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A major goal of nuclear theory is to explain the spectra and stability of nuclei

in terms of effective many-body interactions amongst the nucleus’ constituents—

the nucleons, i.e., protons and neutrons. Such an approach, referred to below as

the basic model of nuclear theory, is formulated in terms of point-like nucleons,

which emerge as effective degrees of freedom, at sufficiently low energy, as a

result of a decimation process, starting from the fundamental quarks and gluons,

described by Quantum Chromodynamics (QCD). A systematic way to account

for the constraints imposed by the symmetries of QCD, in particular chiral

symmetry, is provided by chiral effective field theory, in the framework of a low-

energy expansion. Here we show, in quantum Monte Carlo calculations accurate

to ≤ 2% of the binding energy, that two- and three-body chiral interactions

fitted only to bound- and scattering-state observables in, respectively, the two-

and three-nucleon sectors, lead to predictions for the energy levels and level

ordering of nuclei in the mass range A= 4–12 in very satisfactory agreement with

experimental data. Our findings provide strong support for the fundamental

assumptions of the basic model, and pave the way to its systematic application

to the electroweak structure and response of these systems as well as to more

complex nuclei.

The nuclear Hamiltonian in the basic model is taken to consist of non-relativistic ki-

netic energy, and two- and three-body interactions. There are indications that four-body

interactions may contribute at the level of ∼ 100 keV in 4He, but current formulations of

the basic model do not typically include them (see, for example, Ref.1). Two-body in-

teractions consist of a long-range component, for inter-nucleon separation r & 2 fm, due

to one-pion exchange (OPE),2 and intermediate- and short-range components, for, respec-

tively, 1 fm . r . 2 fm and r . 1 fm. Up to the mid-1990’s, such models were based

almost exclusively on meson-exchange phenomenology. The mid-1990’s models3–5 were con-

strained by fitting nucleon-nucleon (NN) elastic scattering data up to lab energies of 350

MeV, with χ2/datum ' 1 relative to the database available at the time.6 Two well-known

and still widely used examples in this class are the Argonne v18 (AV18)4 and CD-Bonn.5

These so-called realistic interactions also contained isospin-symmetry-breaking (ISB) terms.
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At the level of accuracy required,6 full electromagnetic interactions, along with strong inter-

actions, had to be specified in order to fit the data precisely, and the AV18 model included

electromagnetic corrections up to order α2 (α is the fine structure constant).

Already in the 1980’s, accurate three-body calculations showed that contemporary NN

interactions did not provide enough binding for the three-body nuclei, 3H and 3He.7 In the

late 1990’s and early 2000’s this realization was extended to the spectra (ground and low-

lying excited states) of light p-shell nuclei in calculations based on quantum Monte Carlo

(QMC) methods8 and in no-core shell-model (NCSM) studies.9 Consequently, the basic

model with NN interactions fit to scattering data, without the inclusion of a three-nucleon

(3N) interaction, is incomplete.

Because of the composite nature of the nucleon and, in particular, the dominant role of

the ∆ resonance in pion-nucleon scattering, multi-nucleon interactions arise quite naturally

in meson-exchange phenomenology. The Illinois 3N interactions10 contain a dominant two-

pion exchange (TPE)—the venerable Fujita-Miyazawa interaction11—and smaller multi-pion

exchange components resulting from the excitation of intermediate ∆’s. The most recent

version, Illinois-7 (IL7),12 also contains phenomenological isospin-dependent central terms.

The small number (four) of parameters that fully characterize it were determined, in con-

junction with the AV18, by fitting 23 ground or low-lying nuclear states in the mass range

A=3–10. The resulting AV18+IL7 Hamiltonian then led to predictions of about 100 ground-

and excited-state energies up to A=12, including the 12C ground- and Hoyle-state energies,

in good agreement with the corresponding empirical values.1

A new phase in the evolution of the basic model, and renewed interest in its further

development, have been spurred by the emergence in the early 1990’s of chiral effective field

theory (χEFT).13–15 In χEFT the symmetries of QCD, in particular its approximate chiral

symmetry, are used to systematically constrain classes of Lagrangians describing, at low

energies, the interactions of baryons (N ’s and ∆’s) with pions as well as the interactions

of these hadrons with electroweak fields.16–18 While the conventional meson-exchange for-

mulation of the basic model described earlier relied on an expansion in terms of exchanges

of heavier and heavier mesons (and hence shorter and shorter ranges of associated interac-

tions), the χEFT formulation has, by contrast, an expansion in powers of pion momenta

as its organizing principle, directly rooted in QCD. From this perspective, it can be justifi-

ably argued to have put the basic model on a more fundamental basis, by providing a link
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between QCD and its symmetries, and the strong and electroweak interactions in nuclei.

Within χEFT many studies have been carried out dealing with the construction of NN

and 3N interactions19–27 and accompanying ISB corrections.28–30 These interactions were

typically formulated in momentum space, and included cutoff functions to regularize their

behavior at large momenta which, however, made them strongly non-local when Fourier-

transformed in configuration space, and therefore unsuitable for use with quantum Monte

Carlo methods.1 Among these, in particular, Green’s Function Monte Carlo (GFMC) is the

method of choice to provide reliable solutions of the many-body Schrödinger equation—

presently for up to A=12 nucleons—with full account of the complexity of the many-body,

spin- and isospin-dependent correlations induced by nuclear interactions.

NUCLEAR HAMILTONIAN

In order to overcome these difficulties, in recent years local, configuration-space chiral

NN interactions have been derived.31,32 We will point out differences between these models

below. In the following, we focus on the family of local interactions constructed by our group.

They are written as the sum of an electromagnetic-interaction component, vEM
ij , including

first- and second-order Coulomb, Darwin-Foldy, vacuum polarization, and magnetic moment

terms (as in Ref.4), and a strong-interaction component, vij, characterized by long- and

short-range parts.32 The long-range part includes OPE and TPE terms up to next-to-next-

to-leading order (N2LO) in the chiral expansion,33 derived in the static limit from leading

and sub-leading πN and πN∆ chiral Lagrangians. Its strength is fully determined by the

nucleon and nucleon-to-∆ axial coupling constants gA and hA, the pion decay amplitude

fπ, and the sub-leading low-energy constants (LECs, in standard notation) c1, c2, c3, c4,

and b3 + b8 constrained by reproducing πN scattering data. In coordinate space, this long-

range part is represented by charge-independent central, spin, and tensor components with

and without isospin dependence τi · τj (the so-called v6 operator structure), and by charge-

independence-breaking central and tensor components induced by OPE and proportional to

the isotensor operator Tij = 3 τ zi τ
z
j −τi ·τj. The radial functions multiplying these operators

are singular at the origin (they behave as 1/rn with n taking on values up to n= 6), and
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are regularized by a cutoff of the form33

CRL
(r) = 1− 1

(r/RL)6 e(r−RL)/aL + 1
, (1)

with aL taken as RL/2, and the values for RL considered here are given below.

The short-range part is described by charge-independent contact interactions, specified

by a total of 20 LECs—2 at LO, 7 at NLO, and 11 at next-to-next-to-next-to-leading

(N3LO)—and charge-dependent ones characterized by 6 LECs—2 at LO, one each from

charge-independence-breaking and charge-symmetry-breaking (proportional, respectively, to

Tij and τ zi +τ zj ), and 4 at NLO from charge-independence-breaking.32 In the NLO and N3LO

contact interactions, Fierz transformations have been utilized to rearrange terms that in con-

figuration space would otherwise lead to powers of p—the relative momentum operator—

higher than two. The resulting charge-independent interaction contains, in addition to the

v6 operator structure, spin-orbit, L2 (L is the relative orbital angular momentum), and

quadratic spin-orbit components, while the charge-dependent one retains central, tensor,

and spin-orbit components. Both are regularized by multiplication of a Gaussian cutoff,

CRS
(r) =

1

π3/2R3
S

e−(r/RS)2 . (2)

These 26 LECs in the short-range part of vij were constrained by a fit to the NN database,

including the deuteron ground-state energy and two-neutron scattering length, as assembled

by the Granada group.34 Two classes of interactions were constructed, which only differ in

the range of laboratory energy over which the fits were carried out, either 0–125 MeV in

class I or 0–200 MeV in class II. For each class, three different sets of cutoff radii (RS, RL)

were considered (RS, RL) = (0.8, 1.2) fm in set a, (0.7,1.0) fm in set b, and (0.6,0.8) fm in set

c. The χ2/datum achieved by the fits in class I (II) was . 1.1(. 1.4) for a total of about

2700 (3700) data points. We will refer to these high-quality NN interactions generically as

the Norfolk vij’s (NV2s), and designate those in class I as NV2-Ia, NV2-Ib, and NV2-Ic, and

those in class II as NV2-IIa, NV2-IIb, and NV2-IIc.

We observe that the models of Ref.31 do not include ∆ contributions and only retain

contact interactions up to NLO for a total of 9 LECs. These LECs were fitted to the

phase-shifts of the Nijmegen partial-wave analysis,6 rather than to its database of NN cross

sections and polarization observables. Some of the drawbacks that this entails are discussed

in Ref..33

5



FIG. 1. 3N chiral interaction. Diagrams illustrating schematically the contributions to the

3N interaction. Nucleons, ∆’s, and pions are denoted by solid, thick-solid, and dashed lines,

respectively. The circle in panel (b) represents the vertex involving the LECs c1, c3, and c4 in L(2)
πN .

The NV2s were found to provide insufficient attraction, in GFMC calculations, for the

ground-state energies of nuclei with A= 3–6,32,35,36 thus corroborating the insight realized

in the early 2000’s within the older (and less fundamental) meson-exchange phenomenology.

To remedy this shortcoming, we construct here the leading 3N interaction Vijk in χEFT,

including ∆ intermediate states. It is illustrated diagrammatically in Fig. 1, and consists23,24

of a long-range piece mediated by TPE and denoted with the superscript 2π, panels (a) and

(b), and a short-range piece parametrized in terms of three contact interactions and denoted

with the superscript CT, panels (c) and (d),

Vijk =
∑

cyclic ijk

(
V 2π
ijk + V CT

ijk

)
. (3)

In configuration space, the TPE term from intermediate ∆ states, panel (a) in Fig. 1, and

from interactions proportional to the LECs c1, c3, and c4 in the sub-leading chiral Lagrangian

L(2)
πN ,37 panel (b), reads

V 2π
ijk =

g2
A

256 π2

m6
π

f 4
π

[
8 c1 Σij Σkj T (+)

ijk +
2

9
c̃3 Σ

(+)
ijk T

(+)
ijk

−1

9

(
c̃4 +

1

4m

)
Σ

(−)
ijk T

(−)
ijk

]
, (4)

with spin and isospin operator structures defined, respectively, as Σlm ≡ Z̃π(rlm)σl · r̂lm,

where rlm ≡ rl − rm, and

Σ
(∓)
ijk ≡

[
X̃ij , X̃jk

]
∓
, T (∓)

ijk ≡ [τi · τj , τj · τk]∓ , (5)

X̃ij ≡ T̃π(rij)Sij + Ỹπ(rij)σi · σj . (6)

Here [ . . . , . . . ]∓ denote commutators (−) or anti-commutators (+), Sij is the standard

tensor operator, σi and τi are Pauli spin and isospin matrices relative to nucleon i, and the
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regularized radial functions are defined as

Ỹπ(r) =
e−mπr

mπr
CRL

(r) , (7)

T̃π(r) =

(
1 +

3

mπ r
+

3

m2
π r

2

)
Ỹπ(r) , (8)

Z̃π(r) = −
(

1 +
1

mπ r

)
Ỹπ(r) , (9)

where the cutoff CRL
(r) is defined in Eq. (1). Lastly, the LECs c̃3 and c̃4 are related to the

corresponding c3 and c4 in L(2)
πN via

c̃3 = c3 −
h2
A

9m∆N

, c̃4 = c4 +
h2
A

18m∆N

, (10)

where hA and m∆N are, respectively, the N -to-∆ axial coupling constant and ∆-N mass

difference. The values of these constants as well as the LECs c1, c3, and c4, the (average)

pion mass mπ and decay amplitude fπ, and (average) nucleon mass m and axial coupling

constant gA, are taken from Tables I and II of Ref..33

The CT term is parametrized as

V CT
ijk =

gA cD
96 π

m3
π

Λχ f 4
π

τi · τk X̃ik [CRS
(rij) + CRS

(rjk) ]

+
cE

Λχ f 4
π

τi · τk CRS
(rij)CRS

(rjk) , (11)

where CRS
(r) is the cutoff in Eq. (2), Λχ is the chiral-symmetry-breaking scale taken as

Λχ = 1 GeV, and the two (adimensional) LECs cD and cE are determined by simultaneously

reproducing the experimental 3H ground-state energy, E0(3H), and the neutron-deuteron

(nd) doublet scattering length, 2and. These observables are calculated with hyperspherical-

harmonics (HH) expansion methods. By now, these variational methods have achieved a high

degree of sophistication (see below, and for a more extended recent review Ref.38), permitting

the accurate, virtually exact solution of the bound- and scattering-state problem—the latter,

both below and above two-body breakup thresholds—in the three- and four-nucleon systems.

The determination of cD and cE proceeds as follows. For a range of cD values we determine

cE by reproducing either E0(3H) or 2and (its central value). The intercept of the resulting

trajectories in the (cD, cE)-plane provides the sought simultaneous solution. This procedure

is repeated for each NV2-I(a-b) and NV2-II(a-b) with the cutoff radii (RS, RL) in the Norfolk

3N interactions matching those of the corresponding NV2s to make the NV2+3 models

reported here; the cD, cE values for each combination are listed in Table I. We observe that
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models NV2-Ic and NV2-IIc are not considered any further in the present work, owing to

the difficulty in the convergence of the HH expansion and the severe fermion-sign problem

in the GFMC imaginary-time propagation with these interactions.32

TABLE I. Fitted values of cD and cE and HH results for A=3–4 observables. The

(adimensional) values of cD and cE obtained for the different NV2+3 chiral interactions having

cutoff radii (RS, RL) equal to (0.8,1.2) fm for models Ia and IIa, and (0.7,1.0) fm for models

Ib and IIb are shown along with the 3H, 3He, and 4He ground-state energies (in MeV) and nd

doublet scattering length (in fm), obtained in HH calculations without and with the inclusion of

the three-body interactions; the experimental values are E0(3H) = –8.482 MeV, E0(3He) = –7.718

MeV, E0(4He) = –28.30 MeV, and 2and = (0.645± 0.010) fm. The E0(3H) and 2and observables are

fitted when 3N interactions are included.

w/o 3N with 3N

Model cD cE E0(3H) E0(3He) E0(4He) 2and E0(3He) E0(4He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

In Table I we also report the nd scattering length and ground-state energies of 3H, 3He,

and 4He obtained without 3N interaction as well as those predicted for 3He and 4He when

this interaction is included (experimental values for the scattering length and energies are

taken, respectively, from Ref.39 and Ref.40). Increasing the laboratory-energy range over

which the NN interaction is fitted, from 0–125 MeV in class I to 0–200 MeV in class II,

decreases the A= 3–4 ground-state energies calculated without the 3N interaction, by as

much as 1.3 MeV in 4He with model b. However, when the 3N interaction is included,

the effect is reversed and much reduced, in 4He the increase amounts to 140 keV in going

from model Ib to IIb. The dependence on the cutoff radii (RS, RL), i.e., the difference
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FIG. 2. Polarization observables in pd elastic scattering at 3 MeV. Polarization observables

obtained in HH calculations with the NV2+3 models Ia-Ib (IIa-IIb) are shown by the green (blue)

band. Also shown by the black dashed line are results obtained with only the two-body interaction

NV2-Ia.

between the rows Ia-Ib and IIa-IIb, is significant without the 3N interaction, but turns out

to be negligible when it is retained, being in this case of the order of a few keV and hence

comparable to the numerical precision of the present HH methods. This tradeoff is of course

achieved through the large variation of the LECs cD and cE, which remain nevertheless of

natural order in both models, a and b.

In Fig. 2 the differential cross section, and vector and tensor polarization observables in

proton-deuteron elastic scattering obtained with the present NV2+3 models are compared

to experimental data.41 Theoretical predictions remain essentially unchanged for Ia-Ib, but
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display a small variation for IIa-IIb, as the cutoff radii (RS, RL) are reduced from (0.8,1.2) fm

in models a to (0.7,1.0) fm in models b. The effect of the 3N interaction is small, marginally

improving (appreciably worsening) the agreement between theory and experiment for the

observables Ay, i T11, and T22 (T20 and T21). In particular, the well known discrepancy in

the vector analyzing power—the “Ay puzzle”42—persists. It also appears to be unresolved

when higher-order chiral loops are accounted for in the long-range component of the 3N

interaction.43 Subleading contact terms in its short-range component, while having been

formally derived,26 have yet to be implemented in calculations, since they depend on 10

unknown LECs. Indeed, members of the present collaboration are currently involved in a

fit of these LECs to experimental data on 3N scattering observables.

HYPERSPHERICAL-HARMONICS EXPANSION METHOD

The HH method uses hyperspherical-harmonics functions as an expansion basis for the

wave function of an A-body system.38 In the specific case of A= 3 and 4 nuclei, the bound-

state wave function ΨA, having total angular momentum and parity quantum numbers Jπ,

is expanded as

ΨA =
∑
[KA]

u[KA](ρA)B[KA](ΩA) , (12)

where B[KA](ΩA) are fully antisymmetrized HH-spin-isospin functions, which for three and

four nucleons are characterized, respectively, by the set of quantum numbers [K3] ≡

[n1, l1, l2, L, s, S, t, T ] and [K4] ≡ [n1, n2, l1, l2, l3, l
′, L, s, s′, S, t, t′, T ]. The quantum num-

bers ni, li and l′ enter in the construction of the HH vector and are such that the grand

angular momenta are K3 = 2n1+l1+l2 and K4 = 2n1+2n2+l1+l2+l3. The orbital angular

momenta li (and l′ for A = 4) are coupled to give the total orbital angular momentum L.

The total spin and isospin of the vector are indicated, respectively, by S and T , and s, s′, t, t′

denote intermediate couplings.

The hyperspherical coordinates (ρA,ΩA) in Eq. (12) are given by the hyperradius ρA =

(
∑A−1

i=1 x2
i )

1/2 expressed in terms of the A–1 Jacobi vectors xi of the systems, and the hy-

perangles ΩA = (x̂1 . . . x̂A−1, α2 . . . αA−1), with x̂i being the unit Jacobi vectors and αi the

hyperangular variables. In the present application, the hyperradial functions are expanded
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in terms of generalized Laguerre polynomials multiplied by an exponential function

uµ(ρA) =
∑
m

Cm,µ L(3A−4)
m (z) e−z/2 , (13)

with z = βρA, β being a nonlinear parameter and µ ≡ [KA]. After introducing the above

expansion in Eq. (12), the wave function ΨA is expressed compactly as

ΨA =
∑
m,µ

Cm,µ Φm,µ(ρA,ΩA) , (14)

Φm,µ(ρA,ΩA) = L(3A−4)
m (z)e−z/2B[KA](ΩA) , (15)

where the Φm,µ(ρA,ΩA)’s form a complete basis.

The ground-state energy E0 follows from the Rayleigh-Ritz variational principle. This

leads to a generalized eigenvalue problem, which is then solved with standard numerical

techniques.38 The convergence of the energy E0 is studied in terms of the size of the basis.

For the three-nucleon system (Jπ = 1/2+) all possible combinations of HH functions up to

l1 + l2 = 6 and isospin components T = 1/2 and 3/2 have been taken into account, thus

attaining a level of accuracy of the order of a few keV on the sought energy eigenvalue. For

A= 4 (Jπ = 0+), all possible combinations of HH functions up to l1+l2+l3 = 6 (l1+l2+l3 = 2)

having T = 0 (T = 1 and 2) have been considered, attaining in this case a level of accuracy

of about 20 keV for the 4He ground state energy.44

The J = 1/2+ nd scattering wave function Ψnd, used to calculate the doublet nd scattering

length, is expressed as Ψnd = ΨC + Φnd, and ΨC vanishes in the limit of large nd separation.

It is expanded in terms of HH function and Laguerre polynomials as for the bound state,

using Eq. (14). The wave function Φnd describes the system in the asymptotic region

Φnd =
∑

cyclic ijk

∑
L′S′

[[si ⊗ φd(jk)]S′ ⊗ YL′(r̂nd)]JJz

×[δLL′δSS′jL′(prnd) +JRL′S′

LS (p)nL′(prnd)g(prnd)] , (16)

where φd is the deuteron wave function, p (rnd) is the nd relative momentum (distance),

and jL (nL) are the regular (irregular) Bessel functions. The function g(prnd) modifies nL

at small rnd by regularizing it at the origin, and g(prnd) → 1 for rnd ≥ 10 fm. Finally, the

real parameters JRL′S′
LS (p) are the R-matrix elements which determine phase shifts and, for

coupled channels, mixing angles.

11



The unknown quantities in Ψnd, i.e., the coefficients Cm,µ in the expansion of ΨC and

R-matrix elements JRL′S′
LS (p) in Φnd, are obtained by utilizing the Kohn variational princi-

ple, which leads to a set of inhomogeneous coupled equations for Cm,µ and a set of algebraic

equations for JRL′S′
LS (p), solved by standard techniques.38 In particular, the nd doublet scat-

tering length simply follows from 2and = − limp→0
1/2R

0 1/2
0 1/2(p), and the convergence of the

HH expansion for 2and is established with a procedure similar to that outlined above for the

bound state, ultimately achieving an accuracy of the order of 0.001 fm. The extension of

the method to describe proton-deuteron scattering, specifically the inclusion, in the asymp-

totic channels, of the Coulomb interaction (and higher-order electromagnetic interactions as

retained in the NV2 models), is discussed in Ref..45

QUANTUM MONTE CARLO METHODS

For the NV2+3-Ia model, we have calculated the energies for ∼ 100 nuclear states in

A=6–12 nuclei using quantum Monte Carlo methods. A subset of these spectra calculations

is shown in Fig. 3 and compared to QMC results for the phenomenological AV18+IL7

Hamiltonian and to experiment. The QMC method is briefly described below; a more

complete description is given in Refs..1,32

The QMC calculation for a given nuclear state is made in two steps: (i) a variational

Monte Carlo (VMC) calculation, in which a trial wave function is optimized by minimizing

its energy expectation value, and (ii) a GFMC calculation, which filters out excited state

contamination in the trial wave function by a propagation in imaginary time, to project

out the lowest-energy wave function of given quantum numbers. Energy calculations have a

statistical error and some well-controlled systematic errors ∼ (1–2)% of the binding energy.

The VMC trial wave function ΨT is constructed to be explicitly antisymmetric and trans-

lationally invariant, with quantum numbers (Jπ;T ) of the state of interest, where T is the

total isospin. It is built up from a product of one-, two-, and three-body correlations that

have space, spin and isospin dependence induced by the Hamiltonian. The ΨT (Jπ;T ) is

represented as a vector in spin-isospin space with order 2A
(
A
Z

)
components, each of which

is a function in 3A-dimensional configuration space. It has a total of 50–100 variational

parameters which are optimized to give the lowest upper bound to the many-body energy
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expectation value,

ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

≥ E0 , (17)

where the quadrature is evaluated by a Metropolis Monte Carlo algorithm. The search

for optimal parameters (many of which do not vary greatly from nucleus to nucleus) is

made with the aid of automated search routines. For A=6–12 nuclei, there can be multiple

states with the same (Jπ;T ) quantum numbers, e.g., three 1+ p-shell states in 6Li; we build

complete sets of orthogonal ΨT for these nuclei.

The ΨT serves as the starting point of a GFMC calculation, which projects out the

lowest energy state Ψ0 with the same quantum numbers by the evolution in imaginary time

τ = −i t:

|Ψ0〉 ∝ lim
τ→∞
|Ψ(τ)〉 = lim

τ→∞
e−(H−E0) τ |ΨT 〉 . (18)

The GFMC propagator exp[−(H −E0) τ ] is evaluated stochastically in small time steps ∆τ

with τ =n∆τ , and in practice is made with a simplified version H ′ of the Hamiltonian, the

small difference 〈H−H ′〉 being evaluated perturbatively. In calculations that are performed

with a three-nucleon potential, the H ′ is modified to make 〈H − H ′〉 ∼ 0; however, such

capability does not exist for calculations with only two-nucleon interactions.

The desired expectation values of ground-state and low-lying excited state observables

are then computed approximately by

〈O(τ)〉 ≡ 〈Ψ(τ)|O|Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉

≈ 〈O(τ)〉M + [〈O(τ)〉M − 〈O〉V] , (19)

where 〈O〉V is the variational expectation value and 〈O〉M is the “mixed” estimate

〈O(τ)〉M =
〈Ψ(τ)|O|ΨT 〉
〈Ψ(τ)|ΨT 〉

. (20)

For the specific case O = H ′ the mixed estimate is exactly equivalent to 〈O(τ/2)〉 and the

GFMC propagation provides a convergent upper bound. Energies ordinarily converge very

rapidly in τ and the final answer with its statistical error is taken as the average over the

τ ≥ 0.1 MeV−1 points, typically up to a maximum τ ∼ 0.3 or 0.4 MeV−1.

As in QMC applications for other systems, such as for those in condensed matter, there

is a well-known fermion sign problem due to the accumulation of bosonic noise during the

GFMC propagation, which gets worse with increasing system size. The desired fermionic

component is projected out by the antisymmetric ΨT in the mixed estimate, but a constraint
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must be placed on the propagation to keep statistical noise from overwhelming the fermion

signal. The constraint can be relaxed for the last 10–40 propagation time steps to reduce a

possible systematic error before the statistical error grows too much. The fermion sign prob-

lem is much worse for the NV2+3 interactions than for the older AV18+IL7 Hamiltonian;

constrained path propagation is needed even for A=4 as opposed to A=7 with AV18+IL7.

To reduce the sign problem, we have used a propagation time step ∆τ = 0.00025 MeV−1,

with expectation values being evaluated after every 80 propagation steps as opposed to the

∆τ = 0.0005 MeV−1 that is used for AV18+IL7 Hamiltonian.

For higher excited states of the same (Jπ;T ), the GFMC might not be expected to avoid

mixing in some of the lowest energy state and thus obtaining excitation energies that are

too low. However, with orthogonal starting ΨT , the GFMC propagation tends to preserve

orthogonality very well, and explicit corrections can be made so that the overlap between

different wave functions vanishes within statistical errors. Many tests of the correctness of

GFMC results have been made; the extracted eigenenergies are reliable to better than 2%.1

The computational requirements for this QMC method grow exponentially with the num-

ber A of nucleons, so while a four-body calculation is suitable for a desktop machine, the

final 12C ground state calculation reported here required 650,000 cpu-hours on the massively

parallel Theta supercomputer (3,624 Intel Knight’s Landing nodes with 64 cpus/node) of

the Argonne Leadership Computing Facility. The QMC codes are written in fortran and

use mpi and openmp for parallelization. While Monte Carlo calculations are often thought

of as “embarassingly parallel”, the GFMC propagation involves killing and replication of

configurations which could lead to significant inefficiencies in a parallel environment. Also,

for the largest nuclei, the calculation of a single Monte Carlo sample must be spread over

many nodes. For these reasons the Asynchronous Dynamic Load Balancing (adlb) library

and the Distributed MEMory (dmem) library, which operate under mpi, were developed for

our calculations.46

NUCLEAR SPECTRA: THEORY CONFRONTS EXPERIMENT

Before presenting the GFMC predictions for the spectra of larger nuclei, it is worth-

while comparing the HH and GFMC results for the three- and four-nucleon bound states.

The GFMC-calculated ground-state energies with model NV2+3-Ia are E0(3H) = –8.463(9),
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E0(3He) = –7.705(9), and E0(4He) = –28.24(3), where the Monte Carlo statistical errors are

given in parentheses. The small differences (. 0.5%) between the HH results listed in Table I

and the GFMC ones are due in part to intrinsic numerical inaccuracies of these methods, and

in part to the fact that the HH wave functions include small admixtures with total isospin

T = 3/2 for A=3 nuclei, and T = 1 and 2 for A=4, beyond their corresponding dominant

isospin components with T = 1/2 and T = 0. These admixtures are induced by ISB terms

present in the NV2 interaction models, which are neglected in the GFMC calculations. The

associated systematic error, however, is quite small; for example, an HH calculation ignor-

ing these admixtures in 4He finds a reduction in binding of about 19 keV, hence within the

numerical noise of the HH method itself.

The GFMC energy results calculated with the NV2+3-Ia model are shown in Fig. 3 for

37 different nuclear states in A=4–12 nuclei. They are compared to results from the older

AV18+IL7 model and experiment. The agreement with experiment is impressive for both

Hamiltonians, with absolute binding energies very close to experiment, and excited states

reproducing the observed ordering and spacing, indicating reasonable one-body spin-orbit

splittings. The rms energy deviation from experiment for these states is 0.72 MeV for

NV2+3-Ia compared to 0.80 MeV for AV18+IL7 (note that 11B has not been computed

with AV18+IL7). The signed average deviations, +0.15 and – 0.23 MeV respectively, are

much smaller; indicating no systematic over- or under-binding of the Hamiltonians. For

both Hamiltonians, the inclusion of the 3N interactions is in many cases necessary to get

ground states that are correctly bound against breakup. For example, 6He is not bound with

just the NN interaction,32 but is in the current work. The lowest 3+ and 1+ states of 10B

are of particular interest. For both AV18 and NV2-Ia without 3N interactions, the 1+ state

is incorrectly predicted as the ground state (for NV2-Ia by 1.9 MeV) but including the 3N

interactions gives the correct 3+ ground state. However, it is important to emphasize that

in the AV18+IL7 model the four parameters in the 3N interaction are fitted to the energies

of many nuclear levels up to A = 10.

Twelve of the states shown are stable ground states, while another six are particle-stable

low-lying excitations, i.e., they decay only by electroweak processes. The remaining states

are particle-unstable, i.e., they can decay by nucleon or cluster emission, which is much

more rapid than electroweak decay, but about half of these have narrow decay widths ≤

100 keV. Because GFMC does not involve any expansion in basis functions, it correctly
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includes effects of the continuum. This means that if the propagation is continued to large

enough imaginary time, the wave function will evolve to separated clusters and the energy

to the sum of the energies of those clusters. For the physically narrow states, however, the

GFMC propagation starting from a confined variational trial function reaches a stable energy

without any noticeable decay over the finite τ used in the present calculations, and this is

the energy we quote. For physically very wide states (> 1 MeV) this decay is observed in

the calculations, e.g., in the first 2+ and 4+ states in 8Be, as a smooth energy decline beyond

τ ∼ 0.1 MeV−1.47 In such cases, the rms radius also shows a smooth growth, indicative that

the propagation is disassembling the system into its component parts. In these few cases

the energy of the state is estimated from the value at the beginning of the smooth energy

decline. Additional particle-stable isobaric analog states, e.g., in 8B and 9,10C, have been

calculated in GFMC, but are not shown.

A VMC survey of more than 60 additional states has also been made, including higher

excited states, more isobaric analog states, e.g., in 7Be, and various particle-unstable nuclei

like 7He, 8C, and 9B. For the nuclei shown in Fig. 3, the VMC trial functions underbind 4He

by 1 MeV, and miss 1–1.5 MeV/nucleon binding in the A ≥ 6 nuclei. However, they get

the same ordering of excitations as the final GFMC calculations, with very similar energy

splittings. The VMC survey of additional states indicates a continued good agreement with

known states. While the most important test of a Hamiltonian is the ability to reproduce

known states, it is also important to not predict states in places where they are not observed,

e.g., predicting a particle-stable 10He ground state would be a failure of the model. The VMC

survey has found no such problems for either the NV2+3-Ia or AV18+IL7 models.

CONCLUSIONS AND FUTURE WORK

The very satisfactory agreement between the predicted and observed spectra validates

the present formulation of the basic model in terms of NN and 3N chiral interactions,

constrained by data in the two- and three-nucleon systems only. Key to this significant

advance is our group’s ability to reliably solve the nuclear many-body problem for bound

states of up to A= 12 nuclei with QMC methods, and for the three- and four-nucleon bound

and scattering states with HH methods. This capability, particularly for QMC, is driven by

ever expanding computational resources and by continuing improvements in algorithms. In
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a broader context, the basic model developed here justifies the program of nuclear theory

aimed at understanding the structure and reactions of nuclei solely on the basis of two- and

three-nucleon forces.

In future, we plan to calculate the nuclear spectra for other models—indeed, calculations

with NV2+3-IIb have already begun—and to refine the 3N chiral interaction by retaining

subleading contact terms. We will also be studying other nuclear properties, such as mag-

netic moments and electroweak transitions, for these Hamiltonians. An initial VMC survey

of numerous M1 and E2 electromagnetic and Gamow-Teller (GT) weak transitions finds

very similar matrix elements for NV2+3-Ia and AV18+IL7 when there is a large spatial

overlap between the initial and final states; this means reasonable agreement with experi-

ment since the AV18+IL7 model gives fairly good results in such cases.47,48 However, when

the transitions proceed from what is a large spatial symmetry component in the initial state

to a small component in the final state, the NV2+3-Ia model often produces significantly

larger matrix elements, which may potentially lead to better agreement with experiment.

An essential aspect of this future work is the development of two-body electroweak currents

consistent with the new models—in particular, the two-body currents have been shown to

make major contributions to magnetic moments and M1 transitions with the AV18+IL7

Hamiltonian.47,48
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