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Abstract 

 

Full-waveform inversion (FWI) tries to estimate velocity models of the subsurface with improved accuracy 

and resolution compared to conventional methods. To be successful, it needs input data rich in low 

frequencies and possibly characterized by long source-to-receiver offsets. The correct solution of the 

inverse problem by means of local methods is facilitated if the starting model lies in the “valley” of the cost-

function global minimum. We explore the possibility of relaxing this requirement by using Genetic 

Algorithms, a stochastic optimization method, as the driver of the FWI (GA FWI). However, stochastic 

methods are affected by the “curse of dimensionality”, meaning that they require huge and sometimes 

even unaffordable computer resources for inverse problems with many unknowns and costly forward 

modeling. Therefore, we need to adopt proper stratagems in the inversion and to limit our goal to the 

estimation of a velocity macro-model, that is of a model with only the long wavelength velocity structures, 

which could eventually act as the starting model for a local, higher-resolution gradient-based inversion. To 

this end, in the GA FWI we parametrize the subsurface with two grids: a coarse grid with widely spaced 

nodes, that is unknowns, for the inversion and a fine grid with shorter spacing for the modeling. As a side 

result, we can also have an estimate of the uncertainty at the solution nodes of the grid. The approach we 

discuss is 2D acoustic in the time domain, with finite difference forward modeling. The examples we show 

refer to the Marmousi model and to a marine field dataset. 
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Introduction 

 

Full-waveform inversion simultaneously considers the traveltimes and the amplitudes and shapes of the 

recorded wavelets, that is the entire information of the seismogram, to estimate an optimal and high 

resolution velocity field of the subsurface. Applying FWI with success to a wide variety of geological models 

is a very ambitious and much desired goal and thus FWI has received growing attention by the geophysical 

community since the earliest works of Tarantola (1984), Mora (1988), and Pratt and Worthington (1990). 

Successful FWI applications that deal with acoustic or elastic or anisotropic cases are well described in the 

scientific literature (Brossier et al., 2009, Plessix and Perkins, 2010, Sirgue et al., 2010, Prieux et al., 2011, 

Morgan et al., 2013, among others). In general, FWI is carried out by means of iterative local optimization 

methods that require the computation of the gradient of a misfit function, which is rather complicated due 

to the non-linearity and the ill-posedness of this challenging inverse problem (Virieux and Operto, 2009). 

Therefore, noise contamination, lack of low frequencies and inaccuracies of the starting model make it 

difficult for gradient-based optimization algorithms to find the global minimum of a misfit surface affected 

by many local minima: unless the starting model is in the basin of attraction of the global minimum, there is 

a significant risk to get trapped in a local minimum. To reduce this risk, the inversion can be performed 

starting from the low frequencies only of the data and progressively including the higher frequencies, a 

method known as the multiscale technique (Bunks et al., 1995). Good starting models are generally 

required to be smooth (Asnaashari et al., 2013) and with the associated synthetic seismograms matching 

the events (particularly the refracted and diving waves) of the observed seismogram with errors smaller 

than half of the wavelet period to avoid cycle-skipping artifacts (Beydoun and Tarantola, 1988). Suitable 

starting models for gradient-based FWI are usually derived employing reflection and refraction 

tomography, PSDM velocity analysis, first-arrival travel-time tomography (Nolet, 1987), stereotomography 

(Billette and Lambaré, 1998), or ensembles of different methods trying also to integrate the available 

geophysical and geological data. Laplace domain and Laplace-Fourier domain (Shin and Cha, 2008, Shin and 

Ha, 2008) have been also proposed. All these techniques have demonstrated their effectiveness, but they 

usually require a significant amount of qualified human resources and of computing time. 

 

Stochastic methods are less affected than gradient-based methods by the presence of local minima in the 

error surface and consequently are less dependent on the starting model for the inversion. For instance, 

Genetic Algorithms do not even require the definition of a starting model because they actually start from a 

population of models within a range that includes the candidate solutions. Applications of Genetic 

Algorithms and Simulated Annealing in geophysics are numerous, among the others we mention the works 

of Sen and Stoffa (1991), Stoffa and Sen (1991), Tran and Hiltunen (2012), Datta and Sen (2016). 

Unfortunately, within the constraint of a reasonable time budget, stochastic optimization methods may still 

require unaffordable computing resources if applied to inverse problems with large dimensions of the 

model space, because the search area of the stochastic inversion grows exponentially with the number of 

unknowns.  

However, the use of Genetic Algorithms, which allow for a parallel implementation of the code, combined 

with a tailored parametrization of the subsurface, significantly attenuates the computing time problem. We 

chose to adopt a specific implementation of real-valued Genetic Algorithms following a comparative test 

between this method and the Neighborhood Algorithm (Sambridge, 1999a) and the Adaptive Simulated 

Annealing (Ingber, 1989), in which this Genetic-Algorithm implementation displayed a better performance 

in case of high dimensional spaces (Sajeva et al., 2014a). In addition, Genetic Algorithms provide a wide 

exploration of the model space that allows for the estimation of uncertainties in the final result (Aleardi 

and Mazzotti, 2016. Concerning the subsurface parametrization, we propose to employ a two-grid 

technique in which the subsurface is described by means of a fine grid for the finite difference forward 

modeling and by a coarse grid for the stochastic inversion (Sajeva et al., 2014b, Sajeva et al., 2016). 

 

In what follows, we first outline the proposed method, which we name two-grid Genetic Algorithm Full 

Waveform Inversion (GA FWI), and then we move on to illustrate two examples, one pertinent to 2D 
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synthetic data of the Marmousi model and the other to a 2D marine actual data case. We limit to 2D 

acoustic cases. Finally, we discuss the pros and cons of our method, the HPC implications and the future 

perspectives. 

 

 

Two-grid GA FWI method 

 

Subsurface parametrization.  

 

We discretize the subsurface with two grids: a “coarse” inversion grid and a “fine” modeling grid. Each node 

of the inversion grid corresponds to an unknown of the GA optimization, which, in the acoustic 

approximation we use, is the P-wave velocity at that node. The horizontal and vertical step sizes of the 

inversion grid cells determine the ultimate resolution of the estimated velocity model. The grid cells can be 

of fixed dimensions or can vary laterally and/or with depth according to the presumed illumination given by 

the source - receiver layout and to Fresnel zone concepts. Ideally, they can also be adapted during the 

inversion following the evolution of the velocity model being estimated by the GA. The dimensions of the 

grid cells determine the number of grid nodes that is the number of unknowns in the inversion and thus 

they must be chosen also to limit the GA optimization to a reasonable amount of time, given the available 

computing resources. It is for this reason that the inversion grid is “coarse”. The higher the computing 

resources, the less “coarse” can become the inversion grid and the higher can be the resolution of the 

estimated final model, within the limits of the considered frequency band. Figure 1a shows the inversion 

grid used for the Marmousi example that we will discuss in the next section. It consists of an irregular grid 

with variable cell size that increases with depth in accordance to the loss of resolution of the seismic data. 

The total number of grid nodes, that is of unknowns, is 143.  

 

A bilinear interpolation converts the inversion grid to the modeling grid that is characterized by shorter and 

fixed dimensions of the grid cell, enabling a more accurate description of the subsurface morphology (such 

as the geometry of the sea floor) and the computation of higher frequencies without numerical dispersion. 

We compute the predicted data employing an acoustic FD modelling with an accuracy of the fourth order in 

space and of the second order in time. In the modelling grid used for the Marmousi example the grid nodes 

have a constant spacing in the horizontal and vertical directions equal to 24 m, allowing us to compute 

synthetic seismograms up to 12 Hz with negligible numerical dispersion. 

 

 

Data Misfit and Genetic Algorithm optimization. 

 

We compute the L1 or L2 norm misfit between observed and predicted data considering either the 

waveforms or the energy or the envelopes or whatever other attribute we may deem as appropriate for 

the specific case. For instance, we try envelopes when the observed data quality is poor and when it is 

difficult to estimate a reliable source wavelet. As in many previous works (Chironi et al.,2006; Vigh et al., 

2010; Bi and Lin, 2014) the misfit function can be devised as to implement a layer stripping or an offset 

stripping procedure or to refer to different wave portions of the data such as in equation 1), where one 

term includes the refracted and diving waves, and the second term considers the reflected wave-field 

balanced by a weight parameter α.  

 

Data Error = (obs. diving –predicted diving) + α( obs. reflected - predicted reflected)                   (1) 

The data misfit, that is the L1 or L2 norm of the data error, drives the real valued GA optimization that we 

employ for FWI. Genetic Algorithms (Holland, 1975) are a class of stochastic optimization methods that 

search for the global minimum of the data misfit function within a given search range and do not require 

any calculation of derivatives of the data error surface. Therefore, they are less prone to get trapped into 
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local minima. Genetic Algorithms carry out the search of the model space by mimicking the natural 

evolution processes and evolving a population of velocity models (individuals) towards the attainment of a 

higher fitness that is of a lower data misfit between the corresponding synthetic seismograms and the 

observed data. Three main operations drive the GA optimization (Figure 2): selection, recombination and 

mutation. An initial population of velocity models is randomly generated within predefined bounds and the 

fitness of each candidate model is evaluated. Then, different models are stochastically selected on the basis 

of their associated data misfit: models giving rise to lower data misfit are more likely to be selected. 

Recombination and mutation operators intervene to modify the selected models to form new models 

(offspring individuals) that is a new population, which is then the input for the next iteration (generation) 

The evolution of a GA optimization is controlled by the setting of several parameters that define the 

number of individuals of the population, the type of selection mechanism adopted, the intensity of the 

selection pressure, the possibility to explore the model space by different sub-populations, the possibility 

to reinsert the best parents in the next population (elitist strategy), and so on (Mitchell, 1996). We have 

carried out extensive tests on both analytical and experimental data misfit surfaces to gain an 

understanding of the impact of each parameter on the ability of the algorithm to find the global minimum 

and on the speed with which convergence is attained. The most important parameter is the number of 

individuals that must always be greater (possibly much greater) than the number of unknowns to facilitate 

a thorough exploration of the model space, while the use of sub-populations generally increases the speed 

of convergence. The initial population distribution and the width of the search ranges within the model 

space are chosen on the basis of the a-priori knowledge we have on the velocity field: uniform distribution 

and large search ranges are appropriate when a-priori info is missing or unreliable. In the examples that 

follow, we specify the parameters we adopted while a detailed description can be found in Sajeva et al., 

2016, Tognarelli et al., 2015). 

 

Uncertainty estimation via Gibbs sampling. 

 

Genetic Algorithms like other global optimization methods explore the model space and, besides the best 

model, gather many different models that we generally discard. Instead, the ensemble of models sampled 

by the GA exploration is of great use if we wish to measure the uncertainty of the final result, that is if we 

wish to represent the final solution by the posterior probability distributions (PPDs) in model space. 

However, it is not possible to derive an unbiased estimate of the PPDs directly from the ensemble of GA 

models because GAs are not a Markov Chain Monte Carlo (MCMC) method (Rubinstein and Kroese, 2011). 

In practice, GAs underestimate the true uncertainties (variances) because they tend to oversample the 

model space zones corresponding to the lowest data misfit.  

 

Among the methods presented in the literature to derive an unbiased estimation of the PPDs, we adopt a 

MCMC method known as Gibbs Sampler (Geman and Geman, 1984) that performs a resampling of the 

model space making use of all the models and their respective data misfits found by the GA inversion. In 

particular, the model space explored by GA is first partitioned into Voronoi cells, each one associated with a 

single GA model and its misfit value, building a multidimensional interpolant that is successively sampled by 

the Gibbs Sampler (Sambridge, 1999b). Note that with this method there is no need to perform additional 

forward modeling computations than those performed during the GA optimization. Specific details on the 

hybrid Genetic Algorithms + Gibbs Sampler approach in a framework of full waveform inversion can be 

found in Aleardi and Mazzotti (2016). 

 

 

Marmousi: 2D acoustic example. 

 

We have extensively tested the GA-FWI on the Marmousi model (Figure 3), trying different subsurface 

parametrization, different search areas and a-priori information for the GA optimization and different GA 
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parameter settings (Sajeva et al. 2016). It is on this reference model that we compute the synthetic 

“observed” seismograms, simulating an acquisition with 31 equally spaced sources and 127 equally spaced 

receivers at the surface, with a 6 Hz Ricker wavelet as the source signature. 

 

In the example we discuss here, the unknowns for the GA optimization are the P-wave velocities at the 143 

nodes of the irregular coarse grid shown in Figure 1, where the size of the grid cells increases with depth. 

The search area for the inversion (Figure 4a) is centered on a simple 1D velocity model (Figure 3b) and the 

initial population with uniform distribution is randomly selected within the search ranges.  

 

The coarse inversion grid of Figure 1 is bilinearly interpolated to the fine modelling grid for computing the 

predicted data. We employ the same finite-difference code, with an accuracy of second order in time and 

fourth order in space, for both computing the “observed” data on the true Marmousi model of Figure 3 and 

the predicted data during the GA optimization. Thanks to the peculiarly favorable situation, with no noise 

and with known source wavelet, the data misfit is computed including simultaneously all the recorded 

events with no layer stripping and no weighting, that is with α = 1 in equation 1). We employ the L2 norm 

applied to low-pass filtered (0 – 3 Hz) and trace-by-trace normalized data. Note that we have no significant 

energy at 0 Hz (it is less than -40 dB), and the majority of the signal is carried by frequencies around 3 Hz. 

The GA optimization is launched with the setting parameters indicated in Table 1 for a total of 40500 

evaluated models.  

 

Figure 5 shows the evolution of the mean and minimum data misfit (green and red curve, respectively) with 

advancing generations. After the initial drop, the two curves gradually converge as the algorithm 

approaches a minimum and at the end of 100 generations, that is after 40500 models have been evaluated, 

the mean and minimum values are almost coincident indicating that genetic diversity is lost and that 

computing further models will not improve the result. The final best-fitting model is shown in Figure 6: note 

that it fairly reproduces the long wavelength velocity structure of the Marmousi and that it is a smooth and 

low resolution velocity model. The smoothness and the low resolution are the consequence of the large 

spacing of the inversion grid and of the bilinear interpolation which operates to bring the velocities on the 

coarse grid to the fine grid. Decreasing the size of the inversion grid cells would allow for a more detailed 

reconstruction of the subsurface but at the expense of increasing the number of unknowns. 

 

Collecting the models explored by the GA optimization enables us to quantify the uncertainty affecting the 

best model. In Figure 7, the green bars show the distribution of the models sampled by the GA (which we 

name GA distributions) for the 6 grid nodes indicated by the red dots in Figure 6. These GA distributions are 

the input to the Gibbs Sampler to retrieve a reliable estimation of the true posterior probability 

distributions. The blue curves overlapped to the GA distributions represent the 1D marginal PPD for the 

same 6 grid nodes. The red dashed lines indicate the best model velocities. The PPDs become broader and 

bimodal moving from the center (grid node N.2) to the sides (grid nodes N.1 and N.3) of the model and for 

increasing depths (grid nodes N. 4, 5, and 6, please note the different scales of the horizontal axes), that is 

where we expect a loss of data information due to a poor seismic illumination. Therefore, for each grid 

node of interest, we can not only estimate an optimal velocity value but we can also provide its 

uncertainty, an information which may be of use for further applications. 

 

Depending on the degree of resolution reached by the two-grid GA FWI, the best model can be tried as the 

velocity field for pre-stack depth migration, or it can become the starting model for a successive gradient-

based FWI to gain the fine details of the velocity structure, without risking to start from a “bad” model, that 

is too far from the global minimum. In fact, tests on Marmousi (Sajeva et al., 2016) and on other data have 

shown that GA FWI models yield a significant decrease of the cycle skips compared to the prior models, 

particularly for refracted/diving wave events. 

Taking the GA FWI model of Figure 6 as the starting model for a time domain gradient-based FWI (based on 

the steepest descent method) and running five iterations at 4, 5, 6, 8, and 10 Hz we get the result shown in 

Figure 8. The gradient-based FWI started from the two-grid GA FWI best model has successfully retrieved 

many details and the final model of Figure 8 nicely match the true Marmousi of Figure 3. Again, most of the 
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mismatches are located at the edges of the model and at depth where the seismic illumination is scarce 

and no data driven inversion can do much. 

 

 

Marine 2D real data example. 

 

We illustrate the application of the two-grid GA FWI on an inline from a marine 3D survey. In particular, we 

test whether we can estimate a preliminary, quick-look, velocity field for prestack depth migration, with no 

a-priori information on the velocities at with a very limited processing effort, such as it would be the case in 

an early stage of a seismic exploration project. We consider 56 shot gathers with source to receiver offset 

from 180 m to 4000 m evenly distributed along the line for a total of 6517 recorded traces. Figure 9 shows 

a sample shot gather and its amplitude spectrum. Note the lack of low frequencies. The source wavelet is 

estimated from the data.  

The initial population of velocities for the GA optimization has a uniform probability distribution centered 

on a 1D linearly increasing velocity with depth (from 1500 m/s at the surface to 3500 m/s at 1300 m depth), 

with range +/-500 m/s.  

Differently from the previous synthetic example, the inversion grid is now regular with rectangular cells 

with size 600 m by 150 m and the number of nodes (and unknowns) is only 78 (13 in the horizontal and 6 in 

the depth direction, respectively). Table 2 presents the main GA settings used for this example. Other initial 

populations and other inversion grids have been presented in Tognarelli et al., 2015. The modeling grid is of 

242 x 40 nodes, with an isometric grid size of 30 m. The data misfit is the L1 norm between the envelopes 

of the observed and predicted data, both low pass filtered (0-6 Hz) and trace by trace normalized. In this 

example, we show the results for the inversion of the diving waves only, which have been selected using 

predefined mute functions. Convergence is attained after 40500 models have been evaluated by the GA 

optimization and the resulting best model is shown in Figure 10a, while the comparison between the 

predicted and the observed diving waves for two shot gathers along the inline is shown in Figure 10b.  

 

To check whether this preliminary result may be of any practical value, we pre-stack depth migrate the 

seismic data making use of the best velocity model of Figure 10a as the migration velocity field: the degree 

of horizontal alignments of the events in common image gathers (CIGs) is the quickest way to assess the 

results. To this end, in Figure 11 we show 15 CIGs evenly spaced along the profile after PSDM. The 

maximum depth shown (1.5 km) corresponds to the approximate penetration depth of the refracted and 

diving waves we considered in the inversion. Band-pass filtering, trace by trace normalization and gain were 

applied for display purposes. Migrating the data with the prior velocity field, that is with the 1D velocity 

model at the center of the search range for the GA optimization, yields the migrated gathers in Figure 11a. 

Obviously, severe misalignments are present. Instead, migrating the CIGs with the best velocity model 

(Figure 10a) resulting from the two-grid GA FWI, we obtain the migrated gathers of Figure 11b where a 

significant improvement of the horizontal alignment of the events can be observed up to 1 km of depth. 

Note that below that threshold the gathers still exhibit complex move-out, this could be due to the fact that 

FWI used only the refracted/diving waves which likely explore the upper layers. Consequently, this velocity 

model can be further improved, for instance by including the reflected events in an additional step of two-

grid GA FWI, or it can be used as the starting model for a gradient-based FWI. 

 

 

Discussion and further work. 

 

The main pros and cons of the two-grid GA FWI we propose are: 

 

1) It is less affected than gradient-based FWI methods by the local minima issue and thus it mitigates the 

need of very low frequencies (down to few cycles per second) with a good S/N in the observed data or of a 

“good” starting model. 
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2) Therefore, it can be performed with virtually no a-priori information as it can be started from an initial 

population of velocity models, such as centered on a very simple 1D velocity model or on a velocity field 

derived from stacking velocity analyses. This permits its application in the very early stages of a seismic 

exploration project. 

 

3) During the optimization, GA FWI evaluates the data misfit pertaining to many different models and this 

allows the estimation of PPDs, the treatment of uncertainties and thus to assess the uncertainty associated 

to the final velocity model. 

 

4) However, GA FWI requires computational costs that grow exponentially with the number of unknowns 

and thus the degree of resolution of the final outcome depends also on the available computer resources. 

In the examples we show here we deal with 2D cases, we employ the acoustic approximation and we aim at 

estimating the best velocity macro-model of the subsurface, which is a low-resolution, long wavelength 

velocity model. 

 

This last point is related to the fact that GA FWI is a computationally intensive task which requires a large 

number of model evaluations (in the order of tens or of hundreds of thousands) to adequately explore the 

multi-dimensional model space. In the Marmousi test with 143 unknowns, more than 40k model 

evaluations were performed in a parallel scheme, that is, 20 model evaluations were computed 

simultaneously in a group of 5 compute nodes (each compute node is a two eight-core CPU at 2.40 GHz). 

This test run in approximately 3 days. In another test, we reached up to 2200 unknowns and the 

computation of about 3x10
6
 models was needed to attain convergence (Sajeva et al. 2016). Therefore, the 

availability of huge computing resources is a prerequisite for extending the application to 3D cases. Put in 

perspective, this is going to be less of an issue: computer technology is constantly advancing, and as of 

today our industry can already deploy High Performance Computing systems large enough to start coping 

with such challenges. 

 

Moreover, besides making available powerful computing resources and applying various software 

optimization tricks (see e.g. Bienati et al, 2010), there is also room for further improvement of the method 

itself. For instance, the coarse grid of the inversion could vary with the progress of the inversion, with 

spatial steps that locally evolve depending on the updates of the velocity model. Or else, we may try to 

reduce the number of forward modeling computations by imposing a local spatial correlation of the model 

parameters on the models being considered. Further studies and tests on synthetic and actual data are 

ongoing to further assess the applicability of the method. 
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LIST OF CAPTIONS 

 

Figure 1. The coarse and irregularly spaced inversion grid used for the GA FWI example on the Marmousi 

data. The number of grid nodes is 143 while the number of nodes in the fine and regularly spaced modeling 

grid (not shown) is approximately 35k (more than 100 times the inversion grid points).  

Figure 2.  From a population models (five blue dots), three models are selected because of their associated 

low data misfit (a). Recombination and mutation change the “genes” (velocity values) of the selected 

models creating several offspring (red and orange dots) (b) which are again selected to form a new 

population (c). Note that the number of individuals for each generation remains constant.  

Figure 3. The Marmousi model, that is, the reference model used for testing the two-grid GA-FWI. 

 

Figure 4.  The search range used for the GA optimization a) are centered on the simple 1D linearly increasing 

velocity model b).   

 

Figure 5.  Evolution of the data misfit during the GA optimization. The green curve indicates the evolution of 

the mean error while the red curve shows the evolution of the minimum error (that is the error associated to 

the best model of each generation). Note how the two curves converge with increasing number of evaluated 

models. 

Figure 6.  Best model resulting from the two-grid GA FWI. Note its smoothness and low resolution and that 

it fairly reproduces the general structure of the Marmousi model. The greatest discrepancies are located at 

the edges of the model and at depth where the seismic illumination is poor. The numbered dots indicate the 

position where uncertainties are estimated. 

Figure 7: Uncertainty estimates for the 6 grid nodes indicated in the previous figure. The green bars 

represent the GA distributions, that is the ensemble of models explored by the GA optimization. The blue 

curves represent the posterior probability distributions estimated by means of the Gibbs Sampler. Note that 

the horizontal axes are plotted with different scales to better evidence the different shapes of the 

distributions. The vertical red dashed lines indicate the best model velocities. 

 

Figure 8. Final model after gradient-based FWI up to 10 Hz started from the two-grid GA FWI model of 

Figure 6. Note the significant increase of details brought by the gradient-based inversion. 

 

Figure 9.  (a) A shot gather taken from the inline data and (b) its amplitude spectrum. 

 

Figure 10. (a) Best velocity model (represented in the fine grid) resulting from the two-grid GA FWI of the 

refracted/diving waves of the marine seismic line. The inversion has reconstructed significant velocity 

variations, particularly in the horizontal direction. (b) Observed and predicted data and their difference (left, 

central and right column, respectively) for two shot gathers along the inline. Note the satisfactory matching 

between the envelopes of the observed and predicted refracted/diving waves. 

 

Figure 11. CIGs derived from PSDM (Kirchhoff). In a) the migration velocity field is the 1D velocity model at 

the center of the search range for GA-FW. In b) the migration velocity field is the velocity model of Figure 

10a, obtained by GA-FWI. The increase of the flatness of the events from a) to b) is satisfactory, considering 

the quick-look procedure with no a-priori info and no interpretation or analysis effort. 

 

  

Page 12 of 26Interpretation Manuscript, Accepted Pending: For Review Not Production



LIST OF TABLES: 

 

 

Table 1. Relevant parameters of the Genetic Algorithm FWI for the Marmousi test. 

 

 

Table 2. Relevant parameters of the Genetic Algorithm FWI for the marine data test. 

 

Page 13 of 26 Interpretation Manuscript, Accepted Pending: For Review Not Production



  

 

 

Figure 1. The coarse and irregularly spaced inversion grid used for the GA FWI example on the Marmousi 
data. The number of grid nodes is 143 while the number of nodes in the fine and regularly spaced modeling 

grid (not shown) is approximate � �ly 35k (more than 100 times the inversion grid points).   
Figure 1  
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Figure 2.  From a population models (five blue dots), three models are selected because of their associated 
low data misfit (a). Recombination and mutation change the “genes” (velocity values) of the selected models 
creating several offspring (red and orange dots) (b) which are again selected to form a new population (c). 

� �Note that the number of individuals for each generation remains constant.   
Figure 2  
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Figure 3. The Marmousi model, that is, the reference model used for testing the two-grid GA- � �FWI.   
Figure 3  
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Figure 4.  The search range used for the GA optimization a) are centered on the simple 1D linearly 
increasing velocity model b).  � �   

Figure 4  
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Figure 5.  Evolution of the data misfit during the GA optimization. The green curve indicates the evolution of 
the mean error while the red curve shows the evolution of the minimum error (that is the error associated to 
the best model of each generation). Note how the two curves converge with increasing number of evaluated 

� �models.   
Figure 5  
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Figure 6.  Best model resulting from the two-grid GA FWI. Note its smoothness and low resolution and that 
is fairly reproduces the general structure of the Marmousi model. The greatest discrepancies are located at 
the edges of the model and at depth where the seismic illumination is poor. The numbered dots indicate the 

position where uncertainties are estimated.  
 

Figure 6  
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Figure 7: Uncertainty estimates for the 6 grid nodes indicated in the previous figure. The green bars 
represent the GA distributions, that is the ensemble of models explored by the GA optimization. The blue 

curves represent the posterior probability distributions estimated by means of the Gibbs Sampler. Note that 

the horizontal axes are plotted with different scales to better evidence the different shapes of the 
distributions. The vertical red dashed lines indicate the best model velocities.  

 
Figure 7  
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Figure 8. Final model after gradient-based FWI up to 10 Hz started from the two-grid GA FWI model of 
Figure 6. Note the significant increase of details brought by the gradient-based inversion.  

 
Figure 8  
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Figure 9.  (a) A shot gather taken from the inline data and (b) its amplitude spectrum.  
 

Figure 9  
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Figure 10. (a) Best velocity model (represented in the fine grid) resulting from the two-grid GA FWI of the 
refracted/diving waves of the marine seismic line. The inversion has reconstructed significant velocity 

variations, particularly in the horizontal direction. (b) Observed and predicted data and their difference (left, 

central and right column, respectively) for two shot gathers along the inline. Note the satisfactory matching 
between the envelopes of the observed and predicted refracted/diving waves.  

 
Figure 10  
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Figure 11. CIGs derived from PSDM (Kirchhoff). In a) the migration velocity field is the 1D velocity model at 
the center of the search range for GA-FW. In b) the migration velocity field is the velocity model of Figure 

10a, obtained by GA-FWI. The increase of the flatness of the events from a) to b) is satisfactory, considering 
the quick-look procedure with no a- � �priori info and no interpretation or analysis effort.   

Figure 11  
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Individuals per population 500 

Number of subpopulations 5 

Selection probability 80% 

Mutation probability 0.7% 

Number of generations 100 

Number of evaluated models 40500 

 

Table 1. Relevant parameters of the Genetic Algorithm FWI for the Marmousi test. 
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Individuals per population 500 

Number of subpopulations 2 

Selection probability 80% 

Mutation probability 1.3% 

Number of generations 100 

Number of evaluated models 40500 

 

Table 2. Relevant parameters of the Genetic Algorithm FWI for the marine data test. 

 

Page 26 of 26Interpretation Manuscript, Accepted Pending: For Review Not Production


