fact the distance between X1 and X2. The same
procedure is repeated for d3 · · ·dN . In this way, we fulfill both Accuracy and Inclusion,
as stated by the following two Theorems:

Theorem 4. VC-UniLO fulfills the Accuracy Property for all the privacy areas.

Proof. We prove this by induction. From Theorem 2, A1 fulfills Accuracy. If Accuracy
holds for Ai−1, then ‖di−1‖ ≤ (ri−1 − r0). By construction ‖di−1,i‖ ≤ (ri − ri−1). It

15



Figure 9: VC-UniLO example

follows that:

‖di‖ ≤ ‖di−1‖+ ‖di−1,i‖
≤ (ri−1 − r0) + (ri − ri−1)

= (ri − r0)

Hence, from Prop. 1, Accuracy Property holds for all privacy areas.

Theorem 5. VC-UniLO fulfills the Inclusion Property for all the privacy areas.

Proof. We consider the generic privacy area Ai. By construction, ‖di − di−1‖ =
‖di−1,i‖ ≤ (ri − ri−1). Hence, from Prop. 3, Inclusion Property holds for all privacy
areas.

For di−1,i we choose vectors created by UniLO operator:

di−1,i = UniLO(ri, ri−1)

This is the simplest choice and still offers a good level of uniformity for Ai. To sum up,
VC-UniLO algorithm creates the shift vectors with the following formula:

di =

{
UniLO(r1, r0) i = 1

di−1 + UniLO(ri, ri−1) i > 1

The i-th shift vector is created by concatenating vectors, hence the name Vector Chain.
Figure 9 shows an example with ρ = {r0, r1 = 4r0, r2 = 16r0}.

VC-UniLO defends against collusion but offers a lower uniformity index than IV-
UniLO. The problem is that ‖di‖ (i > 1) has a low probability of being large. In fact, di
is the sum of two vectors (di−1 and di−1,i) and its magnitude gets close to the maximum
(ri) only if the vectors are aligned on the same direction and both have high magnitudes.
This is a very rare event. In the majority of cases, di will have a small magnitude. So
the user will be near the center with greater probability than near the borders. This
limits the uniformity of the resultant privacy area Ai.
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Figure 10: p-Partitionability regions

Forcing di−1,i to have the same direction as di−1 is not a viable strategy, because
it would make the centers Xi, Xi−1 and X0 aligned. Therefore, an adversary knowing
Ai−1 and Ai would automatically have a preferred direction where to find A0. In general,
di−1,i should be independent of the value of di−1.

6.4. DVC-UniLO: Discrete Vector Chain UniLO

The idea of DVC-UniLO is to improve the uniformity index of VC-UniLO by chang-
ing the way the incremental vectors are built. We will first introduce the p-Partitionability
Property, which is a weaker form of Uniformity, and then present DVC-UniLO, which
offers such a property.

Ensuring the Uniformity Property is a hard problem, since it states that all the
possible regions of the privacy area contain the user with a probability proportional to
their size. A weaker requirement is to ensure this for at least some regions. We define p-
Partitionability Property, which states that at least p regions, which partition the whole
privacy area, have such a property. Formally:

Definition 9 (p-Partitionability Property). A privacy area Ai fulfills the p-Partitionability
Property iff the partition of equally-spaced concentric annuli P(Ai) = {α0, . . . , αp−1}
(Fig. 10) divides Ai in such a way that:

∀j, P {X ∈ αj |Ai} =
size(αj)

size(Ai)
(22)

DVC-UniLO fulfills the p-Partitionability of Ai by leveraging on the Accuracy of
Ai−1. With reference to Figure 10, suppose that A1 contains X and the magnitude
of d1,2 is equal to 5r1. Then, we can be sure that X is inside the annulus α2. If we
generate such a magnitude with probability 5/9, then X will be inside α2 with the same
probability, which is proportional to the size of α2. We can repeat the same reasoning
for the other annuli α0 and α1. The magnitude µ of the vector d1,2 becomes a discrete
random variable having the probability mass function (pmf ) shown in Figure 11. In this
way, A2 fulfills 3-Partitionability Property. Obviously this method is possible only if
2ri−1 divides exactly ri.
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Figure 11: µ pmf of a discrete UniLO vector (example of Fig. 10)

Figure 12: µ pmf of a discrete UniLO vector

By generalizing the formula we obtain the following pmf for the magnitude of di−1,i:

pM (µ) =

{
(8j + 4)

r2i−1

r2i
µ = (2j + 1)ri−1

0 otherwise
(23)

where j = 0 . . . p− 1, p =
ri

2ri−1

The pmf is depicted in Fig. 12. We call discrete UniLO vector a shift vector with such
a magnitude and a uniform angle. We will use the following notation:

di−1,i = D-UniLO(ri, ri−1)

to say that di−1,i is a vector created by the discrete UniLO operator with privacy radius
ri and precedent privacy radius ri−1.

If 2ri−1 does not divide ri, DVC-UniLO will behave like VC-UniLO. The general
formula for creating shift vectors is the following:

di =


UniLO(r1, r0) i = 1

di−1 + D-UniLO(ri, ri−1) i > 1, ri = 2pri−1

di−1 + UniLO(ri, ri−1) otherwise

where p ∈ N

It is trivial to show that DVC-UniLO fulfills Accuracy and Inclusion Properties for all
the privacy areas, like VC-UniLO does. In addition, we state the following:

Theorem 6. For each privacy area Ai having i ≥ 2 and ri = 2pri−1, DVC-UniLO
fulfills p-Partitionability Property.
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Proof. In the following, µ = ‖di−1,i‖, and µj = (2j + 1)ri−1. Let us compute the
probability P {X ∈ αj}.

P {X ∈ αj} = (24)

= P {µ = µj} · P {X ∈ αj |µ = µj}+ (25)

+ P {µ 6= µj} · P {X ∈ αj |µ 6= µj} (26)

If Ai−1 enjoys Accuracy Property and µ = µj , then the user will surely be in annulus
αj . Thus, P {X ∈ αj |µ = µj} = 1. On the other hand, P {X ∈ αj |µ 6= µj} = 0 for the
same reason. Hence:

P {X ∈ αj} = P {µ = µj} (27)

= (8j + 4)
r2
i−1

r2
i

(28)

=
size(αj)

size(Ai)
(29)

The proof is complete.

DVC-UniLO is an improvement of VC-UniLO. It fulfills the Inclusion Property and
offers a better uniformity.

6.5. Uniformity analysis

We performed Monte Carlo simulations to compute the uniformity indexes of the
privacy areas produced by IV-UniLO, VC-UniLO and DVC-UniLO under different
conditions. We also compared them with “a-posteriori share generation algorithm” by
Dürr et al. [17] which offers multiple levels of privacy with a perturbation approach. Dürr
used a noise uniform in angle and uniform in magnitude to obfuscate user’s positions.
Actually, Dürr’s algorithm dealt only with location measurements with infinite precision
(r0 = 0). To make meaningful comparisons, we adapted it to deal with finite-precision
localization technologies. This is easily done by creating shift vectors with maximum
magnitude equal to r1− r0, as UniLO-based algorithms do. We simulated a localization
technology with r0 = (1/10)r1. Tests showed that our algorithms outperform Dürr’s
ones in terms of uniformity.

Figure 13a shows the uniformity index of the second-level privacy area wrt r2/r1,
with a precise localization technology. Note that IV-UniLO gets closer to the optimum
than all the other methods. DVC-UniLO improves the performance of VC-UniLO
when r2/r1 is not too large. Dürr’s algorithm performs always worse than UniLO-based
algorithms.

The performance of DVC-UniLO remains high at higher levels of privacy. Figure 13b
shows the uniformity indexes of A1–A6 with ri = 2ri−1 (i > 1). The tests revealed that
all the four methods approach constant values at higher privacy levels: 28.8% for Dürr’s
algorithm, 39.2% for VC-UniLO, 70.4% for DVC-UniLO, and 100.0% for IV-UniLO.
The asymptotic value of the uniformity index unif (A∞) depends only on the algorithm
employed and on the radius ratio ri/ri−1. Figure 13c shows unif (A∞) wrt the radius
ratio. We can easily see that UniLO-based algorithms outperforms Dürr’s obfuscation
algorithm.
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Figure 14: “Close friends” application

To sum up, in order to guarantee an optimal level of uniformity, the privacy radius
set must be configured wisely. In particular, it is always better to set the first privacy
radius far greater than the error radius of the sensor (r1 � r0). In addition, if we want
to defend against collusion attacks, it is better to use DVC-UniLO and set each privacy
radius to be the double or quadruple of the previous one. In this way, we have both
a good granularity on the privacy radii, and a good uniformity index, which tends to
70%–84% (with collusion resistance) or 100.0% (without collusion resistance) with the
growing of i.

7. Utility Analysis on an Example Application

We will describe now an example social application, called “close friends”, in which
users share their obfuscated positions with their friends. Alice wants to find out which of
her friends are in her proximity. We define “being in the proximity of Alice” as “being at
a distance of 400 meters or less from Alice”. The service provider gathers the obfuscated
positions of Alice’s friends and sends them to Alice. While Alice knows her own position,
the locations of her friends are obfuscated. Suppose Bob is one of Alice’s friends. Since
Alice does not know his exact location, the question “is Bob in my proximity?” will
necessarily have a probabilistic answer.
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Figure 15: Uncertainty of “close friends” service (1000 Monte Carlo runs for each point)

The problem can be modeled as depicted in Fig. 14. Alice builds a circle centered
on its position and with 400 meters of radius (proximity area, PAlice), and computes the
intersection between that area and the privacy area of Bob (A1). If Bob is inside this
intersection, he will be in Alice’s proximity. The probability that such an event happens
is:

P {Bob ∈ PAlice} =

∫∫
PAlice∩A1

fX,Y (x, y) dxdy (30)

To make such a calculus, Alice should perform a statistical analysis of Bob’s position
and then compute numerically the integral. This operation is quite inefficient. However,
if A1 is assumed to be Uniform and Accurate, Eq. 30 will simplify in:

P {Bob ∈ PAlice} ≈
size(PAlice ∩A1)

size(A1)
(31)

Alice performs this calculus only for each friend whose X1 is nearer than r1 +400 m. The
others have no intersection, and thus 0% probability.

We evaluated the utility of the presented obfuscation operators in our example “close
friends” application. Our utility metric is the mean uncertainty in the service’s answer.
We define the uncertainty as the absolute difference between the computed proximity
probability and the true answer, i.e. 1 if the friend is close, 0 otherwise. More formally,
if PAlice is the proximity area of Alice and Ai is the privacy area of Bob:

uncert(Ai) =

∣∣∣∣ size(PAlice ∩Ai)
size(Ai)

− prox(Bob)

∣∣∣∣ (32)

prox(Bob) =

{
1 if Bob is in the proximity

0 otherwise
(33)

Low values of uncertainty mean that the computed answers are close to the true
answers. In the simulations, Bob’s position is taken in Alice’s proximity with 50% prob-
ability. Locations are measured with r0 = 10 m, and the privacy radii follow a geometric
progression ρ = {100 m, 200 m, 400 m, . . . }. Figure 15 shows the mean uncertainty of
Alice using the “close friends” service, versus the privacy preferences of her friends. We
can see that the uncertainty depends mainly on the size of the privacy area, and only
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Figure 16: Error of “close friends” service (1000 Monte Carlo runs for each point)

marginally on the obfuscation operator. For i > 5, corresponding to a privacy radius
r5 = 1.6 Km, the obfuscated positions lose their utility in determining the proximity. This
suggests that for this kind of service, i ∈ [0, 5] is a suitable range of privacy preferences.

Together with the utility, it is interesting to measure the error that Alice makes
in considering the privacy areas as uniform when they are not. Many privacy-aware
services [14, 28] postulates the uniformity, rather than providing it. In practice, they
use an approximate calculus (Equation 31) instead of an exact one (Equation 30). The
impact of such an approximation can be quite high, if the obfuscation does not provide
for Uniformity and Accuracy Properties. We evaluated this by measuring the mean
service error, i.e. the mean absolute difference between the probability computed with
and without the approximation. More formally:

error(Ai) =

∣∣∣∣ size(PAlice ∩Ai)
size(Ai)

− P {Bob ∈ PAlice}
∣∣∣∣ (34)

Low values of service error mean that the computed proximity probabilities are close
to the real ones. We compared UniLO algorithms with other noises, namely Dürr’s
“a-posteriori share generation algorithm” [17], Krumm’s noise [16], and Ardagna’s ob-
fuscation operators [14]. Figure 16 shows the results of the simulations. We can see that
the service’s mean error depends mainly on the uniformity of the obfuscation noise. IV-
UniLO and DVC-UniLO perform near to the optimum of 0% error, as they are highly
uniform and they respect Accuracy Property. On the contrary, Ardagna’s obfuscation
performs particularly bad, because it respects neither Uniformity nor Accuracy.

8. Resistance against Inference Adversary

In previous sections we used the concept of agnostic adversary to measure the uni-
formity of an obfuscation operator. Now we introduce a realistic adversary, which owns
auxiliary information (the map), and we show that a better uniformity improves the
resistance against such a threat.

The inference adversary tries to infer sensitive information from the user’s position
and other auxiliary information. Let us suppose that there is a “sensitive point” on
the map, in the sense that the proximity to that point can allow the adversary to infer
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sensitive information about the user. An example of that could be a hospital for the
cancer treatment. If Bob sends his position from inside or from the close proximity of
the hospital, the adversary could easily infer his health condition. Such an adversary
could be the “close friends” service provider, or Alice herself. Let us suppose that Bob
actually is in the hospital, and that the adversary knows his privacy area. The adversary
performs a statistical analysis of Bob’s position, knowing the localization technology
and the obfuscation operator employed. Then she uses her auxiliary information by
excluding those zones that cannot contain users (inside walls, rivers, etc.). The result of
this analysis is a probability distribution over the map. Finally, the adversary computes
the probability that Bob is in the hospital close proximity, say, inside a proximity area
Phospital of 200 meters of radius (cfr. Fig. 14). If such a probability is 50% or more, the
adversary successfully infers the health condition of Bob.

We evaluated the success probability of the inference adversary on a real map of
Pisa city center, extracted from public OpenStreetMap data [45]. Figure 17 shows the
probability that the adversary has in guessing the health condition of Bob wrt his privacy
radius. We can see that UniLO algorithms offer perfect protection even for small privacy
radii (400 meters for IV-UniLO and DVC-UniLO). Ardagna et al.’s obfuscation offers
no protection against inference attacks.

9. Conclusion

We proposed UniLO, a location obfuscation operator able to guarantee uniformity
even in the presence of imprecise location measurements. UniLO does not require a
centralized and trusted obfuscator. We dealt with service differentiation by proposing and
comparing three UniLO-based obfuscation algorithms offering multiple contemporaneous
levels of privacy. Finally, we experimentally proved that UniLO outperforms state-of-
the-art perturbation algorithms both in terms of utility and resistance against inference
attacks.
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