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Abstract—We present a simple and computationally 

inexpensive method to design one-dimensional MEMS flexural 

phononic crystals with assigned width and central frequency of the 

acoustic bandgap, based on the analysis of the characteristic 

polynomial of the acoustic transmission matrix of the crystal 

elementary cell. Our analysis shows that a high acoustic contrast 

does not necessarily lead to wide bandgaps, unless the modulation 

of the mechanical properties is properly chosen. We also 

demonstrate that the acoustic attenuation inside the bandgap, 

which is an important design target, is essentially predetermined 

once that the bandgap width and center have been chosen. The 

method can be valuable for fast design of phononic crystal devices 

with applications spanning from sensors to filters and resonators. 

 
Index Terms—Acoustic devices, Acoustic waveguides, Acoustic 

scattering, Bandstop filters, Micromachining. 

 

I. INTRODUCTION 

HONONIC crystals (PnCs) are structures exhibiting a 

frequency-selective behavior with respect to the 

propagation of acoustic waves. Their frequency spectrum is 

divided into pass bands, where propagation is allowed, 

alternating with bandgaps, where it is forbidden. The initial 

interest in PnCs was motivated by the analogy with other waves 

in periodic lattices: photonic crystals exhibit bandgaps for 

electromagnetic waves [1], while the periodic potential in 

crystal lattices produce electron bands in solids. Research in 

PnCs has evolved in a wide range of subtopics. A general 

overview on phononic crystals can be found in [2,3]. 

Several potential applications of PnCs have been envisioned 

and implemented in various MEMS technologies. The ability to 

block the propagation of acoustic energy suggested the use of 

MEMS PnCs to enhance the quality factor of acoustic resonant 

cavities, created by breaking the periodicity of the crystal [4]. 

Weinstein and coworkers used acoustic confinement to create 

an actively sensed CMOS-based resonator, the resonant body 

transistor [5]. Signal processing blocks such as bandpass filters 

[6] and demultiplexers [7], have been proposed as well. PnC-

based anchors were shown to reduce mechanical losses in 

standard MEMS resonators [8]. Other applications include 

mass sensors [9,10], acoustic waveguides [11] and thermal 

insulators [12]. 

 
This work was supported in part by the ENIAC Joint Undertaking under 

Grant 325622.  

Flexural PnCs, i.e. structures in which flexural (bending) waves 

are the fundamental mode of propagation, are typically shaped 

as beams with the direction of propagation along the beam axis. 

Their properties have been studied in several works [13–15]. 

An efficient way to model flexural PnCs is the use of 

transmission matrix models [13,14]. 

Despite a wide range of theoretical, numerical and 

experimental investigations, a set of simple practical rules for 

the design of PnCs, based on the frequency behavior 

specifications (bandgaps positions and widths, attenuation, 

etc.), is still lacking. For a series of interesting cases, optimal 

design has been sought through numerical algorithms. Sigmund 

and Jensen [16] were the first to use topological optimization in 

the design of 2D PnCs. They focused on the maximization of 

the fractional bandgap width, i.e. the ratio of the bandgap width 

to its central frequency. This approach allows a flexible 

definition of the target function, but it is computationally very 

expensive, especially for very fine discretization of the 

elementary 2D cell. Hussein and coworkers employed genetic 

algorithms for the design of different classes of PnCs in several 

works, all based on design targets which are again, essentially, 

the maximization of the fractional bandgap width. Examples 

include 1D longitudinal  [17], 1D flexural [18], and 2D 

PnCs [19]. As for the topological optimization, genetic 

algorithms are computationally very expensive. Furthermore, 

the mechanical properties (density, elastic moduli) of the 

material (or materials) involved are not subject to optimization. 

Olhoff et al [20] implemented an efficient iterative optimization 

of Euler-Bernoulli flexural beams, aimed at maximizing the 

distance between two neighboring eigenfrequencies of a finite 

beam by varying its cross-section with continuity (which is 

impractical in real devices), without a priori assumptions about 

periodicity. Interestingly, their algorithm led to spatially 

periodic designs (i.e. finite PnCs) with the unit cell presenting 

a bandgap between the two eigenfrequencies. As a general 

limit, all these methods lead to the optimal solution without 

giving much physical insight about the relative importance of 

the different design parameters. 

In this paper, we present a method for the design of 1D 

flexural MEMS PnCs, where the  periodicity is typically 

obtained by introducing a regular pattern of holes in the 

structural layer [4,6,8–10,12]. This choice reduces the degrees 

of freedom of the design and substantially simplifies the 
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synthesis. Our method is based on the Euler-Bernoulli (EB) 

beam theory, and models the acoustic transmission properties 

of the PnC by using the transmission matrix formalism [13]. We 

show that, once the bandgap center and width are given, a set 

of optimal designs can be extracted by following simple rules 

based on the study of few normalized quantities. We will also 

show that, contrary to common assumptions, a high acoustic 

contrast does not necessarily lead to a wide bandgap, and that 

the attenuation inside the bandgap is essentially predetermined 

once the bandgap width and center are chosen. 

II. MODEL 

The geometry of a typical flexural PnC cell, of length 𝑙, is 

shown in Fig. 1(a). The structural modulation is obtained with 

rectangular holes, which make the beam properties piecewise-

constant functions of 𝑥. A PnC is composed by a replica of 

several cells along the 𝑥 axis. Each of these cells is composed 

by a holed segment and a full segment. The flexural wave 

consists of a deflection along 𝑧 (Fig. 1(b)). The modulation is 

defined by two dimensionless parameters: 𝛼𝑥 is the length of 

the full segment normalized to the cell length, and 𝛼𝑦 is the area 

of the holed cross-section normalized to the full cross-section. 

Both parameters are comprised between 0 and 1. The purpose 

of the perforations along y is to alter the mechanical properties 

of the holed segment with respect to the propagation of waves 

along x. Although these perforations introduce a spatial 

periodicity also along y, we assume that the flexural 

deformation is a function of x only (i.e. the PnC is strictly one-

dimensional). Additionally, we assume that the holed segment 

behaves as if constituted of an equivalent material of reduced 

density and stiffness. The reduction factor is the perforation 

ratio 𝛼𝑦. The actual number of holes along 𝑦 in the holed 

segment does not influence the PnC behavior, as long as it is 

large enough that the equivalent material hypothesis holds. 

Having a large number of holes along 𝑦 increases the surface to 

volume ratio, a property linked to an increase in sensitivity in 

resonant mass sensors [10,21–23]. 

In EB theory, the beam is characterized by two parameters: 

its bending stiffness (𝐸𝐼), i.e. the product of the Young’s 

modulus 𝐸 and the moment of inertia of the cross-section 𝐼, and 

the translatory inertia (𝜌𝐴), i.e. the product of the mass density 

𝜌 and the area of the cross-section 𝐴. 

The state of the beam at any 𝑥 is described by a state vector 

𝐬(𝑥), whose components are the vertical displacement 𝑢(𝑥), 

rotation angle 𝜓(𝑥), bending moment 𝑚(𝑥) and shear force 

𝑡(𝑥) at the cross-section. To highlight the essential degrees of 

freedom, we normalize the state vector with respect to 𝑙 and to 

the stiffness and inertia of the full segment (𝐸𝐼)𝑓, (𝜌𝐴)𝑓, by 

using the following substitutions: 

 𝜉 ≡
𝑥

𝑙
,   𝑈(𝜉) ≡

1

𝑙
𝑢(𝜉𝑙),    𝛹(𝜉) ≡ 𝜓(𝜉𝑙),  

𝑀(𝜉) ≡
𝑙

(𝐸𝐼)𝑓
𝑚(𝜉𝑙),    𝑇(𝜉) ≡

𝑙2

(𝐸𝐼)𝑓
𝑡(𝜉𝑙). (1) 

With this normalization, the EB beam harmonic equation can 

be written as: 

 
𝑑

𝑑𝜉
[

𝑈(𝜉)
𝛹(𝜉)
𝑀(𝜉)

𝑇(𝜉)

] =

[
 
 
 
 

0 1 0 0

0 0 −
(𝐸𝐼)𝑓

(𝐸𝐼)
0

0 0 0 1

−𝛺2 (𝜌𝐴)

(𝜌𝐴)𝑓
0 0 0

]
 
 
 
 

[

𝑈(𝜉)
𝛹(𝜉)
𝑀(𝜉)

𝑇(𝜉)

] = 𝐃 ∙ 𝐒(𝜉) (2) 

where 𝐒(𝜉) is the normalized state vector, 𝐃 the normalized 

system matrix, and a normalized angular frequency 𝛺 has been 

introduced:  

 

 𝛺 ≡
𝜔

𝜔0
,     𝜔0 ≡

𝑐

𝑙
,     𝑐 ≡ √

(𝐸𝐼)𝑓

𝑙2(𝜌𝐴)𝑓
 (3) 

 

with 𝜔 being the angular frequency. The quantity 𝑐 has the 

dimensions of a speed, and is defined in accordance with [24]. 

The normalized system matrix 𝐃 is a function of 𝛺 and of the 

normalized stiffness and inertia only. For our structure the last 

two quantities are: 

 
(𝐸𝐼)

(𝐸𝐼)𝑓
=

(𝜌𝐴)

(𝜌𝐴)𝑓
= {

1 in the full segments
𝛼𝑦 in the holed segments

. (4) 

The actual matrix 𝐃 depends on the type of segment: we call 

𝐃𝑓 the matrix for full segments and 𝐃ℎ the matrix for holed 

segments. The transmission matrix of each segment, i.e. the 

matrix 𝐓 such that 𝐒(𝜉 + 1) = 𝐓 ∙ 𝐒(𝜉), is computed by solving 

the system (2) for the two types of segments and by combining 

the solutions. The final expression for 𝐓 of a cell is: 

 𝐓 = 𝑒𝛼𝑥𝐃𝑓𝑒(1−𝛼𝑥)𝐃ℎ (5) 

where 𝑒𝐌 is the matrix exponential of 𝐌. The eigenvalues of 𝐓 

completely describe the transmission properties of the PnC, and 

therefore the band structure. Because of the structure of 𝐓, the 

four eigenvalues are determined by only two independent 

invariants, 𝐼1 and 𝐼2 [25]. In our case, the invariants only depend 

on 𝛼𝑥, 𝛼𝑦, and 𝛺. Therefore the expressions of 𝐼1, 𝐼2 are quite 

simple and can be used to significantly reduce the 

computational burden. We report them in Appendix A. As 𝐼1, 

𝐼2 are not changed by the substitution 𝛼𝑥 ↔ (1 − 𝛼𝑥), we limit 

our analysis to 𝛼𝑦 ∈ (0,1], 𝛼𝑥 ∈ [0,0.5]. 

The four eigenvalues of 𝐓 can be written as 𝑒±𝑖𝐾1, 𝑒±𝑖𝐾2, 

with 𝐾1, 𝐾2 being normalized wavenumbers. Real 

wavenumbers represent propagating waves, and imaginary (or 

complex) wavenumbers evanescent waves. The relationship 

between the wavenumbers and the invariants is [25]: 

 
Fig. 1.  (a) Unit cell geometry of the proposed flexural PnC. (b) Deformation 

due to flexural waves. 
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 𝐾1,2 = cos−1 (
1

4
(−𝐼1 ± √8 + 𝐼1

2 − 4𝐼2)). (6) 

The first wavenumber 𝐾1 is always imaginary, whereas 𝐾2 

can be complex or real. As 𝐾1 always corresponds to non-

propagating solutions, 𝐾2 completely determines the 

transmission properties of the PnC. From (6), the dispersion 

relation for the PnC as a function of 𝛼𝑥 , 𝛼𝑦 can be computed. 

Typical 𝐾2(𝛺) are shown in Fig. 2. From the design point of 

view, the most important parameters for a PnC are the location 

of the stop band (i.e. the frequency limits of the phononic 

bandgap) and the maximum attenuation within the stopband. 

For this reason, we proceed to derive the bandgap borders and 

the attenuation at the bandgap center as a function of the 

wavenumber 𝐾2. 

A frequency is inside a bandgap only if all the wavenumbers 

have a nonzero imaginary component at that frequency. 

Therefore, the border of a bandgap is determined by the 

transition of 𝐾2 from purely real to complex, which takes place 

when the argument of the arccosine in (6) leaves the interval [-

1,+1]. A (normalized) angular frequency 𝛺 is therefore at a 

bandgap border if and only if the following equation is satisfied: 

 𝐼2(𝛼𝑥 , 𝛼𝑦 , 𝛺) ± 2𝐼1(𝛼𝑥, 𝛼𝑦 , 𝛺) + 2 = 0 (7) 

where the minus sign gives the borders of odd order bandgaps, 

and the plus sign those of even order ones. The bandgap edges 

can be accurately extracted for any geometry by substituting the 

corresponding 𝛼𝑥, 𝛼𝑦 and numerically solving for the roots of 

(7), whose only independent variable is 𝛺. Once that the 

bandgap edges are known, it is easy to show (see next section) 

that the attenuation constant at the bandgap center, which 

essentially corresponds to the frequency of maximum 

attenuation, can be derived from the imaginary part of 𝐾2 at the 

bandgap center, which again can be calculated from (6). 

III. DESIGN 

To design a bandgap in a PnC, we choose as target 

parameters the center frequency of the gap 𝑓𝑇, and its span 𝛥𝑓 

around 𝑓𝑇. An important target is also the attenuation per unit 

length 𝛾 within the bandgap, which is the value of the imaginary 

part of the (denormalized) wavenumber at the center of the 

bandgap, 𝛾 = |𝐈𝐦(𝑘2(𝑓𝑇))|.  As for the design parameters, the 

geometry of the cell is completely defined by its length 𝑙, the 

perforation ratios 𝛼𝑥 and 𝛼𝑦, and possibly the thickness, while 

the PnC width does not influence the band structure. In the 

following, we focus on 𝛼𝑥, 𝛼𝑦, and 𝑙, as the thickness is 

commonly constrained by technology in MEMS devices, and 

cannot be changed as freely as the other dimensions. We limit 

our analysis to the first three bandgaps, where the EB theory is 

reasonably accurate. 

A useful design specification is the fractional bandwidth 

∆𝛺𝑛/𝛺𝑛, where 𝛺𝑛 and ∆𝛺𝑛 are the normalized bandgap center 

and width for the first three bandgaps (𝑛 = 1,2,3). This ratio is 

not affected by the normalization and equals 𝛥𝑓/𝑓𝑇. In Fig. 3, 

we present contour plots of this quantity for the first three 

bandgaps as a function of 𝛼𝑥 and 𝛼𝑦. Any point of the contour 

at the desired 𝛥𝑓/𝑓𝑇 value is a valid choice for the design at 

hand. Synthesis of a PnC for the desired 𝛥𝑓/𝑓𝑇 is therefore 

immediate. 

The plots show that, to obtain a high fractional bandwidth, 

one has to choose a small 𝛼𝑦, i.e. a large acoustic contrast. This 

is coherent with [16]. With our approach, however, it is also 

obvious that there are critical ranges of 𝛼𝑥, 𝛼𝑦 for which, 

despite the high contrast, very narrow (or no) bandgaps are 

obtained. These ranges are very close to the points where the 

       
Fig. 3.  Normalized bandwidth ∆Ωn/Ωn (black solid lines) and normalized attenuation constant Γn (red dotted lines) for n = 1, 2, 3 (left to right). 

 
Fig. 2. Typical normalized dispersion relation for a 1D PnC for three different 

values of 𝛼𝑦. The value of 𝛼𝑥 is 0.3 for all the three cases. 
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PnC switches between opposite geometrical phases [26], which 

are highlighted as thick black lines in Fig. 3. Bandgap closing 

due to geometrical phase inversion also takes place for 𝛼𝑥= 0.5 

for the first and third bandgap. 

Points on the same 𝛥𝑓/𝑓𝑇 contour line might not correspond 

to the same attenuation. To investigate the attenuation, we need 

to define an appropriate figure of merit, based on normalized 

quantities. We then write the attenuation constant 𝛾 as 

 𝛾 = |𝐈𝐦(𝑘2(𝑓𝑇))| = |
𝐈𝐦(𝐾2(𝛺𝑛))

𝑙
| = 

 =
|𝐈𝐦(𝐾2(𝛺𝑛))|

√𝛺𝑛
√2𝜋𝑓𝑇√

(𝜌𝐴)𝑓

(𝐸𝐼)𝑓
= 𝛤𝑛√2𝜋𝑓𝑇√

(𝜌𝐴)𝑓

(𝐸𝐼)𝑓
 (8) 

where we define 𝛤𝑛 = |𝐈𝐦(𝐾2(𝛺𝑛))| √𝛺𝑛⁄ . The ratio 

(𝜌𝐴)𝑓 (𝐸𝐼)𝑓⁄  is set by the material and fabrication technology 

(at constant thickness), and 𝑓𝑇 is set by the design target. 𝛤𝑛 can 

thus be used as an attenuation FOM, i.e. a quantity that needs 

to be maximized to maximize the actual attenuation constant 𝛾. 

The values of 𝛤𝑛 are also plotted in Fig. 3. The most striking 

feature of the plots is that contours for ∆𝛺𝑛/𝛺𝑛 and 𝛤𝑛 are 

essentially overlapping over most of the design domain, i.e. 

∆𝛺𝑛/𝛺𝑛 and 𝛤𝑛 are approximately proportional. For all three 

bandgaps we have 

 𝛤𝑛 ≈
1

4

∆𝛺𝑛

𝛺𝑛
. (9) 

This relationship is rigorously true for small deviations from 

the homogeneous beam, even for beams with non-piecewise 

constant cross-section (see Appendix B for a proof). The 

implication of (9) is that every design with prescribed 𝛥𝑓/𝑓𝑇 is, 

from the point of view of the attenuation, substantially 

equivalent, regardless of the actual geometry or even of the 

bandgap order. A substantial increase in 𝛾 (up to few tens of 

percentage points) can only be obtained in the third bandgap 

and for very low values of 𝛼𝑦 (<0.05), which are very difficult 

to obtain in a real structure, as they correspond to very narrow 

structures in the holed segment. 

Therefore, once the bandgap limits are chosen, not much can 

then be done to raise the attenuation in the bandgap. If there is 

a specification on the minimum total attenuation 𝐿𝑇 of the PnC, 

the total PnC length 𝑙𝑡𝑜𝑡 is roughly fixed by: 

 exp(𝛾𝑙𝑡𝑜𝑡) > 𝐿𝑇    
 

⇒  

 𝑙𝑡𝑜𝑡 >
ln(𝐿𝑇)

𝛾
≈

4 𝑓𝑇

𝛥𝑓
ln(𝐿𝑇) √

1

2𝜋𝑓𝑇
√

(𝐸𝐼)𝑓

(𝜌𝐴)𝑓
 (10) 

where we used (8) and (9). The number of cells is simply the 

smallest integer larger than 𝑙𝑡𝑜𝑡 divided by the cell length 𝑙. 
It is also interesting to compare different designs from the 

point of view of the cell length. We write it as a function of the 

normalized bandgap center, starting from (3): 

 𝑙 =
𝑐

𝜔0
=

𝑓𝑇

𝜔0

𝑐

𝑓𝑇
=

2𝜋𝑓𝑇

𝜔0

1

2𝜋𝑓𝑇

1

𝑙
√

(𝐸𝐼)𝑓

(𝜌𝐴)𝑓
   

 
⇒ 

 𝑙 = √
1

2𝜋𝑓𝑇
√

(𝐸𝐼)𝑓

(𝜌𝐴)𝑓
√𝛺𝑛 (11) 

The cell length for a given design is proportional to √𝛺𝑛. The 

contour plots of √𝛺𝑛/𝜋 for the first, second and third bandgap 

are superimposed to the ones for ∆𝛺𝑛/𝛺𝑛 in Fig. 4. These 

graphs allow the comparison of different designs from the point 

of view of the cell length. In addition, through (11), they can be 

used to calculate the actual cell length. The cell length for a 

required fractional bandwidth depends both on the specific 

point chosen on the constant ∆𝛺𝑛/𝛺𝑛 curve and on the chosen 

bandgap order 𝑛. As a rule of thumb, the cell length is roughly 

proportional to 𝑛. More precisely, as the 𝑛th bandgap opens 

close to the 𝑛th Bragg resonance of the cell, the actual length 𝑙 
for bandgap 𝑛 is roughly equal to 𝑛/2 wavelengths of the 

flexural wave. 

How should one choose 𝑛, and then √𝛺𝑛 (which is to say 𝑙)? 

The cell length does not affect the total area occupied by the 

PnC, which is set by (10). However, the smaller is 𝑙, the more 

cells the PnC is composed of. It is desirable to have a large 

number of cells to ensure that the actual frequency response of 

a finite PnC matches the one determined by its band structure, 

which is calculated as if the PnC was infinite. In studying 

longitudinal crystals of finite length, Hussein [27] concludes 

that at least 3-4 cells are necessary for the attenuation constant 

of the PnC to converge to a value close to the one predicted by 

 
Fig. 4.  Normalized bandwidth ∆𝛺𝑛/𝛺𝑛 (black solid lines) and length parameter √𝛺𝑛/𝜋 (red dotted lines) for n = 1, 2, 3 (left to right). Points for the designs 

examples in Table 1 are marked with a blue cross. 
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the band structure. We then propose the following practical 

rule: the designer should favor choices of 𝑛 and √𝛺𝑛 that result 

in at least 3 cells, and preferably more. This approach seems to 

rule out the choice of higher order bandgaps (which give a 

proportionally longer 𝑙). Within the limits of our model, 

however, there might still be a good reason to choose 𝑛= 2 or 3 

just to ensure that the cell has a large aspect ratio (𝑙/𝑡), which 

is required for the EB equation approximation to hold. 

Alternatively, a different technology with a smaller thickness 

can be selected, so that this constraint is relaxed. 

A. Design Examples 

As an example, we apply our results to the design of a PnC 

with a bandgap frequency center of 𝑓𝑡 = 1 MHz and a width of 

∆𝑓 = 400 kHz. We present and compare three different designs, 

one for each bandgap order. We set the thickness of the 

structural layer at 15 µm. The material properties are those of 

[110] silicon: 𝐸 = 169 GPa, 𝜌 = 2330 Kg/m3. 

The fractional bandgap width, ∆𝑓/𝑓𝑡 (and normalized 

fractional bandwidth ∆𝛺𝑛/𝛺𝑛) equals 0.4. This value gives 

three curves on the contour plots of Fig. 4. Any point laying on 

these curves is a suitable design point. The points clearly differ 

significantly for the values of the perforation ratios 𝛼𝑥 and 𝛼𝑦. 

A less marked difference is on the unit cell length, which will 

be near 𝑛/2 wavelengths of the flexural wave. This difference 

can be perceived through the contours of √𝛺𝑛/𝜋, shown on the 

same plots. The choice of the point fixes this quantity and the 

exact unit cell length through (11), finalizing the design. 

Disregarding the effect on cell length, one can simply choose 

to use the points with the highest 𝛼𝑦, considering that, in 

practical designs, technological limits of the fabrication process 

will prevent the fabrication of very small cross-sectional areas 

in the holed segment, setting a lower limit to 𝛼𝑦. With this 

choice, the resulting design values are reported in Table 1. 

These values, along with (6) and (3), can be used to compute 

the band structures, shown in Fig. 5. For all the three designs, 

the behavior of the imaginary part of 𝑘2 inside the bandgap is 

almost identical, confirming the equality of any design in terms 

of attenuation per unit length. It is worth noticing that, in the 

design with the second bandgap (blue lines) the first bandgap is 

closed since the value of 𝛼𝑥= 0.5 matches the condition for the 

geometric phase inversion effect on the first gap. 

IV. CONCLUSIONS 

We have presented a systematic approach for the design of 

one-dimensional flexural PnCs fabricated by regular 

perforations. Given the desired band gap center and width, the 

whole design can be finalized by means of the normalized plots 

of the fractional band gap width ∆𝛺𝑛/𝛺𝑛 and of the square root 

of the band gap center √𝛺𝑛/𝜋 for the different band gap orders 

𝑛. Differently from many proposed methods, where only the 

optimal design is given, here a complete mapping of all the 

meaningful quantities over the whole design space is known a 

priori, so that the effect of changes in the design can be 

evaluated very quickly. Moreover, the normalization reduces 

the number of design variables and makes the method 

independent of the materials properties. Remarkably, the 

attenuation per unit length is strongly constrained to the design 

targets, so that the choice among different design points is only 

ruled by geometrical considerations such as the maximum 

obtainable acoustic contrast, the total number of cells along the 

finite PnC and the aspect ratio of the cell itself. We 

demonstrated that this constraint is a general property of 

flexural PnCs. Experimental validation on piezoelectrically 

actuated, crystalline silicon devices is planned. 

APPENDIX A 

The two independent invariants for the matrix 𝐓 are: 

 𝐼1(𝛼𝑥 , 𝛼𝑦 , 𝛺)   =
1

2𝛼𝑦
((1 − 𝛼𝑦)2 cos(√𝛺𝛼𝑥) cosh (√Ω(1 −

𝛼𝑥)) + (1 − 𝛼𝑦)2cos ((1 − 𝛼𝑥)√Ω)cosh (𝛼𝑥√Ω) − (1 +

𝛼𝑦)2cos(√𝛺) − (1 + 𝛼𝑦)2cosh(√𝛺)) (12) 

 𝐼2(𝛼𝑥 , 𝛼𝑦 , 𝛺)  =
1

16𝛼𝑦
2 (2 cos((𝛼𝑥 − 1)√𝛺) cosh((𝛼𝑥 −

1)√𝛺)((𝛼𝑦 − 1)4 cos(𝛼𝑥√𝛺) cosh(𝛼𝑥√𝛺) − 2(𝛼𝑦
2 − 1)2) +

𝛼𝑦((𝛼𝑦 − 2)((𝛼𝑦 − 2)𝛼𝑦 + 2)(2 sin((𝛼𝑥 −

1)√𝛺) sin(𝛼𝑥√𝛺) sinh((𝛼𝑥 − 1)√𝛺) sinh(𝛼𝑥√𝛺) +

cos((2𝛼𝑥 − 1)√𝛺) cosh((2𝛼𝑥 − 1)√𝛺)) − 4𝛼𝑦(𝛼 𝑦
2 −

2) cos(𝛼𝑥√𝛺) cosh(𝛼𝑥√𝛺)) + 2 sin((𝛼𝑥 −

1)√𝛺) sin(𝛼𝑥√𝛺) sinh((𝛼𝑥 − 1)√𝛺) sinh(𝛼𝑥√𝛺) −

4 cos(𝛼𝑥√Ω) cosh(𝛼𝑥√𝛺) + cos((2𝛼𝑥 −

1)√𝛺) cosh((2𝛼𝑥 − 1)√𝛺) + 4𝛼𝑦
4 + 24𝛼𝑦

2 + (𝛼𝑦(𝛼𝑦 + 6) +

1)2 cos(√𝛺) cosh(√𝛺) + 4).  (13) 

 
Fig. 5. Band structure of the designed PnCs. The bands for the first, second 

and third bandgap design are drawn in red, blue and green, respectively. The 

corresponding elementary cells, with dimensions in scale, are also shown. 

TABLE I 

PARAMETERS FOR THE THREE DESIGN EXAMPLES 

Bandgap 

number 
l (µm) 𝛼x (/) 𝛼y (/) 

1 215.3 0.2 0.115 
2 482.4 0.5 0.2 

3 724.6 0.33 0.12 
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APPENDIX B 

The approximation in (9) is exact for a generic phononic 

crystal with the hypothesis that its properties differ only slightly 

from those of a homogenous beam (a beam with uniform cross-

section and material properties). We therefore analyze the effect 

of a small perturbation over the normalized dispersion relation 

𝐾2(𝛺) of a homogeneous beam. Preliminarily, we observe that, 

in a homogeneous flexural beam, the dispersion relation is 

simply 

 𝐾2 = ±√𝛺. (14) 

Without loss of generality, we assume that a periodicity is 

introduced in a homogeneous beam by changing a perturbation 

parameter 𝛿𝛼, and that the case 𝛿𝛼 = 0 corresponds to the 

homogenous case. A change in 𝛼 can be related to a change in 

geometry, density, stiffness, or their combination. Because of 

the symplecticity of the transmission matrix (which 

corresponds to the fact that the dispersion relation is invariant 

by sign reversal), the characteristic polynomial of 𝐓 can be 

written as [25]: 

 𝜆4 + 𝐼1(𝛿𝛼, 𝛺)𝜆3 + 𝐼2(𝛿𝛼, 𝛺)𝜆2 + 𝐼1(𝛿𝛼, 𝛺)𝜆 + 1 = 0 (15) 

which can be further factorized into: 

 (𝜆2 + 𝐼𝐸(𝛿𝛼, 𝛺)𝜆 + 1)(𝜆2 + 𝐼𝑃(𝛿𝛼, 𝛺)𝜆 + 1) = 0. (16) 

Simple relationships exist between 𝐼1, 𝐼2 and 𝐼𝐸 , 𝐼𝑃. The first 

factor in (16) corresponds to the eigenvalues 𝑒±𝑖𝐾1 (which 

always give rise to evanescent waves), and the second to the 

eigenvalues 𝑒±𝑖𝐾2. The information on the dispersion relation is 

thus contained in 𝐼𝑃(𝛿𝛼, 𝛺) only. Solving for the roots of the 

second factor in (16), the generic dispersion relation is 

obtained: 

 𝐾2 = ±𝑖 ln (
1

2
(−𝐼𝑃 + √𝐼𝑃

2 − 4)) + 2𝜋𝑝, 𝑝 ∈ ℤ. (17) 

In a homogenous beam, (17) reduces to (14). The condition 

for 𝐾2 to be real, i.e. for  𝛺  to be outside of a bandgap is: 

 −2 ≤ 𝐼𝑃(𝛿𝛼, 𝛺) ≤ 2 (18) 

It is possible to show that 𝐼𝑃 > 2 corresponds to the opening 

of odd order bandgaps, and 𝐼𝑃 < −2 to even order bandgaps. 

For brevity, we concentrate on the former case (derivation is 

identical for the latter). In a homogenous beam, (18) is always 

verified, but 𝐼𝑃 assumes the value 2 for a numerable set of 

values 𝛺𝑛0 of the frequency. A perturbation of the homogeneity 

(i.e. a change in 𝛿𝛼) opens a bandgap around any of these 

frequencies. To study this effect, we define: 

 𝛿𝐼𝑃(𝛿𝛼, 𝛿𝛺) = 𝐼𝑃(𝛿𝛼, 𝛺𝑛0 + 𝛿𝛺) − 2. (19) 

Inside the opening bandgap, 𝛿𝐼𝑃 is always positive. For small 

perturbations and odd bandgaps, (17) can be approximated as: 

 𝐾2 ≈ 𝑛𝜋 ± 𝑖 √𝛿𝐼𝑃(𝛿𝛼, 𝛿𝛺), 𝑛 odd. (20) 

It is immediate that in the homogeneous case no bandgap 

opens, and thus 𝛿𝐼𝑃(0, 𝛿𝛺) ≤ 0. Furthermore, as a change in 

𝛿𝛼 opens the bandgap, 𝛿𝐼𝑃(𝛿𝛼, 0) ≥ 0. The point (0,0) is then 

a saddle point for 𝛿𝐼𝑃(𝛿𝛼, 𝛿𝛺). We can now write the second 

order series expansion of 𝛿𝐼𝑃 around the point (0,0): 

 𝛿𝐼𝑃(𝛿𝛼, 𝛿𝛺) ≈
1

2
𝐼𝑃,𝛼𝛼  𝛿𝛼2 + 𝐼𝑃,𝛼𝛺  𝛿𝛼𝛿𝛺 +

1

2
𝐼𝑃,𝛺𝛺 𝛿𝛺2 (21) 

where we used comma notation for partial derivatives, and 

exploited the fact that, because of the existence of the saddle 

point, first order derivatives are zero. Substituting (21) in (20): 

𝐾2 ≈ 𝑛𝜋 ± 𝑖√
1

2
𝐼𝑃,𝛼𝛼  𝛿𝛼2 + 𝐼𝑃,𝛼𝛺  𝛿𝛼𝛿𝛺 +

1

2
𝐼𝑃,𝛺𝛺  𝛿𝛺2, 𝑛 odd. (22) 

Equation (22) is then an approximate expression for the 

dispersion relation in the vicinity of the opening bandgap, from 

which we can determine the normalized bandgap width ∆𝛺𝑛, its 

center 𝛺𝑛, and normalized attenuation 𝛤𝑛. Straightforward 

calculations give: 

        ∆𝛺𝑛
2 = 4

𝐼𝑃,𝛼𝛺
2−𝐼𝑃,𝛼𝛼𝐼𝑃,𝛺𝛺

𝐼𝑃,𝛺𝛺
2 𝛿𝛼2 (23) 

 𝛺𝑛 = 𝛺𝑛0 −
𝐼𝑃,𝛼𝛺

𝐼𝑃,𝛺𝛺
𝛿𝛼 ≈ 𝛺𝑛0 (24) 

        𝛤𝑛
2 =

|𝐼𝑚(𝐾2(𝛺𝑛))|2

𝛺𝑛
=

𝐼𝑃,𝛼𝛺
2−𝐼𝑃,𝛼𝛼𝐼𝑃,𝛺𝛺

2|𝐼𝑃,𝛺𝛺|𝛺𝑛0
𝛿𝛼2. (25) 

The ratio between 𝛤𝑛 and the fractional bandwidth can thus 

be written as: 

 (
𝛤𝑛

∆𝛺𝑛
𝛺𝑛

)

2

=
1

8
𝛺𝑛0|𝐼𝑃,𝛺𝛺|. (26) 

The values of 𝛺𝑛0 and 𝐼𝑃,𝛺𝛺 can be determined by equating 

(14) and (22) in the homogeneous (𝛿𝛼 = 0) case:  

 𝐾2(0, 𝛿𝛺) = ±√𝛺𝑛0 + 𝛿𝛺 ≈ ±√𝛺𝑛0 ±
1

2√𝛺𝑛0
𝛿𝛺 = 

 = 𝑛𝜋 ± 𝑖√(𝐼𝑃,𝛺𝛺/2) 𝛿𝛺2. (27) 

The left and right rides of (27) are now two approximations 

of the same dispersion relation. Comparison of the two gives: 

 𝛺𝑛0 = (𝑛𝜋)2,     𝐼𝑃,𝛺𝛺 = −
1

2𝛺𝑛0
= −

1

2(𝑛𝜋)2
. (28) 

Finally, substitution of (28) in (26) gives: 

 𝛤𝑛 =
1

4

∆𝛺𝑛

𝛺𝑛
. (29) 
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