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Abstract—The direct conversion receiver (DCR) architecture
has received much attention in the last few years as an effective
means to obtain user terminals with reduced cost, size, and
power consumption. A major drawback of a DCR device is the
possible insertion of I/Q imbalances in the demodulated signal,
which can seriously degrade the performance of conventional
synchronization algorithms.

In this paper, we investigate the problem of carrier frequency
offset (CFO) recovery in an OFDM receiver equipped with a
DCR front-end. Our approach is based on maximum likelihood
(ML) arguments and aims at jointly estimating the CFO, the
useful signal component, and its mirror image. In doing so,
we exploit knowledge of the pilot symbols transmitted within
a conventional repeated training preamble appended in front of
each data packet. Since the exact ML solution turns out to be
too complex for practical purposes, we propose two alternative
schemes which can provide nearly optimal performance with
substantial computational saving. One of them provides the CFO
in closed-form, thereby avoiding any grid-search procedure.

The accuracy of the proposed methods is assessed in a
scenario compliant with the 802.11a WLAN standard. Compared
with existing solutions, the novel schemes achieve improved
performance at the price of a tolerable increase of the processing
load.

Index Terms—Carrier frequency estimation, OFDM, direct-
conversion receiver, I/Q imbalance.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is a

popular multicarrier technology which offers remarkable re-

silience against multipath distortions, increased spectral effi-

ciency, and the possibility of performing adaptive modulation

and coding. Due to such potential advantages, it has been

adopted in several wideband commercial systems, including

the IEEE 802.11a wireless local area network (WLAN) [1],

the IEEE 802.16 wireless metropolitan area network (WMAN)

[2], and the 3GPP long-term evolution (LTE) [3]. Recent stud-

ies indicate that the use of a direct-conversion receiver (DCR)

in combination with the OFDM technology can provide an

effective means for the implementation of user terminals with

reduced size and power consumption [4]. These advantages

are achieved through elimination of expensive intermediate

frequency (IF) filters and other off-chip components employed

in the classical superheterodyne architecture. The price is a

higher degree of radio-frequency (RF) imperfections arising

from the use of analog in-phase/quadrature (I/Q) low-pass

filters (LPF) with mismatched frequency responses, and from

local oscillator (LO) signals with amplitude and phase im-

balances. In general, LO-induced distortions are nearly flat in

the frequency domain, while filter mismatches can vary sub-

stantially over the signal bandwidth, especially in a wideband

communication system [5]. If not properly compensated, the

I/Q imbalance introduces image interference from mirrored

subcarriers, with ensuing limitations of the system perfor-

mance. In addition to I/Q imperfections, an OFDM receiver is

also vulnerable to the carrier frequency offset (CFO) between

the incoming waveform and the LO signals, which generates

interchannel interference in the demodulated signal.

In recent years, an intense research activity has been con-

ducted to investigate the problem of CFO recovery in OFDM

systems plagued by frequency-selective I/Q imperfections.

Many available solutions operate in the time-domain and

exploit a suitably designed training preamble (TP) appended

in front of the data packet. For example, the authors of [6] and

[7] recover the cosine of the CFO by using a TP composed of

three repeated segments. However, due to the even property of

the cosine function, the estimated frequency is affected by a

inherent sign ambiguity, which severely limits the accuracy in

case of small CFO values. Some feasible solutions to fix the

sign ambiguity problem are presented in [8]-[10], where the

original TP of [6] is properly extended so as to retrieve both

the cosine and the sine of the CFO. Unambiguous frequency

estimates are also obtained in [11] and [12] by exploiting a

TP composed of several repeated parts, which are rotated by a

specific phase pattern before being transmitted. Unfortunately,

the resulting schemes are not computationally efficient as they

require a grid-search over the uncertainty frequency interval.

The same problem occurs in [13] and [14], where no closed-

form solution is provided to get the CFO estimate. A low-

complexity scheme is presented in [15] to jointly compensate

for the CFO and I/Q imbalances without resorting to any grid-

search procedure.

The main drawback of the aforementioned methods is that

they rely on specific TPs that cannot be found in any OFDM

communication standard. Alternative schemes employing the

IEEE 802.11a conventional repeated TP can be found in

[16]-[20]. In particular, novel sine- and cosine-based esti-

mators are derived in [16] by means of a suitable matrix

formulation of the received signal samples, while a linear

least squares estimation of the unsigned CFO is formulated

in [18] using a general relation among three adjacent TP

segments. In [19] and [20], the useful signal component and

its mirror image are interpreted as two independent sinusoidal

signals, which are separated by resorting to either the ES-

PRIT (estimation of signal parameters via rotational invariance

technique [21]) or the SAGE (space-alternating generalized

expectation-maximization [22]) algorithms, respectively. In

[23] the authors show that, at low and medium signal-to-

noise ratio (SNR) values, the classical maximum likelihood

(CML) frequency estimator, derived in [24] for a perfectly

balanced receiver, performs satisfactorily even in the presence
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of some I/Q imbalance. Furthermore, in many situations CML

exhibits improved accuracy with respect to the joint maximum

likelihood (JML) estimator of the CFO, the channel distorted

TP and its mirror image, which was originally presented in

[11]. The reason is that JML, when applied to a repetitive

TP, is subject to the sign ambiguity problem and provides

poor results in the presence of small CFO values. A novel

frequency estimator is also derived in [23] by exploiting some

side-information about the signal-to-image ratio. This scheme,

which is named constrained JML (CJML), can achieve im-

proved accuracy with respect to CML and JML at the price of

a substantial increase of the computational burden. Finally,

a low-complexity scheme for the joint estimation of the

CFO, channel impulse response (CIR) and I/Q imbalance is

presented in [25] using the long training sequence embedded

in the 802.11a preamble.

In this work, we consider an OFDM direct-conversion

receiver affected by frequency-selective I/Q imbalances and

further investigate the CFO recovery task using a repeated TP.

In order to remove the sign ambiguity problem that affects the

JML, the joint estimation of the CFO and channel impulse

responses for the signal component and its mirror image is

accomplished by suitably exploiting knowledge of the pilot

symbols embedded in the received TP. Unfortunately, the

exact ML solution cannot be implemented in practice due to

its prohibitive processing requirements. Therefore, we look

for simpler solutions that can be executed with affordable

complexity. One of them is an approximation of the true

ML estimator, which is obtained by neglecting the phase

rotation induced by the residual CFO within each TP segment.

The resulting scheme allows a substantial reduction of the

system complexity without incurring any significant penalty

in estimation accuracy with respect to the ML estimator. We

also derive an alternative method based on the best linear

unbiased estimation (BLUE) principle, which further reduces

the processing requirements by computing the CFO estimate

in closed-form. Numerical simulations indicate that the pro-

posed schemes perform satisfactorily even in the presence of

severe I/Q imbalances and outperform other existing methods.

Their performance is close to the Cramer-Rao bound (CRB)

provided that the order of the overall propagation channel

(comprising the transmit and receive filters) does not exceed

half the number of the pilot symbols of the TP. When such

a condition is not met, the estimation accuracy decreases,

especially at high signal-to-noise ratios (SNRs).

The rest of the paper is organized as follows. Next section

describes the DCR architecture and introduces the mathemat-

ical model of the received TP. In Sect. III we discuss the joint

ML estimation of the CFO and channel impulse responses

for the useful signal and its mirror image. Some practical

adjustments are also suggested to reduce the processing load of

the ML scheme. In Sect. IV we adopt the BLUE concept to get

the CFO estimate in closed-form, while in Sect. V we present

the Cramer-Rao bound (CRB) analysis for the considered

estimation problem. Simulation results are presented in Sect.

VI and, finally, some conclusions are offered in Sect. VII.

Notation: Matrices and vectors are denoted by boldface

letters, with IN and 1N being the identity matrix of order N

Fig. 1. Basic DCR architecture

and the N -dimensional vector with unit entries, respectively.

A = diag{a(n) ; n = 1, 2, . . . , N} denotes an N × N
diagonal matrix with entries a(n) along its main diagonal,

[C]k,ℓ is the (k, ℓ)th entry of C and B−1 is the inverse

of a matrix B. The notation ‖·‖ represents the Euclidean

norm of the enclosed vector while ℜe{x}, ℑm{x}, |x| and

arg{x} stand for the real and imaginary parts, the modulus,

and the principal argument of a complex number x. The

symbol ⊗ is adopted for either the convolution between

continuous-time signals or the Kronecker product between

matrices and/or vectors. We use E{·}, (·)∗, (·)T and (·)H for

expectation, complex conjugation, transposition and Hermitian

transposition, respectively. Finally, λ̃ denotes a trial value of

the unknown parameter λ.

II. SYSTEM MODEL IN THE PRESENCE OF CFO AND I/Q

IMBALANCE

A. DCR architecture

Fig. 1 illustrates the basic structure of a DCR front-end.

Here, the received RF waveform rRF (t) is down-converted

to baseband using LO signals characterized by an amplitude

mismatch α and a phase error ψ. The demodulated signals

are then fed to I/Q low-pass filters with different impulse re-

sponses gI(t) and gQ(t). While LO imperfections give rise to

frequency-independent I/Q imbalances, filter mismatches vary

over the signal bandwidth, thereby resulting into a frequency-

selective imbalance [11]. We call r(t) the complex envelope

of rRF (t) with respect to the carrier frequency f0, and let

∆f = f0 − fLO be the offset between the carrier and LO

frequencies. Hence, we can write the received waveform as

rRF (t) = ℜe{r(t)ej2π(fLO+∆f)t}, with

r(t) = s(t)⊗ v(t) + n(t). (1)

In the above equation, s(t) and v(t) are the baseband repre-

sentations of the transmitted signal and propagation channel,

respectively, while n(t) is circularly symmetric AWGN with

two-sided power spectral density 2N0. As shown in Fig. 1, we

denote by x(t) = xI(t)+jxQ(t) the complex down-converted

signal at the output of the mismatched I/Q filters. Then, after

standard manipulations we get

x(t) = ej2π∆ft[s(t)⊗ h(t)] + e−j2π∆ft[s∗(t)⊗ q(t)] + w(t)
(2)
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where the first term is the direct signal component, the second

term represents self-image interference, and w(t) accounts for

the noise contribution. The equivalent CIRs h(t) and q(t)
appearing in (2) are expressed by [11]

h(t) = v(t)⊗ p+(t)e
−j2π∆ft

q(t) = v∗(t)⊗ p−(t)e
j2π∆ft (3)

with

p+(t) =
1
2 [gI(t) + αgQ(t)e

−jψ ]
p−(t) =

1
2 [gI(t)− αgQ(t)e

jψ ]
(4)

while the noise term w(t) = wI(t) + jwQ(t) takes the form

w(t) = n(t)ej2π∆ft ⊗ p+(t) + n∗(t)e−j2π∆ft ⊗ p−(t). (5)

Substituting (4) into (5), it is found that wI(t) and wQ(t) are

zero-mean Gaussian processes with auto- and cross-correlation

functions

E{wI(t)wI(t+ τ)} = N0[gI(τ)⊗ gI(−τ)]
E{wQ(t)wQ(t+ τ)} = α2N0[gQ(τ) ⊗ gQ(−τ)]

E{wI(t)wQ(t+ τ)} = −αN0 sinψ[gI(τ) ⊗ gQ(−τ)].
(6)

Since the real and imaginary components of w(t) are generally

cross-correlated with different auto-correlation functions, we

conclude that, in general, the noise process at the ouptut of a

DCR front-end is not circularly symmetric.

B. Mathematical model of the received TP

We consider an OFDM burst-mode communication system,

where each burst is preceded by a TP to assist the synchroniza-

tion and channel estimation functions. In contrast to many re-

lated works, where the TP is suitably designed to cope with I/Q

imbalances [6]-[15], in this study we assume a conventional

periodic preamble composed by MT ≥ 2 repeated segments.

Each segment contains P time-domain samples, which are

obtained as the inverse discrete Fourier transform (IDFT) of

P pilot symbols {c(n);n = 0, 1, . . . , P −1}. Such a preamble

is general enough to include both the short training sequence

(MT = 10, P = 16) and the long training sequence (MT = 2,

P = 64) of the 802.11a WLAN standard [1]. In the former

case, a number MG ≥ 1 of segments serve as a cyclic prefix

(CP) to avoid interblock interference, while the remaining

M = MT −MG segments are exploited for synchronization

purposes. In the latter case we have MG = 0 since the long

training sequence is preceded by its own CP.

For simplicity, we consider a discrete-time baseband signal

model with signaling interval Ts. The TP samples are thus

given by

s[l] =
1√
P

P−1
∑

n=0

c(n)ej2πnl/P −NG ≤ l ≤MP − 1 (7)

where NG is the CP duration normalized by Ts. After prop-

agating through the multipath channel, the received signal

x[l] = x(lTs) is plagued by CFO and frequency-selective I/Q

imbalances. Bearing in mind (2) and assuming that h(t) and

q(t) have support [0, LTs) with L ≤ NG, we have

x[l] =
ejlφ√
P

L−1
∑

k=0

h[k]

P−1
∑

n=0

c(n)ej2πn(l−k)/P

+
e−jlφ√
P

L−1
∑

k=0

q[k]
P−1
∑

n=0

c∗(n)e−j2πn(l−k)/P + w[l]

(8)

for 0 ≤ l ≤ MP − 1. In the above equation, h[k] and q[k]
is the shorthand notation for h(kTs) and q(kTs), respectively,

w[l] is the noise sample and we have defined

φ = 2π∆fTs. (9)

To proceed further, we arrange the quantities x[l] into an

MP−dimensional vector x = (x[0],x[1],. . . , x[MP − 1])T

and let C = diag{c(n), n = 0, 1, . . . , P − 1}. Then, we can

put (8) in matrix notation as

x = Γ(φ)G1CG2h+ Γ(−φ)G∗
1C

∗G∗
2q+w (10)

where h = (h[0],h[1], . . . , h[L − 1])T and q =
(q[0],q[1], . . . , q[L−1])T are the L−dimensional CIR vectors,

w = (w[0],w[1], . . . , w[MP − 1])T represents the noise

contribution and Γ(φ) = diag{ejlφ, l = 0, 1, . . . ,MP − 1}.

Finally, G2 is a (P × L)−dimensional matrix with entries

[G2]n,k = e−j2π(n−1)(k−1)/P n = 1, 2, . . . , P k = 1, 2, . . . , L
(11)

while G1 has dimension MP × P and can be expressed as

G1 = 1M ⊗ FP (12)

where FP is the unitary P−point IDFT matrix with entries

[FP ]n,k =
1√
P
ej2π(n−1)(k−1)/P n, k = 1, 2, . . . , P. (13)

III. JOINT ML ESTIMATION OF THE CFO AND CIR

VECTORS

A. Estimator design

Inspection of (3) and (4) indicates that the equivalent CIRs

h(t) and q(t) are mathematically related to the LO imbalance

parameters α and ψ, the CFO ∆f and the propagation channel

v(t). All these quantities can in principle be recovered from

the observation vector x by resorting to some optimality

criterion. Albeit effective, this approach would result into a

prohibitively complex estimation process, where an exhaustive

grid-search has to be employed to localize the optimum point

of a multidimensional cost function. For this reason, we follow

a more pragmatic strategy, which ignores the dependence

of u = [h
T

qT ]
T

on the other unknown parameters and

looks for the joint maximum likelihood (ML) estimates of

(u,φ). Despite the remarkable advantage in terms of system

complexity, the joint recovery of (u,φ) is still complicated

by the fact that the likelihood function does not take the

classical form of a multivariate Gaussian probability density

function due to the structure of the noise vector w, which is

not circularly symmetric. To overcome such a difficulty, for the

time being we assume that w is a zero-mean circularly sym-

metric Gaussian (ZMCSG) complex vector with covariance

matrix σ2
wIMP . Although this assumption holds true only in
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a perfectly balanced DCR architecture, it has been used even

in the presence of non-negligible I/Q imbalances to derive

novel frequency recovery schemes [26]. We point out that in

our study the white noise assumption is adopted only to derive

the CFO estimators and to analytically compute their accuracy,

while the true noise statistics shown in (6) are employed in

the numerical analysis to assess the system performance in a

realistic scenario.

We start our analysis by rewriting (10) in a more compact

form as

x = A(φ)u +w (14)

where the (MP×2L)−dimensional matrix A(φ) is expressed

by

A(φ) = [Γ(φ)G1CG2 Γ(−φ)G∗
1C

∗G∗
2]. (15)

Applying the ML estimation principle to the observation vector

x under the ZMCSG assumption for w, leads to the following

maximization problem

{û, φ̂} = arg max
{ũ,φ̃}

{

−
∥

∥

∥
x−A(φ̃)ũ

∥

∥

∥

2
}

. (16)

For a fixed value of φ̃, the maximum is achieved at

û(φ̃) =
[

AH(φ̃)A(φ̃)
]−1

AH(φ̃)x (17)

which, after substitution into (16), yields the CFO metric in

the form

Λ(φ̃) = xHA(φ̃)
[

AH(φ̃)A(φ̃)
]−1

AH(φ̃)x. (18)

It is worth noting that letting L = P and replacing G1CG2

in (15) with 1M ⊗ IP leads to the JML estimator originally

presented in [11], which was later applied to a repeated

preamble in [23]. Compared to JML, the metric (18) exploits

the mathematical structure of the received TP specified by

the matrix A(φ), which depends on the pilot symbols {c(n)}
and the DFT/IDFT matrices G1 and G2 as shown in (15).

Accordingly, in the sequel the CFO estimator maximizing the

metric (18) is referred to as the structured JML (SJML), i.e.

φ̂SJML = argmax
φ̃

{Λ(φ̃)}. (19)

In order to assess the complexity of SJML, it is convenient to

put (18) into the equivalent form

Λ(φ̃) =
∥

∥

∥
LHc (φ̃)AH(φ̃)x

∥

∥

∥

2

(20)

where Lc(φ̃)L
H
c (φ̃) is the Cholesky factorization of

[

AH(φ̃)A(φ̃)
]−1

. Then, we see that evaluating Λ(φ̃) approx-

imately needs 2LMP complex multiplications plus 2LMP
complex additions for each value of φ̃, which corresponds

to 16LMP floating point operations (flops). In writing these

figures we have borne in mind that a complex multiplication

amounts to four real multiplications plus two real additions,

while a complex additions is equivalent to two real additions.

Furthermore, we have assumed that matrices LHc (φ̃)AH(φ̃)
are pre-computed and stored in the receiver. The overall

computational requirement of SJML is summarized in the first

row of Table I, where we have denoted by Nφ the number of

candidate values φ̃. Since in the presence of a considerable

CFO uncertainty the number Nφ can be quite large, we expect

that SJML cannot be implemented with affordable complexity.

This justifies the search for alternative schemes with less

computational requirements and good estimation accuracy.

B. Reduced-complexity CFO estimation

We begin by partitioning vector x into M subvectors

{xm;m = 0, 1, . . . ,M−1}, where xm collects the P samples

belonging to the mth received TP segment. Then, letting

x = [x
T
0 xT1 · · · xTM−1]

T
and bearing in mind (10) and (12),

the mathematical model of xm is found to be

xm =ejmPφΓP (φ)FPCG2h

+ e−jmPφΓP (−φ)F∗
PC

∗G∗
2q+wm

(21)

where wm is the mth subvector of w = [w
T
0 wT

1 · · ·
wT
M−1]

T
and ΓP (φ) = diag{ejlφ, l = 0, 1, . . . , P − 1}. In

order to simplify the SJML metric, we make the following

approximation

ΓP (φ) ≃ ej(P−1)φ/2IP (22)

which amounts to replacing the linearly increasing phase shift

lφ for l = 0, 1, . . . , P − 1 by its average value (P − 1)φ/2.

Denoting by |φ|(max)
the largest value of |φ|, the maxi-

mum phase deviation between the entries of ΓP (φ) and

ej(P−1)φ/2IP turns out to be (P−1) |φ|(max)
/2. This suggests

that approximation (22) becomes more and more questionable

as P increases, and limits the range of P as discussed later in

Sect. VI B.

Plugging (22) into (21) yields

xm ≃ej(2mP+P−1)φ/2FPCG2h

+ e−j(2mP+P−1)φ/2F∗
PC

∗G∗
2q+wm

(23)

which can also be rewritten in a more compact form as

xm = Tum +wm (24)

where um is a 2L−dimensional vector expressed by

um =

[

ej(2mP+P−1)φ/2h

e−j(2mP+P−1)φ/2q

]

(25)

and T is the following matrix of dimension P × (2L)

T = [T1 T∗
1] (26)

with T1 = FPCG2. From the simplified model (24), the ML

estimate of um is computed as

ûm = (THT)−1THxm. (27)

Then, recalling the structure of um shown in (25), we ob-

serve that the first L elements of ûm provide an estimate

of ej(2mP+P−1)φ/2h, while the last L elements provide an

estimate of e−j(2mP+P−1)φ/2q. Since in a practical scenario

the energy of q is typically much smaller than the energy

of h, in the sequel we only exploit the first part of ûm
(m = 0, 1, . . . ,M−1) to retrieve the CFO. This approach has

the remarkable advantage of reducing the system complexity

without leading to any significant loss in estimation accuracy.
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Hence, substituting (24) into (27) and denoting by ξm the first

L entries of ûm, we get

ξm = ej(2mP+P−1)φ/2h+ηm (28)

where ηm is a zero-mean Gaussian vector with covariance

matrix Cη = σ2
wK, and K is an L−dimensional matrix with

entries [K]i,j = [(THT)−1]i,j for 1 ≤ i, j ≤ L. Observing

that

THT =

[

TH
1 T1 TH

1 T∗
1

TT
1 T1 TT

1 T
∗
1

]

(29)

from the inversion formula of a partitioned matrix we have

[27, p. 572]

K = [T
H
1 T1 −TH

1 T∗
1(T

T
1 T

∗
1)

−1TT
1 T1]

−1. (30)

We now derive the joint ML estimate of the unknown pa-

rameters (h,φ) starting from the observation vectors {ξm;m =
0, 1, . . . ,M − 1}. Neglecting irrelevant terms independent of

(h̃, φ̃), we may write the log-likelihood function (LLF) in the

form

Ψ(h̃, φ̃) =2ℜe

{

h̃HK−1
M−1
∑

m=0

e−j(2mP+P−1)φ̃/2ξm

}

−M(h̃HK−1h̃).

(31)

Maximizing Ψ(h̃, φ̃) with respect to h̃ yields

ĥ(φ̃) =
1

M

M−1
∑

m=0

e−j(2mP+P−1)φ̃/2ξm (32)

and plugging this result into (31) produces the concentrated

likelihood function for the estimation of φ as

Ψc(φ̃) =

∥

∥

∥

∥

∥

M−1
∑

m=0

e−jmPφ̃ym

∥

∥

∥

∥

∥

2

(33)

with ym = K−1/2ξm. After some standard manipulations, we

can put Ψc(φ̃) in the equivalent form

Ψc(φ̃) =

M−1
∑

m=1

ℜe
{

R(m)e−jmPφ̃
}

(34)

where the quantities {R(m)} are defined as

R(m) =

M−1
∑

k=m

yHk−myk 1 ≤ m ≤M − 1. (35)

In the sequel, the CFO estimator maximizing Ψc(φ̃) is referred

to as the reduced-complexity SJML (RC-SJML), i.e.

φ̂RC−SJML = argmax
φ̃

{Ψc(φ̃)}. (36)

C. Remarks

1) Inspection of (34) reveals that Ψc(φ̃) is periodic of

period 2π/P , meaning that the estimator provides ambiguous

estimates unless φ is confined within the interval |φ| ≤ π/P .

Recalling the relationship (9) between φ and ∆f , it turns out

that the estimation range of RC-SJML is given by |∆f | ≤
1/(2PTs).

2) The maximum of Ψc(φ̃) can be found through the

following two-step procedure. In the first step (coarse search),

the CFO metric is evaluated over a set of φ̃ values, say
{

φ̃n

}

,

covering the uncertainty range of φ and the location φ̃M
of the maximum is determined over this set. In the second

step (fine search), the quantities {Ψc(φ̃n)} are interpolated to

locate the local maximum nearest to φ̃M . The coarse search

can be efficiently performed using Fast Fourier Transform

(FFT) techniques. Specifically, we consider the following zero-

padded sequence of length Nφ =Mγpr

RZP (m) =

{

R(m)
0

1 ≤ m ≤M − 1
M ≤ m ≤ Nφ − 1 and m = 0

(37)

where γpr ≥ 1 is an integer design parameter called pruning

factor. Then, we compute the Nφ-point (−Nφ/2 < n ≤
Nφ/2) FFT of RZP (m)

FFT{RZP (m)} =

Nφ−1
∑

m=0

RZP (m)e−j2πmn/Nφ (38)

and observe that the real part of the FFT provides samples of

the metric Ψc(φ̃) evaluated at

φ̃n =
2πn

PMγpr
, −Nφ/2 < n ≤ Nφ/2. (39)

The maximum of the set {Ψc(φ̃n)} is eventually sought, and

this provides the coarse estimate of φ. From (39), it is seen

that the pruning factor determines the granularity of the coarse

search.

3) In assessing the complexity of RC-SJML, we observe

that evaluating vectors ym for 0 ≤ m ≤ M − 1 needs

8LMP − 2LM flops, while nearly 4LM(M − 1) flops are

required to obtain the correlations R(m) for 1 ≤ m ≤M − 1
starting from ym. Finally, the FFT of the sequence RZP (m)
is computed with (Nφ/2) log2(Nφ) complex multiplications

plus Nφ log2(Nφ) complex additions, which corresponds to

additional 5Nφ log2(Nφ) flops. The overall operations are

summarized in the second row of Table I.

4) Evaluating ûm as shown in (27) requires the invert-

ibility of the (2L)−dimensional matrix THT, which is at-

tainable only if T has full-rank 2L. From (26), we see that

rank(T) depends on T1 = FPCG2 and, ultimately, on

the structure of C. In particular, when considering the short

training sequence (STS) of the 802.11a preamble we have

rank(T) =min(2L,Np), where Np = 12 is the number of

non-zero pilot symbols {c(n)}. In such a case, application

of RC-SJML requires that L ≤ Np/2, which poses a limit

to the maximum channel order that can be handled. When

such a constraint is not fulfilled, the problem arises as how to

compute vector ûm. One possibility is to replace (THT)−1

in (27) by (THT+λI2L)
−1, where λ > 0 is a regularization

parameter which ensures the invertibility of THT+λI2L. A

good choice for such a parameter is λ = σ2
w, as in this case ûm

reduces to the minimum mean square error (MMSE) estimate

of um based on the observation vector xm. Alternatively, we

can replace the true channel order L by L = Np/2 for the sole

purpose of evaluting ûm, and let the RC-SJML operate in a
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TABLE I
COMPLEXITY OF THE INVESTIGATED SCHEMES.

Algorithm Number of flops WLAN scenario

SJML 16LMPNφ 1, 572, 864
RC-SJML 2LM(4P + 2M − 3) + 5Nφ log

2
Nφ 11, 872

BLUE LM(8P + 3M − 4) +M/2 7, 108
CML (4MP − 3)(M − 1) + 5Nφ log

2
Nφ 8, 043

JML 8P (2M + 1)Nφ 278, 528
RCE 4(2MP + 1)L 6, 168

mismatched mode. In such a case, the estimation accuracy is

expected to worsen more and more as the difference L − L
grows large. This intuition will be checked later through

numerical measurements.

IV. CFO ESTIMATION IN CLOSED-FORM

Although RC-SJML can provide a remarkable reduction

of the processing requirements with respect to SJML, the

maximization problem in (36) still requires a search over the

uncertainty range of φ, which may be cumbersome in certain

applications. To overcome this problem, we introduce an

alternative scheme that is able to estimate the CFO in closed-

form. Our approach is based on some heuristic reasoning and

exploits the correlations {R(m); 1 ≤ m ≤M − 1} defined in

(35).

We begin by deriving the mathematical model of vectors

ym = K−1/2ξm, with ξm as shown in (28). Letting

heq = K−1/2h (40)

we get

ym = ej(2mP+P−1)φ/2(heq+nm) (41)

where nm = K−1/2ηme
−j(2mP+P−1)φ/2 is a zero-mean

Gaussian vector with covariance matrix Cn = σ2
wIL. Sub-

stituting this result into (35) produces

R(m) = (M−m) ‖heq‖2 ejmPφ[1+γ(m)] 1 ≤ m ≤M−1
(42)

with

γ(m) =
1

(M −m) ‖heq‖2
M−1
∑

k=m

[hHeqnk+nHk−mheq+nHk−mnk].

(43)

Inspection of (42) reveals that the unknown parameter φ is

linearly related to the argument of R(m). Hence, we define

the angles

θ(m) = arg{R(m)R∗(m− 1)} 1 ≤ m ≤ H (44)

where H is a design parameter not greater than M − 1 and

R(0) is arbitrarily set to unity. Furthermore, we assume large

SNR values such that arg{1 + γ(m)} ≃ γI(m), with γI(m)
being the imaginary part of γ(m). In these circumstances, from

(42) we have

θ(m) ≃ [Pφ+ γI(m)− γI(m− 1)]2π (45)

where [x]2π denotes the value of x reduced to the interval

[−π, π). If φ is adequately smaller than π/P , the quantity

in brackets in (45) is (with high probability) less than π and

θ(m) reduces to

θ(m) = Pφ+ η(m) (46)

with η(m) = γI(m) − γI(m− 1). It is worth noting that the

linear model (46) is exactly the same presented in [28] in the

context of CFO recovery for OFDM receiver without any I/Q

imbalance. The BLUE of φ as a function of the observation

variables θ = [θ(1), θ(2), . . . , θ(H)]T is given by [27]

φ̂BLUE =
1

P

H
∑

m=1

αBLUE(m)θ(m) (47)

where αBLUE(m) is the mth element of

αBLUE =
C−1
η 1

1TC−1
η 1

(48)

and Cη is the covariance matrix of η =
[η(1), η(2), . . . , η(H)]T . The variance of φ̂BLUE is expressed

by

var(φ̂BLUE) =
1

P 2

1

1TC−1
η 1

(49)

and depends on the design parameter H . In [28] it is shown

that the minimum of var(φ̂BLUE) is achieved when H =
M/2. In such a case we have

αBLUE(m) = 3
4(M −m)(M −m+ 1)−M2

2M(M2 − 1)
(50)

and

var(φ̂BLUE) =
6σ2

w

MP 2(M2 − 1) ‖heq‖2
. (51)

The complexity of BLUE is assessed by observing that,

besides the 8LMP − 2LM flops required to get vectors ym
for 0 ≤ m ≤M − 1, additional LM(3M − 2)−M flops are

involved in the evaluation of R(m) for 1 ≤ m ≤ M/2. The

estimate φ̂BLUE is eventually obtained from the correlations

R(m) with 3M/2 flops. This leads to the overall complexity

listed in the third row of Table I.

V. CRB ANALYSIS

It is interesting to compare the accuracy of the CFO

estimation algorithms derived in the previous Sections with the

relevant CRB. The latter is obtained starting from the signal

model given in (14)-(15), and using the true noise statistics

expressed in (6). We begin by arranging the received samples

x into a real-valued vector x̆ = [xTI xTQ]
T , with xI = ℜe{x}

and xQ = ℑm{x}. Then, we define the real-valued CIR vector

as ŭ = [hTre hTim qTre qTim]T , where hre and qre are the

real parts of h and q, respectively, while him and qim are

the imaginary parts. Finally, letting w̆ = [wT
I wT

Q]
T , with

wI = ℜe{w} and wQ = ℑm{w}, we may rewrite (14) as

x̆ = B(φ)ŭ+ w̆ (52)

where

B(φ) =
[

ℜe{A1(φ)} −ℑm{A1(φ)} ℜe{A1(φ)} ℑm{A1(φ)}
ℑm{A1(φ)} ℜe{A1(φ)} −ℑm{A1(φ)} ℜe{A1(φ)}

]

(53)
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with A1(φ) = Γ(φ)G1CG2 = Γ(φ) (1M ⊗T1). To proceed

further, we denote by Cw̆ the covariance matrix of the Gaus-

sian vector w̆, which can be computed through (6). Then,

letting the set of unknown parameters be χ = (φ , ŭ), it is

found that the Fisher information matrix Ω for the estimation

of χ takes the following form [27, Section 3.9]

Ω =

[

ωφφ ω
T
φŭ

ωφŭ Ωŭŭ

]

(54)

where

ωφφ = ŭT ḂT (φ)C−1
w̆ Ḃ(φ)ŭ

ωφŭ = BT (φ)C−1
w̆ Ḃ(φ)ŭ

Ωŭŭ = BT (φ)C−1
w̆ B(φ)

(55)

and we have denoted by Ḃ(φ) the derivative of B(φ) with
respect to φ. Taking (53) into account, yields

Ḃ(φ) =

[

M 0

0 M

]

×

[

−ℑm{A1(φ)} −ℜe{A1(φ)} −ℑm{A1(φ)} ℜe{A1(φ)}
ℜe{A1(φ)} −ℑm{A1(φ)} −ℜe{A1(φ)} −ℑm{A1(φ)}

]

(56)

with M = diag {0, 1, . . . ,MP − 1}. The CRB for the estima-

tion of φ is the (1, 1)th entry of Ω−1, i.e.

CRB(φ) =
1

ωφφ −ω
T
φŭΩ

−1
ŭŭωφŭ

(57)

while the CRBs for the estimation of the entries of ŭ are the

diagonal elements of the following matrix

J = Ω−1
ŭŭ +

Ω−1
ŭŭωφŭω

T
φŭΩ

−1
ŭŭ

ωφφ −ω
T
φŭΩ

−1
ŭŭωφŭ

. (58)

The normalized CRBs for the estimation of h and q are

eventually given by

CRB(h) =
1

‖h‖2
2L
∑

m=1

[J]m,m (59)

and

CRB(q) =
1

‖q‖2
4L
∑

m=2L+1

[J]m,m. (60)

Unfortunately, (57) does not provide any clear indication about

the impact of the system parameters on the ultimate accuracy

achievable in the CFO estimation process. A more useful

expression can be found by evaluating an approximate version

of the CRB. The latter is obtained from the simplified model

of the M vectors {ξm;m = 0, 1, . . . ,M − 1} given in (28),

combined with the white Gaussian noise assumption. Skipping

the details for space limitations, the approximate CRB (ACRB)

is found to be

ACRB{φ} =
6σ2

w

MP 2(M2 − 1) ‖heq‖2
(61)

and coincides with var(φ̂BLUE) given in (51).

VI. SIMULATION RESULTS

A. Simulation model

Computer simulations are conducted to examine the perfor-

mance of the proposed methods in an OFDM WLAN system

compliant with the IEEE 802.11a standard [1]. The DFT size

is N = 64, while the sampling interval is set to Ts = 50
ns. This corresponds to a transmission bandwidth of 20 MHz

with a subcarrier distance of 312.5 kHz. The synchronization

schemes are applied to the STS placed in front of each frame.

This sequence carries Np = 12 non-zero pilot symbols, and is

divided into MT = 10 repeated parts, each containing P = 16
samples. After discarding the first two segments as the CP of

the TP, the remaining M = 8 segments are exploited for CFO

recovery. Hence, throughout simulations we let P = 16 and

M = 8 unless otherwise specified. We adopt a discrete-time

channel model and collect the samples of v(t) into a vector

v = [v(0), v(1), . . . , v(Lv − 1)]T of order Lv. The entries of

v follow a circularly-symmetric Gaussian distribution with an

exponentially decaying power delay profile

E{|v(k)|2} = σ2
v exp(−k/Lv) k = 0, 1, . . . , Lv − 1 (62)

where Lν = 4 (with the only exception of Fig. 9) and σ2
v is

chosen such that E{‖v‖2} = 1. Both frequency independent

and frequency selective RF imperfections are considered. If not

otherwise stated, the LO-induced imbalance is characterized

by α = 1 dB and ψ = 5 degrees. The receive I/Q filters

have discrete-time impulse responses gI = [0, 1, µ]T and

gQ = [µ, 1, 0]T with µ = 0.1, which results into overall

CIRs h[k] and q[k] having support k = 0, 1, . . . , L − 1, with

L = Lv + 2. These values have been previously adopted in

the related literature [11] and represent a plausible model for

I/Q mismatches. In addition to the aforementioned simulation

set-up, in our study we also consider a more general scenario

wherein a coefficient ρ ∈ [0, 4] is used to specify the values

of the I/Q imbalance parameters as µ = 0.1ρ, α = 1+0.122ρ
and ψ = 5ρ degrees. This allows us to assess the sensitivity

of the considered schemes to the amount of RF imperfections,

with ρ = 0 corresponding to an ideal situation where no I/Q

imbalance is present.

Assuming a carrier frequency of 5 GHz and an oscil-

lator instability of ±30 parts-per-million (ppm), we obtain

|φ|(max) = 0.015π. This value falls well within the estimation

range of the RC-SJML and BLUE, which is given by |φ| ≤
π/P = 0.0625π. When using SJML and RC-SJML, parameter

Nφ is set to 128 since numerical simulations indicate that no

significant improvement is achieved with Nφ > 128.

B. Performance assessment

The accuracy of the proposed frequency recovery schemes

is assessed in terms of their mean square estimation error

(MSEE). The estimated parameter is the CFO normalized by

the subcarrier spacing, which is defined as ν = NTs∆f or,

equivalently, ν = Nφ/(2π). Recalling that |φ|(max)
= 0.015π,

the uncertainty range of ν is given by |ν| ≤ 0.48. Comparisons

are made with alternative ML-oriented methods, including the

CML [24] and JML [11]. The complexity of these estimators

has been evaluated in [23] and is reported in Table I. In writing
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Fig. 2. Accuracy of the CFO estimators vs. ν with SNR=15 dB

these results we have borne in mind that the coarse search with

CML can be efficiently performed through FFT techniques,

while a similar approach cannot be adopted with JML.

Fig. 2 illustrates the MSEE of the CFO estimators as a

function of ν measured at SNR=15 dB. We see that JML

performs poorly for small CFO values, while the accuracy

of the other schemes depends weakly on ν. The reason for

the poor performance of JML when ν approaches zero is that

this scheme aims at jointly estimating the channel distorted

signal component a = ΓP (φ)FPCG2h and its mirror image

b = ΓP (−φ)F∗
PC

∗G∗
2q without effectively exploiting their

mathematical model. Since in the absence of any CFO the mth

received TP segment in (21) becomes xm = a+b+wm, there

is no possibility for JML to get individual estimates of a and b

in this specific situation. In contrast, the proposed algorithms

can work satisfactorily for any CFO value as they exploit

the inherent structure of a and b, which makes these vectors

resolvable even when ν = 0. It is worth observing that CML,

which is derived by ignoring the presence of I/Q imbalances,

performs remarkably better than JML for ν < 0.15. We also

see that the accuracy of RC-SJML and BLUE is virtually the

same as that of SJML, in spite of their reduced complexity.

The results of Fig. 3 are obtained under the same operating

conditions of Fig. 2, except that the SNR is now set to 30

dB. In such a case, the performance of CML exhibits large

fluctuations as a function of ν, while the proposed schemes

provide a remarkable accuracy irrespective of the CFO value.

Again, JML performs poorly when ν approaches zero due to

the impossibility of resolving vectors a and b.

Figs. 4 and 5 show the MSEE of the CFO estimators

as a function of ρ with ν uniformly distributed over the

interval [−0.5, 0.5]. The SNR is 15 dB in Fig. 4 and 30

dB in Fig. 5. These results indicate that, irrespective of the

SNR, the accuracy of JML and SJML is virtually independent

of ρ, while CML is significantly affected by the amount of

I/Q imbalances. As for RC-SJML and BLUE, they exhibit

a remarkable resilience against RF imperfections at an SNR

of 15 dB, while some performance degradation is observed

at SNR=30 dB in the presence of severe I/Q mismatches.

However, these schemes largely outperform both JML and

CML, while exhibiting a tolerable loss with respect to SJML.

Fig. 6 illustrates the accuracy of the investigated schemes
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Fig. 3. Accuracy of the CFO estimators vs. ν with SNR=30 dB
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Fig. 4. Accuracy of the CFO estimators vs. ρ with SNR=15 dB

as a function of the SNR when ρ = 1 and ν varies

uniformly within the interval [−0.5, 0.5]. The curve labeled

CRB corresponds to the bound reported in (57) and it is

shown as a benchmark. Comparisons are also made with

the reduced-complexity estimator (RCE) proposed in [25].

Although RCE was originally designed to operate with a TP

composed of two identical halves, it can be applied to the

802.11a STS as well by considering such a sequence as the

concatenation of two repeated segments [xT0 xT1 · · ·xTM/2−1]
T

and [x
T
M/2 xTM/2+1 · · ·xTM−1]

T
. We see that SJML attains the

CRB at any SNR value. Both RC-SJML and BLUE perform

similarly to SJML (apart for a negligible loss in the high SNR

region) and achieve a substantial gain with respect to JML

and RCE. As for the CML curve, it keeps close to the CRB

when SNR<15 dB, while it is plagued by a considerable floor

at larger SNR values. Since our numerical analysis did not

reveal any tangible difference between the true CRB and its

approximation (61), we conclude that the noise term w(t) in

(2) can reasonably be modeled as a circularly symmetric white

Gaussian process.

The accuracy of the estimated CIR vectors at different

SNR values is assessed in Fig. 7 using the normalized MSEE

(NMSEE) of ĥ and q̂, which is defined as
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Fig. 5. Accuracy of the CFO estimators vs. ρ with SNR=30 dB
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Fig. 6. Accuracy of the CFO estimators vs. SNR

NMSEE(ĥ) =

E

{

∥

∥

∥
ĥ− h

∥

∥

∥

2
}

E{‖h‖2}
,

NMSEE(q̂) =
E
{

‖q̂− q‖2
}

E{‖q‖2}
.

(63)

Here, the estimate û = [ĥT q̂T ]T is obtained as indicated in

(17) letting φ̃ = φ̂BLUE and using the same operating scenario

of Fig. 6. At medium and large SNR values, we see that both

curves are tight to the relevant CRBs given in (59) and (60),

while a certain discrepancy occurs in the low SNR region.

In order to assess the extent to which the approximation (22)

can reasonably be adopted, it is interesting to investigate the

impact of parameter P on the accuracy of the CFO estimate.

For this purpose, in Fig. 8 we show the MSEE of the BLUE

as a function of the SNR for P = 16, 32 and 64. Since the

length of the TP is fixed to MP = 128, the corresponding

values of M are 8, 4 and 2. In particular, the case P = 32
is handled by viewing the 802.11a STS as the concatenation

of four repeated parts [xT0 xT1 ]
T

, [xT2 xT3 ]
T

, [xT4 xT5 ]
T

and

[x
T
6 xT7 ]

T
, with each vector xi being composed of 16 elements,

while the case P = 64 is tackled by dividing the TP into

two parts [x
T
0 xT1 xT2 xT3 ]

T
and [x

T
4 xT5 xT6 xT7 ]

T
. It turns

out that, at SNR values smaller than 30 dB, the MSEE is

practically the same with either P = 16 or 32, and keeps
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Fig. 7. Accuracy of the CIR estimates vs. SNR

close to the relevant CRB given in (57). In contrast, very

poor estimates are obtained with P = 64. It is worth noting

that the formidable performance degradation incurred by the

BLUE in passing from P = 32 to 64 cannot be totally

ascribed to the approximation (22). Indeed, when P = 64
the estimation range of RC-SJML and BLUE is reduced to

|φ| ≤ 0.015625π, which is only marginally greater than the

value |φ|(max)
= 0.015π adopted throughout simulations. In

the presence of noise, we expect that the phase term θ(m)
defined in (45) may occasionally experience jumps of 2π
when Pφ is close to ±π as a consequence of the wrapping

phenomenon. Our analysis confirms the presence of these

jumps when P = 64, which justifies the impressive loss of

performance exhibited by the BLUE in this specific situation.

The results of Fig. 8 provide useful information about the

maximum value of P that can be used with the BLUE. To

see how this happens, we recall that the maximum phase

error between ΓP (φ) and its approximation ej(P−1)φ/2IP is

∆φ(max) = (P −1) |φ|(max)
/2. On the other hand, the MSEE

curves in Fig. 8 indicate that, compared to the case P = 16,

no penalty in estimation accuracy occurs when P = 32 and

|φ|(max)
= 0.015π, yielding ∆φ(max) ≃ π/4. This means that

a sufficient condition for applying the BLUE without incurring

significant performance degradation is (P − 1) |φ|(max)
/2 ≤

π/4, which limits the range of P to

P ≤ 1 +
π

2|φ|(max)
. (64)

Fig. 9 illustrates the impact of the channel length on the

performance of the BLUE when the constraint L ≤ Np/2
is not fulfilled. In these simulations, the MSEE curves are

obtained by designing the BLUE for a fictitious channel order

Lv = 4, (corresponding to L = Lv + 2 = 6), while the true

values of Lv are 4, 6 and 8. As expected, in the high SNR

region the estimation accuracy exhibits an irreducible floor,

which increases with the difference Lv − Lv. On the other

hand, all the curves attain the CRB when the SNR is smaller

than 15 dB, thereby revealing an adequate resilience against a

possible mismatch in the channel order.

We complete our analysis by comparing the investigated

CFO recovery schemes in terms of their computational com-

plexity. The last column of Tab. I shows the number of



10

5 10 15 20 25 30 35 40
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

SNR, dB

M
S
E
E

M = 2, P = 64

M = 4, P = 32

M = 8, P = 16

CRB

Fig. 8. Accuracy of the BLUE vs SNR for different values of P and MP =
128

5 10 15 20 25 30 35 40
10−8

10−7

10−6

10−5

10−4

10−3

SNR, dB

M
S
E
E

Lv = 8

Lv = 6

Lv = 4

CRB

Fig. 9. Accuracy of the BLUE vs. SNR for different values of the channel
order

required flops when the algorithms are applied to a WLAN

scenario with P = 16 and M = 8. Based on these results,

we observe that SJML is hardly implementable due to its

prohibitive complexity. A similar conclusion applies to JML

which, in spite of its large computational load, provides poor

performance when compared to BLUE and RC-SJML. Hence,

leaving aside the SJML and JML, in Fig. 10 we report the

number of flops required by the other explored schemes as

a function of P . The curves are obtained by substituting

MP = 128, L = 6, and Nφ = 128 in the expressions given in

Tab. I. As is seen, the processing load of RCE is independent

of P , while the complexity of the other algorithms decreases

with P . These results indicate that the improved performance

of RC-SJML with respect to existing alternatives (CML and

RCE) is obtained at the price of an increase of the processing

requirement by a factor of two. On the other hand, the BLUE

attains the accuracy of RC-SJML with a computational load

that is nearly the same as that of CML and RCE with either

P = 16 or P = 32. Combining the MSEE measurements of

Fig. 8 with the complexity analysis of Fig. 10, we conclude

that P = 32 (and M = 4) is an appropriate design choice

when the BLUE is applied to a WLAN system compliant with

the 802.11a standard.
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Fig. 10. Complexity of RC-SJML, BLUE, RCE and CML vs. P with MP =
128

VII. CONCLUSIONS

We analyzed the CFO estimation problem in an OFDM re-

ceiver plagued by frequency-selective I/Q imbalances. In doing

so, we assumed that a repeated training preamble is available

in front of each data packet to assist the synchronization task.

Our first objective was the joint ML estimation of the CFO and

channel impulse responses of the direct signal component and

its mirror image. By exploiting knowledge of the pilot sym-

bols embedded in the preamble, we derived a novel scheme

(SJML) which eliminates the sign ambiguity problem of the

JML estimator. Since implementation of SJML is impractical,

we derived two alternative reduced-complexity schemes (RC-

SJML and BLUE) by neglecting the phase rotation induced by

the CFO within each TP segment. Upon considering a practical

scenario compliant with the 802.11a WLAN standard, the

following results were found: 1) both RC-SJML and BLUE

lead to a drastic reduction of the processing load with respect

to SJML without incurring any significant penalty in estima-

tion accuracy; 2) compared to existing alternatives (CML,

RCE, JML), RC-SJML exhibits a remarkable improvement

of the system performance at the price of a certain increase

of the computational load with respect to CML and RCE;

3) the BLUE attains the same performance of RC-SJML,

while exhibiting a complexity similar to that of CML and

RCE; 4) the length of the repetitive TP segment must be

carefully designed in order to achieve a good trade-off between

estimation accuracy, system complexity, and estimation range.

These conclusions indicate that the BLUE represents a

practical solution for accurate CFO recovery in an OFDM

direct-conversion receiver.
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