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Abstract 

In this work, simple analytical models based on the concept of an equivalent material are used to describe 

the mechanical behavior of resonators perforated by a regular array of square holes, a common occurrence in 

several MEMS devices and sensors. This description is applied to the determination of the resonance 

frequency of Lamé-mode square resonators, which are frequently pursued as high-Q MEMS resonators. The 

models predictions are compared with FEM simulations and experimental data both from the literature and 

from measurements obtained by the authors on thick SOI MEMS resonators. The models predictions are in 

good accordance both with FEM results and with experimental data. 
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1. Introduction 

MEMS resonators are actively researched for frequency control applications, RF filters and oscillators 

[1, 2], as well as and chemical and biochemical sensors [3-7], aiming at substituting their discrete 

counterparts based on their perceived advantages in terms of batch fabrication, monolithic integration and 

low dimensions/low power consumption. In sensing applications, which are predominantly based on the 

mass (and thus resonance frequency) shift of the resonator consequent to interaction with the analyte, 

common figures of merit are the sensitivity and limit of detection [3, 4]. Both quantities can be defined with 

respect to the mass or to the concentration. For chemical sensors, the most meaningful definitions are those 

based on the concentration or, alternatively, on the mass per unit surface (which makes the comparison 

among different sensors simpler) [3, 4].  

Ultimately, the sensitivity is proportional to the ratio between the analyte and resonator masses, so that to 

increase it, efforts need to be made to increase the former (for example by increasing the resonator active 

area) and to decrease the latter by reducing the resonator volume, which also has a direct effect on the 

resonance frequency. 

In addition, the limit of detection ultimately depends on the quality factor Q [4]. For this reason, efforts 



have been made to identify high Q, high sensitivity resonating structures. Among them, Lamé-mode 

resonators, because of a mode-shape which exhibits only shear deformations, are expected to radically 

reduce one of the causes of intrinsic noise, i.e. thermoelastic damping in the resonator material [8]. Examples 

of Lamé-mode MEMS resonators used both as frequency references [9] and mass sensors [5] can be found in 

the recent literature. 

In any case, whatever be the resonator type, and depending on the resonator dimensions and fabrication 

technology, a pattern of holes fabricated on the resonator body may be required for the release of the moving 

part from the substrate [10, 11]. As a general observation, resonators of substantial dimensions without holes 

require a back etch [5], which make the fabrication significantly more complex. 

On the other hand, perforations can drastically increase the sensitivity of resonant sensors by both 

increasing the surface exposed to the analyte, and decreasing their volume [12, 13]. Moreover, holes are 

often used in phononic-crystal structures [14], which have been proposed for the creation of high-Q 

resonators [15, 16] and sensors [17, 18]. Also, a possible effect of holes on the temperature stability of the 

resonance frequency has been recently reported [19]. 

Whatever the reason for their introduction, holes affect the behavior of the resonator in various ways, and 

thus models are needed in order to predict their effect over design parameters such as the quality factor and 

the resonance frequency. In the specific case of Lamé-mode resonators, holes have been related to an 

increase in thermoelastic and anchor losses [20, 21]. In contrast, the effect of perforations on the resonance 

frequency has not been investigated as thoroughly, although the authors have already presented results 

referred to beam resonators [22]. 

In this work, we develop and validate two analytical models for the resonance frequency of perforated 

Lamé-mode resonators, restricting ourselves to the case of resonators with a square grid of square 

perforations (which is the most common case). The models are based on the computation of the mechanical 

properties of an equivalent material. A first, simple model is based on an established theory of periodic 

cellular solids, i.e. solids which enclose voids with a periodic structure [23, 24]. To overcome an intrinsic 

limit of the simple model we also developed an original, refined model which assumes a more realistic stress 

distribution in the elementary grid cell. The predictions of the models are compared both with the results of 

FEM simulations and with experimental data. Experimental resonances are extracted from the literature on 

the subject as well as from experimental characterization performed by the authors on Lamé-mode MEMS 

resonators fabricated in a thick Single-Crystal Silicon (SCS) MEMS SOI technology. 

The paper is structured as follows: in section 2, the models are developed; section 3 is devoted to 

comparison between predictions of the models and FEM simulations for a wide range of possible hole grids. 

Section 4 presents the comparison with experimental data, as well as the concluding remarks. 

2. Resonance frequency model 

In order to investigate the resonance behavior of square Lamé-mode resonators perforated with square 

holes arranged in a square grid, we start from the expression for its resonance frequency in a square solid 

resonator [25]: 
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with L being the resonator side length, ρ the material density and Gd its shear modulus along the diagonal 

direction. While the direction along which the shear modulus is defined is inessential for isotropic materials, 

it can become relevant for anisotropic materials (such as SCS, which exhibits cubic symmetry). 

In our models, the effect of perforations is included by developing equivalent material expressions for the 

values of ρ and G and substituting them in (1): 
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This approach relies on the hypothesis that the grid cell dimensions are small compared to the side length 

L [23]. 

To the purpose of developing such equivalent expressions, we preliminarily define the parameters required 

to describe the hole pattern. We call N the number of holes along each side of the resonator. The spatial 

period of the grid (i.e. the side of the square grid cell) is ls = L/N, while hs is the side of the square hole, and ts 

is the difference between the former and the latter (Fig. 1). A useful parameter to describe the structure of the 

perforations is the filling factor α, defined as: 
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The allowed range of α is between 1 (solid structure) and 0 (hollow structure). Once L is assigned, the 

resonator geometry is completely defined by the values of N and α. The aforementioned hypothesis of small 

cells clearly corresponds to the assumption that N >> 1. 

The equivalent mass density is obtained, very straightforwardly, by averaging the unit cell mass over its 

volume, thus giving: 
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For the equivalent diagonal shear modulus further considerations are needed. Since the hole grid breaks 

the symmetry of the original structure, the perforated equivalent material shows an anisotropic behavior even 

if the original material did not. For simplicity, we will assume that the original solid material presents at least 

cubic symmetry. This choice excludes crystalline materials whose crystal structure is not cubic, such as 



(limiting the analysis to the case of semiconductors used in MEMS) the system AlxGa1-xN, which presents a 

hexagonal structure. On the other hand, isotropic materials (such as amorphous materials and polycrystalline 

silicon under fairly general conditions [26, 27]) are included, as are included crystalline silicon, germanium, 

the system AlxGa1-xAs, and many other semiconductors. 

The in-plane elastic properties of a cubic material can be described by three independent elastic 

constants [28]. A possible choice for these constants is: the Young’s modulus Ep, Poisson’s ratio νp and shear 

modulus Gp, all defined along the direction parallel to the resonator side. For example, in a SCS resonator 

oriented as in Fig. 2, the relevant constants would be the ones defined along direction [100]. For reference, 

their values for SCS along both [100] and [110] directions (taken from [29]) are recalled in Table 1. 

As a result of the cubic symmetry, the shear modulus along the diagonal direction (refer again to Fig. 2) 

can be written as [30]: 
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As the hole grid is square, and as long as the grid is aligned with a symmetry plane of the material, cubic 

symmetry is retained even after the perforations, i.e. the symmetry is not reduced by the introduction of the 

holes. As a consequence, our models cannot be extended, as it is, to non-square grids. The equivalent 

material taking the holes effect into account can thus be described by three equivalent constants Ep,eq, p,eq 

and Gp,eq. For the same reason, the equivalent diagonal shear modulus can be written as  
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i.e. the value of Gd,eq can be determined if Ep,eq and p,eq are known. Expressions for Ep,eq and p,eq are 

typically computed by loading the unit cell with a uniaxial force f (as shown in Fig. 3) and by computing the 

generated elongations. For small α (i.e. large holes) it has been assumed [23] that the stress σxx in areas 1 of 

Fig. 3 (σfh) is negligible, leading to the following expressions: 
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 The accuracy of (7) also depends on the fact that all the segments which can be imagined as the 

constituents of the perforated material have a constant cross-section. As a consequence, (7) are strictly true 

for square holes (or, to be more accurate, for rectangular holes, a more general case not considered in this 

work). Among other possible hole shapes, the circle is the only other which occurs with some frequency in 

applications [31]. 



It is not difficult to show that, to ensure static equilibrium, the assumption σfh = 0 implies that the stresses 

in area 2 (σff) and areas 3 (σh), both supposed constant in their respective areas, are equal. In the following 

sections we will show that the simple model of Eqs. (7) is reasonably accurate for most cases, and 

specifically for low α. However, to capture the full behavior of the resonance frequency for α close to one, a 

refined model in desirable. Specifically, we can drop the assumption σfh = 0 and suppose that the stress in that 

part is proportional to the stress σff in the center of the cell through some function of α: 

 

 ( )fh fff  = . (8) 

 

With this definition, the expressions in (7) correspond to the case f(α) = 0. More generally, natural 

consistency constraints require that f(0) = 0 (the stress σfh becomes negligible for very large holes) and 

f(1) = 1 (in the limit of a solid material, the stress is constant throughout the material). The simplest model 

which obeys this constraints is a power law: 
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where k is a fitting parameter which will be determined from FEM data in the following section. From (8), it 

is possible to obtain new, refined expressions for the Young’s modulus and Poisson’s ratio. We can think of 

the cell as loaded by an average equivalent stress σeq = f/ls, while the actual stress σh is f/(αls). Also, 

equilibrium along x requires that 
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The total elongation of the cell is then: 
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from which an expression for the equivalent Young’s modulus can be obtained: 

 

 ,
/ (1 )

eq eq

p eq p

s s ff h

E E
l l

 

  
 = =

 + −
. (12) 

 

Finally, by putting (12), (10) and (9) together, we obtain: 
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A similar line of reasoning leads for a formally similar expression for the Poisson’s ratio: 
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The expressions (13a-b) reduce to (7) for the limiting case k → ∞ (which corresponds to σfh → 0). 

Substituting either (13a-b) or (7) in (6), and in turn (6) and (4) in (2), two expressions for the resonance 

frequency of the holed Lamé-mode resonator (“simple” and “refined”) are obtained: 
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If the original materials is isotropic, the expression (8) further simplifies as it is not necessary to specify 

the direction along which E and ν are defined, since their values are not dependent on the direction. 

3. FEM Validation 

In this section, resonant frequencies of Lamé-mode resonators, computed with modal FEM simulations 

carried out with ANSYS, will be compared to the ones predicted by (14). In order to retain consistency with 

the measured structures presented in the third section, simulations were performed considering SCS 

resonators with sides of length L = 1 mm, oriented along the [100] direction. The elastic constants passed to 

ANSYS are the ones reported in Table 1. All simulations were carried out as 2D simulations under a 

plane-stress hypothesis, i.e. under the hypothesis of small thicknesses. Because of the symmetry of the 

problem, only one fourth of the resonator has been simulated. The modal extraction has been performed with 

the block Lanczos method and the sparse equation solver. No boundary conditions (others than the ones 

necessary in order to impose the symmetry conditions) have been applied on the structure. Among the 

several resonance frequencies computed by ANSYS, the Lamé-mode resonance frequency has been extracted 

by running a comparison between the computed mode shapes and the Lamé mode shape of a solid resonator. 

This procedure is clarified with the aid of Fig. 4, where the simulated displacement field of the Lamé 

resonators for N = 20 and four different values of α (including the solid case α = 1), are reported. It is evident 

that the displacement field in presence of holes closely resembles the one of the solid structure. 

A set of simulations has been performed for filling factors α varying in the range [0.05-1] with steps of 

0.05 and for a number of holes N along each side of 10, 20 and 30. Due to the significant change in the 

geometry of the simulated structures upon the above-mentioned changes in α and N, a meshing algorithm 

aimed at keeping the number of elements constant has been adopted. This number has been fixed at a 



minimum of 100000. The element type used was PLANE182 and all elements were rectangular with aspect 

ratio as close as possible to 1. In order to investigate the numerical convergence of the FEM model, a few 

test structures with values of N and α varying across the discussed design space have been identified and 

their simulation have been repeated with four times the original number of elements. In all cases, the change 

in resonance frequency has always been below 0.2%. 

FEM simulations were also used to extract a reasonable value for k in the expression (14). Based on the 

assumption (9), we extracted and compared the calculated FEM stresses along x in the areas 1 and 2 of Fig. 3. 

Typical averaged stress profiles at varying α are shown in Fig. 5. We then fitted the averaged FEM stresses 

over the two areas with the least square method against a fitting function of the form (9). The fitting gave an 

optimal value for k of 2.85, which was used for subsequent comparisons. 

In Fig. 6 the first Lamé-mode resonance frequency as a function of the filling factor α is plotted, with α 

and N varying in the range described above. FEM simulations, as well as the values predicted by the two 

models (14), are shown. To allow an easier comparison, the relative errors of (14) with respect to FEM 

simulations are presented in Fig. 7. The FEM data for N = 10, α = 0.05 are not included because the ANSYS 

modal analysis yielded no discernible Lamé mode shape for those values of the parameters. As a matter of 

fact, at such low values of α and N the structure is more akin to a lattice of weakly coupled flexural beams 

than to a continuous material withstanding a pure shear deformation. Moreover, for small values of α the 

errors are highly dependent on N and are quickly reduced for larger values of this parameter, when the 

continuous approximation is more exactly satisfied. 

For values of α close to 1, the simple model fails to capture the behavior of the resonance frequency, 

systematically underestimating the actual resonance frequency. As this error only weakly depends on N, and 

does not decrease for increasing N, it can be likely attributed to an intrinsic inaccuracy of the model in this 

zone. This limitation is overcome by the refined model, whose behavior is comparable to that of the simple 

model for low α, but is dramatically improved at those values of α where the effect of the stress on the lateral 

portions of the unit cell (areas 1 in Fig. 3) is not negligible. The relative error between the FEM results and 

the models remain below 6% in every case. 

4. Experimental Validation and Conclusions 

In this section, measurements on Lamé-mode MEMS resonators are presented and compared with the 

predictions of equations (14). 

Resonators were fabricated on a 60 µm thick SCS layer (Tronics MEMSOI), with sides of length 

L = 1 mm, oriented along the [100] direction. T-shaped anchors placed at the corners of the square are used 

to anchor the structure to the substrate. Actuation and detection are performed using three capacitive 

electrodes placed along the resonator sides. The transduction gap is 4.2 µm. The two electrodes placed along 

opposite sides are used in actuation and the remaining one in detection. An optical photograph of a typical 

device is shown in Fig. 2. 

Measurements where performed with an Agilent E5061B network analyzer in a standard two-port 

configuration (shown in Fig. 8). All the measurements were performed at atmospheric pressure (which is the 



operating environment for many resonant mass sensors [4-6]). The resonator is DC biased at 40 V, the input 

electrodes are driven by an AC signal VR, and the output signal VT is collected at the third electrode. The 

parasitic feedthrough signal due to the direct capacitive coupling between the input and output electrodes is 

numerically cancelled from the transmission spectrum by subtracting the spectrum obtained at 0 V of DC 

bias. 

The obtained spectra were numerically least-squares fitted against the theoretical frequency response of a 

second-order system in order to extract the values of the resonance frequencies and quality factors. Typical 

spectra with their fitting curves are shown in Figs. 9 and 10. The extracted values for f0 (and Q) from four 

different resonators are reported in Table 2 along with the resonators geometrical parameters and theoretical 

resonance frequencies based on (14). In the same table are also reported, for comparison, the same values for 

three different Lamé-mode resonators presented in the literature. A wide range of different filling factors 

(from less than 0.1 to more than 0.8) and the two different orientations [100] and [110] are explored. The 

predictions of the models are within a few percent from the experimental frequencies for all the resonators 

presented. 

While the focus of this paper is on the resonance frequency of perforated resonators, it is nevertheless 

interesting to examine the effect of perforations on the measured quality factors, given the importance of 

high Q values in many applications. Specifically, in resonant mass sensors, a higher Q lowers the minimum 

detectable frequency shift and thus the minimum detectable mass per unit surface. However, a more detailed 

analysis [3, 4] shows that the limit of detection (LOD) is inversely proportional both to the quality factor and 

the sensitivity of the device, and the latter is significantly improved by the presence of holes. For our 

resonators, the measured values of Q are low (in the thousands range) if compared with values presented in 

the literature which are, however, typically measured in vacuum. The Q values at atmospheric pressure are 

more important for those applications (i.e. mass sensing) for which the resonator typically operates in air, 

where viscous losses are also present. Viscous losses in Lamé resonators have been attributed to slide-film 

damping above and below the resonator [32], as well as squeeze-film damping at the actuation electrodes 

[33]. As a general remark, it can be expected that the presence of holes affects the quality factor through 

changes in different loss mechanisms. As an example, experimental evidence that confirms a large increase 

in thermoelastic losses in perforated Lamé-mode resonators has been reported [20, 21]. However, due to the 

presence of viscous losses caused by the surrounding atmosphere, our measurements cannot confirm (or rule 

out) an increase in thermoelastic losses, which are masked by other loss mechanisms. 

In conclusion, our models provides a very simple and computationally straightforward expression to 

determine the resonance frequency of Lamé-mode resonators with a square grid of square perforations, over 

a large range of possible dimensions of the holes. Predictions of the models are confirmed both by FEM 

simulations and experimental data. The models have important applicative interests in the fast design of 

perforated resonators for frequency reference applications, as well as for resonant sensors showing enhanced 

sensitivity due to the increased surface/volume ratio introduced by the holes. Moreover, the use of 

expressions (7) and (13a-b) can be potentially extended to other problems where a simple model for the 



elastic behavior of perforated structures is required.  
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Table 1. Elastic constants of single-crystal silicon at room temperature for two different orientations. Data 

adapted from [29]. 

Crystal 

orientation 

Young’s modulus Ep 

(GPa) 
Poisson’s ratio p 

(-) 

Shear modulus Gp 

(GPa)  

[100] 130.0 0.2785 79.5 

[110] 169.0 0.0625 50.8 

 

 

 

Table 2. Geometric parameters and measured resonance frequencies and quality factors for selected 

resonators, along with a comparison between experimental and predicted resonance frequencies.  

Sample 

name 
Reference Material 

Resonator 

side length 

L (µm) 

Number 

of holes 

N 

Filling 

factor α 

Resonance frequency (MHz) 
Quality 

factor Measured 
Simple model 

(εr %) 

Refined model 

(εr %) 

A1 This work 
[100] 

SCS 
1000 20 0.093 2.659 2.671 (+0.45%) 2.671 (+0.45%) 

1036 

(air) 

A2 This work 
[100] 

SCS 
1000 20 0.296 2.787 2.751 (-1.29%) 2.768 (-0.68%) 

4155 

(air) 

A3 This work 
[100] 

SCS 
1000 30 0.283 2.795 2.745 (-1.79%) 2.761 (-1.21%) 

4530 

(air) 

A4 This work 
[100] 

SCS 
1000 30 0.485 2.918 2.848 (-2.4%) 2.910 (-0.27%) 

6838 

(air) 

B [20] 
[110] 

SCS 
360 35 0.5 9.66 9.51 (-1.55%) 9.753 (0.96%) 

18190 

(vacuum) 

C [21] 
[110] 

SCS 
650 15 0.75 5.92 5.73 (-3.21%) 5.987 (1.13%) 

115000 

(vacuum) 

D [10] 
[110] 

SCS 
320 39 0.813 12.1 11.91 (-1.57%) 12.44 (2.81%) 

60000 

(vacuum) 

 

 

 

Figure Captions 

 

Fig. 1: Definition of the filling factor α. 

 

Fig. 2: Optical micrograph of one of the fabricated structures. The orientation of the crystallographic axes is 

superimposed. 

 

Fig. 3: Unit cell of a perforated resonator. Areas under different stress conditions used in deriving the refined 

model are marked with progressive numbers. 

 

Fig. 4: Superposition of FEM-simulated deflected shapes at resonance at four different values of the filling 

factor. Clockwise starting from upper corner:  = 1,  = 0.8,  = 0.5,  = 0.1. The rest position is outlined in 

black. 

 



Fig. 5: Averaged stress profiles in areas 1 (thin lines) and 2 (thick lines), as obtained from FEM simulations, 

for different filling factors. 

 

Fig. 6: Comparison between models and FEM results for the resonance frequency of a square resonator 

made of SCS with sides L = 1 mm oriented along the [100] direction, as a function of the filling factor α. 

 

Fig. 7: Relative error of the models with respect to FEM simulations. 

 

Fig. 8: Schematic structure of the capacitive actuation and sensing scheme. 

 

Fig. 9: Measured resonance curve of sample A1. 

 

Fig. 10: Measured resonance curve of sample A3. 

 

 


