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Robustness of Complementary Wearable Ungrounded Antennas with respect 
to the Human-Body 

 

Several wearable antennas have been presented in the open scientific literature, 

showing a good robustness with respect to the body coupling effect, both on the 

input matching and on the antenna efficiency. In this work, we evaluate and 

compare the robustness with respect to the coupling with the human body of 

complementary structures. We focus on structures widely used as wearable 

antennas, namely the ungrounded meandered printed antennas (which are electric 

antennas), and the ungrounded meandered slot printed antennas (which are 

magnetic antennas). We will show that, although in non-wearable context these 

complementary structures are essentially equivalent, for wearable applications it 

is preferable to use magnetic antennas configurations, i.e. meandered slot printed 

antennas, because, by means of appropriate design choices, they can be far less 

sensitive to the proximity to the human body. 
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1. INTRODUCTION 

In the design of wearable antennas,  the main difficulties are due to the strong coupling 
with the human body, which is a lossy and non-homogeneous material, and can 
significantly degrade the antenna performance (such as input impedance, resonant 
frequency, radiation efficiency) with respect to the case of free-space applications [1]. 
The wearable antenna performance is, in fact, very sensitive to the distance between the 
antenna and the body surface. In addition to this, in real-world applications this distance 
can randomly change during natural body movements [2]. Moreover, the 
electromagnetic and geometrical parameters of the antenna platform (the human body) 
not only change from person to person, but are different even for different locations of 
the antenna on the same person [3]. In wearable applications is therefore very important 
to limit the human body effect, and to resort to appropriate design choices able to 
improve the antenna robustness. 

In [4], [5], and [6] a criterion has been proposed for the choice of the optimal shape and 
size of the antenna ground plane, able to enhance the robustness of UHF grounded 
wearable printed antennas with respect to the antenna-body coupling effects, relating 
the optimal ground plane shape to the position of the maxima of the electric and 
magnetic energy density distributions in the near field region around the antenna. 
Through a deep analysis of these distributions, we demonstrated that the degradation of 
the antenna performance, due to the proximity of the human body, can be reduced if the 
ground plane is modified aiming to confine the electric energy density in the region far 
from the antenna border. 

These concepts have been extended also for the case of ungrounded antennas [7], where 
the absence of a metallic ground plane makes the structure even more sensitive to the 



human body proximity effect. In [7], in order to improve the robustness of 
“ungrounded” printed wearable antennas with respect to the distance from the human 
body, an energy-based design criterion has been provided, which consists in a suitable 
choice of the antenna layout able to confine the electric energy density far from the 
antenna borders. 

In this work, the energy-based design criterion for “ungrounded” printed wearable 
antennas described in [7], which relates the robustness of the structure with the position 
of the maxima of the electric and magnetic energy density distributions in the near field 
region around the antenna, is exploited to study the robustness with respect to the 
coupling with the human body of complementary structures. As a matter of fact, in free-
space applications complementary antennas are considered almost equivalent [8]. This 
is not true for on-body applications, as the two complementary antennas are actually 
one “magnetic” and the other one “electric”. Therefore, we expect a completely 
different robustness.  

We focus here on two complementary antennas, quite popular for wearable 
applications: 

a) the ungrounded printed meander line antennas (which are electric antennas) [9-
14] 

b) the ungrounded meandered slot printed antennas (which are magnetic antennas) 
[15-20].  

Meander line antennas (MLAs) are an attractive, and very common, choice in the UHF 
band, since they allow to reduce antenna size, especially for RFID applications [11, 12]. 
Moreover, the meandered configuration allows the dipole to assume a suitable inductive 
input reactance, necessary to match the tag antenna with the chip storing the 
information. If the dipole arms are folded in meanders [10], the equivalent wire 
configuration shows both capacitive and inductive reactance, which mutually cancel. 
This behavior produces resonances at frequencies which can be significantly lower than 
in the case of straight wire antenna of the same height (and this frequency can be 
controlled by the number and depth of the meanders). On the other hand, the  
meandered antenna shows a narrower bandwidth and a lower gain, also due to the fact 
that usually the meandered antenna must be contained within a very small size (for 
example, a few centimeter-side square for a RFID tag which labels small objects).  

In many applications, the MLAs are replaced by their complementary antenna, the 
Meandered Slot Antenna (MSA) [15-20]. The antenna layout of a typical MSA consists 
of a planar patch (without ground plane), on which a non-uniform slot-line is cut, 
occupying only a small part of the metallization. In this antenna, the main radiating 
element is the slot-line, and therefore it can be defined as a “magnetic antenna”, and is 
complementary to the MLA, which is, on the other hand, an “electric antenna”, wherein 
the radiating element is the metallic meandered dipole. 

For RFID applications [15],  the choice of MSAs, and, hence, of the slot as main 
radiating element, allows simplifying the synthesis of the inductive reactance, which is 
typically required to match the tag antenna with the capacitive impedance of the tag 
microchip. In each short slot-line portion of the MSA, which contributes with its 
irradiation to the radiated field, there is an electric energy accumulation, whereas the 
discontinuity (tooth) between two MSA having different cross-section (as shown in 
Figure 1), besides contributing to the radiated field, also adds an inductive reactance to 
the antenna input reactance [15]. Therefore, the whole slot profile of the MSA can be 
considered as a slot-line impedance transformer, and its many degrees of freedom can 
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TABLE I 

 PHYSICAL AND GEOMETRICAL PARAMETERS OF THE LAYERED 

ANATOMICAL MODEL AT 870 MHZ 

      

Layer εr σ [S/m] 

 

Ellipse axis thin man [cm] Ellipse axis thick man [cm]

Skin + fat 14.5 0.25 33.5 x 16.8 50.0 x 20.0 

Muscle 55.1 0.93 31.0 x 14.2 46.5 x 17.0 

Bone 20.8 0.33 28.4 x 10.5 42.6 x 12.6 

Internal organs 52.1 0.91 27.2 x 8.4 41.0 x 10.0 

 

We consider the following figures of merit to study the antenna robustness with respect 
to the body proximity, and to investigate the antenna performance when varying the 
antenna distance from the human body phantom, d:  

 

 the radiation efficiency,  
 the power transmission coefficient, , expressed as: 
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wherein ZIN is the antenna input impedance, and Z0 is a reference impedance.  

In order to evaluate the robustness of different layouts by varying the body-antenna 
distance d, the reference impedance Z0 has been chosen equal to the antenna input 
impedance at the frequency of 868 MHz, and when the antenna is adherent to the 
human body model (d = 0 mm). 

The robustness of the proposed configurations has been studied separately for  and       
 ×, and the best configuration is considered to be the one exhibiting a reasonable 
value of ×, with a  as great as possible, with both these parameters as stable as 
possible with respect to the antenna-body distance, d. 

For both the considered antennas (MLA and MSA), three configurations have been 
investigated. In particular: 

 

 ANT (the reference layout), which is the reference antenna  

 ANT-V, in which the structure layout is extended toward the vertical direction; 

 ANT-H, in which the structure layout is extended toward the horizontal direction. 

 

2.1 MEANDERED SLOT ANTENNA 

 
Following the layout described in [15], where a planar antenna layout suited to Sensor-
RFID fabrication is presented, the MSA in Figure 1b has been designed to work in the 
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 The variation against d of ,  and  ×  is shown in Figure 9a, 9b, and 9c, 
respectively. These results clearly indicate that the substrate enlargement has 
substantially no effect on the antenna robustness with respect to the human body 
coupling. As stated before, this is due to the fact that, for this antenna configuration, 
there is not a clear separation between the maxima of the electric energy density and the 
ones of the magnetic energy density. On the other hand, from the results presented in 
Figure 9, it is apparent that the antenna behavior experiences a significant degradation 
due to the coupling with the human body, with a power transmission coefficient, which 
decreases to less than 20% at a distance of only 10 mm from the human body phantom.  

For wearable applications, the antenna size is a very strict requirement, and the 
wearable antenna should be as comfortable and unobtrusive as possible for the wearer. 
Therefore, it is very important to evaluate which should be the optimal extension, in 
terms of free space wavelength, required to design an antenna with an adequate 
robustness. In order to estimate the optimal enlargement of the structure, in Figure 10, a 
parametric analysis of the meander slot line antenna shown in Figure 2 has been 
performed, by varying the extension L of the structure towards the vertical direction 
(which is the direction of the maxima of the electric energy density), as shown in Figure 
4a for the ANT-V configuration. The simulations have been performed at the design 
frequency of 868 MHz. These results show that with an increment of the extension of 
only /10 for each side ( being the free space wavelength at 868 MHz), the robustness 
of the antenna is significantly improved. On the other hand, when the size of the 
antenna is a critical issue, also smallest extensions can be used, still preserving an 
adequate robustness of the structure. As an example, also a minimal extension of /20 
(corresponding to only 17.28 mm at 868 MHz), can ensure an usable antenna, at least if 
compared with the meander slot line antenna without any extension, which has a 
completely unsatisfying performance, both in terms of input matching and radiation 
efficiency (see Figure 5). 
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The presented numerical analysis confirms that, since the human tissues are non-
magnetic materials, the coupling between the “magnetic” MSA antenna and the human 
body can be reduced by enlarging the antenna structure towards the directions where the 
electrical energy density has a maximum. However, in this work we reached the very 
important conclusion that this approach, as proposed and described in [7], can be used 
only when the physical distribution of the electromagnetic energy in the antenna is such 
that there is a clear separation between the maxima of the electric energy density and 
the ones of the magnetic energy density. In  particular, we have shown that in wearable 
applications “magnetic” antennas, like the MSA described in sub-section 2A, should be 
used, since they can be significantly more robust to the human body coupling with 
respect to their complementary “electric” antennas (like the MLA of sub-section 2B), 
whose sensitivity to the human body proximity cannot be easily improved. 

3. CONCLUSION 

This work describes a numerical investigation, based on the analysis of the electric and 
magnetic energy densities close to the borders of ungrounded antennas, to study the 
robustness with respect to the coupling with the human body of two complementary 
structures: the ungrounded meandered printed antenna (which is an electric antenna), 
and the ungrounded meandered slot printed antenna (which is a magnetic antenna). We 
have found that the design criterion used to improve the antenna robustness, leading to a 
proper enlargement of the antenna layout, is effective only if, in the antenna layout, the 
maxima of the electric energy density are well separated from the maxima of the 
magnetic energy density. As a consequence, the presented results show that it is 
possible to reduce the coupling with the human body only using the “magnetic” 
antenna, because, by means of appropriate design choices, they can be less sensitive to 
the proximity to the human body. 
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