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Abstract 

Genetic algorithms (GAs) usually suffer from the so-called genetic-drift effect that reduces the 

genetic variability within the evolving population making the algorithm converge toward a local 

minimum of the objective function. We propose an innovative method to attenuate such genetic-drift 

effect that we name Drift-Avoidance Genetic Algorithm (DAGA). The implemented method 

combines some principles of Niched Genetic Algorithms (NGAs), catastrophic GAs, crowding GAs, 

and Monte Carlo algorithm (MCA) with the aim to maintain an optimal genetic diversity within the 

evolving population, thus avoiding premature convergence. The DAGA performances are first tested 

on different analytic objective functions often used to test optimization algorithms. In this case, the 

implemented DAGA approach is compared with standard GAs, catastrophic GAs, crowding GAs, 

NGAs, and MCA. Then, the DAGA and the NGAs approaches are compared on two well-known 

non-linear geophysical optimization problems characterized by objective functions with complex 

topologies: residual statics corrections and 2D acoustic full-waveform inversion (FWI). To draw 

general conclusions, we limit the attention to synthetic seismic optimizations. Our tests prove that the 

DAGA approach grants the convergence in case of objective functions with very complex topologies, 

where other GA implementations (such as standard GAs or NGAs) fail to converge. Differently, in 

case of simpler topologies, DAGA achieves similar performances with the other GA implementations 

considered. The DAGA approach may have a slightly higher or lower computational cost than 



standard GA or NGA methods, depending on its convergence speed, that is on its ability to reduce 

the number of forward modelings with respect to the other methods.  

 

Introduction 

Geophysical optimization problems are often non-linear, multidimensional, and characterized by 

objective functions with complex topologies (i.e., multiple local minima). There are essentially two 

strategies to tackle these problems: apply linearized methods that involve the computation of the 

gradient of the objective function (e.g., the Gauss–Newton, conjugate-gradient; Aster et al. 2005), or 

apply global optimization algorithms (e.g., Genetic Algorithms, Simulated Annealing, Particle 

Swarm; see e.g. Sajeva et al. 2017a) that perform a direct search in the model space. On the one hand, 

local methods are attractive because they usually converge rapidly, but they need a good starting 

model to find the global minimum. On the other hand, global methods are theoretically able to 

exhaustively explore the entire model space and are not affected by the choice of the starting model. 

However, the latter are usually affected by the curse of dimensionality problem and for this reason 

they require many model evaluations to converge. Obviously, this issue has often prevented the 

application of global methods to optimization problems with many unknown model parameters and/or 

requiring expensive forward-modeling evaluations.  

Over the last decades, the increasing computational power provided by modern computers has 

encouraged the applications of global optimization methods for solving geophysical problems (many 

examples can be found in Sen and Stoffa, 2013), and undoubtedly Genetic Algorithms (GAs) are one 

of the most widely applied global optimization strategies in exploration geophysics (Sen and Stoffa, 

1992; Sen and Stoffa, 1996; Mallick 1999; Mallick and Dutta 2002; Padhi and Mallick 2014; Sajeva 

et al. 2014; Aleardi 2015; Li and Mallick 2015; Aleardi, et al. 2016; Sajeva et al. 2016; Aleardi and 

Ciabarri 2017; Aleardi and Mazzotti 2017; Sajeva, et al. 2017b). The basic idea of GAs is to define a 

population of individuals encoding candidate solutions for the problem at hand and to make evolve 

such population by applying some principles present in nature: inheritance, crossover, mutation, 



survival of the fittest, migrations, and so on. The evolution process is driven by the fitness-function 

value that expresses the goodness of each candidate solution. Notwithstanding its wide applicability, 

it is well-known that the GA method suffers from the genetic-drift effect (Goldberg and Segrest 

1987), which limits the exploration of the model space and may guide the algorithm to prematurely 

converge toward a local minimum of the objective function.  

The first proposed global optimization method was the uniform Monte Carlo (MC) algorithm that 

performs an undirected and totally random search across the entire model space. Although it is 

inefficient and inaccurate in case of problems involving a large number of unknowns, this 

optimization method does not suffer from the premature convergence issue. Conversely, the 

convergence of the GAs to the global minimum is guaranteed by the Holland theorem (Holland, 1975) 

only in case of a population containing an infinite number of individuals; for finite populations, the 

convergence of GAs is not guaranteed. This characteristic is often called “genetic-drift”. A more 

heuristic description of this phenomenon can be given in terms of population behavior: after some 

generations, the individuals of a population tend to converge toward a convex neighborhood of a 

minimum of the objective function (not necessarily the global minimum), and thus the exploration of 

other promising portions of the model space is prevented. In the worst case, the population cannot 

escape from such convex neighborhood, and a non-optimal solution is provided. In the past, many 

strategies have been proposed to reduce the genetic-drift effect. For example, a possible approach is 

the so-called niched genetic algorithm (NGA), in which the initial random population is divided into 

multiple subpopulations that are subjected to separate selection and evolution processes (Rey Horn, 

1993). To maximize the exploration of the model space and to reduce the genetic drift, Aleardi and 

Mazzotti (2017) included into the standard NGA other evolutionary mechanisms, such as competition 

between subpopulations, and stretching of the fitness function. With the aim to recover the population 

diversity in case of premature convergence, Eldos (2008) included a catastrophic operator within the 

evolution of a standard GA. This operator randomly destroys a certain number of candidate solutions 

that are replaced by newly generated ones. Another proposed method is the so-called crowding GA 



(Mengshoel and Goldberg, 2008; Mengshoel et al. 2014), in which the population diversity is 

preserved by pairing each offspring with a similar individual in the current population (pairing phase) 

and deciding which of the two will survive (replacement phase). Moreover, the genetic drift is not the 

only downside of GAs. Indeed, as pointed out in Sajeva et al. (2017a) GAs encounter problems in 

converging to the optimal solution in case of irregularly distributed minima in the objective function. 

To overcome or mitigate all these issues, we propose an innovative GA implementation that we name 

Drift-Avoidance Genetic Algorithm (DAGA), in which some of the previously mentioned 

optimization strategies are modified and combined (MCA, NGA, crowding GAs, catastrophic GAs). 

The paper can be divided into two main sections. In the first, the performances of the DAGA 

approach are illustrated on analytic, multi-minima objective functions that are usually applied to test 

optimization algorithms. These functions mimic a wide range of possible objective functions that 

characterize geophysical optimization problems: for example, we consider multi-minima functions 

with regularly distributed local minima (the Rastrigin, and Ackley functions) and several multi-

minima functions with irregularly distributed minima (the Schwefel, Eggholder, and Langermann 

functions). First, we demonstrate that the combination of the different principles coming from NGA, 

crowding GA, and catastrophic GA provide a new algorithm with superior convergence capabilities: 

the DAGA approach. Afterwards, we demonstrate that the performances of the DAGA approach far 

surpass the performances of the other GA implementations also in case of multidimensional model 

spaces.  

In the second section, we apply the DAGA method to two geophysical optimization problems 

characterized by objective functions with very complex topologies: the residual statics corrections 

and the 2D acoustic full-waveform inversion (FWI). This part is aimed at demonstrating the superior 

convergence capabilities of the DAGA approach over a more standard NGA in case of highly non-

linear geophysical optimization problems, and also its applicability in case of computer intensive 

forward-modeling evaluations.     



Since the pioneering works by Rothman (1985, 1986), global optimization methods have been 

extensively applied to tackle the non-linearity of residual statics corrections (e.g., Wilson, and 

Vasudevan, 1991; Aleardi et al. 2016b; Eladj, 2016).  In particular, in the context of Common-Mid-

Point (CMP) consistent residual statics corrections, Sajeva et al. (2017a) demonstrated that the GA 

performances get worse as the number of unknown model parameters (that is the number of seismic 

traces within the CMP) increases. 

FWI is another highly non-linear geophysical optimization problem characterized by ill-

conditioning and multiple minima in the objective function (mainly related to the cycle-skipping 

phenomenon; Virieux and Operto, 2009). For this reason, an optimal starting model is crucial to attain 

convergence and to avoid entrapment in local minima when applying a gradient-based inversion. 

Over the last years, many strategies have been proposed to make the local FWI less influenced by the 

initial guess of the subsurface model (i.e., van Leeuwen et al. 2014; Choi and Alkhalifah 2015; 

Métivier et al. 2016; Warner and Guasch 2016).  For what concerns the global approach to FWI, 

many authors (e.g. Datta and Sen 2016; Mazzotti et al. 2016; Sajeva et al. 2016; Galuzzi et al. 2017a; 

Sajeva et al. 2017b) have demonstrated the applicability of a hybrid optimization strategy in which a 

first run of global optimization is used to determine a suitable starting model that is subsequently used 

as input for the local, gradient-based inversion. However, even in these successful applications, 

particular care must be adopted to avoid premature convergence (e.g., adopting envelope-based 

objective functions or parsimonious reparameterizations of the subsurface).  

In the following, we limit the attention to synthetic seismic tests in which the true model is 

perfectly known. This strategy will allow us to focus the discussion on the evaluation of the different 

algorithms and to draw essential conclusions. It has been demonstrated (e.g., Sajeva et al. 2017a) that 

GAs achieve good convergence rates even for strongly ill-conditioned optimization problems (i.e., 

problems characterized by objective function with small gradient values around the global minimum). 

The gradient of the objective function can also be related with the signal-to-noise ratio (SNR) of the 

observed data, because the gradient of the objective function decreases as the SNR decreases. In these 



contexts, as confirmed by additional tests not shown here, DAGA performances are similar to those 

of other GA implementations. For this reason, in the following seismic experiments random noise is 

not added to the observed data. In addition, as in the first part on analytic objective functions, also 

these seismic examples are performed with different model-space dimensions and with objective 

functions with different topologies. As a final remark, we point out that the performances of any GA 

implementation may critically depend on the choice of the control parameters. For this reason, it is 

usually difficult to give hard and fast rules that may work with a wide range of applications, although 

some guidelines and rules of thumb can be dictated by experience (Aleardi and Mazzotti, 2017; 

Sajeva et al. 2017a); for example, the number of individuals in a population should increase with the 

dimension of the model space and with the complexity of the objective function. We refer the reader 

to De Jong (2007) for more information about the setting of GA parameters. The control parameters 

used in all the following examples have been determined from a trial-and-error procedure aimed at 

balancing the probability and rapidity of convergence with the goodness of the final solution. Some 

guidelines are given to illustrate how the most important DAGA parameters can be chosen. 

 

A brief overview of genetic algorithms and niched genetic algorithms 

Genetic Algorithms (Holland, 1975) are a class of global optimization methods that have been 

proven very effective in solving geophysical optimization problems. In GAs terminology, an 

individual (or chromosome) is a solution in the model space, whereas a population represents a set of 

individuals (i.e., an ensemble of possible solutions). Without going into mathematical details, we give 

in Figure 1 an outline of how the algorithm works. A very simple GA flow starts with the generation 

of a random population of individuals over which the fitness function (namely the goodness of each 

solution) is evaluated. The fitness value stochastically contributes to the selection of the best 

individuals for the reproduction step in which a set of new solutions (offspring) is generated by 

combinations of parent individuals. The offspring are mutated, their fitness is evaluated, then a new 

generation is created by replacing some of the parent individuals with the generated offspring. The 



algorithm iterates until convergence conditions are satisfied (for example a maximum number of 

generations).  

A more sophisticated version of GAs is the niched GA (NGA) that is inspired by the punctuated-

equilibria evolutionary theory. In this case, the initial random population is divided into multiple 

subpopulations that undergo separated selection and evolution processes and only for given 

generations they can exchange some individuals (migration). It has been proved that this peculiar GA 

implementation is effective in attenuating the genetic drift effect (Horn, 1993).  

Many different GA and NGA implementations exist. All the GA implementations adopted in this 

work are based on the real-coded breeder GA implementation described in Janikow and Michalewicz 

(1991) and Schlierkamp-Voosen and Muhlenbein (1993).  More in detail, we use the roulette wheel 

as the selection method, the extended intermediate recombination as the crossover operator, and a 

real value mutation strategy. Additional information about the considered GA and NGA 

implementations can be also found in Sajeva et al (2017a) and in Aleardi and Mazzotti (2017). We 

refer the interested reader to Goldberg (1989), Mitchell (1998), and Sivanandam and Deepa (2008) 

for detailed theoretical information about genetic algorithms. 

 

The DAGA method 

With the aim to increase the exploration capabilities of GAs and avoid the genetic drift effect, we 

first hybridize a modified version of the catastrophic GA with NGAs and MCA. A catastrophe is a 

random phenomenon centered on a hit subpopulation that destroys a certain number of individuals, 

which have been stochastically selected. Depending on the radius of the catastrophe, neighbor 

subpopulations can be hit too. The next step aims to restore the number of individuals for each 

subpopulation to the original one before the catastrophic event (Figure 2). More in detail, the 

destroyed individuals are progressively replaced over the following generations by new ones 

migrating from other subpopulations, and by new individuals randomly generated with uniform 

probability over the entire model space (Figure 3). The probability of a single individual to migrate 



is proportional to its fitness value: in other words, better individuals have higher probability to be 

assimilated in a subpopulation after a catastrophic event.  

Let idx be the integer indexes that identify the subpopulations. The subpopulation center (idxc) of 

the catastrophic event is stochastically selected based on the mean fitness values of the entire 

ensemble of subpopulations and using the roulette-wheel selection method (Sivanandam and Deepa, 

2008): subpopulations with lower average fitness have higher probability to be hit by a catastrophic 

event. The radius of the catastrophe (i.e., the number of subpopulations hit by the catastrophe and 

centered around idxc) is randomly determined from a Gaussian distribution with user-defined mean 

and variance values. The intensity (Int) of the catastrophic event (i.e., the number of individuals that 

will be removed from the subpopulation) for the subpopulation idxc is randomly determined based on 

a Gaussian distribution with adaptive mean (Nd) and variance (σ) values:  

𝐼𝑛𝑡(𝑖𝑑𝑥𝑐) = 𝑁(𝑁𝑑, 𝜎),          (1) 

where N identifies the Gaussian distribution, whereas Nd and 𝜎 are equal to: 

𝑁𝑑 = 𝑁_𝑝𝑜𝑝0 × 𝑒
(−𝑎

𝑔𝑒𝑛
𝑔𝑒𝑛_𝑚𝑎𝑥

)
         (2), 

𝜎 = (𝑁_𝑝𝑜𝑝0 − 𝑁𝑑) × 𝑖𝑛𝑡𝑙𝑒𝑣𝑒𝑙     (3),   

respectively, where 𝑁_𝑝𝑜𝑝0 is the original number of chromosomes in the considered subpopulation, 

0 < 𝑎 < 1 is a user-defined parameter controlling the influence of the generation number on the Nd 

value, 𝑔𝑒𝑛 is the current generation, 𝑔𝑒𝑛_𝑚𝑎𝑥 is the maximum number of generations, 𝑖𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 is 

a user defined parameter controlling the intensity of the catastrophic event. Equations 2 and 3 make 

clear that the number of individuals destroyed by a catastrophic event decreases as the number of 

generations increases (i.e., as the final solution is approached). After determining Int(idxc), the 

intensity of the catastrophe in all the involved subpopulations is determined as: 

𝐼𝑛𝑡(𝑖𝑑𝑥𝑠) =
𝐼𝑛𝑡(𝑖𝑑𝑥𝑐)

|𝑖𝑑𝑥𝑐 − 𝑖𝑑𝑥𝑠| + 1
 ,       (4) 



where idxs represents the indexes of the subpopulations hit by the catastrophe. Note that in case of a 

catastrophic event, the best chromosomes in each subpopulation are always preserved to ensure that 

the optimization does not waste time re-discovering previously promising solutions (elitist strategy).  

In case of genetic drift, the genetic diversity is lost, or in other words, the entire population contains 

several near-copies of the same individual. In this case, a considerable amount of time may be wasted 

in performing forward modelling for very similar models. To tackle this issue, we include in our 

algorithm a modified version of the crowding strategy in which random replacements are 

systematically performed in each generation (Figure 4). We measure the L2-norm distance for each 

pair of individuals in each subpopulation. Then, let t be a user-defined parameter; the algorithm 

identifies t couples of similar individuals for each subpopulation and select which individual must be 

preserved. Obviously, the probability for an individual to be preserved is proportional to its fitness 

values. More in detail, the roulette-wheel selection method is used to identify the individuals to be 

preserved. The non-selected individual is replaced with a randomly generated solution with uniform 

probability over the entire model space. Note that to reduce the computational cost of the algorithm, 

we apply the modified crowding function only if the mean distance between the chromosomes of the 

considered subpopulation is smaller than a previously selected threshold value. Similarly to the 

catastrophic event, we again preserve the best individuals. This peculiar implementation maintains 

the genetic diversity within each subpopulation and maximizes the exploration of the model space.  

The previous considerations make it clear that the DAGA approach (schematized in Figure 5) is 

mainly aimed at increasing the exploration capability of a standard NGA and at efficiently exploring 

the most promising portions of the model space. Obviously, in applying the DAGA method a good 

compromise must be found between exploration and exploitation of the algorithm. In practical 

applications, this translates in finding (usually by a trial and error procedure) an optimal set of user-

defined parameters for the problem at hand. Indeed, a too strong exploration will heavily increase the 

computational time and slow down the convergence, while a too strong exploitation will possibly 

result in premature convergence toward sub-optimal solutions.  



The DAGA implementation also requires additional user-defined parameters to be set with respect 

to the standard GA. Among these parameters, we found that the catastrophe probability and the 

number of replacements play the major roles in controlling the convergence of the algorithms. On the 

one hand, the values for these parameters should increase as the complexity of the objective function 

increases. On the other hand, these values must be kept as small as possible not to increase drastically 

the computational cost of the DAGA optimization. However, we found that a catastrophe probability 

equal to 0.2-0.3, and a number of replacements between 1 and 10 are suitable for most applications. 

We have also found that the other parameters Nd, 𝜎, int_level, a (see equations 1, 2, and 3) exert a 

much weaker influences on the DAGA performances and for this reason their values are keep fixed 

in all the following experiments at 2, 0.6, 0.6, and 0.9, respectively. 

As a final remark, note that the inclusion of Monte Carlo principles (i.e., inclusion of new 

randomly generated solutions) into the genetic algorithm optimization scheme, could result in an 

increased computational effort related to the increased number of forward model evaluations. 

However, in the following we will also demonstrate that the DAGA often has a faster converge rate 

than, for example, the standard NGA. In other words, the DAGA approach often requires a lower 

number of generations (i.e. forward-model evaluations) to converge than other GA implementations.  

 

A heuristic example of genetic drift 

We now discuss a simple optimization test that offers a heuristic but clear example of genetic drift. 

For this test, we run the standard GA method on the Schwefel analytic function (Appendix A) 

considering a 2D model space. We adopt a single population formed by 10 individuals with a selection 

rate of 0.8 (that is the 80% of individuals of the current population are selected for reproduction), 

running for 100 iterations. In Figure 6a, we represent the 2D Schwefel function with superimposed 

the initial uniformly at random generated population, and the best GA model provided at the end of 

the optimization process. In Figure 6b, we represent the L2-norm distance between the current best 

model and the global minimum as the number of generations increases, whereas Figure 6c shows the 



evolution of the average L2-norm distance between the individuals in the current population. Figure 

6 clearly points out that the best model moves away from the global minimum and eventually 

converges toward a local minimum. In particular, the GA population remains on the same local 

minimum between generations 15-40, and it converges toward the final solution after 41 iterations. 

The significant decrease of the average distance between the chromosomes is a clear indication of 

genetic drift and premature convergence. This example proves that the genetic drift could constitute 

a major issue even in case of optimization problems with a limited number of unknowns. This 

characteristic is even more serious in case of field-data optimizations in which the position of the 

global minimum is not known a-priori. In these cases, it would be advisable performing different 

inversion runs from which the model resulting in the minimum objective function value is selected 

as the final result. Obviously, this strategy is not feasible in case of optimization problems with 

expensive forward modelling. In these cases, a GA implementation able to prevent the genetic drift 

effect is crucial to increase our confidence in the final estimated model and to maintain the 

computational cost affordable.  

 

Test on analytic functions 

In this section, we evaluate the convergence capabilities of the implemented DAGA approach 

using analytic test functions often employed to test optimization methods. The performances of the 

proposed approach are also compared with other GA implementations and with the MCA approach. 

For expositional convenience, the analytic functions we consider are described in Appendix A. In the 

following, we adopt the same convergence criterion for all the algorithms and for all the tests. In 

particular, an algorithm converges when it finds an individual (𝒙) that satisfies the following accuracy 

criterion: 

√
∑ (𝑥𝑖 − 𝑥𝑖

𝑔𝑙𝑜𝑏
)2𝑛

𝑖=1

𝑛
< 𝜖,    (5) 



where n represent the model-space dimension, xglob is the global minimum, and the accuracy 𝜖 is set 

to 0.01 in all the tests. The optimization is stopped when the solution satisfies the selected accuracy 

criterion or when the maximum number of generations is reached (e.g., 200 generations for the 2D 

Schwefel function). To obtain statistically significant results, we perform 100 tests for each method 

and for each objective function, and for each generation we progressively count the number of tests 

that have attained convergence thus far. The results are represented as incremental curves showing 

the cumulative percentage of successful tests for each generation.   

We first compare the performances of GA, NGA, crowding GA, catastrophic GA, and DAGA with 

the aim to demonstrate the superior convergence capabilities of the proposed method. In this case, we 

employ the Rastrigin, Schwefel, and Eggholder functions: The Rastrigin function has a large number 

of regularly distributed local minima; the Schwefel function is characterized by irregularly distributed 

minima and by a global minimum located at the border of the search space; the Eggholder function 

can be described as a combination of the Rastrigin and Schwefel functions. Note that Sajeva et al. 

(2017a) discussed the difficulties encountered by a standard GA in finding the global minimum when 

it is located at the lateral edge of the search space and distant from the other local minima. The same 

work also demonstrated the superior performance of GAs compared with other popular global 

optimizations algorithms in case of regularly distributed minima in the objective function. For this 

reason, the aim of the following tests is two-fold: Demonstrating the superior performances of the 

DAGA approach in case of irregularly distributed minima; showing that in case of regularly 

distributed minima the DAGA performances are comparable with those of other GA implementations.  

The main control parameters used in the 2D tests are given in Table 1. Note that the same parameter 

value is used by all the GA implementations that consider such parameter. For example, a number of 

chromosomes equal to 6 is used by all the considered GA implementations for optimizing the 2D 

Rastrigin function or a catastrophe probability value of 0.2 is used by catastrophic GA and DAGA 

for the 2D Eggholder function.   



In the first test, we use the 2D Rastrigin function. In this case, we observe that all the considered 

GA implementations yield comparable performances (Figure 7a). However, even in this example we 

can observe that only the crowding GA and the DAGA find the global minimum in all the tests, 

whereas the other GA implementations (NGA, GA, and catastrophic GA) show a lower number of 

successes (around 95-97%). Despite these minor differences, we can claim that this example confirms 

the efficiency of all the considered GA implementations in finding the global minimum in case of 

regularly distributed minima. Figure 7b represents the average number of models evaluated by each 

algorithm until the end of the optimization process. We note that GA, NGA, DAGA, and crowding 

GA, generate a similar number of models, whereas the catastrophic GA requires a smaller number of 

models to find the global minimum: in other terms, catastrophic GAs achieve a faster convergence.    

We now discuss the results obtained for the more challenging 2D Schwefel function (Figure 8). In 

this case, the standard GA converges only in 32 out of 100 tests, whereas NGA, catastrophic GA, and 

crowding GA outperform the standard GA, but none converges in all the 100 tests. Differently, the 

proposed DAGA approach achieves a 100% success rate. The average number of evaluated models 

(Figure 8b) shows that among all the considered GA implementations, the DAGA and the crowding 

GA require the lowest number of models to satisfy the convergence criterion. In other words, these 

two implementations achieve a faster convergence than the other GA approaches in case of objective 

functions with irregularly distributed minima.  

Figure 9 refers to the Eggholder function. The results clearly prove that the performances of the 

DAGA method far surpass those of the other GA approaches, and that the proposed implementation 

is the only method with a 100% success rate. Similarly to the previous test on the Schwefel function, 

the DAGA requires a small number of models to achieve convergence with respect to the other 

optimization strategies. Also note that NGA, GA, and catastrophic GA are characterized by a faster 

exploitation than DAGA and crowding GA (i.e., note the steeper cumulative curves in the first 100 

generations; Figure 9a) but they eventually get trapped into a local minimum (i.e., their success rates 

do not significantly change after 100 generations; Figure 9a).  



All the previous examples not only prove that the DAGA outperforms all the other considered GA 

implementations, but also demonstrate the superior convergence capabilities of NGA, crowding GA, 

and catastrophic GA over the standard GA approach. For this reason, these more advanced GA 

approaches should be preferred instead of a standard GA in case of optimization problems 

characterized by objective functions with complex topologies.  

The following tests are aimed at demonstrating the convergence capabilities of the DAGA 

approach when the dimension of the model space increases. Indeed, it is well known that the ability 

of a global optimization method to find the global minimum exponentially decreases as the number 

of unknowns increases (curse of dimensionality problem). To this aim, we employ the Rastrgin, 

Ackley, Schwefel, and Langermann functions. In particular, the Langermann function is extremely 

difficult to optimize due to the high number of local minima unevenly distributed over the model 

space. The Ackley function is similar to the Rastrigin, being characterized by regularly distributed 

minima over the entire model space. For the sake of conciseness, we focus the attention on the DAGA, 

NGA, and MCA approaches only. Differently from the previous tests, we now perform 50 inversion 

runs for each dimension and for each method.  We again present the final results as incremental curves 

showing the percentage of successful tests until a given generation. Actually, the MCA approach is 

not characterized by a population evolving for a given number of generations. However, for 

comparability, the MCA results are represented versus the number of generations: in a single MCA 

generation, we evaluate the same number of models sampled by the DAGA for the same generation 

number. The principal control parameters used in the 2D tests are given in Table 2. 

The results for the Rastrigin (Figure 10) and Ackley (Figure 11) functions confirm that both NGA 

and DAGA are able to converge in case of regularly distributed minima. For example, both the DAGA 

and NGA show comparable performances in the Ackley function for the 2D, 3D, 4D, and 10D tests. 

However, we can still note that the DAGA has a success rate of the 100% for all the dimensions, 

whereas the NGA shows a success rate around 98%. As expected the MCA approach achieves success 



rates much lower than NGA and DAGA and equal, for example, to 2%, 0%, and 0% for the 3D, 4D, 

and 10D Rastrigin functions, respectively.   

 For the Langermann function (Figure 12), the DAGA approach achieves success rates of 100%, 

98%, and 96%, in the 2D, 3D, and 4D tests, respectively. Differently, the NGA is characterized by a 

success rate of around 60% for all the dimensions, whereas the MCA successfully converge in 10, 0, 

and 0 tests out of 50 tests in the 2D, 3D, and 4D experiments, respectively.   

Finally, the tests of Schwefel function (Figure 13) still demonstrate the superior convergence 

capabilities of the DAGA approach compared to NGA. For the 3D, 4D, and 10D the DAGA 

converges in 49, 50, and 47 out of 50 tests. Conversely, the NGA finds the global minimum in only 

24, 23, and 19 tests in the 3D, 4D, and 10D cases.  In this example, none of the MCA runs satisfy the 

convergence criterion. Figures 10-13 prove that the implemented method outperforms the NGA 

approach not only for limited model space dimensions but, more importantly, also for multi-

dimensional model spaces and objective functions with very complex topologies. In addition, the 

comparison of DAGA and MCA proves that the generation of new random solutions alone does not 

guarantee the convergence toward the global minimum. Indeed, in the DAGA implementation the 

improvement of the current solution (i.e., the decrease of the objective function value associated to 

the best individual) is usually not simultaneous to the occurrence of a catastrophic event but is mainly 

related to the ability of the DAGA to process the new individuals to find a new and more promising 

minimum.  

 

Residual statics corrections  

In the following seismic examples, we limit the attention to the DAGA and NGA approaches only. 

In what follows, we perform CMP-consistent residual statics corrections on a synthetic seismic 

gather. Sajeva et al. (2017a) showed that this optimization problem is characterized by an objective 

function that shows some similarities to both the Rastrigin and Schwefel functions. For this reason, 



we expect that the GA performances progressively worsen as the dimensions of the model space 

increase.  

We use actual well-log information and a 1D convolutional forward modelling based on the exact 

Zoeppritz equations to generate the reference CMP gather (without residual statics). To simulate 

residual statics in the data, we apply to each trace in the reference CMP random time shifts uniformly 

distributed within the range -15/+15 ms, whereas in the subsequent optimization process we allow 

time shifts within the range -25/+25 ms.  Similarly to the previous tests on the analytic functions, we 

analyses the performance of the two methods as the number of unknown model parameters increases. 

In this case, the unknowns are the time shifts that must be applied trace-by-trace to the CMP to 

maximize the energy of the associated stack trace. We discuss two cases in which the CMP gather is 

constituted by 50, and 80 traces, corresponding to 50, and 80 unknown time shifts (Figure 14, and 

Figure 15, respectively). For comparability, both the NGA and DAGA optimization starts from the 

same random initial population. The DAGA and NGA parameters used in the following tests are 

given in Table 3. 

For the 50-trace example (Figure 14) the DAGA method recovers a final CMP very similar to the 

reference one and, more importantly, not affected by severe cycle-skipping problems. Conversely, 

we observe that the CMP recovered by NGA shows many misalignments in the reflections and cycle-

skipped traces: this results in a stack energy much lower than that of the reference CMP (Figure 16a). 

Finally, in the 80-trace example (Figure 15) the DAGA approach outperforms the NGA method and 

again provides a final stack trace with higher energy (Figure 16c).  

These examples further demonstrate that the NGA approach is prone to converge toward a local 

minimum in case of objective functions with complex topologies (irregularly distributed minima), 

and that the probability to get trapped into a local minimum increases with the dimension of the model 

space. Conversely, the DAGA implementation shows superior performances in all the tests, as it 

provides optimal solutions even for high-dimensional model spaces. The fast forward modelling 

associated with the residual statics corrections makes the computational costs of NGA and DAGA 



very similar. Indeed, in average, in all the previous tests DAGA resulted to be only 1.11 times slower 

than NGA. However, note that if we select as the stopping criterion a threshold value for the energy 

of the stack of the corrected CMP, DAGA will probably result faster than NGA as it is characterized 

by a faster convergence rate. In other words, the DAGA reaches a given stack energy value in a 

smaller number of generations than NGA. As shown in Figures 16b and 16d, where we plot the energy 

of the stack trace estimated after DAGA and NGA versus the number of forward model evaluations, 

we always observe that for a given number of forward modelling the DAGA provides a stack trace 

with higher energy than NGA. For example, in Figure 16b the stack of the DAGA corrected traces 

reaches an energy value around 750 after 20000 sampled models, whereas the NGA requires more 

than 50000 forward evaluations to attain the same energy value.  

As a final remark note that differently from the NGA-CMP, the final DAGA-CMPs are not 

affected by severe cycle-skipping issues and for this reason they could be used as valid starting models 

for any local optimization method for a further refinement of the residual statics estimation.  

 

2D acoustic full-waveform inversion 

In this section, we compare the DAGA and NGA performances on an acoustic global FWI aimed 

at retrieving the long-wavelength structure of the subsurface P-wave (Vp) velocity field. To reduce 

the computational cost, we limit the attention to a small portion of the acoustic Marmousi model 

(Figure 17a). For both NGA and DAGA, we adopt the global FWI approach described in Sajeva et 

al. (2016; 2017b) and Mazzotti et al. (2016), which discretizes the subsurface model with two grids: 

a “coarse” grid for the inversion and a “fine” grid for the modelling. Each node of the inversion grid 

corresponds to an unknown parameter of the global optimization: in our acoustic example the P-wave 

velocity at that node. Obviously, the number of cells in the coarse grid determines the number of 

unknowns in the global inversion. For this reason, the grid must be appropriately chosen to make the 

global optimization feasible. A simple bilinear interpolation is used to convert the coarse grid to the 

fine grid. In the following, the synthetic seismic data are generated by employing a finite-difference 



acoustic code (Galuzzi et al. 2017b) with an accuracy of the fourth order in space and of the second 

order in time.  

For the sake of consistency with the previous examples, we perform two different tests 

characterized by different topologies of the objective function, that in both cases is defined by the L2- 

norm difference between observed and predicted seismic data.  In the first test, we employ a 7-Hz 

Ricker wavelet as the source signature (that is assumed perfectly known during the inversion) and a 

regular inversion grid with 55 nodes (11 along the horizontal directions and 5 along the vertical 

direction; Figure 17b). In the second test, we employ the same inversion grid, but we increase the 

dominant frequency of the source signature up to 15 Hz. Notwithstanding the same acquisition 

geometry (17 sources and 50 receivers equally spaced along the model and towed at 25 m below the 

sea level), the same number of nodes in the inversion grid, and the same 1D search ranges (Figure 

17c), the different frequency ranges make these two optimization examples crucially different. 

Indeed, the presence of very low frequencies in the observed seismic data makes the first example 

less prone to cycle-skipping and for this reason we expect good convergence capabilities for both the 

DAGA and NGA methods. Differently, in the second test the higher dominant frequency of the source 

signature and the lack of low frequencies increase the probability for the optimization to get trapped 

into a local minimum. Then, in this case we expect that the superior exploration capabilities of the 

DAGA implementation make this method better suited than NGA to tackle this optimization problem. 

To obtain comparable results, both the NGA and DAGA start from the same initial random 

population. Table 4 shows the most important user-defined parameters employed in the FWI tests. 

Figure 18 shows a comparison for the 7-Hz test between an observed shot gather and the same 

shot gather predicted by NGA and DAGA. Note that both algorithms achieve fair matches between 

the observed and the predicted data. As expected by the smooth and long-wavelength structure of the 

predicted Vp model, the amplitudes and the kinematics of the diving wavefield are better recovered 

than those of the reflected events.   



Figures 19a-b represent the NGA and DAGA best models for the 7-Hz test. Both approaches 

achieve similar predictions that fairly represent the long-wavelength structure of the true model. As 

expected, the quality of the predictions decreases at the lateral edges of the model where the seismic 

illumination is poor.  Figures 19c-d demonstrate that both algorithms yield comparable final data-

misfit and model-misfit values, where the model misfit is computed as the average L2 norm distance 

between the current best model and the true model. Note that the higher exploration capabilities of 

the DAGA approach produce a more scattered trend for the model misfit evolution. The non-perfect 

correlation between data- and model-misfit values is mainly related to the high non-linearity of the 

FWI problem.   

For a more quantitative assessment of the final predicted Vp macro-models, we use the DAGA and 

NGA outcomes to compute the amount of cycle-skipping affecting each seismic trace in the predicted 

shot gathers. To this end, we employ the method proposed by Shah et al. (2012) that limits the 

attention to the first breaks because these transmitted events are crucial to reconstruct the large and 

intermediate wavelengths of the subsurface model (Mora, 1989). More in detail, this method analyses 

the first arrivals of the data and computes at a given frequency and for each source-receiver pair the 

phase differences between the observed data and the data generated on the predicted subsurface 

model. In this residual-phase domain, cycle skipping is evidenced by a sudden 2π jump.  

For the 7-Hz test the phase-residual panels are shown in Figures 19e-f. We observe similar results 

for the NGA and DAGA methods with no cycle-skipping issues. This confirms the suitability of both 

approaches to find a Vp macro-model of the subsurface in case of seismic data rich in low frequencies. 

The data comparison (Figure 20) for the 15-Hz experiments shows that the subsurface model 

estimated by the DAGA method achieves a closer match with the observed data, especially at far 

source-receiver offsets. Figures 21a-b illustrate the final NGA and DAGA models predicted for the 

15-Hz case. In this example we note that the DAGA yields a final model with a closer match with the 

long-wavelength structure of the true model, whereas the NGA provides a final prediction with 

several artefacts (i.e., circular low- and high-velocity anomalies).  Figures 21c-d demonstrate that the 



DAGA final prediction is characterized by lower data-misfit and model-misfit values than the NGA 

outcome. Notably, we observe that in the last NGA 50 iterations, although the data misfit slightly 

decreases, the associated model misfit significantly increases. This clearly indicates that the NGA is 

exploiting a local minimum of the objective function. 

The phase-residual panels (Figures 21e-f) give a further and more quantitative demonstration that 

the DAGA implementation provides a final Vp field less affected by cycle-skipping issues than the 

model predicted by NGA. These residual cycle skipping issues could be mitigated by exploiting the 

stronger exploration capability of the DAGA implementation. In other terms, additional generations 

could be performed with the aim to sample a final predicted DAGA model closer to the optimal one. 

However, it likely may be more efficient to further refine the predictions by applying a local, gradient-

based FWI method. 

For these tests we employ a parallel, hybrid, Matlab-C-Bash code running on ten compute nodes 

equipped with two deca-core intel E5-2630 @2.2 GHz (128 Gb RAM). This results in a total 

computational cost for the DAGA method of 3.1 and 6.7 hours for the 7-Hz and 15-Hz tests, 

respectively, and of 2.1 and 4.5 hours for the NGA in the 7-Hz and 15-Hz experiments, respectively.  

Note that in these tests the stopping criterion for both algorithms is the maximum number of 

generations (400 and 300 for the 7-Hz and 15-Hz experiments, respectively). If we had assumed as 

the stopping criterion the achievement of the same data misfit for both DAGA and NGA, then the 

computational costs for the two experiments would had been greater for DAGA in the 7-Hz test, and 

lower for DAGA in the 15-Hz case. In fact, in the 7-Hz experiment, both methods reach the same 

data misfit in about the same number of generations (see Figure 19c), and DAGA is burdened by the 

extra costs of the additional operations (crowding, catastrophic operator, and so on). Instead, similarly 

to the residual statics example, the significantly faster convergence rate of DAGA for the 15-Hz 

experiment (see Figure 21c) renders it possible for DAGA to be run for a lower number of 

generations, thus counter-balancing its extra-cost.   

 



Conclusions 

We presented an innovative strategy to attenuate the genetic drift and to increase the exploration 

of the model space in a genetic algorithm (GA) optimization. The proposed Drift Avoidance Genetic 

Algorithm (DAGA) hybridizes different GA implementations (i.e., niched and modified versions of 

catastrophic and crowding GAs) and a standard Monte Carlo algorithm (MCA). The tests on analytic 

objective functions, demonstrated the superior convergence capabilities of the DAGA approach 

against other popular GA implementations (standard GA, niched GA, catastrophic GA, and crowding 

GA) in case of objective functions with very complex topology (i.e., many irregularly distributed 

local minima). Differently, in cases of simpler topologies (i.e., regularly distributed minima) the 

DAGA algorithm and the other GA approaches achieved very similar performances. These tests also 

demonstrated the capability of the DAGA approach of finding the global minimum in multi-

dimensional model spaces. The seismic synthetic tests on residual statics corrections and 2D acoustic 

full-waveform inversion confirmed that, differently from the niched GA implementation, the DAGA 

approach efficiently attenuates the genetic drift effect and accurately converge toward optimal 

solutions also in optimization problems with a significant number of unknown model parameters and 

complex objective function topologies.  

Due to the increased number of forward-model evaluations requested by the modified crowding 

and catastrophic operators, the implemented DAGA expends additional computational resources 

compared to the other considered GA approaches. However, the DAGA often converges faster than 

the other GA methods, thus requiring a fewer number of generations (and then a fewer number of 

forward modellings).  

The DAGA approach requires the appropriate setting of additional control parameters with respect 

to the standard GA. However, in our tests we found that only the catastrophe probability and the 

number of replacements markedly influence the DAGA performances. As a rule of thumb, we suggest 

that a catastrophe probability around 0.2-0.3 and a number of replacements between 1 and 10, should 



work in most applications. In general, the values of these parameters should increase with the 

expected complexity of the objective function. 

A possible improvement of the actual DAGA implementation is to substitute the random 

replacements of individuals (e.g., after the catastrophic events) with more sophisticated strategies that 

exploit the already evaluated models and/or some form of a-priori information to direct the 

exploration toward the most promising portions of the model space. This strategy may speed up the 

optimization process and may further attenuate the curse of dimensionality issue.  
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Appendix A 

Here we describe the analytical test functions used in the first part of the work. 

 

Schwefel function 

The Schwefel function can be computed as: 

𝑓(𝐱) = −𝑥𝑖 ∑[𝑥𝑖 ∗ sin (√|𝑥𝑖|)].      (6)

𝑛

𝑖=1

 

Similarly to the Rastrigin function, the Schwefel function (Figure A1a) has a large number of local 

minima equal to 7n. However, differently from the Rastrigin function, in which the local minima 

surround the central global minimum, in the Schwefel function, the local minima are more irregularly 

distributed, and important local minima are distant from the non-centred global minimum, which lies 

at [420.9687, …, 420.9687], or are even located at the opposite edge of the model space. The model 

space we consider is [-500, 500]n. 

 

Rastrigin function 

the Rastrigin function can be derived as: 

𝑓(𝐱) = 𝐴 𝑛 + ∑[𝑥𝑖
2 − 𝐴 cos(2𝜋𝑥𝑖)],      (7)

𝑛

𝑖=1

 

where 𝐴 = 10 and n is the dimension of the model space. Figure A1b shows the Rastrigin function 

in two dimensions. This function is a typical example of a non-convex function, with a global 

minimum located in [0, …, 0]n and a high number of regularly distributed local minima, which 

increases exponentially with the dimension of the model space. The model space we consider is [-5, 

5]n in which there are 11n local minima. The high number of local minima makes a local method 

inapplicable to optimize this function.  

 

Langermann function 



The Langermann function (Figure A1c) is a multimodal test function defined as follows: 

𝑓(𝐱) = −∑ 𝑐𝑖𝑒
(−

1

𝜋
∑ (𝑥𝑗−𝐴𝑖𝑗)

2𝑛
𝑗=1 ) cos (𝜋 ∑ (𝑥𝑗 − 𝐴𝑖𝑗)

2𝑛
𝑗=1 )𝑚

𝑖=1 ,       (8)       

where A and c are defined as: 

𝐴 =

[
 
 
 
 
 
 
 
 
 
9.681
9.4

8.025
2.196
8.074
7.650

0.667
2.041
9.152
0.415

4.783
3.788
5.114
5.649

9.095
7.931
7.621
6.979

8.777 3.467 1.863
5.658 0.720 2.764

1.256
8.314
0.226
7.305

3.605 8.623 6.905
2.261
8.858
2.228

4.224
1.420
1.242

1.781
0.945
5.928]

 
 
 
 
 
 
 
 
 

,      (9) 

𝑐 =

[
 
 
 
 
 
 
 
 
 
0.806
0.517
1.500
0.908
0.965
0.669
0.524
0.902
0.531
0.876]

 
 
 
 
 
 
 
 
 

,    (10) 

and m represents the number of rows of A and c. This is an extremely difficult function to optimize 

because of the many and unevenly distributed local minima. In this case the position of the global 

minimum changes with the model space dimension: It is located in [8.06550, 9.03821], in [8.0328, 

9.0927, 4.8534] and in [8.0250, 9.1520, 5.1140, 7.6210] for 2D, 3D and 4D model spaces, 

respectively. The model space we consider is [0, 10]n. 

 

Ackley function 

The Ackley function is shown Figure A1d and is defined as: 

𝑓(𝐱) = −𝛼𝑒
(−𝛽√1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 )

− 𝑒(
1
𝑛

∑ cos(𝛾𝑥𝑖)
𝑛
𝑖=1 ) + 𝛼 + 𝑒,     (11) 

where α=20, β=0.2 and γ=2π. It is another multidimensional function with regularly distributed 

minima characterized by a nearly flat outer region and a large hole at the centre. The function poses 

a risk for optimization algorithms, particularly hill-climbing algorithms, to be trapped in one of its 



many local minima.  The global minimum is located in [0, …, 0] and the model space we consider is 

[-32.768, 32.768]n. 

 

Eggholder function 

This function (Figure A1e) is only defined for a 2D space and can be computed as: 

𝑓(𝐱) = −(𝑥2 + 47) sin (√|𝑥2 +
𝑥1

2
+ 47|) − 𝑥1 sin (√|𝑥1 − (𝑥2 + 47)|).       (12) 

    The global minimum is in [512.404, 404.2319]. This function is extremely difficult to optimize 

due to the many irregularly distributed local minima and the high gradient surrounding the global 

minimum. The model space we consider is [-512, 512]n. 
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Figures, Tables and Captions 

 

 

Figure 1: Example of a standard GA flow. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2: Scheme representing the implemented catastrophic function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3: Scheme representing the repopulation strategy after a catastrophic event. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4: Scheme representing the implemented crowding function. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5: Scheme representing the of DAGA approach. The red rectangles identify the DAGA 

functions added to the standard GA flow.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6: GA test on the 2D Schwefel function. a) 2D Schwefel function with superimposed the 

initial random population (white dots), and the final solution (red dot). The red arrow points 

toward the global minimum located at [420.9687, 420.9687]. b) Evolution of the L2-norm distance 

between the best model and the global minimum. c) Average-L2 norm distance between the 

chromosomes within the evolving population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 7: Test on the 2D Rastrigin function. a) Cumulative curves representing the percentage of 

successful tests over 200 generations. b) Number of evaluated models by each considered GA 

implementation. 

 

 

 

 

 

 

 

 

 



 

Figure 8: Test on the 2D Schwefel function. a) Cumulative curves representing the percentage of 

successful tests over 300 generations. b) Number of evaluated models by each considered GA 

implementation. 

 

 

 

 

 

 

 

 



 

Figure 9: Test on the 2D Eggholder function. a) Cumulative curves representing the percentage 

of successful tests over 700 generations. b) Number of evaluated models by each considered GA 

implementation. 

 

 

 

 

 

 

 

 

 



 

Figure 10: Cumulative curves representing the percentage of successful tests for the 3D, 4D, and 

10D Rastrigin functions (a, b, and c, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 11: Cumulative curves representing the percentage of successful tests for the 2D, 3D, 4D, 

and 10D Ackley functions (a, b, c, and d respectively). 

 

 

 

 

 

 

 

 

 

 



 

Figure 12: Cumulative curves representing the percentage of successful tests for the 2D, 3D, and 

4D Langermann functions (a, b, and c, respectively). 

 

 

 

 

 

 

 

 

 

 



 

Figure 13: Cumulative curves representing the percentage of successful tests for the 3D, 4D, and 

10D Schwefel functions (a, b, and c, respectively). 

 

 

 

 

 

 

 

 

 

 



 

Figure 14: Results for residual statics corrections with a 50-trace CMP. a) Reference CMP. b) 

Time-shifted CMP. c) DAGA result. d) NGA result. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 15: Results for residual statics corrections with a 80-trace CMP. a) Reference CMP. b) 

Time-shifted CMP. c) DAGA result. d) NGA result. 

 

 

 

 

 

 

 

 

 



  

 

Figure 16: Evolution of the energy of the stack trace associated to the current best model for the 

DAGA and NGA optimizations (black and red curves, respectively). The blue curves show the 

energy of the stack trace associated to the reference CMP. a), b) represent the evolution for the 50-, 

and 80-trace examples, respectively, versus the number of iterations. c), and d) show the evolution 

for the 50-, and 80-trace examples, respectively, versus the number of forward modellings. 

 

 

 

 

 

 

 

 



 

 

Figure 17: a) Entire acoustic Marmousi model. The red rectangle encloses the portion 

considered in the FWI tests. b) Close-up representing the model considered in the FWI 

optimizations. The black crosses represent the nodes of the inversion grid. c) The admissible ranges 

for the Vp values considered in the FWI tests. 

 

 

 



 

Figure 18: Comparison of a shot gathers for the 7-Hz test. a) Is an example of observed shot 

gather. b) and c) represent the corresponding shot gather generated on the best NGA model, and 

the difference between a) and b), respectively. d), and e) represent the corresponding shot gather 

generated on the best DAGA model, and the difference between a) and d), respectively. 

 

 

 

 

 

 



 

Figure 19: Results for the 7-Hz tests. a), and b), Final models predicted by NGA and DAGA, 

respectively. c) and d) Evolution of data misfit and model misfit for the DAGA and NGA 

optimizations, respectively. e), and f) phase-residual panels associated with the best NGA and 

DAGA models respectively. The colormaps code the phase residual in radians. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 20: Comparison of a shot gathers for the 15-Hz test. a) Is an example of observed shot 

gather. b) and c) represent the corresponding shot gather generated on the best NGA model, and 

the difference between a) and b), respectively. d), and e) represent the corresponding shot gather 

generated on the best DAGA model, and the difference between a) and d), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 21: Results for the 15-Hz tests. a), and b), Final models predicted by NGA and DAGA, 

respectively. c) and d) Evolution of data misfit and model misfit for the DAGA and NGA 

optimizations, respectively. e), and f) phase-residual panels associated with the best NGA and 

DAGA models respectively. The colormaps code the phase residual in radians. The yellow arrows 

highlight some examples of cycle-skipped traces. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure A1: a) 2D Schwefel function. b) 2D Rastrigin function. c) 2D Langermann function. d) 2D 

Ackley function. e) 2D Eggholder function. 

 

 

 

 

 

 

  



 

 

 2D Rastrigin 2D Schwefel 2D Eggholder 

# chromosomes 6 7 76 

# subpopulations 2 2 2 

Selection rate 0.8 0.8 0.8 

Maximum # of generations 200 300 700 

# of replacements 1 1 5 

Catastrophe probability 0.2 0.2 0.2 

Table 1: Principal control parameters employed in the 2D tests. 

  



 

 Rastrigin Ackley Langermann Schwefel 

# of dimensions 3 4 10 2 3 4 10 2 3 4 3 4 10 

# chromosomes 15 18 72 8 10 12 21 10 20 60 24 60 300 

# subpopulations 3 3 3 2 2 2 3 2 2 3 2 2 4 

Selection rate 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

Maximum generations 150 200 450 100 100 100 150 200 200 500 300 450 1000 

# replacements 1 1 3 1 1 1 1 1 2 5 3 5 12 

Catastrophe probability 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Table 2: Principal control parameters used in the optimization tests with different model-space 

dimensions. 

 

 

 

 

 

 

 

 

 

 



 

 50 traces 80 traces 

# chromosomes 250 400 

# subpopulations 2 2 

Selection rate 0.8 0.8 

Maximum # of generations 300 300 

# of replacements 3 3 

Catastrophe probability 0.3 0.3 

Table 3: Principal control parameters used in the residual statics corrections. 

 

 

 

 

 

 

 

 

 

 

 



 

 7-Hz test 15-Hz test 

# chromosomes 240 320 

# subpopulations 3 4 

Selection rate 0.8 0.8 

Maximum # of generations  400 300 

# of replacements 14 14 

Catastrophe probability 0.2 0.25 

Table 4: Principal control parameters employed in the FWI tests. 

 


