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Aerial Co-Manipulation With Cables: The Role of
Internal Force for Equilibria, Stability, and Passivity

Marco Tognon, Chiara Gabellieri, Lucia Pallottino, and Antonio Franchi

Abstract—This letter considers the cooperative manipulation of
a cable-suspended load with two generic aerial robots without the
need of explicit communication. The role of the internal force for
the asymptotic stability of the beam position-and-attitude equilib-
ria is analyzed in depth. Using a nonlinear Lyapunov-based ap-
proach, we prove that if a nonzero internal force is chosen, then
the asymptotic stabilization of any desired beam attitude can be
achieved with a decentralized and communicationless master–slave
admittance controller. If, conversely, a zero internal force is cho-
sen, as done in the majority of the state-of-the-art algorithms, the
attitude of the beam is not controllable without communication.
Furthermore, we formally proof the output-strictly passivity of
the system with respect to an energy-like storage function and a
certain input–output pair. This proves the stability and the robust-
ness of the method during motion and in nonideal conditions. The
theoretical findings are validated through extensive simulations.

Index Terms—Aerial systems: mechanics and control, mobile
manipulation, multi-robot systems, distributed robot systems.

I. INTRODUCTION

OVER the last decade unmanned aerial vehicles have risen
the interest of a larger and larger audience for their wide

application domain. Recently, aerial physical interaction, using
aerial manipulators [1], [2] or exploiting physical links as ca-
bles [3], has become a very popular topic. One interesting and
applicative problem is the aerial manipulation of large objects,
for which cooperative approaches are usually applied because
they allow to overcome the limited payload of a single platform,
thus lifting larger and heavier loads [4].

Many works targeted this problem proposing different meth-
ods and solutions. In [5], [6] cooperative aerial transportation of
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Fig. 1. Representation of the system and its major variables. The two aerial
vehicles do not need to be necessarily quadrotors, since the analysis and control
design is valid for general aerial vehicles.

a rigid and an elastic object is considered, respectively. In [7] the
use of multiple flying arms is exploited to address the problem.
Aerial manipulation via cables is another interesting solution
since it can reduce the couplings between the load and the robot
attitude dynamics. Examples of cooperative aerial manipulation
using cables are studied in [8]–[10]. All these examples rely
on a centralized control. Instead, a decentralized algorithm, as
in [11], is more robust and scalable with respect to (w.r.t.) the
number of robots.

However, the major bottleneck in decentralized algorithms is
the explicit communication. Communication delays and packet
losses can affect the performance and even the stability of the
systems. Limiting the need for explicit communication allows
to reduce the complexity as well. In [12] the authors proposed
one of the first decentralized leader-follower algorithm without
explicit communication, for objects transportation performed
by mobile ground robots. Aerial cooperative transportation by
two robots without explicit communication has been addressed
also in [13] for a cable-suspended beam-like load, and a leader-
follower paradigm has been proposed. Here the leader follows
an external position reference, while the horizontal position of
the follower is controlled with an admittance filter, trying to
keep the cable always vertical (zero internal force). A similar
approach has been proposed in [14] but relying on a visual
feedback. However, those methods do not deal with the load
pose control and do not provide a formal stability proof.

For the same system composed by two aerial robots carrying
a cable suspended beam-like load (see Fig. 1 for a schematic
representation), we propose a decentralized algorithm relying
only on implicit communication. Our algorithm uses a master-
slave architecture with an admittance filter on both robots (not
only on the slave as in the related state of the art), to make the
overall system compliant/robust to external disturbances.
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One of our main contributions is the constructive and intuitive
method to choose the controller input to stabilize the load at a
desired pose. The control of both position and orientation turns
the simpler transportation task found in the state of the art in a
full-manipulation one.

We show that those inputs are parametrized by the internal
force of the load that plays a crucial role in the equilibria sta-
bility. Differently from the state of the art algorithms, which are
not formally guaranteed to converge, we also provide a formal
proof of the stability through Lyapunov’s direct method. Fur-
thermore, we prove that the controlled system is output-strictly
passive w.r.t. a relevant input-output pair. This provides a bound
for the energy variations during the manipulation and an index
of robustness of the method.

In Section II we derive the model. In Section III we present the
control strategy and the equilibria of the system. Their stability
is discussed in Section IV. In Section V we prove the passivity
and stability of transportation. Simulation results and conclusive
discussions are presented in Sections VI and VII, respectively.

II. SYSTEM MODELING

The considered system and its major variables are shown in
Fig. 1. The beam-like load is modeled as a rigid body with mass
mL ∈ R>0 and a positive definite inertia matrix JL ∈ R3×3 .
We define the frame FL = {OL,xL ,yL ,zL} rigidly attached
to it, where OL is the load center of mass (CoM). Then, we
define an inertial frame FW = {OW ,xW ,yW ,zW } with zW
oriented in the opposite direction to the gravity vector. The
configuration of the load is then described by the position ofOL

and orientation of FL with respect to FW , i.e., by the vector
pL ∈ R3 and the rotation matrix RL ∈ SO(3), respectively. Its
dynamics is given by the Newton-Euler equations

mL p̈L = −mLge3 + f e

ṘL = S(ωL )RL

JL ω̇L = −S(ωL )JLωL + τ e − ω�
LBLωL ,

where, ωL ∈ R3 is the angular velocity of FL w.r.t. FW ex-
pressed in FL , S(�) is the operator such that S(x)y = x × y,
g is the gravitational constant, ei is the canonical unit vector with
a 1 in the i-th entry, f e and τ e ∈ R3 are the sum of external
forces and moments acting on the load, respectively. The pos-
itive definite matrix BL ∈ R3×3 is a damping factor modeling
the energy dissipation phenomena.

The load is transported by two aerial robots by means of two
cables, one for each robot. We denote with Ai the attachment
point of the i-th cable to the i-th robot, with i = 1, 2, and we
define the frame FRi = {Ai,xRi,yRi,zRi} rigidly attached to
the robot and centered in the attachment point. The i-th robot
configuration is described by the position of Ai and orientation
of FRi w.r.t. FW , denoted by the vector pRi ∈ R3 , and the
rotation matrix RRi ∈ SO(3), respectively. We assume that a
position controller is applied to the aerial robot, able to track any
C2 trajectory with negligible error in the domain of interest, in-
dependently from external disturbances. Indeed, with the recent
robust controllers (as the one in [15] for both unidirectional-

and multidirectional-thrust vehicles) and disturbance observers
for aerial vehicles, one can obtain very precise motions, even
in the presence of external disturbances. However, the proposed
control method results particularly robust to non-ideality, thanks
to its passivity nature (see Section V). As a consequence, in real
applications, a precise tracking is actually not needed for the
stability, but only to achieve perfect performance.

The closed loop translational dynamics of the robot subject
to the position controller is then assumed as the one of a double
integrator: p̈Ri = uRi , where uRi is a virtual input to be de-
signed. If we consider a multidirectional-thrust platform capable
of controlling both position and orientation independently [16],
the double integrator is an exact model of the closed loop sys-
tem apart from modeling errors. In the case of underactuated
unidirectional-thrust vehicle, the double integrator is instead a
very good approximation. Indeed the rotational dynamics is to-
tally decoupled from the translational one and it is much faster
than the latter, allowing to apply the time-scale separation prin-
ciple. At this stage it might seem that the platform is ‘infinitely
stiff’ w.r.t. the force produced by the cable. However, we shall
re-introduce a compliant behavior by suitably designing the in-
put uRi .

The other end of the i-th cable is attached to the load at the
anchoring point Bi described by the vector Lbi ∈ R3 denoting
its position with respect to FL . The position of Bi w.r.t. FW is
then given by bi = pL + RL

Lbi . To simplify the discussion we
assume, without loss of generality, that Lb1 = [‖Lb1‖ 0 0]�.

Assumption 1: The two anchoring points are placed such
that the load CoM coincides with their middle point, i.e., Lb1 =
−Lb2 . This assumption is rather easy to meet in practice.

We model the i-th cable as a unilateral spring along its prin-
cipal direction, characterized by a constant elastic coefficient
ki ∈ R>0 , a constant nominal length denoted by l0i and a negli-
gible mass and inertia w.r.t. the ones of the robots and of the load.
The attitude of the cable is described by the normalized vector,
ni = li/||li ||, where li = pRi − bi . Given a certain elongation
||li || of the cable, the latter produces a force acting on the load
at Bi equal to:

f i = tini , ti =
{
ki(||li || − l0i) if ||li || − l0i > 0

0 otherwise
. (1)

ti ∈ R≥0 denotes the tension along the cable and it is given
by the simplified Hooke’s law. As usually done in the related
literature, we assume that the controller and the gravity force
always maintain the cables taut, at least in the domain of interest.
The force produced at the other hand of the cable, namely on
the i-th robot at Ai , is equal to −f i .

Considering the forces that robots and load exchange by
means of the cables, the dynamics of the full system is:

v̇R = uR

v̇L = M−1
L (−cL (vL ) + gL + G(qL )f), (2)

where qR = [p�
R1 p�

R2 ]
�, qL = (pL ,RL ), vR = [ṗ�

R1 ṗ�
R2 ]

�,
vL = [ṗ�

L ω�
L ]�, uR = [u�

R1 u�
R2 ]

�, f = [f�
1 f�

2 ]� where
f i is given in (1), and is a function of the state, ML =
diag (mLI3 ,JL ) and I3 ∈ R3×3 the identity matrix, gL =
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Fig. 2. Schematic representation of the overall system including both physical
and control blocks.

[−mLge
�
3 0]�, cL = [0 S(ωL )JLωL − ω�

LBLωL ]� and

G =
[

I3 I3

S(Lb1)R�
L S(Lb2)R�

L

]
.

We remark that the two dynamics in (2) are coupled together by
the cable forces in (1).

Control Problem
In this work we aim to: i) stabilize the load at a desired

configuration, q̄L = (p̄L , R̄L ); ii) preserve the stability of the
load during its transportation.

Assuming a perfect knowledge of the system dynamic model,
and a perfect state estimation, one could use a centralized control
approach, as in [8], [9]. We are instead interested in solving the
mentioned objectives using a decentralized approach without
explicit communication between the robots.

III. CONTROL DESIGN AND EQUILIBRIA

To achieve the previous control objectives we propose the use
of an admittance filter for both robots, i.e., setting:

uRi = M−1
Ai (−BAi ṗRi − KAipRi − f i + πAi), (3)

where the three positive definite symmetric matrices
MAi,BAi,KAi ∈ R3×3 are the virtual inertia of the robot,
the virtual damping, and the stiffness of a virtual spring at-
tached to the robot, and πAi ∈ R3 is an additional input (see
Fig. 2 for a schematic representation). Notice that (3) does not
require explicit communication. Indeed it requires only local
information, i.e., the state of the robot (pRi, ṗRi), and the force
applied by the cable f i . The first can be retrieved with standard
on-board sensors, while the second can be directly measured by
an on-board force sensor or estimated by a sufficiently precise
model-based observer as done in [13], [16].

Combining equations (2) and (3) we can write the closed loop
system dynamics as v̇ = m(q,v,πA ) where

m(q,v,πA ) =
[

M−1
A (−BA ṗR − KApR − f + πA )
M−1

L (−cL (vL ) + gL + Gf )

]
,

(4)

with q = (qR , qL ), v = [v�
R v�

L ]� and πA = [π�
A1 π�

A2 ]
�.

Furthermore MA = diag(MA1 ,MA2), BA = diag(BA1 ,
BA2) and KA = diag(KA1 ,KA2). In order to coordinate
the motions of the robots in a decentralized way we pro-
pose a master-slave approach. Only one robot, namely the
designated master, will have an active control of the system.

Fig. 3. Relation between the equilibria and forcing control input. In particular,
starting from the left: to a desired load configuration of equilibrium it corre-
sponds a forcing input in the subset ΠA (q̄L ) of dimension one (inverse prob-
lem). Then, moving to the right: to a forcing input in ΠA (q̄L ), it corresponds
an equilibrium in the subsets Q+ (tL , q̄L ), Q−(tL , q̄L ) or Q(0, q̄L ) accord-
ing to the value of tL (direct problem). The orange line inside Q+ (tL , q̄L )
corresponds to the equilibria q ∈ Q+ (tL , q̄L ) such that qL = q̄L .

Choosing robot 1 as master and robot 2 as slave we set KA1 �= 0,
KA2 = 0.

We say that q is an equilibrium configuration if ∃ πA s.t.
0 = m(q,0,πA ), i.e., if the corresponding zero-velocity state
(q,0) is a forced equilibrium for the system (4) for a certain
forcing input πA . We say that an equilibrium configuration q
is stable, unstable, or asymptotically stable if (q,0) is stable,
unstable, or asymptotically stable, respectively.

In the following we shall prove that for any desired load con-
figuration q̄L there exists a set ΠA (q̄L ) ⊂ R6 such that for any
πA ∈ ΠA (q̄L ) one can compute a q̄R , depending on q̄L and
πA , that makes q̄ = (q̄L , q̄R ) an asymptotically stable equilib-
rium with πA as forcing input. As we shall see, a key role in
all the following analyses is played by the load internal force,
defined as

tL := 1
2 f�[

I3 − I3
]�

RLe1 =: 1
2 f�rL , (5)

where rL =
[
I3 − I3

]�
R̄Le1 . We have that if tL > 0 the

internal force is a tension (the work of the internal force is
positive if the distance between the anchoring points increases)
while if tL < 0 the internal force is a compression (viceversa,
the work is positive if the distance decreases).

A. Equilibrium Configurations of the Closed-Loop System

We firstly carefully analyze the relation between equilibrium
configurations, from now on simply called equilibria, and the
forcing input πA . In particular, we shall study: i) equilibria
inverse problem: which is the set of inputs (and corresponding
robot positions) that equilibrates a desired q̄L (Theorem 1);
ii) equilibria direct problem: which is the set of equilibria if
πA , chosen in the aforementioned set, is applied to the system
(Theorem 2). A schematic representation of the results described
in the theorems is given in Fig. 3.

Theorem 1 (equilibria inverse problem): Consider the clos-
ed loop system (4) and assume that the load is at a given desired
configuration qL = q̄L = (p̄L , R̄L ). For each internal force
tL ∈ R, there exists a unique constant value for the forcing
input πA = π̄A (and a unique position of the robots qR = q̄R )
such that q̄ = (q̄L , q̄R ) is an equilibrium of the system.
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In particular π̄A and q̄R = [p̄�
R1 p̄�

R2 ]
� are given by

π̄A (q̄L , tL ) = KA q̄R + f̄(q̄L , tL ) (6)

p̄Ri(q̄L , tL ) = p̄L + R̄L
Lbi +

( ||f̄ i ||
ki

+ l0i

)
f̄ i

||f̄ i ||
, (7)

for i = 1, 2, where

f̄(q̄L , tL ) =
[

f̄ 1
f̄ 2

]
=
mLg

2

[
I3
I3

]
e3 + tL

[
I3
−I3

]
R̄Le1 . (8)

Proof: The desired load configuration q̄L can be equilibrated
if there exists at least a q̄R and a πA such that:

m(q̄,0,πA ) = 0. (9)

Consider the last six rows of (9). We must find the f solving

Gf = gL . (10)

G is not invertible since rank(G) = 5, thus we have to verify
that a solution for (10) exists. Expanding (10) we obtain

f 1 + f 2 = +mLge3 (11)

S(Lb1)R̄
�
Lf 1 + S(Lb2)R̄

�
Lf 2 = 0. (12)

Then, substituting in (12) the f 1 obtained from (11) we
have 2S(Lb1)R̄

�
Lf 2 = +S(Lb1)R̄

�
LmLge3 , for which f 2 =

mLge3/2 is always a solution. Therefore, all the solutions
of (10) can be written as

f̄ = G†gL + rLtL , (13)

where G† = 1/2[I3 I3 ]� is the pseudo inverse of G, rL ∈ R6

is a vector in Null(G) , and tL ∈ R is an arbitrary number.
We computed rL = [f�

1 f�
2 ]� from (11) and (12) imposing

the right hand side equal to zero. From (11) f 2 = −f 1 , and
replacing it into (12) we obtain S(2Lb1)R̄

�
Lf 1 = 0 which is

verified if f 1 = tLR̄Le1 with tL ∈ R. Finally we obtain rL =[
I3 − I3

]�
R̄Le1 , as in the definition (5).

Equation (13) can be then rewritten as (8). The expression
of p̄Ri in (7) is computed using (1) and the kinematics of the
system. Notice that (7) is singular when f̄ i = 0 for some i.
However this can always be avoided properly choosing tL .

Lastly, from the first six rows of (9) we have that q̄L is
equilibrated if πA = π̄A , where π̄A is defined as in (6). �

Remark 1: Based on Theorem 1 we can define a
set ΠA (q̄L ) = {πA ∈ R6 : πA = π̄A (q̄L , tL ) for tL ∈ R}
which has dimension 1, since it is parametrized by the scalar
tL ∈ R.

Remark 2: Given a desired load configuration q̄L to equili-
brate, Theorem 1 and its constructive proofs give an intuitive
method for choosing the forcing input πA . In particular one has
to choose only the value of the internal force tL .

Once tL is chosen and the input πA = π̄A (tL , q̄L ) is applied
to the system, it is not in general granted that (q̄L , q̄R ) is the
only equilibrium of (4), i.e., the equilibria direct problem may
have multiple solutions.

Theorem 2 (equilibria direct problem): Given tL ∈ R and
the corresponding π̄A ∈ ΠA (q̄L ) computed as in (6), the equi-
libria of the system (4), when the input πA = π̄A (tL , q̄L ) is

Fig. 4. 2-D representation of the equilibria varying tL . (a) Two equilibria
for tL �= 0. On the top and on the bottom one equilibrium configuration in
Q+ (tL , q̄L ) and Q−(tL , q̄L ), respectively. (b) Five of the possible infinite
equilibria in Q(0, q̄L ). In vivid color the configuration q̄. The final load pose
depends on the initial conditions.

applied, are all and only the ones described by the following
conditions

tLRLe1 × R̄Le1 = 0

pR1 = p̄R1

pL = pR1 − RL
Lb1 −

( ||f̄ 1 ||
k1

+ l01

)
f̄ 1

||f̄ 1 ||
(14)

= p̄L + (R̄L − RL )Lb1

pR2 = pL + RL
Lb2 +

( ||f̄ 2 ||
k2

+ l02

)
f̄ 2

||f̄ 2 ||
.

Q(tL , q̄L ) denotes the set of configurations respecting (14).
Proof: Given tL ∈ R, and π̄A ∈ ΠA (q̄L ), a configuration

q is an equilibrium if m(q,0, π̄A ) = 0. The first six rows are
KAqR + f − π̄A = 0. Then, from (6) we have that

f = KA (q̄R − qR ) + f̄ . (15)

Multiplying both sides of (15) by G and using (10) we obtain
GKA (q̄R − qR ) + Gf̄ = gL . Then, using KA2 = 0, and the
expression of f̄ in (8), we get

[
KA1eR1

S(Lb1)RLKA1eR1

]
+

[
mLge3

2S(Lb2)R�
LR̄Le1tL

]

=
[
mLge3

0

]
, (16)

where eRi = (p̄Ri − pRi). The top row of (16) implies that
eR1 = 0, hence pR1 = p̄R1 . Replacing eR1 = 0 in the bottom
part of (16) we obtain

S(Lb2)R�
LR̄Le1tL = 0 ⇔ Lb2 × R�

LR̄Le1tL = 0

⇔ RLe1 × R̄Le1tL = 0. (17)

We can retrieve pL and pR2 , using (1) and the kinematics. �
Remark 3: If tL = 0 the conditions in (17) hold for all the

possible load attitudes RL ∈ SO(3). This means that Q(0, q̄L )
contains all the RL ∈ SO(3) and the qR , pL computed from
RL using (14). Fig. 4 (b) illustrates some of these equilibria.
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For tL �= 0, it is required that RLe1 is parallel to R̄Le1 . This
can be obtained with RL = RL (k, φ) = R̄LRzL

(kπ)RxL
(φ),

where k = 0, 1, φ ∈ [0, 2π], and RzL
(·) and RxL

(·) are the
rotations about zL and xL , respectively. Considering that Lb1
is parallel to xL we have that RzL

(kπ)RxL
(φ)Lb1 is either

equal to Lb1 if k = 0 or to−Lb1 if k = 1. Therefore, using (14),
we obtain either pL = p̄L if k = 0 or pL = p̄L + 2b1 if k =
1. Fig. 4(a) provides a simplified representations of the two
different sets of equilibria for k = 0 and k = 1, formally defined
as follows:

� Q+(tL , q̄L ) = {q ∈ Q(tL , q̄L )|RL = RL (0, φ)∀φ},
� Q−(tL , q̄L ) = {q ∈ Q(tL , q̄L )|RL = RL (1, φ)∀φ}.
Notice that Q(0, q̄L ) is parametrized by an element in

SO(3) (any RL ∈ SO(3) is allowed), while Q+(tL , q̄L ) and
Q−(tL , q̄L ), for tL �= 0, are parametrized by an element in
SO(1) (RL (0, φ) and RL (1, φ), for any φ ∈ [0, 2π], respec-
tively). For all tL , the load rotation about xL is arbitrary be-
cause the robots can not apply any torque along xL , so the
corresponding rotation results uncontrollable.

We can conclude that choosing tL = 0 (equilibrium with ver-
tical cables) every orientation of the load is contained in the
equilibrium set and the load equilibrium positions are free to
move on a sphere of radius ‖Lb1‖ centered on B1 . Contrarily,
tL �= 0 is a much better choice. In this case, a part from the
rotation about the xL axis, there are only two distinct equilibria,
and one is exactly qL = q̄L , as expected. For the other one the
load orientation is parallel to the one in q̄L but its position is
reflected w.r.t. B1 (see Fig. 4(a) for an example).

IV. STABILITY OF THE EQUILIBRIA

In this section we shall analyze the stability of the equilibria
discovered in Section III-A. Firstly we define x = (q,v) as the
state of the system, x̄ = (q̄,0) the desired equilibrium state,
and the following sets (subspaces of the state space):

� X (tL , q̄L ) = {x : q ∈ Q(tL , q̄L ), v = 0},
� X (0, q̄L ) = {x : q ∈ Q(0, q̄L ), v = 0},
� X +(tL , q̄L ) = {x : q ∈ Q+(tL , q̄L ), v = 0},
� X −(tL , q̄L ) = {x : q ∈ Q−(tL , q̄L ), v = 0}.
Theorem 3: Let us consider a desired load configuration q̄L .

For the system (4) let the constant forcing input πA be chosen
in ΠA (q̄L ) corresponding to a certain internal force tL . Then x
belonging to:

� X +(tL , q̄L ) is locally asymptotically stable if tL > 0;
� X −(tL , q̄L ) is unstable if tL > 0;
� X (0, q̄L ) is locally asymptotically stable;
� X +(tL , q̄L ) is unstable if tL < 0;
� X −(tL , q̄L ) is locally asymptotically stable if tL < 0.
Proof: Let us consider the following Lyapunov candidate:

V (x) =
1
2
(v�

RMAvR + e�
RKAeR + v�

LMLvL

+ k1(||l1 || − l01)2 + k2(||l2 || − l02)2) − l�1 f̄ 1+

− l�2 f̄ 2 + tL (1 − (R̄Le1)�RLe1) + V0 , (18)

where V0 ∈ R≥0 and eR = p̄R1 − pR1 . For an opportune
choice of V0 , V (x) is a positive definite, continuously differ-
entiable function in the domain of interest for which we have

that xmin = argminx V (x) is such that xmin ∈ X (0, q̄L ) and
xmin ∈ X +(tL , q̄L ) for tL > 0. The complete proof is pro-
vided in a technical report in the multimedia materials. In par-
ticular, if tL ≥ 0, we can choose the term V0 such that V (x) ≥ 0
and V (x̄) = 0. Notice that V (x) = 0 for all x ∈ X (0, q̄L ) and
x ∈ X +(tL , q̄L ) for tL > 0.

Computing the time derivative of (18) and replacing (4), (1)
and (8) we obtain V̇ = −vR

�BAvR − ω�
LBLωL that is

clearly negative semidefinite. In particular V̇ (x) = 0 for all
x ∈ E{x : vR = 0, ωL = 0}

Since V̇ is only negative semidefinite, to prove the asymp-
totic stability we rely on the LaSalle’s invariance princi-
ple [17]. Let us define a positively invariant set Ωα = {x :
V (x) ≤ α with α ∈ R>0}. By construction Ωα is compact
since (18) is radially unbounded and Ω0 is compact (Ω0 =
X (0, q̄L ) and Ω0 = X +(tL , q̄L ) for tL = 0 and tL > 0, re-
spectively, are both compact sets). Then we need to find
the largest invariant set M in E = {x ∈ Ωα | V̇ (x) = 0}. A
trajectory x(t) belongs identically to E if V̇ (x(t)) ≡ 0 ⇔
vR (t) ≡ 0 and ωL (t) ≡ 0 ⇔ m(q(t),0,πA ) = 0 for all t ∈
R>0 . Therefore x has to be an equilibrium, and from Theo-
rem 2 we have that V̇ (x(t)) ≡ 0 ⇔ x(t) ∈ X (tL , q̄L ). Thus
we obtain M = Ωα ∩ X (tL , q̄L ).

For tL > 0, it is easy to see that for a sufficiently
small α, X +(tL , q̄L ) ⊆ Ωα but X −(tL , q̄L ) ∩ Ωα = ∅. This
because V (x) = 0 for x ∈ X +(tL , q̄L ), while V (x) > 0
for x ∈ X −(tL , q̄L ). Indeed, in (18), for x ∈ X −(tL , q̄L ),
the term tL (1 − (R̄Le1)�RLe1) = 2tL > 0. Therefore M =
X +(tL , q̄L ). All conditions of LaSalle’s principle are satisfied
and X +(tL , q̄L ) is locally asymptotically stable.

On the other hand, for tL = 0 we have that X (tL , q̄L ) ⊆ Ωα

for every sufficiently small α. Therefore M = X (tL , q̄L ) and,
as before, we can conclude that X (tL , q̄L ) is locally asymptot-
ically stable for the LaSalle’s invariance principle.

Now, let us investigate the stability for tL < 0. As before,
with an opportune choice of V0 , we have that V (x) = 0 for
x ∈ X +(tL , q̄L ). However, X +(tL , q̄L ) is a set of accumu-
lation for the points where V (x) < 0. Indeed, consider v = 0,
pR1 = p̄R1 , RL such that (R̄Le1)�RLe1 = 1 − ε, with ε > 0
arbitrarily small, pL and pR2 as in (14). Under this condi-
tions, we have that V (x) = tL (1 − (R̄Le1)�RLe1) = tLε <
0. Then, V̇ (x) < 0 in a neighborhood of X +(tL , q̄L ). All con-
ditions of Chetaev’s theorem [17] are satisfied, and we can
conclude that X +(tL , q̄L ) is an unstable set.

Finally, to study the stability of X −(tL , q̄L ) for tL �= 0, let
us consider a desired load configuration q̄′

L = (p̄′
L , R̄

′
L ) such

that p̄′
L = p′

L + 2R̄Le1 and R̄
′
L = RL (1, φ) for a certain φ.

Then we choose π′
A ∈ ΠA (q̄′

L ) with t′L = −tL . For the reason-
ing in Section III-A, we have that X +(t′L , q̄

′
L ) = X −(tL , q̄L ).

Furthermore, for the previous results, if tL > 0, t′L < 0 and
X +(t′L , q̄

′
L ) is unstable. Therefore, X −(tL , q̄L ) is unsta-

ble too. A similar reasoning can be followed to prove that
X −(tL , q̄L ) is locally asymptotically stable for tL < 0. �

V. PASSIVITY AND STABILITY OF MANIPULATION

Theorem 3 characterizes the stability of all the possible static
equilibria given a certain constant forcing input. In particular, it
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Fig. 5. Each figure shows the evolution of the system from two different initial conditions (one is shown in red and the other in blue). The two evolutions are
represented as a sequence of images discriminated by the brightness of the color that represents the time (from bright/start to dark/end). The load is represented as a
tick solid line, the cables as thin dashed lines, the master robot as a circle and the slave robot as a cross. (a) tL = tL 1 > 0. (b) tL = tL 2 = 0. (c) tL = tL 3 < 0.

shows that one has to choose tL > 0 and πA ∈ ΠA (q̄L) to let the
system asymptotically converge to a desired load configuration.
On the contrary, one must avoid tL = 0 because the control of
the load attitude and its position is not possible. Notice that this
last case is the most used in the literature, where the attempt is
made to keep the cables always vertical, i.e., with no internal
forces.

Let us now show how one can exploit the input πA1 in order
to move the load between two distinct positions. From (6)–(8)
and from the fact that KA2 = 0, it descends that only π̄A1 , in
π̄A=[π̄�

A1 π̄�
A2 ]

�, actually depends on the desired load position
p̄L . This makes robot 1 able to steer alone the load position
without communicating with robot 2. This is done by first plug-
ging a new desired position p̄′

L in (6) thus computing a new p̄′
R1 ,

and then plugging p̄′
R1 in (7) in order to compute the new con-

stant forcing input π̄′
A1 . However, one may want to minimize

the transient phases generated by a piecewise constant forcing
input. It is sufficient to design πA1 as

πA1(t) = π̄A1 + uA1(t), (19)

where uA1(t) is a smooth function such that πA1(0) = π̄A1
and πA1(tf ) = π̄′

A1 for tf ∈ R>0 .
To ensure that the system remains stable when the input is

time-varying, we shall prove that the system is output-strictly
passive w.r.t. the input-output pair (u,y) = (uA ,vR ).

Theorem 4: If πA is defined as in (19) for a certain q̄ and
q̄′ with tL ≥ 0, then system (4) is output-strictly passive w.r.t.
the storage function (18) and the input-output pair (u,y) =
(uA , vR ).

Proof: In the proof of Theorem 3 we already shown that (18)
is a continuously differentiable positive definite function for
tL ≥ 0, properly choosing V0 . Furthermore, replacing (19)
into (3), and differentiating (18) we obtain

V̇ = − vR
�BAvR + vR

�uA − ω�
LBLωL

≤ u�y − y�BAy = u�y − y�Φ(y), (20)

with y�Φ(y) > 0 ∀ y �= 0. Therefore, system (4) is output-
strictly passive [17]. �

Thanks to the passivity of the system we can say that for a
bounded input provided to the master, the energy of the sys-
tem remains bounded too, and in particular it stabilizes to a
new constant value as soon as uA1 becomes constant again.

TABLE I
PARAMETERS USED IN THE SIMULATIONS

This means that, while moving the master, the overall state of
the system will remain bounded, and will converge to another
specific equilibrium configuration when the master input be-
comes constant. Furthermore, it is well known that passivity is a
robust property, especially w.r.t. model uncertainties. In partic-
ular, choosing πA ∈ ΠA (q̄L ) for a given q̄, the system remains
asymptotically stable even in the presence of some parameter
uncertainties, but it will converge to a q̄′ that is slightly different
from q̄.

Remark 4: Once the desired load pose is decided and the
value of tL is chosen, one can compute the control input πA

and send it to the robots. Afterwards, if tL > 0 the robots will
steer the load to the desired configuration preserving the sta-
bility and without the need of sending data to each other. The
cooperative task is performed exploiting the implicit communi-
cation through the forces that the robots exchange and feel from
the cables and the object.

VI. NUMERICAL VALIDATION

In this section we shall describe the results of several nu-
merical simulations validating the proposed method and all the
presented theoretical concepts and results.

For the simulation we considered a quadrotor-like vehicle
with its proper nonlinear dynamics together with a geometric
position controller, even though, our method can be applied to
more general flying vehicles. System and control parameters are
reported in Table I. Notice the smaller apparent inertia of the
slave, chosen to make it more sensitive to external forces.

Let us consider the desired equilibrium q̄ = (p̄L , R̄L ), whose
value are in Table I, where (φ̄, θ̄, ψ̄) are the Euler angles that
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Fig. 6. Convergence to the desired load configuration for cases 1–3. In par-
ticular, the first and second rows show the position and the attitude errors,
respectively, for four different initial conditions (different colors) and for the
three different internal force values (columns). The attitude error is computed
as the sum of pitch and yaw errors. The roll error is not considered since it is
not controllable.

parametrize R̄L . We performed several simulations with πA ∈
ΠA (q̄L ) computed as in (6) for the cases: 1) tL 1 = 1.5 [N] > 0,
2) tL 2 = 0 [N], 3) tL 3 = −1 [N] < 0.

To test the stability of the equilibria, we initialized the system
in different initial configurations and we let it evolve. Fig. 6
shows the position and orientation error for the three tL and
several different initial conditions. 1) For tL = tL 1 , the system
always converges to a state belonging to X +(tL , q̄L ), indepen-
dently from the initial state, validating the asymptotic stabil-
ity of X +(tL , q̄L ) when tL > 0. 2) For tL 2 , the system final
state belongs to X (0, q̄L ). The particular final attitude of the
load depends on the initial state. 3) For tL 3 , the system never
converges to X +(tL , q̄L ) even with a very close initial con-
figuration. This is due to the instability of X +(tL , q̄L ) when
tL < 0. Fig. 5 shows the evolution of the system starting from
two different initial states for the three cases.

In another set of simulations, shown in detail in the attached
technical report, the master input πA1(t) is chosen as in (19)
to bring the load in p̄′

L = [4.5 4.5 5]�[m]. We observed that, as
expected, for both tL = tL 1 and tL = tL 2 the system remains
stable during the master maneuver. Once the input becomes
constant, the master stops and the system converges to q̄ for
tL = tL 1 . For tL = tL 2 , the final load attitude depends on the
particular motion, and it is in general different from q̄.

Additional simulations in non-ideal conditions are provided
in the attached technical report. The results show that thanks
to the passivity of the system, the latter is very robust to the
considered non-idealities. Some representative simulations are
available in the attached video too.

VII. CONCLUSION

This work deals with the decentralized cooperative manip-
ulation of a cable-suspended load performed by two aerial
vehicles. The proposed master-slave architecture exploits an
admittance controller in order to coordinate the robots with

implicit communication only, using the cable forces. The pas-
sivity of the system has been proven, and the stability of the
static equilibria has been studied highlighting the crucial role of
the internal force. In particular, contrarily from what it is nor-
mally done in the literature (zero internal force), it is advisable
to choose a positive internal force to control both position and
orientation of the beam. In the future it would be interesting
to test the method on real platforms and to extend the analysis
to general loads or to agile motions. An extension to a more
generic load attached to N robots could be very interesting too.
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