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Abstract 

This paper presents a configurable architecture for Network-on-Chip (NoC) router 

macrocells, and a methodology to streamline their design and configuration. The 

methodology addresses the typical problems experienced by design and verification 

engineers when coding highly configurable intellectual property macrocells at 

Register Transfer Level (RTL) with hundreds of parameters and thousands of 

resulting configurations. A NoC infrastructure for a Multi Processor System-on-

Chip (MPSoC) may require tens or hundreds of router macrocells. Therefore, 

managing the configuration design space is becoming a bottleneck for the design 

and verification of many-core processing systems. The proposed generation flow is 

illustrated on a real-world NoC router core. Its configurable architecture is compliant 

with several NoC topologies such as Ring, Octagon, Spidergon and 2D mesh 

typically used in many-core processing platforms. The generation flow allows for a 

reduction in the database code size, up to 70% in our experiments, and a contraction 

of three orders of magnitudes of the verification space vs. conventional design flows 

of RTL macrocells. The validity of the approach is also confirmed by synthesizing 

the generated router macrocells in nanoscale CMOS technology. The achieved 

performance compare well to the state-of-the-art in terms of low latency and low 

circuit complexity. 
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1. Introduction 

A key element in the design of MPSoC is the global on-chip communication 

infrastructure, because its throughput, latency and power consumption set the limit 

to the overall performance of the computing platform. The traditional shared bus 

approach exhibits its limits as the number of integrated Intellectual Property (IP) 

cores increases. While gate delay scales with each new technology node, global wire 

delay increases and can be kept constant only by inserting repeaters [1], [2]. For this 

reason shared bus communications standards are being substituted by multi-layer 

interconnects, now commonly referred as NoC, when designing many core systems. 

The NoC paradigm leverages the networking and parallel computing domain 

experience into the SoC world. It implements packet-switched micro-networks with 

a TCP/IP-like protocol stack. Examples of NoC, proposed by industry or academia, 

include Spidergon STNoC [2], [3], [4], [5], Mango [6], Aethereal [7], Arteris [8], 

Sonics [9], SoCbus [10] and xPipes [11], [12], [13]. Fig. 1 illustrates the building 

blocks of a NoC and the corresponding layers in the TCP/IP protocol stack. The 

Network Interface (NI) connects the IP cores (e.g. processors, memories, DSP 

engines, ...) to the NoC domain. The NI, whose design has been detailed by the 

authors in [2], is made up of two separate components: shell and kernel. The shell 

encapsulates the transport layer and transforms local core transactions into NoC 

packets. The kernel implements the network layer and provides features such as data 

bus size and frequency conversion between the core and the NoC domain. Splitting 

transport and network layers into separate sub-components simplifies plug & play 

design style. The network is composed of a number of routers that pass packets 

between nodes. The router implements network and data-link layers. The physical 

link is responsible for actual signal propagation among routers and/or network 

interfaces. One of the major challenges when designing a communication platform 

is to minimize the design effort while attempting to cover the widest application 

space in terms of traffic requirements (high and/or guaranteed bandwidth, low 

latency, etc.) and implementation requirements (area, clocking scheme, power 

consumption) [14]. A number of algorithms [15], [16], [17], [18] support high-level 

decisions like network topology, routing schemes, partitioning of clock domains. 

However, the actual implementation would not be feasible without NoC building 

blocks (router, NI, link) that provide the configurability necessary to match these 

high-level requirements. Particularly, the router building block is the core of the NoC 

communication infrastructure. 



 
Fig. 1. Typical TCP-IP layers for Internet applications and their mapping onto NoC 
components. 

 

The goal of this paper is to introduce a novel configurable router architecture, 

particularly suited for low latency and low circuit complexity, and a methodology, 

named metacoding, which supports the design of the configurable components by 

providing a proper abstraction of the coding process. 

Metacoding overcomes the limit of current Hardware Description Languages 

(HDLs) in capturing configuration intents and reflecting them into an optimized and 

easy to use RTL code database, which satisfies the following requisites: 

- 

Coded consistently: unnecessary code is never generated, the internal 

components are the smallest required to provide a given functionality, 

unconnected signals and ports are removed, unused control signals are driven 

with proper values. 

- 

Neutral to tools: the code database is read as-is by any standard front-end 

toolchain (LINT checking, functional simulation, RTL synthesis). 

- 

Verification friendly: high code-/functional-coverage scores are achieved 

with a reasonable number of configurations. 

The generated code through metacoding is a macrocell, i.e. a RTL HDL description 

that can be simulated and synthetized in any standard-cells library, or FPGA 

technology, with conventional Electronic Design Automation (EDA) tools used in 

digital IC design from vendors such as Synopsys, Cadence, Mentor (or custom 



FPGA-vendor tools for the FPGA flow). Once generated and verified the gate-level 

netlist, a conventional flow up to GDS-II data base finalization can be done. In this 

work, the generated code is in VHDL, but other languages for hardware description 

and synthesis, such as Verilog, can be used too. 

Differently from other works in literature, that present top-to-bottom system level 

design flows [19], [20], [21], [22], the approach proposed in this paper raises the 

level of abstraction of the design description, not of the design itself: the input of the 

flow is not a high-level specification, but RTL code templates and a set of properly 

defined rules to assemble them. The rationale of this choice is to streamline the 

generation of those design aspects that are repeatable, structured and prone to errors, 

while retaining the full advantages of manually coding RTL blocks, like the ability 

of achieving timing closure with extremely tight constraints. Using the terminology 

of the new IP-XACT standard [23], [24], i.e. the XML format used to package 

reusable IP cores, the subject of this work should be referred to as a ‘code generator’, 

i.e. a software plug-in that customizes the core during the configuration activity. 

Hereafter, Section 2 presents a novel architecture of a router, patented in [25], [26]. 

The router architecture template can be configured to connect a sender or receiver 

IP core (e.g. processor, on-chip memory or controller for off-chip DRAM), through 

an NI, and up to other 4 neighbouring routers. This way it supports several network 

topologies typically used in MPSoC such as Ring, Octagon, Spidergon and 2D 

mesh. Section 3 analyzes the router configuration space and points out which 

classical RTL coding technique would be used to implement each feature. Section 

4 presents metarouter, the object-oriented model that applies 

the metacoding principle to the new router architecture. Section 5 provides synthesis 

results of the generated macrocells in nanoscale CMOS technology. Section 

6 compares the achieved performances vs. the state-of-the-art. Section 7 draws some 

conclusions. 

2. Router features and architecture 

All router features are configurable at synthesis time, from supported topologies to 

routing strategies, arbitration policies and clocking schemes. 

2.1. Topology and routing Strategy 



The router can support several 

topologies [2], [3], [4], [24], [27], [28], [29], [30] such as Ring, Octagon, 

Spidergon, 2D mesh plus a family of customized topologies that can be derived from 

them. Each topology has some advantages and disadvantages, briefly reviewed 

hereafter. In a ring architecture, all nodes are connected in a ring fashion and each 

node has two neighbours independently from the size of the MPSoC. All routers in 

a ring topology have the same number of links, just 3: one link to the NI (connecting 

the sender/receiver memory or processor to the NoC) and two links, typically named 

Left (L) and Right (R) or West (W) and East (E). The strengths of the Ring topology 

are: its small degree, the low-complexity of the router, faults can be easily detected 

and located. Its simplicity is paid in terms of a large ring diameter for MPSoC with 

a large number of cores. Moreover, a single fault in a link can disrupt the entire 

network and a high latency value is payed for the communication between two nodes 

at the opposite side of the NoC. Hence, Ring is suited for simple MPSoC platforms 

with few cores. 

A basic Octagon NoC consists of 8 nodes and 12 bidirectional links. Each router has 

4 links: one associated with the sender/receiver IP and 3 with neighbouring switches 

in Left (L), Right (R) and Across direction, which is new vs. the basic Ring topology. 

Thanks to the Across link an Octagon NoC features a low latency for the 

communication between two nodes at the opposite side of the NoC. The Octagon 

topology is characterized by a simple routing strategy: the idea is to move clockwise 

or counter clockwise along the ring to reach destination nodes which are near the 

source node, and to use the Across link as first or last hop to jump to a part of the 

network that is far away from the source node. Spidergon topology extends the 

capability of Octagon beyond the limit of 8 nodes, and presents the possibility of a 

router with a 5th link called Hierarchy (H). The Hierarchy link, see Fig. 2, can be 

used to connect a Spidergon NoC to another NoC domain thus creating a hierarchy 

in the network where the router acts as a gateway between the two NoC sub-

networks. One limit of Spidergon in complex MPSoC is that the links in Across 

direction can be much longer than the other links. The insertion of repeaters may be 

needed, but this leads to an asymmetrical behaviour between the Across link and the 

other links. 



 
Fig. 2. Router connections in a NoC. 

 

In a 2D mesh the nodes are connected as a grid. Architecture expansion is easy for 

meshes and low effort is needed when adding more IP cores to the existing 

architecture. The presence of multiple paths between a pair of nodes makes a mesh 

NoC tolerant to link failure. However, in a 2D mesh NoC the nodes have different 

degrees according to their locations within the mesh. Corner nodes have degree of 

2. Edge nodes have degree of 3. Inner nodes have degree of 4. Different routers are 

required in a 2D mesh NoC, since the number of links can be from 3 to 5: one to 

connect the sender/receiver IP core through the NI, and the others called North (N), 

South (S), East (E) and West (W) to the neighbouring routers. The limits of the 2D 

mesh topology are that the network diameter can be very large, and the topology is 

not regular (less bandwidth is available for the nodes placed at the corners and edges 

of the MPSoC). The router architecture is connected through two unidirectional links 

with up to four routers in the network. There is a fifth connection to the local NI. To 

avoid doubling the names of the router ports, independently of the topology (Ring, 

Octagon, Spidergon, 2D mesh), the router ports will be named as follows: NI, L for 

Left or West, R for Right or East, A for Across or South, H for Hierarchy or North. 

The router adopts wormhole packet-switching, where a packet is subdivided into 

flits having their unique flow control. Once the first flit of a packet is routed, the 

remaining flits follow the same path reserved to the header. This way the amount of 

buffering is reduced, since queues are sized with the granularity of a flit instead of a 

packet. This approach allows deeply pipelined data paths when compared to virtual 



cut-through and store & forward [29]. The routing algorithm is deterministic, so that 

always the same path is chosen between a source and a destination node, even if 

multiple paths exist. This choice avoids costly flit reordering at packet reception. 

The router uses a source-based routing: the entire path is encoded in the packet 

header, which has a fixed size due to the symmetry of the topology. This enables fast 

routing decision at each router, because the information is simply extracted from the 

header; no computation or routing lookup table is required. Adaptive routing 

algorithms have been proposed for NoC in literature. They make use of information 

about the state of the network to make routing decisions. By exploiting path diversity 

they allow better performance in network load balancing, but for an increased 

implementation complexity. 

By deploying Virtual Channels (VCs), the router avoids end-to-end deadlocks. VCs 

provide logical links over the same shared physical channels, by establishing a 

number of independently allocated flit buffers in the transmitter/receiver nodes. 

Request and response Virtual Networks (VNs) are implemented on top of two 

disjoint VCs for sharing the physical link bandwidth. The parametric number of VCs 

supported by the router can lead to advanced routing schemes or independent Quality 

of Service (QoS) traffic classes for real time and low latency flows. 

2.2. Router architecture 

The architecture of the new proposed router consists of the following main blocks, 

instantiated as many times as the number of links (see Figs. 3 and 4): 

- 

Downstream Interface (DS ITF), connected to the input link and buffering 

incoming flits. 

- 

Routing Computation Unit (RCU), which extracts routing information from 

packets' headers. 

- 

Switch, which routes inputs to outputs. 

- 

Optional Output Queue (OQ) with bypass capability, which stores outgoing 

flits. 



- 

OQ Arbiter, which arbitrates among different inputs requesting the same 

Output Queue. It is in charge of the per-packet allocation of the OQ, and so 

of the Virtual Channel. 

- 

VN Arbiter, which arbitrates between the two Virtual Networks requesting 

link access. This is a per-flit arbitration, because the two packets of the two 

VNs can be interleaved on the link, depending on credits availability. 

- 

Upstream Interface (US ITF), which is in charge of managing the credit-based 

output data flow. 

 
 

Fig. 3. Router architecture with two virtual networks. 



 
Fig. 4. Architecture of the router with two virtual Networks. 

 

OQ and VN arbiters in Fig. 4 support different techniques such as Round Robin 

(RR), Least Recently Used (LRU), fixed priority. Downstream and Upstream 

Interfaces are dedicated components that implement the physical layer. The different 

links – synchronous or mesochronous [2], [31] – correspond to different DS/US 

Interfaces instantiated in the router and in other NoC modules. The above mentioned 

blocks can be grouped into DS-dependent blocks (DS Interface, RCU) and US-

dependent blocks (Switch, Output Queue, OQ Arbiter, VN Arbiter and US 

Interface), as shown in Fig. 4. DS-dependent blocks are instantiated for a link only 

if the corresponding DS interface exists. US-dependent blocks are instantiated for a 

link only if the corresponding US interface exists. The DS-dependent block of each 

link is connected to the US-dependent blocks of all the other links. 

At the NoC physical interface side, there are the following configurable hardwired 

lines for each response or request path: 

- 

N-bit flits to transfer NoC packets (headers and payloads). 

- 



4-bit flit_id, whose 2 LSBs identify first, intermediate and last flits of a 

packet; the flit can also be a single one. The other 2 optional bits are used to 

mark the end of bus packets within compound transactions (i.e. composed of 

a number of packets) that are translated into a single NoC packet, and to 

identify payload flits that cannot be aggregated in case of upsize conversion 

(necessary in some cases of interoperability). 

-Optional K-bit four_be (K = N/32) to mark meaningful 32-bit pieces of data 

within a flit (used in end-to-end size conversion). 

- Optional 2-bit flit_id_error for signalling a slave side error or an 

interconnect error. 

- Optional flit_id_atomic that enables support of atomic operations: an NI can 

lock paths towards a Slave IP so that a Master IP can perform a generic 

number of consecutive operations without any interference from other 

masters. 

- Credit and valid (val) signals for credit-based flow control. 

2.3. Buffering and latency 

The router adopts a credit-based flow control (credit and val signals in Fig. 3), which 

works on a flit per flit basis. A flit is sent only when there is room enough to receive 

it: neither retransmission nor flit dropping is allowed. This is done automatically by 

setting an initial number of credits in the US interface (in its Credit Manager), equal 

to the size of the Input Buffer in the DS interface it communicates with. Since the 

US interface sends flits only if the connected DS interface can accept them, there are 

no pending flits on the link wires. This approach allows virtual channel flit-level 

interleaving, so that separate virtual networks can share the same physical link. To 

guarantee the maximum link throughput, the Input Buffer is sized according to the 

credit round-trip delay. This delay can be defined as the minimum time between two 

consecutive credits for the same buffer location and it depends on the credit pipeline 

between two consecutive routers. The value of this delay is configurable, thus 

different design trade-offs in terms of working frequency and buffer resources are 

possible. The router uses Output Queues for enhanced performance, avoiding head-

of-line blocking. Queues are shared among input flows. They have a bypass feature 

to reduce the router crossing latency in case of low traffic conditions. Output Queues 

are optional and are usually not instantiated in low cost implementations. It is 

optionally possible to implement a separate Output Queue for each input flow 



targeting a given output. This configuration improves the offloading capability of a 

router and it is useful when multiple incoming heavy traffic streams target the same 

output port, e.g. the NI port. 

The router has a configurable crossing latency, from one up to two clock cycles. This 

is obtained by means of a flexible pipeline in the data path: one stage is represented 

by the Input Buffer and the other stage is the optional output retiming register. The 

Output Queue, when instantiated, can be bypassed in case of low traffic conditions, 

thus not affecting the overall router crossing latency. Registering input and output 

port signals allows for orthogonality between the link and the router delay. For very 

low-complex NoC applications, e.g. connecting few IPs in a SoC with a small area, 

where buffering flits in the NoC is not required, the latency and area overhead of the 

router can be further reduced bypassing also the Input Buffer. In such case a zero-

cycle latency router is obtained and for correct data sampling the NoC relies on the 

output and input registers of the NIs where are connected the sender and the receiver 

IPs, respectively. 

2.4. Quality of service 

QoS is based on a Fair Bandwidth Allocation (FBA) mechanism. It allows for a 

flexible, scalable and low cost management of the allocation of the available 

bandwidth. The principle of FBA arbitration is to share the Slave available 

bandwidth among the Masters during peak request period. Since the arbitration is 

distributed among the different router crossed by the packets, traditional weighted 

Round Robin arbitration algorithms cannot be used. As detailed in [2], where the 

architecture of the NI is discussed by the authors, the solution is to apply a faction 

tag at packet injection, i.e. in the NI. Packets with the same tag are kept together, 

within the same faction round, in the interconnect, i.e., in the routers, where the 

distributed arbitration is performed. This scheme should not be confused with the 

TDMA approach: the faction round duration is variable; if only packets belonging 

to a new tag are received, they win the arbitration, so that there is not wasted 

bandwidth. 

In the FBA QoS scheme, the NI tags the packets with a faction identifier and, if 

needed, with their priority. Each injected flow specifies the requested bandwidth, 

which is the global amount of data (computed in bytes from the opcode size) 

transferred by the considered NI flow in a given faction round at the specific target. 

The round at the specific target is a given number of available accesses; the number 



of bytes read or written in that round represents the percentage of available 

bandwidth (bandwidth in the round) demanded by this initiator flow. The requested 

bandwidth corresponds to a threshold that must be reached by a counter to switch 

the faction identifier bit. The counter (inside the shell of an Initiator NI) computes 

from the opcode the number of bytes that flow to each target and enables the faction 

bit switching when the threshold is reached. Two different schemes can be enabled: 

one offering to configure a separate threshold (or bandwidth) for each target, and a 

simplified scheme with a unique threshold for all targets. To be noted that the 

requested bandwidth value is programmed at the injection point (NI) and is not 

explicitly linked to the path of a data flow through the router as it is done in other 

NoC architectures [6], [7]. The arbitration logic in the router is thus simpler. 

Proposed routers do not need to be programmed. They implement simple arbiters, 

since only a two-steps arbitration process is required based on the information 

available in the network, without any need of slow complex logic. Speculation-like 

techniques allow the two arbitrations to be performed in parallel, thus reducing the 

critical path delay. The same scheme is used for any VNs. If all data flows have the 

same bandwidth reservation, the arbitration degenerates into a Round Robin, Least 

Recently Used or fixed priority scheme. A QoS bandwidth control mechanism for 

NoC, which is not explicitly linked to the path of a data flow through the router, but 

is programmed at the injection point (NI) has been proposed in [32]. The proposed 

FBA QOS technique, implemented at NI side by means of a tagging mechanism 

based on a simple counter (with a negligible hardware overhead, as we demonstrated 

in [2]), stands for its simplicity vs. the solution in [32]. The latter is based on a more 

sophisticated (σ, ρ) network calculus, inherited from [33], where the parameters 

should be proper determined to guarantee the minimal bandwidth requirements, the 

absence of FIFO queue overflow in the routers, and the fairness of bandwidth 

allocation between the different flows. 

3. Router design configuration 

The switching matrix of the proposed router is fully configurable: the existence 

of each stream direction (up and down) in any virtual network can be independently 

specified for each link (L, R, A, NI, H). This subset of the configuration space is 

referred to as router topology or backbone. The ability to fully control the router 

topology enables to strip away unnecessary paths in the network, thus saving 

hardware resources (e.g. FIFO buffers, arbiters, muxes, etc.). A convenient 



representation for the router topology is shown in Fig. 5(a), where a switching matrix 

is defined for each virtual channel. Rows represent DS ports, while columns are 

associated to US ports. A non-null element at position (i, j) indicates that traffic 

entering port i can be routed toward port j. A null row/column represents a missing 

DS/US port, as illustrated in the equivalent graph representation of Fig. 5(b). Note 

that DS and US port sets overlap if and only if the interconnection matrix is 

symmetric. The router configuration space is summarized in Table 1. Features are 

classified according to their functional meaning. The configuration layers identify 

the coding technique required to implement that specific feature in a configurable 

fashion. 

 
Fig. 5. Representation of router configurable topology. 

 

Table 1. Router configuration space. 

Feature Family Configuration layer 

Link Topology Layer1 

Stream   

VN   

Reserved queues Buffering & latency  

Queue size  Layer3 

Crossing latency  Layer2 

Credit round-trip delay   

Arbitration schemes QoS  

Clocking scheme link  

Flit size  Layer3 

Features in Layer1 represent design parts that can either exist or not, thus reflecting 

the router topology. 



Features in Layer2 need different code layouts for each legal configuration of 

Layer1. Indeed, the type of sub-components to instantiate and the signals connecting 

them to the surrounding logic depends on the router topology. These features are 

described with conditional instance statements (e.g. IF..GENERATE in 

VHDL/Verilog2001) and a consistent scenario for any possible configurations has 

to be considered during the coding phase. Moreover, conditional statements do not 

allow modification of port maps, thus additional pre-processor directives are 

required. For example, when configuring the crossing latency, registers are either 

inserted or removed across the data-path and mutual connections need to be changed 

accordingly. If different arbitration schemes are selected, then different arbiter 

components should be instantiated and properly connected to the surrounding logic. 

Layer3 includes parametric features such as size of buses and memories. Parametric 

features are easily implemented by means of array-like data types supported in any 

HDL. 

4. The metacoding approach 

As explained in previous section, the RTL coding of the router requires an effort that 

grows exponentially with the dimension of Layer1 space. Considering two virtual 

channels, five links and independent US and DS paths for each link, the number of 

possible configurations is greater than 216. Hand-writing the whole code database is 

not only time-consuming, but also prone to errors, because of the high similarity 

among code portions related to the same sub-component. Lastly, since each 

configuration comes from the combination of different portions of code, full code 

coverage can be achieved only by verifying any legal router topology. The greatest 

limitation coming from a traditional coding style based on conditional instance 

statements and pre-processor directives is the locality of such statements. Portions 

of code activated by the same condition, but located in different sub-components 

have to be replicated, because each statement queries the configuration space 

independently from each other. This work refers to the abstraction process 

as metacoding, while metadesign is used to denote the code generator. Consistently 

with the terminology adopted in [34], the term codelet designates a group of HDL 

statements describing some part of the design. The metadesign is an equivalent 

representation of the design composed of three modules that interact as illustrated 

in Fig. 6: 



- 

Checker: constraints the configuration space by filtering any illegal set of 

parameters. 

- 

Backbone: stores the configuration and provides the codelets with methods 

for querying parameters' value. 

- 

Codelet: a basic class equipped with methods for HDL code customization. 

Since different codelets may require different customization procedures, the 

codelet class can be specialized for each of them. 

 

 
Fig. 6. Main steps in the metacoding flow. 

 

A commercial tool for IP packaging (Synopsys coreTools) embodies the checker. 

The configuration parameters are annotated with proper expressions that the tool 

uses to determine whether a configuration is legal or not. The backbone and the 

codelets are custom software components, which are aware of the design structure 

and are hooked to the above mentioned tool. The backbone captures the 

configuration intents in such a way that the codelets can query to customize 

themselves. Codelet objects are in turn composed of: 

An HDL template describing some parts of the design without explicit references to 

design items (components, signals, ports). 

A set of rules for substituting instance specific items within the template. 

A signature, used as a key for querying the backbone. The signature is built 

concatenating the coordinates of the codelet in the Layer1 space (i.e. Layer1 

parameters determining the existence of that codelet in the HDL). 

As already highlighted in Section 1, differently from [19], [20], [21], the 

metacoding approach raises the level of abstraction of the design description, not of 



the design itself. In other words, the codelets use the same hardware abstraction layer 

of the design (RTL in this case). Fig. 7 illustrates the internals of the router 

metadesign (metarouter) in the form of a UML class diagram. The LinkStreamVN 

class impersonates the backbone. The codelet class is further specialized according 

to the components highlighted in Figs. 3 and 4. An intermediate level of 

specialization differentiates between single and multiple VN components. All 

classes are implemented using XOTcl, an aspect oriented scripting language based 

on Tcl [35]. 

 

 
Fig. 7. UML class diagram of the metarouter plug-in. 

5. CMOS implementation results 

Table 2 compares the metacoding approach with a standard coding approach using 

the router code database as a benchmark. The router was originally implemented 

using plain VHDL and pre-processor directives. The migration to the metacoding 

approach occurred before a number of features (like additional ports) were added. 

The statistics reported in the ‘hand-coded’ column are a projection of the original 

code database considering the configurability implemented in the metarouter. The 

metadesign achieves a reduction in the size of the code database greater than 60%. 

The number of distinct topologies to verify is decreased of three orders of 

magnitudes. This reduction is possible since router topologies can now be grouped 



into equivalence classes and only one representative for each class needs to be 

verified. The reduction of the data base code size and of the configurations to be 

verified directly leads to a reduction of time and costs for design and 

verification [36]. 
Table 2. Performance of metacoding on router design. 

 
Hand coded Metadesign Saving 

HDL (lines) 11,158 4093 63% 

Configuration intents (lines) 3211 (preprocessor macro) 994 (Tcl/XOTcl) 69% 

Topologies to verify > 216 56 10−3 

 

The generated VHDL code through metacoding can be simulated and synthetized in 

any standard-cells CMOS library, or in FPGA technology, with conventional EDA 

tools used in digital IC design. The time needed for simulations, verification and 

synthesis of the code generated through metacoding is in line with the time needed 

for a handcrafted VHDL version using “if…..generate” constructs to achieve the IP 

configurability. The time needed to generate a configuration is not an issue, when 

compared to commercial tools for IP packaging and configurations, such as Core 

Tools from Synopsys, and to the entire HDL-based design flow, which includes 

much higher time-consuming tasks such as synthesis and simulations (particularly 

with time back-annotated netlist). 

Once generated and verified the gate-level netlist, a conventional flow up to GDS-II 

data base finalization can be done (based on encounter RTL-to-GDSII EDA tool). 

In this work, different configurations of RTL router macrocells have been 

synthetized in STM 65 nm and 45 nm standard-cells CMOS libraries. The standard-

cells are available in a high-speed (low VTH) version and in a low-leakage (high VTH) 

one. For a sake of space the results for 5 configurations, all with only 1 clock cycle 

of crossing latency, are reported in Table 3. As example the router configured with 

5 ports (A, R, L, NI and H), 1 VN, 128 bits of bus width, no retiming stage, with 

input buffer but without output que, and targeting a 400 MHz clock frequency as 

in [37], has a logic complexity of 32.8 kgates. The power consumption at full speed 

in 65 nm CMOS technology with 1.1 V supply voltage, low-leakage library version, 

is 10 mW. This value is dominated by dynamic power. The static power due to 

leakage is only 40 µW. The same router configuration, using the same technology, 

but with 21 VNs has a logic complexity of 60.6 kgates. Its dynamic power 

consumption is 18 mW and its static power is 72 µW. By using a standard-cells 



library version optimized for high-speed, with the same router configuration, clock 

frequencies up to 1 GHz are met, as in [38]. Hence, the proposed router can sustain 

up to 128 Gbps data transfer per link. In this case the static power consumption 

increases to roughly 1 mW. As example of a very low complexity implementation, 

a 3-port router with 32-bit data size and a single VN, with no OQs instantiated, has 

a circuit complexity lower than 9 kgates. In low-leakage 65 nm CMOS technology 

it can run at 500 MHz clock frequency with a static power of 10 μW and a dynamic 

power of few mW. The same router IP core in high-speed 65 nm technology library 

achieves a clock frequency up to 1 GHz (i.e. a 32 Gbps data rate, enough to sustain 

also the traffic of multimedia processing platforms [39]) with a static and dynamic 

power consumption of 200 μW and roughly 7 mW, respectively. 
Table 3. Performance in 65 nm CMOS technology of some router configurations. 

 
Clock 
frequency 

Complexity 
kgates 

Dynamic 
power 

Static 
power 

3-port router, 11 VN, 32 bus-width, low-
leak tech 

500 MHz 9 3.4 mW 10 µW 

4-port router, 11 VN, 128 bus-width, low-
leak tech 

400 MHz 25.1 7.7 mW 31 µW 

5-port router, 11 VN, 128 bus-width, low-
leak tech 

400 MHz 32.8 10 mW 40 µW 

5-port router, 21 VN, 128 bus-width, low-
leak tech 

400 MHz 60.6 18.1 mW 73 µW 

5-port router, 11 VN, 128 bus-width, high-
speed tech 

1 GHz 61.1 45.2 mW 1 mW 

The proposed methodology is applied in this work to a router macrocell generation 

in NoC design applications, but it can be generalized also to other configurable IP 

cores with lots of parameters, such as configurable microprocessors. The 

proposed metarouter methodology is currently embedded in an industrial flow by 

STMicroelectronics. Its target is the generation and implementation of the whole 

interconnection NoC platform of real-world SoC for multimedia and telecom 

applications, fabricated in nanoscale CMOS technologies, from 65 nm down to 

28 nm. References to this environment, which includes a proper user interface, 

STNoC GUI, and a NoC compiler, I-NoC, can be found in [40], [41], [42]. Beside 

the router, discussed in this work and patented in [25], [26], other key blocks of the 

STNoC platform are the NI, and different types of links (mesochronous or 

synchronous or adaptive link), that the authors have presented in [2], [31]. 



6. Comparison to the state-of-the-art 

Comparing the results in Section 5 to other NoC router architectures in 

literature [37], [38], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], 

synthesized in CMOS technology, our design stands for these characteristics: 

(i) low crossing latency, limited to 1 clock cycle, and low circuit complexity, 

limited to tens of kgates, as the best in class router architectures proposed 

for low-latency [43], [44] or low complexity [38], [48]; 

(ii) high configuration space leading to a high flexibility when assembling the 

entire NoC interconnect platform; our design supports multiple topologies 

(2D mesh, Spidergon, Ring, Octagon) while in state-of-the-art most 

routers are customized for specific topologies as in [37]. 

With respect to [43], [44] the same latency is achieved by our design. The works 

in [43], [44] can support 2D mesh topology and adopts VNs. Our work allows for a 

much higher throughput, up to 128 Gbps per link instead of 16 Gbps per link 

in [43], [44]. The absolute value of our router crossing latency, 1 ns with the high-

speed CMOS library version is even better than the latency performance of 

asynchronous routers in [45], [46]. Circuit complexity results, in the order of tens of 

kgates for the generated router cells, are aligned with the best designs in the state-

of-the-art [38], [48]. Particularly, Table 4 compares our router to recent works 

supporting VNs, and both 2D mesh and Spidergon topologies. Results 

from [38] refer to 65 nm CMOS technology, with 21 VNs per port and 128-bit flit 

size, as the configuration of our router in the last row of Table 3. Results 

from [48] refer to 45 nm CMOS technology, with 21 VNs per port and 64-bit flit 

size. With respect to [48], [49] our design exhibits a similar complexity, but allows 

for a lower latency and for an increased speed. With respect to [38] our design has 

the same working frequency, but much lower power dissipation and circuit 

complexity and better latency performance. Reference [49] has been realized in 

90 nm CMOS. The authors of [49] have also proposed a fault-tolerant router 

architecture in [50] where the increased capability of fault tolerance is paid in terms 

of decrease of the maximum clock frequency, limited at 200 MHz, and increase of 

the circuit complexity, which is 48.4 kgates. In [51] an heterogeneous architecture 

is proposed, sized in 45 nm CMOS technology for different VN values per port 

(from 1 to 41 VNs), with 32-bit flit size and targeting a 500 MHz clock frequency. 

The trade-off between circuit complexity and working frequency of our solution 



outperforms also other routers proposed in literature such as [52], [53] having a 

complexity above 100 kgates and a frequency below 1 GHz. 
Table 4. Comparison of state-of-the-art 5-port routers for 2D mesh/Spidergon with VNs. 

Router/technology VNs Bits/flit Clock 
frequency 

Complexity 
kgates 

Power, 
mW 

Latency, clock cycles 

Our 65 nm 2 128 1 GHz 61.1 46.2 1 

 1  400 MHz 32.8 10 1 

[48] 45 nm 2 64 500 MHz 50 12.8 2 to 4 with/ without 
prediction 

[38] 65 nm 2 128 1 GHz 163.5 108.8 15 to 25 for an 8 flit burst 

[49] 90 nm 1 36 245 MHz 33 N/A N/A 

[51] 45 nm 1 to 4 32 500 MHz 78 N/A > 2 

7. Conclusions 

This paper presented a novel configurable architecture of a NoC router and its 

implementation using a methodology that generates correct-by-construction 

technology independent RTL code databases. The router architecture can support 

several NoC topologies, typically used in MPSoC design, such as Ring, Octagon, 

Spidergon, 2D mesh plus a family of customized topologies that can be derived from 

them. The RTL coding itself is abstracted and modelled with an Object Oriented 

framework, integrated within a tool for IP packaging. Compared with traditional 

coding styles based on pre-processor directives, the proposed methodology produces 

smaller code database (more than 60% reduction) and a considerable reduction of 

the verification space by decoupling the verification of the codelets and of the 

backbone. The generated router macrocells have been synthetized in CMOS 

technology demonstrating good performance vs. state-of-the-art router designs. 

Similar techniques, not discussed in this paper, have been applied to the design of 

the network interface and to abstract NoC features such as network and transport 

packet format, routing tables and network access policy. By abstracting these 

aspects, it was possible to write the HDL code of the NoC platform components 

focusing on performance optimization without sacrificing code readability, hence 

maintenance. This approach also ensured consistency among all the instances of the 

network components. 
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