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Abstract 8 

In this study a probabilistic approach for optimal sizing of cogeneration systems under long-term 9 

uncertainty in energy demand is proposed. A dynamic simulation framework for detailed modeling 10 

of the energy system is defined, consisting in both traditional and optimal operational strategies 11 

evaluation. A two-stage stochastic optimization algorithm is developed, adopting Monte Carlo 12 

method for the definition of a multi-objective optimization problem. An Italian hospital facility has 13 

been used as a case study and a gas internal combustion engine is considered for the cogeneration 14 

unit. The results reveal that the influence of uncertainties on both optimal size and annual total cost 15 

is significant. Optimal size obtained with the traditional deterministic approach are found to be sub-16 

optimal (up to 30% larger) and the predicted annual cost saving is always lower when accounting for 17 

uncertainties. Pareto frontiers of different CHP configurations are presented and show the 18 

effectiveness of the proposed method as a useful tool for risk management and focused decision-19 

making, as tradeoffs between system efficiency and system robustness. 20 
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1. Introduction 30 

Cogeneration is the simultaneous production of electric energy and useful heat. Combined 31 

Heat and Power (CHP) plants haven been shown to be a reliable, competitive and less polluting 32 

alternative to separate generation. The European Union has promoted the use of high-efficiency 33 

cogeneration as a measure to save primary energy, avoid electric network losses, reduce emissions, 34 

namely greenhouse gases, and improve the security of energy supply [1]. CHP technology is 35 

considered an essential means of achieving the European 20% energy efficiency target by 2020 [2]. 36 

The energy, environmental and economic performances of CHP systems are strongly 37 

influenced by prime mover selection, equipment capacity and operational strategy. Undersizing and 38 

oversizing of CHP plants are frequent and do not allow the full exploitation of the energy saving of 39 

such systems [3]. For this reason, in recent years, many studies have focused on appropriate CHP 40 

system design methods [4]. Multi-objective optimization approaches for designing cogeneration 41 

systems have been developed both for residential [5] and for large-scale building energy systems 42 

[6]. The importance of integrated sizing and operational strategy methods for optimal selection of 43 

cogeneration systems has been explicitly addressed [7,8].  44 

Different optimization techniques have been used over the years to identify the optimal design 45 

of polygeneration systems [9]. Arcuri et al. [10] presented a Mixed Integer Linear Programming 46 

(MILP) model for the determination of the design and the running conditions of a trigeneration plant 47 

for a hospital complex. Guo et al. [11] carried out a two-stage optimal planning and design method 48 

for Combined Cooling Heat and Power (CCHP) microgrid system, using both genetic algorithm and 49 

MILP algorithm techniques. Elsido et al. [12] and Arcuri et al. [13] proposed Mixed-Integer Non-50 

Linear Programming (MINLP) models for determining the most profitable synthesis, design, and 51 

annual scheduling of CHP systems. 52 



Other works have focused on the optimal exploitation of the CHP potential in existing plants. 53 

Franco and Versace [14] defined the optimal operational strategy of a cogeneration plant connected 54 

to a District Heating System. Li et al. [15] analyzed the effect of optimized operational strategy on a 55 

CCHP system for office and residential buildings. Bischi et al. [16], Ortiga et al. [17] and Ünal et al. 56 

[18] investigated the optimal operating schedule of CCHP systems, with a given design. 57 

Many of these studies [6,11] have clearly indicated the importance of considering, in future 58 

research, the effect of uncertainties in CHP optimal design. Such a task is very challenging, but it is 59 

worthwhile for gaining accurate and robust results. In fact, it is well-known how intrinsic 60 

uncertainties affecting Distributed Energy Systems (DES), such as energy demands, fuel price 61 

fluctuations, regulation, and so on, might undermine the potential profit of such systems [19]. In this 62 

regard, several approaches of optimization under uncertainty have been employed, such as general 63 

sensitivity analysis [20,21], sensitivity analysis in mathematical programming [22], fuzzy 64 

programming [23,24], dynamic programming [25], robust optimization [19], and stochastic 65 

programming [26]. Each of these studies focused on specific types of uncertainties and energy 66 

systems. Yokoama and Ito [27] proposed a robust optimal design method, through a case study on a 67 

cogeneration system, considering uncertain energy demand of a single representative day. Akbari et 68 

al. [28] focused on designing a multi-technology distributed energy system in a neighborhood, under 69 

demand uncertainty concerning data insufficiency. Momen et al. [29] provided a Monte Carlo method 70 

applied to a gas-turbine-based cogeneration system, considering uncertainties in economic 71 

parameters. Mavrotas et al. [30] dealt with risk management for uncertainty in fuel costs and discount 72 

rate, by means of the combined use of Monte Carlo simulation and MILP algorithm. Li et al. [31] 73 

optimized a building CCHP system, considering fluctuations in the hourly energy demands. 74 

In the mentioned studies, long-term uncertainties in energy demand are ignored and typical 75 

load year data are considered for the whole lifetime of CHP systems. However, fluctuations in energy 76 

demand over the years may be significant and their effect on overall performance and optimal sizing 77 

must be specifically evaluated. 78 



The main purpose and novelty of this study is therefore to accurately investigate the effect of 79 

long-term uncertainties in energy demand on CHP systems. For this purpose, an original optimal 80 

integrated sizing and operational strategy methodology is defined, which takes analytically into 81 

account uncertainties in energy demand. More specifically, this study provides a probabilistic 82 

methodology for risk analysis, based on the simulation of the entire life-cycle of the cogeneration 83 

project. Such an approach allows to highlight shortcomings and inaccuracies of usual deterministic 84 

methods. Moreover, the adopted methodological framework provides results in the form of 85 

probability distributions, thus providing fruitful and complete information to decision-makers. 86 

The remainder of the paper is organized as follows. In Section 2 the methodological 87 

framework is presented in detail. An essential description of the case study follows in Section 3. 88 

Section 4 contains a detailed analysis of the results, while the last section contains concluding 89 

remarks. 90 

 91 

2. Methodology 92 

In pursuit of the above-mentioned goals, a specific methodological framework has been 93 

developed. Three main tools have been employed: the dynamic simulation based on a full 94 

mathematical model of the system, the so-called Monte Carlo sampling Method, and an optimization 95 

algorithm. 96 

 97 

2.1 System Simulation 98 

It is commonly accepted that an extensive and accurate analysis of a CHP unit requires a 99 

detailed simulation of the energy system [32]. In fact, preliminary sizing methods, such as the load 100 

duration curve, are useful only for assessing orders of magnitude of the project and cannot fully 101 

embrace the complexity of a CHP system. Multiple time-varying loads, part-load performances, 102 

simultaneous energy balances and various economical features make any rule-of-thumb approach 103 



inaccurate. Furthermore, the importance of considering electrical and thermal load fluctuations 104 

instead of mean values is recognized [33]. 105 

For these reasons, a CHP simulation, based on hourly averaged values for load representation, 106 

should be adopted [34]. This approach allows several key factors to be considered, such as part-load 107 

efficiency, load factor lower bound, hourly time-dependent prices for purchasing and selling 108 

electricity, actual operational hours, different operational strategies. In such a way, comprehensive 109 

system performances and a detailed CHP operational scheduling can be obtained. 110 

In fact, CHP systems can be run by several possible operational strategies. The two most 111 

common forms of operational strategies are: Following the electric load (FEL) and Following the 112 

thermal load (FTL). Nevertheless, these traditional strategies might not guarantee the best 113 

performance of the systems and optimal operating strategies have therefore been investigated in the 114 

last few years. [35,36]. Obviously, the adopted operational strategy can significantly influence the 115 

optimal sizing of the CHP system [7] and, consequently, it is essential to opt for an integrated 116 

methodology, which simulates all the possible operational strategies. 117 

 118 

2.2 Monte Carlo Method 119 

 Uncertainty in model variables and parameters can considerably undermine the accuracy of 120 

the results and may lead to erroneous conclusions. Uncertainty in energy load demand plays a key 121 

role in the analysis and design of a cogeneration system [27,37,38]. Not only is an accurate estimate 122 

of the energy demand frequently difficult to provide, but also evolution and change in loads are likely 123 

to occur. In fact, economic analyses concerning CHP installations should deal with a multi-year time 124 

horizon, corresponding to the lifetime of the system, which is generally up to 20 years. During such 125 

a period, fluctuations in energy demand are highly probable and may be significant. 126 

 For the above-mentioned reasons, it is necessary to consider uncertainty associated with the 127 

energy input data and evaluate its propagation to the results, in the framework of a risk analysis 128 

approach. For this purpose, Monte Carlo Method (MCM) is adopted; indeed, Monte Carlo simulation 129 



technique is a state-of-the-art methodology in risk analysis and can be employed within the context 130 

of risk management of distributed energy infrastructures [39]. 131 

MCM is a family of numerical methods capable of solving mathematical problems by means 132 

of simulation with random variables. Given a deterministic model 𝑦 = 𝑓(𝒙), with 𝑘 input data 133 

(𝑥1, … , 𝑥𝑖, … , 𝑥𝑘), MCM operates under the following steps. 134 

1. To assign a probability density function (𝑝𝑑𝑓𝑖) to each model input data 𝑥𝑖. It is also 135 

possible to specify a correlation between the various input data. 136 

2. To generate N possible values for each input data, by means of random samples of its 137 

probability density function. 138 

3. To combine the random samples to get N input vectors. If the input data are not correlated, 139 

samples can be combined in any order. 140 

4. To perform the simulation of the model N times, one for each input vector. In such a way, 141 

a vector of results is provided, and an input-output mapping of the model is defined, within 142 

the input space of the input 𝑝𝑑𝑓𝑖. 143 

5. The set of N values of the output data (𝑦1, … , 𝑦𝑗 , … , 𝑦𝑁) defines the probability density 144 

function of the result of the simulation. 145 

 The application of the MCM provides a detailed insight into the probability distribution of the 146 

target variable [40], allowing the calculation of typical statistical indicators, such as the mean value, 147 

the standard deviation, the skewness, the n-th percentile, the cumulative risk of negative values, etc. 148 

This additional information can offer a critical support to decision-makers, providing a probabilistic 149 

scenario and guaranteeing a robust decision. 150 

 A significant element in MCM is the number N of simulations to be performed to get accurate 151 

results. In fact, the uncertainty in the statistics obtained by the probability density function of the 152 

results drops as N increases. Given a certain confidence level, the margin of error usually decreases 153 

as √D/N, where D is a constant depending on the different variant of the applied MCM [40]. 154 

 155 



2.3 Optimization 156 

A detailed optimization procedure, concerning both the long and short-term time frames, has 157 

been purposely developed and is described as follows. 158 

 159 

2.3.1 The objective function 160 

 The optimization problem consists in the determination of the integrated CHP size and 161 

scheduling that meet the energy demand with the lowest possible cost. To evaluate the performance 162 

of the system, an annual cost saving index performance is defined. It is the annual cost saving with 163 

respect to the separate-production energy cost, which represents the reference energy system cost. 164 

In the separate-production energy system scenario, the thermal demand is met by a traditional 165 

natural gas-fired boiler and the electric demand is covered by the national electrical grid. In such a 166 

scenario, the only costs to be accounted for are based on the prices of purchased gas and electric 167 

energy required to meet the energy demand: 168 

𝐴𝐶𝑆𝑃 = ∑ 𝑐𝐹 
𝑖

8760

𝑖=1
𝐹𝑏𝑜𝑖,𝑆𝑃

𝑖 +  ∑ 𝑐𝑃𝐸𝐺 𝐸𝑝,𝑆𝑃
𝑖

8760

𝑖=1
 

(1) 

 

 169 

 170 

Fig. 1 Schematic representation of the Combined Heat and Power system 171 

 172 

In the CHP system scenario (illustrated in Fig. 1), the thermal demand is met partly by the CHP heat 173 

production and partly by the gas-fired boiler, and the electric demand is covered partly by the CHP 174 



electric production and partly by the national electrical grid. Therefore, the economic features to be 175 

accounted for are: the purchased natural gas price, both for the boiler and the CHP units, the price for 176 

purchasing electricity by the grid, the income for selling electricity to the grid, the cogeneration unit 177 

investment cost, and the cogeneration unit maintenance cost.  178 

𝐴𝐶𝐶𝐻𝑃 = ∑ 𝑐𝐹 
𝑖

8760

𝑖=1
𝐹𝑏𝑜𝑖,𝐶𝐻𝑃

𝑖 + ∑ 𝑐𝑃𝐸𝐺  𝐸𝑝,𝐶𝐻𝑃
𝑖

8760

𝑖=1

− ∑ 𝑐𝑆𝐸𝐺𝐸𝑠,𝐶𝐻𝑃
𝑖 +

8760

𝑖=1
∑ 𝑐𝐹 

𝑖
8760

𝑖=1
𝐹𝑐𝑔𝑢,𝐶𝐻𝑃

𝑖 + 𝐶𝐼,𝑐𝑔𝑢 + 𝐶𝑀,𝑐𝑔𝑢 

(2) 

 

It should be noted that both the separate-production and the CHP system costs are annual, which 179 

means they represent the cost needed to meet the energy demand of the reference year. The 180 

cogeneration unit investment cost is considered equally distributed over every year of its design 181 

lifetime. 182 

𝐶𝐼,𝐶𝐺𝑈 =
𝐶𝑇𝐼,𝐶𝐺𝑈

𝐷𝐿𝑇𝐶𝐺𝑈
⁄  

(3) 

 

Therefore, the optimization problem consists in the maximization of the annual cost saving 183 

percentage: 184 

max{𝐴𝐶𝑆𝑃} = max {(
𝐴𝐶𝑆𝑃 − 𝐴𝐶𝐶𝐻𝑃

𝐴𝐶𝑆𝑃
) %}. 

(4) 

 

 185 

2.3.2 Decision variables, demand constraints, capacity constraints, balance equations, 186 

operational strategy rules 187 

As already indicated, three different operational strategies are considered: FEL, FTL and 188 

minimum cost (MC) operational strategy. For the FEL and the FTL, the only decision variable is the 189 

Co-Generation Unit capacity 𝑃𝑐𝑔𝑢, for the design optimization. Instead, five additional decision 190 

variables, for the MC operational strategy of the i-th hour, are defined as follows: 191 

𝐸𝑐𝑔𝑢
𝑖 , 𝑄𝑐𝑔𝑢

𝑖 , 𝑄𝑏𝑜𝑖
𝑖 , 𝐸𝑝

𝑖 , 𝐸𝑠
𝑖. In case the simulated operational strategy is either the FEL or the FTL, these 192 



operational decision variables are univocally identified by the constraint equations and there is no 193 

need for optimization tools. 194 

Demand constraints are defined as follows: 195 

𝐸𝐶𝐺𝑈
𝑖 + 𝐸𝑝

𝑖 − 𝐸𝑠
𝑖 − 𝐸𝑑

𝑖 = 0 
(5) 

 

𝑄𝐶𝐺𝑈
𝑖 + 𝑄𝑏𝑜𝑖

𝑖 − 𝑄𝑑
𝑖 = 0 

(6) 

 

𝐸𝑝
𝑖 𝐸𝑠

𝑖 = 0 
(7) 

 

where 𝑖 = 1,2, … , 8760. Equation (7) states that in the i-th timestep electricity is either sold or 196 

purchased. 197 

 Capacity constraints are defined as follows: 198 

𝐸𝐶𝐺𝑈
𝑖 −𝑃𝐶𝐺𝑈𝑡𝛿𝐶𝐺𝑈

𝑖 ≤ 0 

(8) 

 

𝐸𝐶𝐺𝑈
𝑖 − 𝑃𝐶𝐺𝑈,𝑚𝑖𝑛𝑡𝛿𝐶𝐺𝑈

𝑖 ≥ 0 

(9) 

 

where 𝑖 = 1,2, … , 8760, and 𝛿𝐶𝐺𝑈
𝑖  is a binary variable equal to 1 when the cogeneration unit is on 199 

and equal to 0 when it is off. 200 

 The following balance equations are considered. 201 

𝐹𝐶𝐺𝑈
𝑖 −

𝐸𝐶𝐺𝑈
𝑖

𝜂𝐸,𝐶𝐺𝑈
𝑖⁄ = 0 

(10) 

 

𝑄𝐶𝐺𝑈
𝑖 − 𝐸𝐶𝐺𝑈

𝑖
𝜂𝑄,𝐶𝐺𝑈

𝑖

𝜂𝐸,𝐶𝐺𝑈
𝑖

= 0 

(11) 

 

𝐹𝑏𝑜𝑖
𝑖 −

𝑄𝑏𝑜𝑖
𝑖

𝜂𝑏𝑜𝑖
𝑖⁄ = 0 

(12) 

 

where 𝑖 = 1,2, … , 8760. 202 



Different operation rules must be additionally implemented for each operational strategy. 203 

For the FEL: 204 

𝐸𝑠
𝑖 = 0 

(13) 

 

𝐸𝑝
𝑖 = 0, 𝑢𝑛𝑙𝑒𝑠𝑠 𝑃𝐶𝐺𝑈𝑡 − 𝐸𝑑

𝑖 < 0 
(14) 

 

where 𝑖 = 1,2, … , 8760. 205 

For the FTL: 206 

𝑄𝑏𝑜𝑖
𝑖 = 0, 𝑢𝑛𝑙𝑒𝑠𝑠 𝑃𝐶𝐺𝑈𝑡

𝜂𝑄,𝐶𝐺𝑈
𝑖

𝜂𝐸,𝐶𝐺𝑈
𝑖

− 𝑄𝑑
𝑖 < 0 

(15) 

 

where 𝑖 = 1,2, … , 8760. 207 

For the MC: 208 

min {∑ 𝑐𝐹,𝐶𝐻𝑃 
𝑖

8760

𝑖=1
𝐹𝑏𝑜𝑖,𝐶𝐻𝑃

𝑖 + ∑ 𝑐𝑃𝐸𝐺,𝐶𝐻𝑃 𝐸𝑝,𝐶𝐻𝑃
𝑖

8760

𝑖=1
− ∑ 𝑐𝑆𝐸𝐺,𝐶𝐻𝑃𝐸𝑠,𝐶𝐻𝑃

𝑖 +
8760

𝑖=1

+ ∑ 𝑐𝐹,𝐶𝐻𝑃 
𝑖

8760

𝑖=1
𝐹𝐶𝐺𝑈,𝐶𝐻𝑃

𝑖 } 

(16) 

 

where 𝑖 = 1,2, … , 8760. The 5 decision variables of the operational strategy optimization problem 209 

are related to each other by means of Equations (5), (6), (7), and (11). Therefore, there is only one 210 

degree of freedom for the minimization. 211 

 212 

2.3.3 Monte Carlo simulation and multi-objective optimization criteria 213 

 As previously indicated, the MCM consists in a high number of repeated random samples. For 214 

each sample a complete year simulation of the system must be run. This procedure allows to consider 215 

the whole life of the plant, in terms of energy demand fluctuations, even if an annual index 216 

performance is considered. Because of the MCM application, however, the objective function ACSP 217 

is not just a single value for each design configuration and operational strategy but is a probability 218 

distribution function. Consequently, the definition of a multi-objective optimization criterion is 219 



suggested [41]. Such a criterion can represent statistic information contained in the probability density 220 

function that are relevant to the selection of the CHP system. For these purposes, we propose to adopt 221 

the following two indicators: the expected value 𝐴𝐶𝑆𝑃𝐸𝑉 and the 2.5-th percentile 𝐴𝐶𝑆𝑃2.5𝑡ℎ %𝑖𝑙𝑒. 222 

The expected value of a random variable is the average value of the probability distribution and 223 

represents the average performance of the system. On the other hand, the 2.5-th percentile indicates 224 

the worst-case scenario. In fact, it is the ACSP value above which 97.5% of the values will occur. 225 

Therefore, a Pareto frontier of potentially optimal solutions will be obtained, so that decision-makers 226 

will be able to make appropriate tradeoffs within this set of solutions. 227 

 228 

2.3.4 Solution Method 229 

To solve this problem, we implemented a two-stage optimization algorithm in MATLAB 230 

environment: 231 

- Stage 1: Design Optimization (for the selection of the optimal CHP size); 232 

- Stage 2: Operational Strategy Optimization (for the determination of the optimal unit 233 

commitment). 234 

The complete optimization procedure is summarized in the diagram set forth in Fig. 2. 235 

 236 



 237 

Fig. 2 Optimization procedure 238 

 239 

The Design Optimization consists in the dynamic simulation of potentially available 240 

cogeneration units with discrete sizes, for each given operational strategy. The comparison between 241 

the annual cost savings of several sizes makes it possible to determine the optimal design. The choice 242 

of a discrete selection of sizes is taken in view of the difficulty in finding commercially available 243 

CHP gas engines with sizes exactly corresponding to optimal numerical solutions [42,43]. For each 244 

selected size, MCM is applied, performing repeated random simulation samples for each operational 245 

strategy. In the event the simulated operational strategy is either the FEL or the FTL, there is no need 246 

for further optimization algorithms, since those strategies can be easily implemented. 247 

Conversely, when the performance under optimal unit commitment is investigated, the 248 

Operational Strategy Optimization is required to determine the optimal management of the 249 

cogeneration unit. This optimization algorithm is aimed at identifying, for each simulated timestep, 250 



the optimal load factor of the CHP unit that minimizes the overall annual cost saving. For this purpose, 251 

several optimization techniques have been used over the years, such as mathematical programming, 252 

genetic algorithms, and other methods [4,9]. Usually, these algorithms investigate the entire feasible 253 

region, considering a single optimization problem for the whole-time domain (e.g. one year), thus 254 

requiring high computational cost. Nevertheless, for the energy system under consideration, the 255 

overall optimum coincides with the sum of optimums of every single timestep. We can use the so-256 

called “greedy” approach because the physical system has no “memory” of the previous timesteps. 257 

Therefore, the overall problem was split into 8760 subproblems, one for each hourly timestep, and a 258 

low computational-cost algorithm, compatible with the high number of simulations required for the 259 

MCM, was specifically written. In this way, the problem size for each simulated year is reduced from 260 

𝑁𝐿^8760 to 𝑁𝐿 × 8760, where 𝑁𝐿 is the number of the feasible discrete intervals of the CGU load 261 

factor L. 262 

 263 

3. Case study application 264 

The case study used for testing the methodology refers to an operative Italian hospital facility. 265 

It is a 500-bed hospital, with a total volume of 230,000 m3. Generally, hospital facilities are 266 

particularly suitable to be powered by CHP systems, because of high and constant loads during the 267 

year [3]. 268 

This paragraph summarizes the primary features of the energy system under investigation and 269 

the load demand of the case study. 270 

 271 

3.1 The energy system: technical and economic characterization 272 

In this section, models and features adopted for the components of the simulated energy 273 

system are illustrated. 274 

 275 

3.1.1 Cogeneration unit 276 



The cogeneration unit (CGU) consists in an internal combustion engine (ICE) fueled by 277 

natural gas. ICEs are the most commonly used prime movers for medium scale (100-5000 kW) CHP 278 

applications [36]. The considered nominal electric power capacities 𝑃𝑐𝑔𝑢 go from 600 kW to 1600 279 

kW, with discrete intervals of 100 kW. 280 

 The model for the CGU has been taken from [44]. Therefore, the power capacity lower bound 281 

is equal to 50% of the nominal power capacity and part-load efficiencies are considered according to 282 

the following relations: 283 

𝜂𝐸,𝐶𝐺𝑈 = 𝜂𝐸,𝐶𝐺𝑈,𝑛𝑜𝑚(1.1260 𝐿 − 0.1260 ) 
(17) 

 

 284 

𝜂𝐻,𝐶𝐺𝑈 = 𝜂𝑄,𝑐𝑔𝑢𝐶𝐺𝑈,𝑛𝑜𝑚(0.8253 𝐿 + 0.1747) 
(18) 

 

 285 

where the load factor is defined as 𝐿 = 𝐹𝐶𝐺𝑈 ∙ 𝜂𝐸,𝐶𝐺𝑈,𝑛𝑜𝑚/𝑃𝐶𝐺𝑈. Table 1 reports nominal efficiencies 286 

and the corresponding heat-to-power ratio of the CGU. 287 

 288 

Table 1 289 

Cogeneration unit main specifications 290 

Parameters Value 

𝜂𝐸,𝐶𝐺𝑈,𝑛𝑜𝑚 38.5% 

𝜂𝑄,𝐶𝐺𝑈,𝑛𝑜𝑚 34.4% 

𝐻𝑃𝑅𝑛𝑜𝑚 0.894 

 291 

 The unitary cost of internal combustion engines is significantly influenced by the “scale 292 

effect”. For this reason, a relationship of the CGU cost with respect to size has been considered, based 293 

on [45]: 294 

𝐶𝑇𝐼,𝐶𝐺𝑈 = 15460 𝑃𝐶𝐺𝑈
0.7247 

(19) 

 

where 𝐶𝑇𝐼,𝐶𝐺𝑈 must be expressed in € and 𝑃𝑐𝑔𝑢 in kW. 295 



The design lifetime of the CGU has been considered equal to 20 years, identical for all the accounted 296 

sizes; such a duration for cogeneration system projects is commonly accepted [46]. 297 

 The engine maintenance cost per unit of electric kWh produced, as a function of the nominal 298 

power capacity, has also been considered, based on [45]. Therefore, the annual maintenance cost is 299 

defined as: 300 

𝐶𝑀,𝐶𝐺𝑈 = ∑ 𝐸𝐶𝐺𝑈
𝑖

8760

𝑖=1
 0.05604 𝑃𝐶𝐺𝑈

0.1638 

(20) 

 

where 𝐶𝑀,𝐶𝐺𝑈 must be expressed in €, 𝐸𝐶𝐺𝑈
𝑖  in kWh, and 𝑃𝐶𝐺𝑈 in kW. 301 

 302 

3.1.2 Boiler 303 

The nominal power capacity of the natural gas boiler has been considered such as to cover 304 

any thermal demand, for each different configuration and operational strategy. 305 

It has been modeled with a constant efficiency, with reference to [20]: 306 

𝜂𝑏𝑜𝑖 = 0.9 

(21) 

 

 Both the boiler and the cogeneration unit are fed by natural gas; the fuel cost per unit of 307 

thermal energy, on the lower heating value basis, is: 308 

𝑐𝐹 = 0.04 €/𝑘𝑊ℎ (22) 

 309 

3.1.2 Electric grid 310 

 The electric grid allows for both the sale and the purchase of electric energy. The prices for 311 

purchasing and selling electricity have been considered as constant values: 312 

𝑐𝑃𝐸𝐺 = 0.15 €/𝑘𝑊ℎ 

(23) 

 

𝑐𝑆𝐸𝐺 = 0.05 €/𝑘𝑊ℎ (24) 



  

3.2 Energy load demand 313 

As illustrated above, hourly-averaged values have been adopted for representing the energy 314 

load demands. Fig. 3 shows the load duration curves of the electric and thermal demands of the 315 

hospital. This data has been obtained from 12 typical days, corresponding to 4 typical weeks. For 316 

every week, representing significant seasonal weather periods, one weekday and two weekend days 317 

(Saturday and Sunday) have been considered. 318 

The uncertainty in the annual energy load demand has been considered through normal 319 

distributions. A 20% relative standard deviation has been employed for both electric and thermal 320 

demands. Such a value is consistent with the 8-consecutive-year data of energy demand, measured in 321 

the test case hospital. 322 

 323 

 324 

Fig. 3 Electric and thermal demands: load duration curves 325 

 326 

4. Results and discussion 327 

 The simulation results for all the potential CGU sizes and operational strategies are shown in 328 

this section. 300,000 simulations were performed for each combination of design configuration and 329 



operational strategy, so that reliable results and limited uncertainty in the output indicators could be 330 

obtained. 331 

 Figs. 4 and 5 show typical examples of how the simulated energy system works and what kind 332 

of detailed outputs are available from the simulations. Fig. 4 shows how the electric demand is met 333 

in 72 consecutive hours; Fig. 5 shows the same kind of result, for the thermal demand. 334 

 335 

 336 

Fig. 4 Example of simulation output: electric power 337 

 338 

 339 

Fig. 5 Example of simulation output: thermal power 340 

 341 



 In Figs. 6 and 7, examples of the results obtained by the MCM are displayed. Fig. 6 is a 342 

demonstration of one of the probability distribution functions of the annual cost, obtained for a certain 343 

CHP size and operational strategy. Fig. 7, instead, shows the same results in the form of annual cost 344 

saving percentage. In both figures, the vertical dotted line represents the deterministic value of the 345 

index, which corresponds to the simulation result obtained with the most probable (i.e. deterministic) 346 

values of the input data. From these quantitative examples, the importance of assessing the effect of 347 

uncertainties and their propagations to the results is evident. Another interesting consideration arising 348 

from these examples is the asymmetry of the probability distribution function of the annual cost, 349 

despite the symmetry of the input random variables. This aspect, due to the non-linearity of the model 350 

𝑦 = 𝑓(𝒙), further reinforces the need for a probabilistic approach. 351 

 352 

 353 

Fig. 6 Example of MCM result: annual cost probability density function 354 

 355 



 356 

Fig. 7 Example of MCM result: annual cost saving percentage probability density function 357 

 358 

 Fig. 8 shows a comparison between deterministic and probabilistic results, for all the evaluated 359 

operational strategies. The probabilistic results are represented by means of the expected value for 360 

each configuration. The ACSP as a function of the CGU size is shown. As already highlighted, the 361 

main outcome is the numerical gap between the deterministic and the expected values. Moreover, in 362 

this case study, for all the three operational strategies, the expected value of the ACSP is always lower 363 

than the deterministic one, and the gap between these two indicators rises as the CHP size increases. 364 

The method clearly shows how demand uncertainties can significantly affect evaluation of CHP 365 

system performance; therefore, they should always be considered in a thorough analysis. More 366 

specifically, these results reveal that traditional deterministic approaches tend to overestimate the 367 

annual cost saving percentage. In fact, for all three simulated operational strategies, the best annual 368 

cost saving percentage, calculated by means of the deterministic method, is about 10% overestimated 369 

in comparison with the expected value of the probability density functions. 370 

 371 



 372 

Fig. 8 ACSP for all the CGU sizes and operational strategies: a comparison between the 373 

deterministic and the expected value 374 

 375 

 Fig. 9 shows the 𝐴𝐶𝑆𝑃𝐸𝑉  against the 𝐴𝐶𝑆𝑃2.5𝑡ℎ %𝑖𝑙𝑒 values for all the evaluated CGU sizes 376 

and operational strategies. From this chart, it emerges that some solutions are clearly dominated by 377 

other more favorable solutions and shall be rejected for this reason. It should also be noted that some 378 

configurations can even entail a negative cost saving in the worst-case scenario (2.5-th percentile). 379 

The margin of error in the 𝐴𝐶𝑆𝑃𝐸𝑉 and in the 𝐴𝐶𝑆𝑃2.5𝑡ℎ %𝑖𝑙𝑒 values, with a confidence level of 95%, 380 

has been evaluated as 
𝜎(�̅�)

√𝑁 
𝑡0.025,𝑁, where 𝜎 is the standard deviation, �̅� is a sample of size N of a 381 

random variable (i.e. 𝐴𝐶𝑆𝑃𝐸𝑉 and 𝐴𝐶𝑆𝑃2.5𝑡ℎ %𝑖𝑙𝑒) and  𝑡0.025,𝑁 is the value on a t-distribution with N 382 

degrees of freedom for 0.025 right tail probability [47]. The maximum absolute margin of error in the 383 

𝐴𝐶𝑆𝑃𝐸𝑉 and in the 𝐴𝐶𝑆𝑃2.5𝑡ℎ %𝑖𝑙𝑒 values is equal to 0.025% and 0.141%, respectively. 384 

 385 



 386 

Fig. 9 ACSPEV vs. ACSP2.5th %ile for all the CGU sizes and operational strategies 387 

 388 

Finally, Pareto frontiers for each different operational strategy are shown in Figs. 10-12. All 389 

these CHP configurations are Pareto efficient with respect to the expected value and the 2.5-th 390 

percentile of the annual cost saving percentage. On these same graphics, the best deterministic 391 

solutions, namely the highest nominal cost saving solutions, are also represented.  392 

Thanks to this representation, it is possible to evaluate which sizes are most likely to provide 393 

a higher profit, but with a greater risk, and which ones can guarantee an acceptable performance even 394 

in the worst-case scenario, at the expense of a lower expected value of the cost saving. 395 

These charts clearly show the effect of energy demand uncertainties on the overall 396 

performance: both in the MC and in the FEL operational strategies, the optimal deterministic sizes 397 

are dominated solutions and shall be rejected. 398 

Furthermore, it is clear how some configurations, despite being Pareto efficient, are 399 

reasonably going to be discarded: for example, in Fig. 10, the 800-kW solution provides a 400 

substantially lower 𝐴𝐶𝑆𝑃𝐸𝑉 value, compared to the 900-kW unit, but just a slightly higher 401 

𝐴𝐶𝑆𝑃2.5𝑡ℎ %𝑖𝑙𝑒 value. 402 

 403 



 404 

Fig. 10 MC operational strategy: Pareto frontier of CGU sizes 405 

 406 

 407 

Fig. 11 FEL operational strategy: Pareto frontier of CGU sizes 408 

 409 



 410 

Fig. 12 FTL operational strategy: Pareto frontier of CGU sizes 411 

 412 

By comparing the three different operational strategies, it turns out that, in the case study 413 

under examination, the FEL strategy always provides better performances than the FTL strategy.  In 414 

addition, the optimal sizes are larger under the FEL strategy, compared to the optimal ones under the 415 

FTL strategy. This is mainly due to the low price of the electricity sold to the grid. Nevertheless, as 416 

expected, the MC operational strategy provides the best cost savings and largest optimal sizes. 417 

 Furthermore, smaller sizes turn out to be less risky and less unsure than the larger ones, since 418 

their performances are less affected by energy demand uncertainties. In any case, the probabilistic 419 

approach has clearly shown that the optimal sizes for the case study are significantly smaller than the 420 

optimal ones provided by the deterministic approach. For instance, under the MC operational strategy, 421 

the Pareto optimal CGU sizes are, on average, almost 30% smaller than the optimal deterministic 422 

ones. 423 

 424 

5. Conclusions 425 

In this study, we proposed an original methodology for optimal integrated sizing and operation 426 

of cogeneration systems under long-term uncertainty in energy demands. The suggested methodology 427 

consists of detailed simulations of the energy system under several operational strategies, a 428 



probabilistic analysis based on Monte Carlo method, and a two-stage optimization algorithm. Such 429 

an approach allows to analytically and accurately evaluate the effect of energy demand uncertainty 430 

and provides a useful tool for robust decision-making. 431 

The application of the method has been demonstrated in a case study concerning the 432 

implementation of a CHP system for an Italian hospital. First, the influence of uncertainty in energy 433 

demands on both optimal cogeneration unit size and annual total cost has been shown. We have 434 

clearly highlighted the importance of considering such uncertainties in the evaluation of a CHP 435 

system. More specifically, we have shown how traditional deterministic methods tend to oversize 436 

cogeneration units and overestimate cost savings. In fact, disregarding long-term uncertainty in 437 

energy demand, the optimal size turns out to be about 30% larger and the annual cost saving is 438 

overestimated by approximately 10%. Moreover, the implementation of Monte Carlo method has 439 

allowed us to define a multi-objective optimization problem. This problem aims at maximizing the 440 

expected cost saving while minimizing the risk associated with energy demand uncertainty and can 441 

be useful for an accurate assessment of cogeneration plant performance. Pareto frontiers of different 442 

CHP configurations have been presented. The simulation results have highlighted that the smaller 443 

sizes are less affected by energy demand uncertainties than the larger ones, which, in turn, provide 444 

better performance in terms of expected values. 445 

Future research may focus on: more complex polygeneration systems (modular cogeneration, 446 

energy storage and chillers), effect of combination of uncertainties in several parameters (energy 447 

demands at different time scales, fuel and electricity costs, design lifetime, and so on), analysis of 448 

correlation between uncertain parameters, and definition of other kinds of multiple criteria 449 

(environmental, energetic, exergetic indicators). 450 

 451 

 452 

 453 



Nomenclature 

  

Parameters 

C Unit cost, €/kWh 

C Cost, € 

DLT Design lifetime, years 

t Timestep, 1 h 

𝜂 Efficiency, dimensionless 

  

Continuous variables  

AC Annual cost, €/year 

ACSP Annual cost saving percentage, % 

E Electric energy, kWh 

F Energy content of the consumed fuel, kWh 

HPR Heat-to-power ratio, dimensionless 

L Load factor, dimensionless 

P Electric power, kW 

Q Heat, kWh 

  

Binary variables 

𝛿 On-off state for cogeneration units 

  

Subscripts 

2.5th %ile 2.5-th percentile 

boi Boiler 



CGU Cogeneration unit 

CHP Combined heat and power production scenario 

d Demand 

E Electric 

EV Expected value 

F Fuel 

I Annualized investment 

M Annual maintenance 

min Minimum 

nom Nominal (L=1) 

p Purchased 

PEG Electricity purchased by the grid 

Q Thermal 

s Sold 

SEG Electricity sold to the grid 

SP Separate-production scenario 

TI Total investment 

 

 454 
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