Click here to view linked References

1	1	Invited manuscript for Environmental Science and Pollution Research
2 3 4	2	
5 6	3	Disrupting mating of Lobesia botrana using sex pheromone aerosol devices
7 8 9	4	
10 11	5	Andrea Lucchi ¹ , Paolo Sambado ² , Anna B. Juan Royo ² , Bruno Bagnoli ³ , Giuseppe
12 13	6	Conte ¹ , Giovanni Benelli ^{1,4} *
14 15 16	7	
17 18 19	8	¹ Department of Agriculture, Food and Environment, University of Pisa, via del
20 21	9	Borghetto 80, 56124 Pisa, Italy
22 23	10	² CBC Iberia S.A., Av. Diagonal 605, 08028 Barcelona, Spain
24 25 26	11	³ Department for Innovation in Biological, Agro-food and Forest Systems, University of
27 28	12	Tuscia, via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy
29 30 31	13	⁴ The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo
32 33	14	Piaggio 34, 56025 Pontedera, Pisa, Italy
34 35 26	15	
37 38	16	* Corresponding author. Phone: +39-050.2216141. Fax: +39-050.2216087. E-mail
39 40	17	address: benelli.giovanni@gmail.com
41 42 43	18	
44 45	19	
46 47		
48 49		
50		
51 52		
53		
54		
55 56		
57		
58		
59		
60 61		
62		
63		
64 65		

20 Abstract

Pheromone-mediated mating disruption (MD) is widely used as a control tool to manage the European grapevine moth (EGVM), Lobesia botrana. Most of the MD formulations are "passive" reservoir dispensers, which need to be used at a rather large number of units per hectare. A promising alternative is represented by automatic aerosol devices, releasing pheromone puffs at programmed time intervals. Herein, we investigated the effectiveness of MD aerosol product Isonet® L MisterX841 in reducing EGVM infestation on grape in comparison to the reference MD product Isonet® L and the grower's standard. Experiments were carried out over two years in two different study sites of Aragon region (Spain). EGVM male catches were monitored using traps baited with the female sex pheromone. The effectiveness of MD formulations against the three generations of EGVM was assessed by determining the percentage of infested bunches and the number of nests per bunch. As expected, a much greater amount of male catches in the grower's standard over Isonet® L MisterX841 and Isonet ® L was observed. No significant differences about EGVM male catches were found in vineyards where Isonet® L MisterX841 and Isonet® L were used. EGVM infested bunches, as well as number of nests per bunch, were higher in the grower's standard, if compared to vineyards where we tested Isonet® L MisterX841 and Isonet® L. However, the employ of the latter led to a lower EGVM bunch infestation, if compared to Isonet® L MisterX841. Overall, the MD approach proposed here is effective against EGVM. These aerosol devices require a lower number of units ha⁻¹ if compared to hand-applied dispensers, saving labor costs and contributing to reduce plastic disposal in agricultural settings.

Keywords: chemical ecology; European grapevine moth; insect pest; Integrated Pest
Management; organic viticulture; pesticide-free agriculture; sexual pheromones;

47 Tortricidae

Introduction

2 3 4 5 6 7 8 9 10 12 13 $\begin{array}{c} 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\end{array}$ 48 49 50 52 53 54 55 56 57 58 59 60 63 65

51	
52	The European grapevine moth (EGVM), Lobesia botrana (Denis &
53	Schiffermüller) (Lepidoptera: Tortricidae) is a key pest of grape in most wine growing
54	regions worldwide. It is responsible of direct damages leading to serious economic
55	losses on table grape, as well as relevant indirect damages to wine grape, where larvae
56	feeding on bunches lead to botrytis and sour rot development (Ioriatti et al. 2011). The
57	recent spread of EGVM in the Americas, including regions of high economic
58	importance for wine production, such as California, Argentina and Chile (Gilligan et al.
59	2011; Gutierrez et al. 2012; Lance et al. 2015), stressed the crucial importance to
60	develop effective control tools to manage EGVM populations within the framework of
61	organic viticulture and Integrated Pest Management (IPM), with special reference to
62	Area-Wide Pest Management (AWPM) (Ioriatti and Lucchi 2016).
63	Besides, the reduction of the use of pesticides in agricultural settings is a key
64	challenge for modern agriculture, to limit their serious detrimental effect on human
65	health and the environment (Desneux et al. 2007; Guedes et al. 2016; Hoshi et al. 2016;
66	Navarro-Roldán and Gemeno 2017; Benelli 2018). In this scenario, research and public
67	attention focused on more eco-friendly control strategies to manage EGVM populations
68	(Witzgall et al. 2010; Cooper et al. 2014), including pheromone-mediated mating
69	disruption (MD) (Cardé and Minks 1995; Byers 2006). Indeed, MD is successfully used
70	as an effective control tool to fight L. botrana populations in vineyards (Ioriatti et al.
71	2004, 2008; Hummel 2017; Lucchi et al. 2018). In 2017, over 249,000 ha of European
72	vineyards have been managed using MD against <i>L. botrana</i> , with about 76,000, 60,000,
73	47,000 and 36,000 ha in Spain, Germany, France and Italy, respectively (Lucchi and

Benelli 2018). Notably, recent research failed to show any negative effect of MD on
human health as well as against other non-target species, pointing out that it fully
complies with IPM criteria (Welter et al. 2005; Millar 2006; Miller et al. 2006; Ting and
Eya 2010; Ioriatti et al. 2012).

In this framework, a rather wide array of devices emitting the main component [i.e., (7E.9Z)-7.9-dodecadien-1-yl acetate] of EGVM female sex pheromone, have been tested to improve the efficacy of MD operations, reduce the number of dispensers used per ha, thus labor cost (Anfora et al. 2008; Brockerhoff et al. 2012; Miller and Gut 2015; Lance et al. 2016), and replace plastic containers with biodegradable ones (Lucchi et al. 2018). However, most of the dispensers currently used for MD of EGVM are "passive" reservoir devices, which continuously release plumes of (7E,9Z)-7,9-dodecadien-1-yl acetate (Ioriatti and Lucchi 2016). Even if their employ ensures an effective management of L. botrana, they need to be used at a rather large number of units per ha (in most of the cases, from 250 to 600 units per ha), with significant costs for the farmers to apply the dispensers in the field (Shorey and Gerber 1996; Gut et al. 2004; Hansen 2008).

To face this challenge, a promising alternative is represented by automatic aerosol devices, which release puffs of the sex pheromones at programmed time intervals. These devices have been successfully tested against several insect species of economic importance, with special reference to moth pests (Shorev and Gerber 1996; Burks and Brandl 2004; Knight 2004; Stelinski et al. 2007; Suckling et al. 2007; De Lame et al. 2010; McGhee et al., 2014, 2016). However, to the best of our knowledge, in the face of a series of efficacy tests necessarily conducted for the recent registration of the CheckMate® Puffer® LB formulation in some European countries, no study on 98 the effectiveness of pheromone aerosol devices for the control of EGVM has been99 published.

Therefore, in the present study, we compared several MD strategies to manage EGVM populations in Spanish vineyards. We attempted to address the following questions: (i) Can MD aerosol product Isonet® L MisterX841 strongly reduce EGVM male catches in pheromone-baited traps? (ii) Does the employ of this aerosol device significantly diminished EGVM damage on grapevine? (*iii*) Is this MD approach effective over various study years and sites? (iv) Is the overall efficacy of the MD aerosol product comparable to the reference MD product Isonet® L? (v) Should MD aerosol products be preferred over the grower's standard practices? To tackle the arguments outlined above, herein we compared the effectiveness of EGVM control programs based on the use of the Isonet® L MisterX841 vs. the reference MD product Isonet® L and the grower's standard. Field experiments were carried out over two years (i.e., 2014 and 2015) in two different study sites located in the Aragon region (Spain). Each year, the effectiveness of MD products against the three generations of EGVM was assessed by determining the abundance of infested bunches and the number of nests per bunch. In addition, L. botrana male catches were monitored using traps baited with the EGVM synthetic sex pheromone.

- 117 Materials and methods
- 119 Field experimental sites and study period

121	The experiment was conducted in two commercially farmed vineyards
122	belonging to Cariñena DO located in the north of Spain, Alfamén area, Aragon region
123	(41° 29' 49.8" N – 1° 16' 29.5" W) (Table 1). Four efficacy trials were performed in
124	two consecutive years, 2014 and 2015, on vineyards with homogenous conditions and
125	varieties (Cabernet and Merlot). The vineyards selected for the trials registered
126	medium-high L. botrana infestation in the previous years. Vineyards were scouted
127	before harvest (at the end of the EGVM third generation) monitoring L. botrana
128	infestation. More than 20 damage assessments were performed and the average
129	infestation ranged from 20 to 40 % infested bunches. Study vineyards were located in a
130	windy area. The average wind speed in the study area is 19 km/h. The 43 % of the days,
131	the wind speed is \geq 20 km/h, and in the 16% of the cases \geq 30 km/h. Maximum wind
132	speed is 80-100 km/h. The dominant wind is commonly named as "Cierzo" and blows
133	from NW down the Ebro valley.
134	
135	Pheromone dispensers
136	
137	The objective of this study was to test an aerosol formulation, named Isonet® L
138	MisterX841 (Shin-Etsu Chemical Co., Tokyo, Japan), for mating disruption of EGVM.
139	The aerosol dispenser consists in a pressurized aluminum can loaded with 52.1 g of
140	(7E,9Z)-7,9-dodecadien-1-yl acetate, solvent-diluted and mixed with a propellant. A
141	programmable electronic device (Isomate® CM Mist), produced by Pacific Biocontrol
142	Corp. (Vancouver, WA, USA), was used to release the formulation in the field over
143	time.

1 2	144	All experiments were conducted using the same release program. Isonet® L
3 4	145	MisterX841 devices were deployed at the density of 2 per ha, hanged on the top of the
5 6 7	146	pole of the vineyard trellis system, and were daily releasing 297 mg of active ingredient
8 9	147	(a pheromone puff every 20 min from 18:00 pm to 6:00 am).
10 11 12	148	
13 14	149	Experimental design and data collection
15 16	150	
17 18 19	151	The design used for the experiment was large plots as recommended by EPPO
20 21	152	guidelines and earlier studies (Baker et al. 1997; European and Mediterranean Plant
22 23 24	153	Protection Organization 2016) for mating disruption products. Each treatment was
25 26	154	applied on a large and homogeneous plot. Each plot was divided in 10 subplots
27 28 29	155	composed by 100 vines minimum, homogeneously distributed in the internal part of the
30 31	156	plot, 20 m away from the borders (Table 1).
32 33	157	EGVM flight was assessed during the season using three pheromone-baited
34 35 36	158	delta traps (Trécé Inc., Adair, OK, USA) per plot. Traps were baited with septum lure
37 38	159	for L. botrana, code 3104-25 EGVM (Trécé Inc., Adair, OK, USA) and hanged inside
39 40 41	160	the vine canopy at 1.5 m from the ground. The traps were deployed before the
42 43	161	beginning of the first flight of the pest and checked weekly. Data were analyzed as male
44 45 46	162	catches at the end of each EGVM flight. The septum lure was changed every 30 days, as
47 48	163	for manufacturer recommendation.
49 50	164	In our experiments, three treatments were tested, Isonet® L MisterX841 (tested
51 52 53	165	MD product) at 2 units per ha, Isonet® L (Shin-Etsu Chemical Co) (standard MD
54 55	166	reference) at 500 dispensers per ha, and the grower's standard (control), where a
56 57 58	167	conventional insecticide-based strategy was used (Table 2). All MD formulations were
59 60		
61 62 63		
64 65		

deployed before the beginning of the first flight of the target pest in both years (Table 2). Crop damage and L. botrana population density evaluation In all trials, the crop damage caused by EGVM was assessed at the end of the 1st generation (=G1, BBCH 65), at the end of the 2nd generation (=G2, BBCH 79), and at the harvest time (=G3, BBCH 89). To assess the effectiveness of the three different strategies, we considered the following variables: (i) number of male captures per treatment per flight, (ii) rate of infested inflorescences or bunches, (iii) number of nests per inflorescence (G1) or number of larvae per bunch (G2 and G3). Within each subplot and at each damage assessment, we examined 50 flower clusters per subplot at G1, 50 bunches per subplot at G2, and 30 bunches per subplot at G3, for a total of 15,000 (G1 and G2) and 9,000 (G3) examined samples. The percentage of EGVM-damaged flower clusters or bunches at each assessment was then calculated. Furthermore, at each assessment, the number of EGVM nests per flower cluster (G1) or bunch (G2 and G3) was noted. In detail, G1 and G2 infestation was measured through on-site surveys on non-destructively sampled inflorescences and bunches. As to G3, an estimate of the infested bunches was made on samples collected in the vineyards and carefully dissected as described by Lucchi et al. (2018). Statistical analysis

191	Data about male catches per EGVM flight, as well as the percentage of infested
192	flower clusters (G1) and bunches (G2 and G3), and the number of EGVM nests per
193	flower cluster/bunch, were not normally distributed. Data transformation reported by
194	Stelinski et al. (2007) [i.e., $ln(x + 1)$] was not able to normalize the distribution and
195	homogenize the variance of our data (Shapiro-Wilk test, goodness of fit post-
196	transformation P<0.001). Therefore, non-parametric statistics was used. Differences in
197	the abundance of EGVM catches, infested flower clusters (G1) and bunches (G2 and
198	G3), and the number of nests per flower cluster/bunch among treatments (i.e., tested
199	pheromone dispensers and the positive control, i.e., grower's standard), years, and study
200	site were assessed using Kruskal-Wallis test followed by Steel-Dwass multiple
201	comparison; $P=0.05$ was selected as threshold to assess significant differences.
202	
203	Results
204	
201	
205	Male catches using pheromone-baited traps
205 206	Male catches using pheromone-baited traps
205 206 207	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main
205 206 207 208	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed
205 206 207 208 209	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001),
205 206 207 208 209 210	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001), with higher abundance of male catches in the grower's standard, if compared to
205 206 207 208 209 210 211	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001), with higher abundance of male catches in the grower's standard, if compared to vineyards where we tested Isonet® L (<i>Z</i> =-43.813, <i>P</i> <0.0001) and Isonet® L
205 206 207 208 209 210 211 212	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001), with higher abundance of male catches in the grower's standard, if compared to vineyards where we tested Isonet® L (<i>Z</i> =-43.813, <i>P</i> <0.0001) and Isonet® L MisterX841 (<i>Z</i> =-41.021, <i>P</i> <0.0001). No significant differences were detected about
205 206 207 208 209 210 211 212 213	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001), with higher abundance of male catches in the grower's standard, if compared to vineyards where we tested Isonet® L (<i>Z</i> =-43.813, <i>P</i> <0.0001) and Isonet® L MisterX841 (<i>Z</i> =-41.021, <i>P</i> <0.0001). No significant differences were detected about EGVM catches in vineyards where Isonet® L and Isonet® L MisterX841 (<i>Z</i> =1.890,
205 206 207 208 209 210 211 212 213 214	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001), with higher abundance of male catches in the grower's standard, if compared to vineyards where we tested Isonet® L (<i>Z</i> =-43.813, <i>P</i> <0.0001) and Isonet® L MisterX841 (<i>Z</i> =-41.021, <i>P</i> <0.0001). No significant differences were detected about EGVM catches in vineyards where Isonet® L and Isonet® L MisterX841 (<i>Z</i> =1.890, <i>P</i> =0.141) were used (Figure 1).
205 206 207 208 209 210 211 212 213 214	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001), with higher abundance of male catches in the grower's standard, if compared to vineyards where we tested Isonet® L (<i>Z</i> =-43.813, <i>P</i> <0.0001) and Isonet® L MisterX841 (<i>Z</i> =-41.021, <i>P</i> <0.0001). No significant differences were detected about EGVM catches in vineyards where Isonet® L and Isonet® L MisterX841 (<i>Z</i> =1.890, <i>P</i> =0.141) were used (Figure 1).
205 206 207 208 209 210 211 212 213 214	Male catches using pheromone-baited traps The analysis of male catches per EGVM flight using traps baited with the main female sex pheromone component [i.e., (7 <i>E</i> ,9 <i>Z</i>)-7,9-dodecadien-1-yl acetate] showed significant differences among the three tested control strategies (χ^2_2 =76.725, <i>P</i> <0.0001), with higher abundance of male catches in the grower's standard, if compared to vineyards where we tested Isonet® L (<i>Z</i> =-43.813, <i>P</i> <0.0001) and Isonet® L MisterX841 (<i>Z</i> =-41.021, <i>P</i> <0.0001). No significant differences were detected about EGVM catches in vineyards where Isonet® L and Isonet® L MisterX841 (<i>Z</i> =1.890, <i>P</i> =0.141) were used (Figure 1).

215	In addition, male catches varied significantly among the three moth flights
216	(χ^2_2 =29.928, <i>P</i> <0.0001). A significant difference emerged between the first and the
217	second flight (Z=-3.163, P =0.009), as well as between the first and the third flight (Z=-
218	3.796, P=0.0008). No differences in EGVM catches were observed between the third
219	flight if compared to the second one (Z =4.236, P =0.957) (Figure 1).
220	Lastly, the effect of the study site was not significant ($\chi^2 = 1.592$, P=0.207),
221	while a significant difference was detected between the two years ($\chi^2_1 = 6.625$, P=0.010),
222	showing higher EGVM male catches incidence in 2015 over 2014 (Figure 1).
223	
224	Infested flower clusters and bunches
225	
226	The percentage of EGVM infested flower clusters and bunches varied
227	significantly among the three tested control approaches ($\chi^2 = 187.993$, <i>P</i> <0.0001), with
228	higher infestation rates in the grower's standard, if compared to vineyards where
229	Isonet® L (Z=-12.592, P<0.0001) and Isonet® L MisterX841 (Z=-10.277, P<0.0001)
230	were applied. In addition, a significant difference was detected between vineyards
231	where Isonet® L and Isonet® L MisterX841 (Z=4.261, P=0.0001) were used, with
232	higher percentage of infested flower cluster and bunches on Isonet® L MisterX841 over
233	Isonet® L (Figure 2).
234	Furthermore, the percentage of EGVM infested flower cluster and bunches
235	varied significantly among the species generations ($\chi^2_2=24.924$, P<0.0001). A
236	significant difference in overall infestation was detected between the first and the
237	second EGVM generation (Z =-4.460, P <0.0001). We observed higher infestation rates
238	in the third generation if compared to the second one (Z =4.061, P <0.0001), while no

239	significant differences were found in the percentage of EGVM infestation between the
240	first and the third generation ($Z=1.572$, $P=0.258$) (Figure 2).
241	The effect of the study site was not significant (χ^2_1 =3.548, <i>P</i> =0.059), while a
242	difference was detected between the two experimental years (χ^2_1 =4.246, P=0.039),
243	showing higher infestation in 2015 over 2014 (Figure 2).
244	
245	Number of nests per flower cluster or bunch
246	
247	The number of EGVM nests per one-hundred flower clusters and bunches varied
248	significantly among the three pest management strategies ($\chi^2 = 190.131$, P<0.0001),
249	with higher abundance of nests in the grower's standard, if compared to that of
250	vineyards where we tested Isonet® L (Z=-12.601, P <0.0001) and Isonet® L
251	MisterX841 (Z=-10.439, P<0.0001). A significant difference in the number of EGVM
252	nests was detected between vineyards where Isonet® L and Isonet® L MisterX841
253	(Z=4.230, P =0.0001) were used, with higher value of this variable on Isonet® L
254	MisterX841 over Isonet® L treatment (Figure 3).
255	Moreover, the abundance of EGVM nests per one-hundred flower clusters and
256	bunches varied significantly among generations ($\chi^2_2=27.297$, <i>P</i> <0.0001). A difference
257	was detected between the first and the second generation (Z =-4.622, P <0.0001). Higher
258	abundance of nests was noted in the third generation if compared to the second one
259	(Z=4.236, P<0.0001), while no significant differences were found about EGVM
260	infestation values between the first and the third generation ($Z=1.886$, $P=0.143$) (Figure
261	3).

The effect of the study site was not significant (χ^2_1 =3.213, *P*=0.073), while a difference was detected between the two years (χ^2_1 =5.207, *P*=0.022), showing higher infestation levels in 2015 over 2014 (Figure 3).

266 Discussion

The use of aerosol devices for MD of moth pests of fruits and nuts is still debated, since several authors pointed out that their employment as standing-alone control strategy is not enough to effectively manage pest populations (Isaacs et al. 1999; Stelinski et al. 2007; McGhee et al. 2016). However, the findings reported here about MD of EGVM are promising. Our results highlighted a higher abundance of male catches in pheromone traps located in the grower's standard vineyards over those placed in Isonet® L MisterX841 and Isonet® L vineyards. In addition, we showed that the percentage of EGVM infested flower clusters and bunches, as well as the number of nests per flower cluster or bunch, was significantly higher in the grower's standard, over vineyards where Isonet® L MisterX841 and Isonet L® were tested. Notably, no significant differences about EGVM male catches were found analyzing data from vineyards where Isonet® L MisterX841 and Isonet® L were used. However, the employ of the latter led to lower values of EGVM flower cluster and bunch infestation, if compared to the performances of Isonet® L MisterX841. As a general trend, the abundance of *L. botrana* populations was higher in the first and the third generation, if compared to the second one. The study site did not have a significant effect on the three variables used to monitor EGVM infestation, while the effect of the experimental year

on infested clusters and bunches, number of nests per bunch and male catches wasalways significant.

The findings summarized above outlined the interesting potential of pheromone aerosol devices to control L. botrana. Even if most of the MD research conducted right now focused on the use of "passive" sex pheromone dispensers (see Ioriatti and Lucchi 2016 for a recent review), there are at least three advantages arising from the employ of pheromone aerosol devices against EGVM. First, aerosol devices require a lower number of units per ha (1-3 units ha⁻¹) if compared to hand-applied "passive" dispensers (200-600 units ha⁻¹). Second, the lower number of units per ha reduces labor cost, which is a key requirement for farmers (Gut et al. 2004; Stelinski et al. 2007). Third, the employ of pheromone aerosol devices contributes to lower plastic disposal in agricultural settings and close-related environments (Lucchi et al. 2018). However, despite these promising features, no evidences have been published about the use of sex pheromone aerosol devices for MD of EGVM. On the other hand, several attempts have been done to evaluate similar aerosol devices against various moth pests (McGhee et al. 2014, 2016). Earlier, Stelinski et al. (2007) focused on the MD of Cydia pomonella (L.) and Grapholita molesta (Busck) testing Puffer® aerosol dispensers at 2.5 units ha⁻¹ (Suterra LLC, Bend, USA). The authors pointed out that the tested product was able to disrupt the male orientation towards pheromone-baited traps in trials conducted on both moth pests. However, the MD approach proposed by Stelinski et al. (2007) did not significantly affect the incidence of fruit infestation between Puffer®-treated fields and control ones. A similar result was obtained by Knight (2004), who tested the efficacy of MD against C. pomonella using a combination of sex pheromone dispensers (Isomate-C®) applied on the perimeter of

apple orchards plus an internal grid of sex pheromone aerosol devices (1 unit ha¹) or dispenser clusters (4-8 units ha⁻¹). Again, the author did not find any impact of the proposed MD approach on fruit infestation levels (Knight 2004). Later on, McGhee et al. (2014) highlighted that aerosol devices (Isomate® CM MIST) to manage C. pomonella populations through MD, probably achieved their effect by inducing false-plume following, while their camouflage of traps and females is limited. More recently, McGhee et al. (2016) conducted an interesting attempt aimed to optimize the use of the above cited aerosol devices for C. pomonella MD, reducing the concentration of codlemone by 50 %. They outlined that the codling moth catches in MD-treated fields were about half of the untreated control, and none of the tested concentrations led to high (i.e. >95 %) reduction in male catches, at variance with earlier research discussed above (Knight 2004). Furthermore, Suckling et al. (2007) studied MD of Epiphyas postvittana (Walker) in New Zealand apple orchards, testing the effectiveness of an electronically controlled aerosol system over pheromone polyethylene dispensers. As in our work, male moth catches were monitored in treated and control fields, showing that both MD products led to significantly lower male catches, with a 90 % reduction of male catches when both the sex pheromone aerosol devices (5 units ha^{-1}) as well as pheromone polyethylene dispensers (100 units ha⁻¹) were tested. Similar observations have been

CM MIST) per hectare in MD programs against C. pomonella. However, 5 aerosol devices per ha are a rather high number. Suckling et al. (2007) did not recommend the use of aerosol devices for E. postvittana MD programs, due to their high costs. This does not apply to the findings presented here, since we used only 2 devices per hectare.

done by McGhee et al. (2014), pointing out the efficacy of 5 aerosol units (Isomate®)

In addition, our results highlighted that the efficacy of the sex pheromone aerosol device Isonet® L MisterX841 is higher if compared to the grower's standard practices, where the latter relied also to the use of insecticides to manage EGVM. In addition, the performances of the aerosol device tested here did not significantly differ from the commercial MD product Isonet® L, at least in term of male catches on pheromone-baited traps. Conclusions The MD approach proposed here allowed an effective management of L. botrana populations, leading to a strong reduction in the number of pheromone dispensers in vineyards, thus labor cost. On the other hand, it should be noted that the standard hand-applied dispensers tested here achieved better results in term of crop damage reduction. Besides, the use of aerosol devices leads to several additional requirements. Indeed, a careful study of the agricultural settings where the MD approach is needed to locate the best sites to install these devices. In addition, the MD product tested here needs proper maintenance over time, and the cost per hectare to purchase is higher if compared to hand-applied dispensers. Further research to develop aerosol devices with reduced pheromone content and finely tunable release programs (see also McGhee et al. 2016) is ongoing, with the final aim to propose highly effective, cheap and easy-to-manage aerosol devices. Acknowledgements

1 2	357	The authors are grateful to Shin-Etsu Chemical Co. (Tokyo, Japan) for kindly
- 3 4	358	providing the tested dispensers and aerosol devices.
5 6 7	359	
8 9	360	Conflict of Interest
10 11	361	
12 13 14	362	The authors declare no competing interests. The mention of trade names or
15 16	363	commercial products in this publication is only aimed to provide specific information; it
17 18 19	364	does not imply recommendation or endorsement by the authors' affiliations.
20 21	365	
22 23 24	366	References
25 26	367	
27 28 29	368	Anfora G, Baldessari M, De Cristofaro A, Germinara GS, Ioriatti C, Reggiori F et al
30 31	369	(2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable
32 33	370	Ecodian sex pheromone dispensers. J Econ Entomol 101:444-450
34 35 36	371	Baker TC, Ditt T, Mafra-Neto A (1997) Disruption of sex pheromone communication in
37 38	372	the blackheaded fireworm in Wisconsin cranberry marshes by using MSTRS
39 40 41	373	devices. J Agric Entomol 14:449-457
42 43	374	Benelli G (2018) Plant-borne compounds and nanoparticles: challenges for medicine,
44 45 46	375	parasitology and entomology. Environ Sci Poll Res 25:10149-10150
47 48	376	Brockerhoff EG, Suckling DM, Kimberley M, Richardson B, Coker G, Gous S, Kerr
49 50 51	377	JL, Cowan DM, Lance DR, Strand T, Zhang A (2012) Aerial application of
52 53	378	pheromones for mating disruption of an invasive moth as a potential eradication
54 55	379	tool. PLoS One 7:e43767, doi: 10.1371/journal.pone.0043767
57 58		
59 60 61		
62 63		
64 65		

380	Burks CS, Brandl DG (2004) Seasonal abundance of the navel orangeworm, Amyelois
381	transitella, in figs and the effect of peripheral aerosol dispensers on sexual
382	communication. J Insect Sci 4(1):40 available online: insectscience.org/4.40
383	Byers JA (2006) Pheromone component patterns of moth evolution revealed by
384	computer analysis of the Pherolist. J Anim Ecol 75(2):399-407
385	Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and
386	constraints. Annu Rev Entomol 40:559-585
387	Cooper M, Varela LG, Smith RJ, Whitmer DR, Simmons GA, Lucchi A, Broadway R,
388	Steinhauer R (2014) Growers, scientists and regulators collaborate on European
389	grapevine moth program. Calif Agric 4:125-133
390	De Lame FM, Epstein D, Gut LJ, Goldfarb H, Miller J R (2010) Effect of varying
391	dispenser point source density on mating disruption of Grapholita molesta
392	(Lepidoptera: Tortricidae). J Econ Entomol 103(4):1299-1305
393	Desneux N, Decourtye, A, Delpuech JM (2007) The sublethal effects of pesticides on
394	beneficial arthropods. Annu Rev Entomol 52:81-106
395	European and Mediterranean Plant Protection Organization (2016) Efficacy evaluation
396	of plant protection products. Mating disruption pheromones
397	(http://pp1.eppo.int/). First approved in 2008-09. Last update December 2016
398	Gilligan TM, Epstein ME, Passoa SC, Powell JA, Sage OC, Brown JW (2011).
399	Discovery of Lobesia botrana ([Denis & Schiffermüller]) in California: an
400	invasive species new to North America (Lepidoptera: Tortricidae). Proc Entomol
401	Soc Washington 113(1):14-30

1 2	402	Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in
2 3 4	403	arthropod pests for optimized integrated pest management programs. Annual
5 6 7	404	Rev Entomol 61:43-62
8 9	405	Gut LJ, Stelinski LL, Thomson DR, Miller JR (2004) Behaviour-modifying chemicals:
10 11 12	406	prospects and constraints in IPM, In: Integrated pest management: potential,
12 13 14	407	constraints, and challenges. Eds. Koul, Dhaliwal and Cuperus, CABI Publishing,
15 16	408	Cambridge, MA, pp. 73-121
17 18 19	409	Gutierrez AP, Ponti L, Cooper ML, Gilioli G, Baumgärtner J, Duso C (2012)
20 21	410	Prospective analysis of the invasive potential of the European grapevine moth
22 23 24	411	Lobesia botrana (Den. & Schiff.) in California. Agric For Entomol 14(3):225-
25 26	412	238
27 28 29	413	Hansen M (2008) Puffers save labor. Good Fruit Grower 59(11):28
30 31	414	Hoshi H, Takabe M, Nakamuta K (2016) Mating disruption of a carpenter moth, Cossus
32 33 34	415	insularis (Lepidoptera: Cossidae) in apple orchards with synthetic sex
35 36	416	pheromone, and registration of the pheromone as an agrochemical. J Chem Ecol
37 38	417	42(7):606-611
39 40 41	418	Hummel HE (2017) A brief review on Lobesia botrana mating disruption by
42 43	419	mechanically distributing and releasing sex pheromones from biodegradable
44 45 46	420	mesofiber dispensers. Biochem Mol Biol J 3:1-4
47 48	421	Ioriatti C, Lucchi A (2016) Semiochemical strategies for tortricid moth control in apple
49 50 51	422	orchards and vineyards in Italy. J Chem Ecol 42(7):571-583
52 53	423	Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical
54 55 56	424	ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ
57 58	425	Entomol 104(4):1125-1137
59 60		
62 63		
64 65		

1 2	426	Ioriatti C, Bagnoli B, Lucchi A, Veronelli V (2004) Vine moths control by mating
3 4	427	disruption in Italy: Results and future prospects. Redia 87:117-128
5 6 7	428	Ioriatti C, Lucchi A, Bagnoli B (2008) Grape Areawide Pest Management in Italy. In:
8 9	429	Koul et al. "Areawide Pest Management: Theory and Implementation", CAB
10 11	430	International, pp. 208-225
12 13 14	431	Ioriatti C, Lucchi A, Varela L G (2012) Grape Berry Moths in Western European
15 16	432	Vineyards and their recent movement into the New World. In: N.J. Bostanian et
17 18 19	433	al. (Eds.) "Arthropod management in vineyards: pests, approaches, and future
20 21	434	directions", doi: 10.1007/978-94-007-4032-7_14, Springer Science + Business
22 23 24	435	Media B.V. 2012
25 26	436	Isaacs R, Ulczynski MJ, Wright B, Gut LJ, Miller JR (1999) Performance of the
27 28 29	437	microsprayer with application for pheromone-mediated control of insect pests. J
30 31	438	Econ Entomol 92:1157-1164.
32 33	439	Knight AL (2004) Managing codling moth (Lepidoptera: Tortricidae) with an internal
34 35 36	440	grid of either aerosol Puffers or dispenser clusters plus border applications of
37 38	441	individual dispensers. J Entomol Soc Br Col 101:69-77
39 40 41	442	Lance D, Mastro VB, Cardé RT, Ioriatti C, Lucchi A, Steinhauer R, Simmons G,
42 43	443	Cooper M, Varela LG (2015) Report of USDA APHIS international technical
44 45 46	444	working group for the European grapevine moth (EGVM) in California.
47 48	445	November 2, 2015,
49 50 51	446	$https://www.aphis.usda.gov/plant_health/plant_pest_info/eg_moth/downloads/t$
52 53	447	wg-report-11-2-15.pdf Accessed January 25, 2018
54 55 56		
57 58		
59 60		
62 63		
64 65		

1 2	448	Lance DR, Leonard DS, Mastro VC, Walters ML (2016) Mating disruption as a
2 3 4	449	suppression tactic in programs targeting regulated lepidopteran pests in US. J
5 6 7	450	Chem Ecol 42(7):590-605
, 8 9	451	Lucchi A, Benelli G (2018) Towards pesticide-free farming? Sharing needs and
10 11	452	knowledge promotes Integrated Pest Management. Environ Sci Poll Res doi:
12 13 14	453	10.1007/s11356-018-1919-0
15 16	454	Lucchi A, Ladurner E, Iodice A, Savino F, Ricciardi R, Cosci F, Conte G, Benelli G
17 18 19	455	(2018) Eco-friendly pheromone dispensers – a green route to manage the
20 21	456	European grapevine moth? Environ Sci Poll Res 25:9426-9442
22 23 24	457	McGhee PS, Gut LJ, Miller JR (2014) Aerosol emitters disrupt codling moth, Cydia
24 25 26	458	pomonella, competitively. Pest Manag Sci 70:1859-1862
27 28	459	McGhee PS, Miller JR, Thomson DR, Gut LJ (2016) Optimizing aerosol dispensers for
29 30 31	460	mating disruption of codling moth, Cydia pomonella L. J Chem Ecol 42:612-616
32 33	461	Millar JG (2007) Insect pheromones for integrated pest management: promise versus
34 35 36	462	reality. Redia 90:51-55
37 38	463	Miller JR, Gut L J (2015) Mating disruption for the 21st century: matching technology
39 40 41	464	with mechanism. Environ Entomol 44(3):427-453
42 43	465	Miller JR, Gut LJ, De Lame FM, Stelinski LL (2006) Differentiation of competitive vs.
44 45 46	466	non-competitive mechanisms mediating disruption of moth sexual
47 48	467	communication by point sources of sex pheromone (Part 2): case studies. J
49 50	468	Chem Ecol 32(10):2115-2143
51 52 53	469	Navarro-Roldán MA, Gemeno C (2017) Sublethal effects of neonicotinoid insecticide
54 55	470	on calling behavior and pheromone production of tortricid moths. J Chem Ecol
56 57 58	471	43:881-890
59 60		
61 62 63		
64 65		

1 2	472	Shorey HH, Gerber RG (1996) Use of puffers for disruption of sex pheromone
3	473	communication of codling moths (Lepidoptera: Tortricidae) in walnut orchards.
5 6 7	474	Environ Entomol 25:1398-1400
8 9	475	Stelinski LL, Gut LJ, Haas M, McGhee P, Epstein D (2007) Evaluation of aerosol
10 11 12	476	devices for simultaneous disruption of sex pheromone communication in Cydia
13 14	477	pomonella and Grapholita molesta (Lepidoptera: Tortricidae). J Pest Sci 80:225-
15 16 17	478	233
18 19	479	Suckling DM, Daly JM, Chen X, Karg G (2007) Field electroantennogram and trap
20 21 22	480	assessments of aerosol pheromone dispensers for disrupting mating in Epiphyas
23 24	481	postvittana. Pest Manag Sci 63:202-209
25 26	482	Ting D, Eya DB (2010) Human health risk assessment of Isomate®-EGVM. Report
27 28 29	483	reviewed by the Department of Pesticide Regulation, California Environmental
30 31	484	Protection Agency and the California Department of Public Health, 39 pp.
32 33 34	485	Welter S, Pickel C, Millar J, Cave F, Van Steenwyk R, Dunley J (2005) Pheromone
35 36	486	mating disruption offers selective management options for key pests. Calif Agric
37 38 39	487	59(1):16-22
40 41	488	Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest
42 43	489	management. J Chem Ecol 36(1):80-100
45 46	490	
47 48	491	
49 50 51		
52 53		
54 55		
56 57		
58 59 60		
61 62		
63 64		
65		

492	Captions
493	
494	Table 1. Location of the vineyards subjected to the tests of pheromone-based mating
495	disruption using aerosol devices against the European grapevine moth, Lobesia botrana.
496	
497	Table 2. Size of the vineyards subjected to the different treatments, and application
498	dates of the two pheromone-based formulations.
499	
500	Figure 1. Mating disruption against the European grapevine moth, Lobesia botrana
501	(EGVM). Box plots showing the effect of (a) the treatment, (b) moth flight, (c)
502	experimental site, and (d) year on EGVM male catches in pheromone-baited traps. Box
503	plots indicate the median (solid line) within each box and the range of dispersion (lower
504	and upper quartiles and outliers) of the EGVM population parameter.
505	
506	Figure 2. Mating disruption against the European grapevine moth, Lobesia botrana
507	(EGVM). Box plots showing the effect of (a) the treatment, (b) moth generation, (c)
508	experimental site, and (d) year on EGVM infested bunches (%). Box plots indicate the
509	median (solid line) within each box and the range of dispersion (lower and upper
510	quartiles and outliers) of the EGVM population parameter.
511	
512	Figure 3. Mating disruption against the European grapevine moth, Lobesia botrana
513	(EGVM). Box plots showing the effect of (a) the treatment, (b) moth generation, (c)
514	experimental site, and (d) year on EGVM nests/100 bunches. Box plots indicate the
	 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

- 515 median (solid line) within each box and the range of dispersion (lower and upper
- 516 quartiles and outliers) of the EGVM population parameter.

Table 1

4	ω	2	-	Trial
Alfamén	Alfamén	Alfamén	Alfamén	Site
Zaragoza	Zaragoza	Zaragoza	Zaragoza	Province
Aragon	Aragon	Aragon	Aragon	Region
1°15'57.14" W	1° 16' 29.5" W	1°15'57.14" W	1° 16' 29.5" W	Longitude
41°29'51.04" N	41° 29' 49.8" N	41°29'51.04" N	41° 29' 49.8" N	Latitude
2015	2015	2014	2014	Year
Merlot	Cabernet	Merlot	Cabernet	Variety
SO4	Richter 110	SO4	Richter 110	Rootstock
Low cordon	Low cordon	Low cordon	Low cordon	Training system
2.7	2.7	2.7	2.7	Spacing between rows (m)
-	1	1	1	Spacing between vines (m)
12	13	11	12	Plant age (years)

Trial		/ineyard size (ha)		Date of dispenser
	Isonet [®] L Misterx841	Isonet [®] L	Grower standard	deployment
1	9.2	9.2	2.2	2/4/2014
2	4.8	5.8	1.6	2/4/2014
3	4.8	4.5	4.2	1/4/2015
4	4.8	5.8	2.8	1/4/2015

Table 2