
Approximate Logic Synthesis by Symmetrization

Abstract—Approximate synthesis is a recent trend in logic
synthesis that changes some outputs of a logic specification to take
advantage of error tolerance of some applications and reduce
complexity and consumption of the final implementation. We
propose a new approach to approximate synthesis of combina-
tional logic where we derive its closest symmetric approximation,
i.e., the symmetric function obtained by injecting the minimum
number of errors in the original function. Since BDDs of totally
symmetric functions are quite compact, this approach is partic-
ularly convenient for BDD-based implementations, such as net-
works of MUXes directly mapped from BDDs. Our contribution
is twofold: first we propose a polynomial algorithm for computing
the closest symmetric approximation of an incompletely specified
Boolean function with an unbounded number of errors; then we
discuss strategies to achieve partial symmetrization of the original
specification while satisfying given error bounds. Experimental
results on classical and new benchmarks confirm the efficacy of
the proposed approach.

I. INTRODUCTION

Approximate Logic Synthesis is a novel approach to the
synthesis of Boolean functions based on the idea of exploiting
the given error tolerance of applications during design and
synthesis of circuits to implement approximate designs with
smaller area, delay, or lower power consumption. Indeed, even
though a circuit that exploits error tolerance at the design
stage can produce erroneous responses, for a wide range of
applications including image, video, audio, machine learning,
pattern recognition, and error-correcting codes for wireless
communication, errors could be acceptable, provided that
their types and severities are within an application-specified
threshold [18], [24].

Approximate logic synthesis has been studied under differ-
ent error metrics, and therefore different cost functions. The
two main error constraints that have been considered are Error
magnitude (EM) and Error rate (ER). The error magnitude for
a set of outputs is defined as the maximum amount by which
the numerical value at the outputs of a circuit can deviate from
the exact value, and it is used typically in arithmetic circuits to
quantify the numerical error. Instead, the error rate represents
the percentage of all input vectors that produce the erroneous
outputs in the approximate circuits. Composite metrics have
also been defined using ER and EM. In this paper we use
metrics based on the error rate.

In recent years, many heuristic techniques for synthesizing
approximate logic circuits have been investigated with promis-
ing results, see for instance [3], [5], [14], [15], [16], [20], [21],
[22]. They derive approximate variants of a given combina-
tional Boolean function, by modifying some of its outputs so
that the modified circuit has a reduced complexity and power
consumption, while the error is within the tolerance bounds

(targeting two-level logic, XOR-AND-OR forms, multi-level
logic, etc.).

In this paper we propose a new approach to approximate
synthesis, by which we change the outputs of a given function
with the goal to obtain the closest totally symmetric function.
The optimality criterion is given by the chosen error metrics,
i.e., we change the original function within the tolerance
allowed by the given error bounds, by computing the function
that achieves total symmetry with the fewest changes, and then
relaxing the symmetrization when the error bounds are not met
until we reach a feasible solution. The reason why we target
symmetric functions is that they have compact realizations
in some logic architectures. For instance, a totally symmetric
Boolean function with n input variables has a BDD of size
O(n2) (independent from the variable order) which maps into
a network of MUXes of the same size [6].

Technically, we contribute a polynomial algorithm for com-
puting the closest totally symmetric approximation of a given
incompletely specified multi-output Boolean function with an
unbounded number of errors. This is achieved by exploiting
properties of the disjoint covers of a Boolean function and
efficient BDD constructions, so that we can build polynomially
the characteristic vector of the closest symmetric function and
its BDD. Then we propose heuristic strategies to relax total
symmetrization in order to guarantee a bounded approximation
scheme.

Experimental results on classical and new benchmarks have
confirmed the efficacy of the proposed approach: the average
gain in the BDD size for the unbounded approximation scheme
is 69% with an average error rate of about 15%, while in the
bounded context, with a fixed error rate 5%, the average gain
is about 31%.

The paper is organized as follows: after preliminaries on
symmetric Boolean functions and metrics in Sec. II, the results
on the symmetric function closest to a given one are presented
in Sec.III, and the heuristics on partial symmetrization under
bounded error rates are in Sec. IV. Experimental results are
discussed in Sec. V, and final conclusions in Sec. VI.

II. PRELIMINARIES

A. Symmetric Boolean functions

The concept of symmetry has been extensively studied
and applied in several contexts, such as function classifi-
cation, functional decomposition in technology-independent
logic synthesis, Boolean matching in technology mapping,
formal verification, and binary decision diagram (BDD) min-
imization (see for instance [9], [12], [13], [17], [19]).

Let f : {0, 1}n → {0, 1} be a completely specified
Boolean function, and X = {x1, x2, . . . , xn} be the set of



its input variables. Recall that the function f is generally
called symmetric, or totally symmetric, if it is invariant under
all permutations of the input variables, whereas f is said
to be partially symmetric if it remains invariant under any
permutation of a proper subset, of size at least 2, of the input
variables.

A function can be partially symmetric with respect to
different subsets of variables. More precisely, symmetry of
a completely specified Boolean function f in pairs of input
variables leads to an equivalence relation on the set X . Thus,
there exists a unique minimal partition P of X into disjoint
subsets S1, S2, . . . , Sk, with k ≤ n, given by the equivalence
classes of this relation. These sets are called symmetry sets.
If k = 1, then f has only one symmetry set which coincides
with X , thus f is totally symmetric, while if k = n, f presents
no symmetries. In all other cases 1 < k < n, f is partially
symmetric.

Observe that a totally symmetric function f depends only
on the number of ones in the input minterm, thus it can be
described by its value vector v(f) = [v0, v1, . . . , vn], where
vi = 1 if and only if f(x1, x2, . . . , xn) = 1 for all minterm
such that x1+x2+. . .+xn = i, i.e., all minterms of Hamming
weight i.

Very efficient algorithms are known in literature for detect-
ing various type of symmetries and computing the symmetry
sets for Boolean functions [17], [19]. Methods to detect
symmetries are usually based on checking the equality of two-
variable cofactors of the function, in order to find all pairs
of symmetric variables. Using this information, larger sets
of symmetric variables can be constructed by applying the
transitivity of the symmetry relation. This basic approach has
been improved in several ways, as reviewed in [17], which
presents a new improved method with worst-case complexity
cubic in the size of the BDD representing the input function,
but close to linear for practical benchmarks.

B. Error metrics for Approximate Synthesis

Following the approach from [20], in [3] the concept of
error rate has been further specialized with the notions of
bit threshold Bt and minterm threshold Mt. The first metric
evaluates the overall number of complemented (wrong) output
bits, while the second metric evaluates the number of input
vectors on which the output computed by the circuit differs
from the exact one by at least one bit. These two error
measures coincide for single-output functions, while Bt ≥Mt

for multi-output ones.
In this work, we will consider only the bit threshold metric

Bt, which can be computed starting from the error rate
threshold as follows. Let f : {0, 1}n → {0, 1,−}m be a multi-
output Boolean function with n inputs and m outputs, and let
r denote the error rate, defined as the maximum percentage
allowed of erroneous output bits. Then, Bt = r ·m · 2n.

In our study, we will also adopt a slightly different approach.
In the first part of the paper, we approximate the function f
by the totally symmetric function with a minimal Hamming
distance from f . Thus, instead of fixing an error rate r, we

will first compute the minimum number e of output bits that
must be complemented in order to transform f into a totally
symmetric function. Then, from e, we will derive the error
rate r induced by this transformation as follows. If the target
function f is a single output function, with n inputs, then
r = e/2n. If the target function f is a multi-output function
with n inputs and m outputs, then

r =

∑m
i=1 ei
m 2n

,

where ei denotes the minimum number of output bits that must
be complemented to transform the i-th output function into a
totally symmetric one. The value of r should then be compared
with the error rate that is considered acceptable for the
application under study, to verify whether the approximation
is feasible or not.

In the second part of the paper, we discuss different strate-
gies that can be adopted to enhance the symmetry of the target
function within a given error rate r defined in advance.

III. UNBOUNDED APPROXIMATION WITH A TOTALLY
SYMMETRIC FUNCTION

In the context of approximate logic synthesis, we study how
to modify some outputs of a function f , in order to derive a
symmetric approximation of f , whose logic implementation
might be of reduced complexity, smaller area and delay. This
approach is particularly convenient for logic implementation
derived from BDDs, as when mapping directly the BDD of
a Boolean function onto a network of MUXes [2]. Indeed,
the size (i.e., the number of nodes) of a reduced BDD of any
totally symmetric function f : {0, 1}n → {0, 1} is bounded
by O(n2) [8], [10], [23].

To this aim, we propose here an algorithm that, given a
single output Boolean function f , computes the minimum
number of outputs that must be changed in order to transform
f into a totally symmetric function. In other words, the
proposed algorithm computes the totally symmetric function
f ′ closest to f , implicitly assuming an unbounded error rate
threshold. We will discuss in Section IV some strategies that
can be adopted to enhance the symmetry of the target function
f within a given error rate r defined in advance.

A. Completely specified functions

Let f : {0, 1}n → {0, 1} be a completely specified Boolean
function depending on n binary variables. Our algorithm for
computing the closest symmetric approximation of f starts
from a minimal disjoint sum of products form (DSOP) rep-
resenting f [4]. Recall that in a DSOP representation, each
minterm in the on-set of f is covered by exactly one product.
We refer the reader to [4] for more details and references on
DSOP forms and their applications.

The first step of the algorithm consists in computing, for
each 0 ≤ w ≤ n, the number of minterms in the on-set of
f with Hamming weight w, where the Hamming weight of a
minterm x1x2 · · ·xn is defined as the number of ones among
x1, . . . , xn. This task can be accomplished using the following
result.



Proposition 1: Let p be a product in a DSOP representation
of f , containing d ≤ n literals, k of which are positive. Let
h = n − d be the number of don’t care variables, i.e., the
variables that do not appear in p. Then, for each 0 ≤ w ≤ n,
the number Tp(w) of on-set minterms with Hamming weight
w covered by p is given by

Tp(w) =

{ (
h

w−k
)

k ≤ w ≤ k + h

0 o/w .

Proof. The Hamming weight of the 2h minterms covered by p
is at least k and at most k+h, as p contains k positive literals
and h don’t cares variables. Then, the proposition follows
immediately since, for any 0 ≤ i ≤ h, there are exactly

(
h
i

)
ways to choose the i variables to set to 1, out of the h variables
that do not appear in p.

For example, in the Boolean space B4, consider the function
f with DSOP representation x2x3x4+x1x3x4+x1x2x3x4+
x2x3x4, and its product p = x2x3x4. For p we have that
k = 1 and h = 1. Therefore, Tp(0) = Tp(3) = Tp(4) = 0,
Tp(1) =

(
1
0

)
= 1, and Tp(2) =

(
1
1

)
= 1. In fact, p covers two

minterms: one, 0001, with Hamming weight 1 (i.e., Tp(1) = 1)
and one, 1001, with Hamming weight 2 (i.e., Tp(2) = 1).

Summing the contribution Tp(w) of each product p in the
DSOP representation of f , we then derive the exact number
T (w) of on-set minterms of Hamming weight w, for each
0 ≤ w ≤ n. Observe that, f is a totally symmetric function if
and only if, for all 0 ≤ w ≤ n, T (w) = 0 or T (w) =

(
n
w

)
.

For instance, considering all the products in the previous
example, we have that T (0) = 1, T (1) = 3, T (2) = 2,
T (3) = 1, and T (4) = 0. We can note that f is not
symmetric since some of the non-zero values of T are not
equal to the corresponding binomial: i.e., T (1) 6=

(
4
1

)
= 4,

T (2) 6=
(
4
2

)
= 6, T (3) 6=

(
4
3

)
= 4.

The second phase of the algorithm consists in deriving the
totally symmetric function f ′ closest to f . For all 0 ≤ w ≤
n, we compute the minimum number E(w) of minterms on
which the output bit of f must be complemented to make the
function constant on all inputs of Hamming weight w. Observe
that E(w) is simply given by

E(w) = min

{
T (w),

(
n

w

)
− T (w)

}
.

In particular, if E(w) = T (w), then f ′ is derived from f by
a 1 to 0 complement of the output bit on the on-set minterms
of Hamming weight w, otherwise f ′ is derived by a 0 to
1 complement on the off-set minterms of Hamming weight
w. The overall minimum number of output bits that must
be changed in order to transform f into a totally symmetric
function, is then given by e =

∑n
w=0 E(w).

Following the previous example, we have that E(0) =
min{1,

(
4
0

)
− 1} = 0, E(1) = min{3,

(
4
1

)
− 3} = 1,

E(2) = min{2,
(
4
2

)
− 2} = 2, E(3) = min{1,

(
4
3

)
− 1} = 1,

and E(4) = min{0,
(
4
4

)
−0} = 0. In particular, the points with

Hamming weight 1 are: 3 in the on-set and 1 (i.e., 1000) in the
off-set of f . With 1 error we set all of them to 1. Moreover,
the points with Hamming weight 2 are: 2 in the on-set and 4

in the off-set. With 2 errors we set all of them to 0. Finally,
the points with Hamming weight 3 are: 1 in the on-set and 3
in the off-set, with 1 error we set all of them to 0. This means
that the value vector of the closest symmetric function f ′ is
v(f ′) = [1, 1, 0, 0, 0], and e = 4

Observe that the symmetric approximation f ′ of f is not
necessarily unique. Indeed, whenever T (w) = 1

2

(
n
w

)
, f ′ can

be derived either by a 1 to 0 complement of f on the on-set
minterms of Hamming weight w, or by a 0 to 1 complement
of f on the off-set minterms of weight w.

B. Incompletely specified functions

We now discuss how to transform an incompletely specified
Boolean function in a totally symmetric one, introducing the
minimum number of errors. Since any don’t care condition can
represent a 0 or a 1, often, the generalization of a problem to
incompletely specified Boolean function implies a growth of
the complexity of the resolution algorithm. Fortunately, we
can show that, in this case, the resolution procedure is still
polynomial. The intuition behind this fact is that, for any
Hamming weight w, all don’t cares should be set to 0 or all
the don’t cares should be set to 1. Therefore, the choice is
performed for any w between 0 and n, and not for any don’t
care point.

More formally, let f : {0, 1}n → {0, 1,−} be an incom-
pletely specified Boolean function, and X = {x1, x2, . . . , xn}
be the set of its input variables. The minimum number of
errors is given by

E(w) = min

{
T (w),

(
n

w

)
− T (w)−D(w)

}
,

where D(w) is the number of don’t care minterms of Ham-
ming weight w, for each 0 ≤ w ≤ n, computed in the same
way as T (w), considering a DSOP representation of the don’t
care minterms of f . Note that if E(w) = T (w), then f ′ is
derived from f by a 1 to 0 complement of f on all on-set and
don’t care-set points of Hamming weight w and the number of
errors is given only by the number T (w) of on-set minterms of
weight w, otherwise f ′ is derived by a 0 to 1 complement of
f on the off-set minterms of Hamming weight w. In this last
case, the number of errors is given by the number of off-set
minterms of Hamming weight w, i.e.,

(
n
w

)
− T (w)−D(w).

C. Algorithms to represent totally symmetric functions

Algorithm 1 describes, in pseudocode, the strategy dis-
cussed in the previous subsections, in the general case of
incompletely specified Boolean functions.

Let f : {0, 1}n → {0, 1,−} be an incompletely specified
Boolean function, and let fon and fdc denote its on-set and
don’t care-set, respectively. For the sake of simplicity, suppose
that fon ∩ fdc = ∅; otherwise, following the usual semantics,
we consider fon \ fdc as the on-set of f .

The proposed algorithm starts from the DSOP represen-
tations of the on-set and of the don’t care-set of the target
function f . These representations can be derived by applying
a heuristic algorithm for DSOP synthesis as for instance the



one described in [4], or by building the BDD representation
of fon and fdc and using them to derive the requested DSOP
forms, as proposed in [7]. Observe in fact that a DSOP form
can be extracted in a straightforward way from a BDD, as
different one-paths correspond to disjoint cubes.

Algorithm 1: Algorithm for computing the totally symmetric
function closest to an incompletely specified target function
under the bit threshold metric.

SymmetricApproximation (function f )

INPUT: An incompletely specified function f = (fon, fdc)
OUTPUT: The value vector v of the totally symmetric
function f ′ closest to f , and the number e of output bits
of f that must be complemented to derive f ′

compute a DSOP representation of fon and of fdc

e = 0
v = new array of n+ 1 integers, initialized to 0
T = new array of n+ 1 integers, initialized to 0
D = new array of n+ 1 integers, initialized to 0

forall product p in DSOP(fon) or in DSOP(fdc)
compute the number k of positive literals in p
compute the number h of don’t care variables in p
for w = k to k + h do

if (p ∈ DSOP(fon)) T [w] = T [w] +
( h
w−k

)
else D[w] = D[w] +

( h
w−k

)
for w = 0 to n do

if (T [w] >
(n
w

)
− T [w]−D[w])

v[w] = 1
e = e+

(n
w

)
− T [w]−D[w]

else
v[w] = 0
e = e+ T [w]

return v, e

The algorithm has a time complexity polynomial in the
number n of input variables and in the number of products
in the DSOP forms representing fon and fdc. The correctness
is proved in the following theorem.

Theorem 1: Let f be a Boolean function represented in
DSOP form. The proposed algorithm computes the totally
symmetric function closest to f , i.e., a totally symmetric
function f ′ that can be derived complementing the minimum
number e of output bits of f .
Proof. The correctness of the algorithm follows from Proposi-
tion 1 and from the fact that each on-set minterm is covered by
one and only one product in the DSOP representation of fon,
as well as each don’t care-set minterm is covered by one and
only one product in the DSOP representation of fdc. Thus, the
numbers T (w) and D(w) of the on-set and of the don’t care-
set minterms of Hamming weight w, for each 0 ≤ w ≤ n,
can be correctly computed summing the contribution of each
product in the DSOP representations of fon and fdc.

Observe that in an approximate logic synthesis scenario,
the minimum number e of output bits that must be changed to
make f totally symmetric provides a sort of lower bound to the
bit threshold Bt required in order to allow the approximation
of f with f ′. That is, whenever e ≤ Bt, we can synthesize
f ′ instead of f . In terms of error rate, we can consider the
approximation feasible if the error rate r = e/2n induced by
the substitution of f with f ′, is less or equal to the error rate
considered acceptable for the application under study.

We finally describe a dynamic programming procedure,
based on the recursive approach described in [11] (pp. 65-
66), which can be used to build the BDD representation of
the totally symmetric function f ′ computed by Algorithm 1,
starting from the value vector v of f ′. The idea is to first build
an (n+1)× (n+2) matrix M of BDDs, where M [i][j+1] is
the BDD representing the set of all i-dimensional vectors of
Hamming weight j, and then to select, according to the value
vector v, the BDDs in the last row of the matrix M whose
union corresponds to f ′.

Algorithm 2: Algorithm for computing the BDD represen-
tation of a totally symmetric function, starting from its value
vector.

ValueVectorToBDD (function f )

INPUT: The value vector v of a totally symmetric function
with n inputs
OUTPUT: The reduced BDD representation of f

/* Dynamic programming computation of the matrix M */
M = new matrix of dimension (n+ 1)× (n+ 2)
M [0][1] = the BDD terminal node 1
for i = 0 to n do

M [i][0] = the BDD terminal node 0
for i = 0 to n do

for j = i+ 2 to n+ 1 do
M [i][j] = the BDD terminal node 0

for i = 1 to n do
for j = 1 to i+ 1 do

M [i][j] = BDD-ITE(xi, M [i− 1][j − 1], M [i− 1][j])

/* BDD construction */
SymDD = the BDD terminal node 0
for i = 0 to n do

if (v[i] == 1) SymDD = BDD-OR(SymmDD, M [n][i+ 1])
return SymDD

D. Multi-output functions

The algorithms that we designed for single-output functions
can be applied also to multi-output functions, by simply
considering each output as a separate Boolean function. In-
deed, once each output function has been transformed into a
totally symmetric function, the overall multi-output function
becomes totally symmetric as well, as proved in the following
Proposition 2.

Let f : {0, 1}n → {0, 1,−}m be an incompletely specified
Boolean function with n inputs and m > 1 outputs. For
each i, 1 ≤ i ≤ m, let fi denote the single output function
corresponding to the i-th output of f , and let f ′i be the to-
tally symmetric function derived complementing the minimum
number ei of output bits of fi, i.e., applying Algorithm 1 to
each output of f . Finally, let f ′ be the multi-output function
obtained substituting each output function fi in f with the
totally symmetric function f ′i , 1 ≤ i ≤ m.

Proposition 2: The multi-output function f ′ is a totally
symmetric function.
Proof. A multi-output function is totally symmetric if and only
if it is invariant under all permutations of the input variables,
i.e., if and only if it computes the same output vector on all
minterms with the same Hamming weight. Now consider the
function f ′ and observe that each single output of f ′ is totally



symmetric, thus each single output is constant on all minterms
with weight w, 0 ≤ w ≤ n. As a consequence, f ′ outputs the
same vectors on all minterms with Hamming weight w and
the thesis immediately follows.

We now prove that not only f ′ is totally symmetric, it is
also the totally symmetric function closest to f .

Proposition 3: The function f ′ derived applying Algo-
rithm 1 to each output of f is the totally symmetric function
that can be derived complementing the minimum number of
output bits of f .
Proof. For each i, 1 ≤ i ≤ m, let ei denote the number
of output bits complemented in order to transform the i-th
output function of f into a totally symmetric one applying
Algorithm 1. Moreover, let e =

∑m
i=1 ei denote the overall

number of output bits complemented to make the whole f to-
tally symmetric. Suppose that there exists a totally symmetric
multi-output function g′ closer to f . Then, there exists at least
one output of f , say fi, that can be made totally symmetric
complementing e′i < ei output bits, in contradiction with the
minimality of ei proved in Theorem 1.

Finally, the error rate r induced by the approximation of f
with the totally symmetric function f ′ can be computed as

r =
e

m 2n
=

∑m
i=1 ei
m 2n

,

where m is the number of outputs of f .

IV. SYMMETRY-BASED APPROXIMATION UNDER A
BOUNDED ERROR RATE

In this section we discuss some possible strategies that can
be adopted to enhance the symmetry of a function f within
an error rate r defined in advance.

Let f : {0, 1}n → {0, 1,−}m be an incompletely specified
function with n inputs and m outputs, and let r denote the error
rate. From r, we can compute the bit threshold Bt = r ·m ·2n,
i.e., the maximum number of output bits that we are allowed
to complement to derive a symmetric approximation f ′ of f .

A first greedy strategy consists in simply sorting the outputs
of the multi-output function with respect to the number of er-
rors needed to transform each of them into a totally symmetric
function. Starting from the output function with the lowest
number of errors, we transform in symmetric functions the
outputs till we reach the given bit threshold Bt. In this way,
we enhance the symmetry of the overall function making some
of its outputs totally symmetric.

An alternative method could consist in making a function
constant on all minterms with the same Hamming weight. The
idea is basically to apply Algorithm 1 to f , and to stop the
computation as soon as the number of complemented output
bits reaches the bit threshold Bt. But instead of processing the
subsets of minterms in order of increasing Hamming weight,
we first compute, for each weight w and each output function
fi, the minimum number Ei(w) of minterms on which the
output bit of fi must be complemented to make this output
constant on all inputs of weight w. Then, we start from the
weight w and from the output fi on which f can be made

constant (0 or 1) complementing the least number of output
bits, and we proceed in a greedy way in ascending order of
Ei(w), until we reach the threshold Bt. At the end of the
process, we obtain a function f ′ with some outputs that assume
a constant value on minterms with equal weight for a subset of
possible weights. This approach presents an evident limitation,
as making a function constant only for some weights does not
necessarily enhance its overall symmetry and may not provide
realizations of reduced complexity. This limitation has been
confirmed by our experimental results, that have clearly shown
how only the greedy strategy based on the total symmetrization
of some outputs of the function provides interesting results.

Finally, we observe that a different approach could be based
on enhancing the partial symmetry of a function, instead of
its total symmetry, increasing the number of variables that
can be permuted without changing the output. This task could
be accomplished for instance increasing the cardinality of the
biggest symmetry set adding a new variable to it. The variable
should be selected in a greedy way, as the variable whose
insertion in the currently biggest symmetry set causes the least
number of erroneous output bits. Due to space limitation, this
methodology will be discussed in more details in the long
version of the paper.

V. EXPERIMENTAL RESULTS

In this section we discuss the experimental results ob-
tained by applying the algorithms described in Sections III
and IV. We have considered the classical ESPRESSO bench-
mark suite [25] and the new EPFL combinational benchmark
suite [1]. The computational experiments were performed on
a Linux Intel Core i7-7700 CPU with 8 GB of RAM. The
algorithms have been implemented in C, using the CUDD
library for BDDs to represent Boolean functions.

Table I compares the BDD dimension for the benchmark
functions and for their closest symmetric approximations in
the unbounded and bounded error models. Due to the lim-
ited space available, we report only a significant subset of
the experiments. The first column reports the name of the
benchmarks and the number of their inputs and outputs. The
second column shows the dimension (number of nodes) of
the BDDs representing the on-set of the benchmark functions.
The first group of columns, labeled Sym Unbounded, refers to
the closest totally symmetric function in the unbounded model
(Section III). The first column in this group shows the BDD
size of the symmetric function, the second column contains the
required error rate, and the third column reports the percentage
gain of the BDD of the closest symmetric function. The second
group, labeled Sym Bounded, provides the results for the
bounded model based on the symmetrization of a subset of
the outputs (Section IV) with a fixed error rate r = 5%.
The last column provides the computational time in seconds
(for computing both approaches). In general, the average gain
for the unbounded model is 69% with an average error rate
15%. In the bounded context, with a fixed error rate 5%, the
average gain is about 31%. Due to the polynomial nature of
the approaches, the computational times are very limited.



The second bounded approach described in Section IV,
which makes a function constant only for some weights, has
been tested on the same benchmarks with low quality results,
i.e., the BDD size increases by 150%. This confirms the
theoretical intuition that fixing a constant value for just some
weights does not give an interesting “symmetry” property to
the function.

TABLE I
EXPERIMENTAL COMPARISON WITH THE CLOSEST-SYMMETRIC IN THE

UNBOUNDED AND BOUNDED MODELS.

Sym Unbounded Sym Bounded (5%)
bench.(in/out) BDD BDD ER (%) gain BDD gain time (s)
alu2 (10/8) 242 42 9.7 82.6 177 26.9 0.01
alu3 (10/8) 237 43 9.7 81.9 170 28.3 0.01
b2 (16/17) 4424 79 29.0 98.2 4215 4.7 0.15
b9 (16/5) 173 80 37.9 53.8 173 0.0 0.01
bc0 (26/11) 590 490 32.9 17.0 635 -7.6 0.02
bca (26/46) 1428 52 0.1 96.4 52 96.4 0.02
bcb (26/39) 1268 52 0.1 95.9 52 95.9 0.01
bcc (26/45) 1116 27 0.1 97.6 27 97.6 0.02
bcd (26/38) 843 27 0.1 96.8 27 96.8 0.01
cavlc (10/11) 508 37 10.3 92.7 291 42.7 0.01
chkn (29/7) 742 234 7.8 68.5 577 22.2 0.02
ctrl (7/26) 101 27 13.4 73.3 65 35.6 0.01
dec (8/256) 510 16 0.4 96.9 16 96.9 0.01
i2c (147/142) 2873 8306 22.1 -189.1 7287 -153.6 2.24
in0 (15/11) 518 89 23.2 82.8 410 20.9 0.01
in1 (16/17) 4424 79 29.0 98.2 4215 4.7 0.10
in2 (19/10) 2361 101 12.1 95.7 1195 49.4 0.05
in5 (24/14) 492 144 10.6 70.7 200 59.4 0.01
in7 (26/10) 235 229 23.0 2.6 166 29.4 0.01
int2float (11/7) 359 51 25.5 85.8 345 3.9 0.01
mark1 (20/31) 253 153 0.0 39.5 153 39.5 0.01
max1024 (10/6) 261 93 43.2 64.4 261 0.0 0.01
max128 (7/24) 130 78 26.0 40.0 144 -10.8 0.01
max46 (9/1) 75 1 12.1 98.7 75 0.0 0.01
max512 (9/6) 148 65 38.0 56.1 168 -13.5 0.01
opa (17/69) 513 172 8.0 66.5 118 77.0 0.01
pdc (16/40) 695 102 4.0 85.3 102 85.3 0.06
router (60/30) 231 551 0.2 -138.5 231 0.0 2.77
t2 (17/16) 149 81 7.9 45.6 44 70.5 0.01
test2 (11/35) 4817 77 9.9 98.4 2694 44.1 0.14
test3 (10/35) 2619 79 9.8 97.0 1445 44.8 0.07
test4 (8/30) 941 89 8.5 90.5 476 49.4 0.02
tial (14/8) 1307 153 37.7 88.3 1029 21.3 0.01
ts10 (22/16) 4391 1 6.3 100.0 1331 69.7 0.09
vg2 (25/8) 219 213 21.2 2.7 175 20.1 0.01
vtx1 (27/6) 241 228 14.9 5.4 182 24.5 0.01
x9dn (27/7) 271 229 12.8 15.5 186 31.4 0.01
Z9sym (9/1) 25 25 0.0 0.0 25 0.0 0.01

VI. CONCLUSIONS

In this paper we presented a new approach to approximate
synthesis of combinational logic, by deriving a polynomial
algorithm to find the symmetric approximation that injects the
minimum number of errors in a given incompletely specified
Boolean function, and then relaxing the symmetrization until
the given error bounds are met. This approach is particularly
convenient for BDD-based implementations, such as networks
of MUXes directly mapped from BDDs. Experimental results
on classical and new benchmarks confirm the efficacy of the
proposed approach. Future work includes the investigation of
bounded error approximation methods to enhance the partial
symmetry of a function, increasing the number of symmetric
variables as mentioned in Section IV.
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