
The formation of a cavity in water: changes of water
distribution and prediction of the excess chemical
potentialof a hard-sphere soluteunder increasing

pressure

Franca Maria Floris1

Dipartimento di Chimica e Chimica Industriale, Università di Pisa,
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Abstract

This work deals with the formation of a spherical cavity in water along the isotherm

at 298 K. A striking effect of increasing pressure was found on the radial distri-

bution functions obtained by Monte Carlo simulations, withsignificant different

behaviours observed when increasing the cavity radius at 8000 atm and 1 atm.

Particular focus is on the value at contact, G(r), the central quantity in Scaled Par-

ticle Theory that is related to the derivative with respect to the radius of the work

required to form the cavity. Within the limit of very small radii, exact conditions

were applied to these two quantities. This allowed us to readily determine, at any

pressure along the isotherm, the parameters of a simple model used to compute

the excess chemical potential associated with the hydration of a hard sphere. This

was made possible thanks to heuristic models used to describe how the number

density of water changes along the isotherm and how the second moment of water

distribution depends on the first moment. Use was also made ofadditional infor-

mation on a cavity of molecular size. Apart from the dependence on pressure of

hydrophobic solvation, this work also concerns calculation of the so-called cav-

itation contribution to the free energy of solvation when this is computed within

implicit solvent models.
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1. Introduction1

According to thermodynamics [1, 2], excess chemical potential or pseudochemi-2

cal potential [1] expresses how the free energy of the systemchanges as a solute3

molecule is added to the solvent at a fixed position. For a hard-sphere solute-4

solvent potential, at constant T, this quantity is equal to the reversible work nec-5

essary to form a cavity in the solvent [3, 4, 5, 6]. The translation kinetic energy of6

the solute is added to obtain the chemical potential, from which other important7

thermodynamic quantities can be computed from derivativeswith respect to state8

variables, such as pressure and temperature [1, 2].9

This work studies the pressure dependence of the excess chemical potential asso-10

ciated with the insertion of hard-sphere solutesat infinite dilution in water along11

the isotherm of 298 K. A purely repulsive potential can be used to model inter-12

actions between a hydrophobic solute and water. However, itis also important13

for the computation of the so-called ”cavitation contribution” to the free energy14

of solvation within polarizable continuum models [7, 5] as the solute is enclosed15

in a molecular cavity defined by the union of spheres. When using these methods16

the focus is on the quantum treatment of the solute, and most of the computational17

time is spent for the electrostatic contribution[8], and, depending on the method18

used, for the dispersion contribution. [9].It is in this context that it is useful to de-19

velop simple heuristic expressions in order to computethermodynamic quantities20

related to the solvation process of these simple modeled solutes [5, 10].21

At infinite dilution conditions, interactions between solute molecules can be ne-22
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glected and only solute-solvent interactions give a contribution to the excess chem-23

ical potential. This can be computed using a coupling parameter method [11],24

which requires information on how the solvent distributionfunction changes from25

the initial state of pure solvent to the final state in which the solute-solvent interac-26

tion is completely coupled. This method implies the study of”intermediate states”27

which are generally unrealistic. When applied to a hard-sphere solute-solvent in-28

teraction, the solute insertion process is equivalent to scaling the radius of a cavity29

from zero up to a final contact radius,r, as shown in the original paper of Scaled30

Particle Theory (SPT) [3]. Thus, our interest in the formation of a cavity in a31

solvent is extended to such small cavities that they cannot host any real solute.32

Within SPT [3, 4, 6] , the excess chemical potential associated withcavity forma-33

tion is related to the probability that no centers of the solvent molecules will be34

found in the spherical region defined by the contact radius. On the basis of statisti-35

cal mechanics, this probability is expressed in terms ofpure solvent quantitiesthat36

can be computed from the number density and integrals involving many-particle37

correlation functions.These integrals define the second and higher moments of38

the pure solvent distribution functions and can be written in terms of probabilities39

that exactlyn centers of the solvent molecules can be found in the cavity volume40

[3] . As specified in the literature [3, 12] , the excess chemical potential written41

in terms of moments is of general validity and can be applied to cavities of an42

arbitrary shape and using a realistic model potential for interactions between sol-43

vent molecules. However, as only the first two moments are easily available, its44

application is limited to very small cavities so thatn ≤ 2 or requires the com-45

putation of modeled probabilities. These can be computed within an information46
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theory based on the first two moments, as demonstrated by Hummer et. al. [12].47

Here, we work within SPT and apply the exact relation only to such a small sized-48

cavity that the excess chemical potential is directly computed from the first two49

moments. Exact SPT conditions are then applied at an appropriate radius close to50

the extreme of the range where the contribution of higher moments vanish. These51

conditions involve derivatives of the excess chemical potential with respect to the52

cavity radius. In order to facilitate these calculations and apply SPT along the53

isotherm we describe the two first moments of water for spherical volumes as a54

function of radius and pressure. Such descriptions make useof a simple relation55

between the first moment and the water number density [12], which was modeled56

along the isotherm. This was also used in a heuristic expression proposed here57

to compute the second moment from the first moment using a modified Poisson58

distribution (see Appendix A).59

Scaling the radius from small to larger sized-cavities so that a real solute can be60

hosted in, the approximate SPT expression [13, 14] or the more flexible expres-61

sions based on the thermodynamics of surfaces [15] are generally used [16, 5, 10].62

The effect of pressure on parameters entering such expressions has been little ex-63

plored until now. At fixed conditions of P and T, such parameters are preferably64

determined by fitting procedures. However, a complete studyof the effect of pres-65

sure on the thermodynamics of cavity formation would require a great number of66

very expensive simulations.67

Here, we test these simple models at a very high pressure by comparison with68

simulation results. We show that a less expensive parametrization based on exact69

relations gives results which are in agreement with those obtained by fitting. This70
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was made possible by the use of a relatively simple scheme formulated within the71

framework of SPT, with a limited number of conditions on the central function72

G(r), which is defined by the contact value of the cavity-solvent radial distribution73

function (rdf). As noticed above, these conditions were applied within the limit74

of a very small cavity, but some information on a molecular-sized cavity was em-75

ployed in the parametrization. Differently from the approximate SPT expression,76

this is in fact necessary when using more flexible simple models.77

2. Calculation78

2.1. Excess chemical potential and G(r)79

According to statistical mechanics [3], the excess chemical potential of a hard-80

sphere solute, here denoted byµ∗, can be computed from the probability that an81

empty region can be found in the solvent and it is written in terms of moments of82

the solvent distribution.Within the limit of a very small cavity, this exact relation83

involves only the first two moments,84

µ∗ = −kBT ln

[

1− < n > +
1

2
< n(n− 1) >

]

(1)

wheren is the instantaneous number of molecular centers in the puresolvent85

contained in a sphere of radiusr, whose average< n > can be obtained from86

the number densityρ [12]. The third term in bracketsgives the average number87

of pairs in the same volume and can be obtained from integralsinvolving the pair88

distribution function[3, 12] . The expression above is validfor cavity volumes89

for which the contribution of higher moments vanish (n ≤ 2).90

For larger cavities, the excess chemical potential is computed with a simple model91

formulated within the thermodynamics of surfaces [15]. We adopt the most com-92
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mon division [4, 17] related to a cavity of radiusr, which here defines the ac-93

cessible surface and the exclusion volume to oxygen nuclei positions of water94

molecules. Namely,95

µ∗(r) = 4πγ̃fc(r)r
2 + P (

4π

3
r3) (2)

whereγ̃ has the dimension of a surface tension andfc(r) is a function describing96

curvature corrections, which equals1 for a cavity in the limit of an infinite radius.97

The average density of solvent centers on the cavity surfaceis given byρ G(r),98

and G(r) is related toµ∗ by the important relation derived from SPT [3, 16],99

G(r) =
1

4πr2ρkBT

dµ∗

dr
. (3)

As remarked by Reiss et al. [3],µ∗ equals the reversible work which is expended100

in the formation of the cavity. Given that this process is equivalent to the coupling101

of a hard-sphere interaction potential with contact distance r, the value of the102

rdf for the solvent centers excluded from the spherical region coincides atr with103

G(r). Thus,as pair correlation functions are commonly calculated in simulations,104

this relation is very useful to validate simple models used to describe the radial105

dependence offc in Eq. (2). The general form of this model leads to the following106

simple expression for the derivative ofµ∗ with respect tor,107

dµ∗

dr
= 4πγ̃

(

2r − 2δ̃ +
α

r2

)

+ P (4πr2) (4)

whereδ̃ andα are parameters entering the curvature correctionfc(r) [16, 10].108
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2.2. Solvent Compressibility109

The coefficient of isothermal compressibility can be derived from density in ac-110

cordance with the thermodynamic definition:111

k◦

T = −
1

V

(

∂V

∂P

)

T

=
1

ρ

(

∂ρ

∂P

)

T

(5)

or from volume fluctuations in the NPT ensemble, namely,112

k◦

T = −
< V 2 >N − < V >2

N

kBT < V >N

. (6)

3. RESULTS AND DISCUSSION113

3.1. Simulation Results114

NPT Monte Carlo (MC) simulations were run for hard-sphere cavities in 512115

TIP4P [18] waters for contact radii up to about 6Å. This was made by excluding116

the corresponding spherical volume to the motion of water-oxygen nuclei [19, 20].117

Cavities in water at ambient conditions have been widely studied in our previous118

works [21, 10] and by other authors [4, 16, 6]. Since in this work these systems119

are used as representative of the low pressure limit, we briefly recall the main re-120

sults. Concerning water distribution, for a cavity radius larger than approximately121

the most probable distance between the oxygen center with a methane-like so-122

lute, G(r) rapidly decreases, determining dewetting for nanometric cavities. At123

the same time, oscillations in the rdf present less pronounced deviations from 1,124

and cavity water correlations for similarr start to give positive contributions to125

the excess volume [21]. Fig. 1 shows an example of thestriking effect of increas-126

ing pressure on the cavity center-O rdf. In addition to the increased rdf contact127
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Figure 1: Radial distribution functions vs r, the distance of the oxygen from the center of the
cavity with contact radii of6.05 Å, at T = 298.15 K and P from 1 to 8000 atm. Arrows indicate
the direction of increasing pressure.
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values with respect to those at 1 atm, at8000 atm (Fig. 2) there is a remarkable128

difference regarding the persisting structure when increasing the cavity radius. In129

the range4 − 6 Å there is very little increase in the rdf contact value, and at the130

extreme of the range this is very close to the asymptotic limit at a large cavity131

radius (P/(ρKBT )).132
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Figure 2: Cavity-water oxygen radial distribution functions for contact radii of1.60, 1.75, 1.90,
2.25, 2.55, 2.85, 3.3, 3.65, 4.05, 4.45, 5.05, 5.45 and6.05 Å, at T = 298.15 K and P=8000 atm.
Results from NPT MC simulations of a cavity in 512 TIP4P waters using a modified version of
the BOSS program[19].
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In order to computeµ∗ and G(r)from pure solvent quantities,NPT MC simula-133

tions of 512 TIP4P waters at T=298 K and several pressures between 1 atm and134

10000 atm were run.The O-O rdfs are shown in Fig. 3, while the density and135

compressibility results are reported in Table 1.These are in good agreement136

with simulation results obtained with the same model [22, 23], but with a fewer137

number of water molecules (216 and 365). The comparison madein Fig. 4 with138

experimental data is in line with what has already been observed in the literature139

[22]. The same can be said about the comparison with simulation results with the140

TIP5P model [24].141

Furthermore,expressions proposed in this work to describe the pressure depen-142

dence of densityand the related quantities entering the exact relation (Eq.1) of143

µ∗ used for small cavitiesare validated by comparison with simulation results for144

radii of 1.6Å , 1.75Å and 1.90Å . This validation is important in the parametriza-145

tion of theµ∗ expression used for larger cavities (Eq. 2).In order to establish how146

the surface tension parameter depends on pressure, additional information on a147

larger cavity is necessary.To this end, G(r) values were used from simulation148

results at various P along the isotherm, for a cavity radius of 6.05 Å . It can be149

noticed that this radius is small enough for the box size usedso that systematic er-150

rors were avoided. Nevertheless, it is larger than the radius of a cavity appropriate151

to host a fullerene molecule. Since the rapid convergence ofG(r) values observed152

when increasing the radius at 8000 atm and on the basis of the behaviour ob-153

served at ambient conditions, we think that, the procedure implemented to test154

simple models would give comparable results with fitting to data in a range up to155

approximately 10̊A.156

10



 0

 0.5

 1

 1.5

 2

 2.5

 3

 2  3  4  5  6  7  8  9  10

g
(r

)

r [Angstrom]

Figure 3: O-O radial distribution function for 512 TIP4P waters at T=298 K and P between 1 atm
and 10000 atm. Arrows indicate the direction of increasing pressure.
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Table 1: NPT MC results for the density and the coefficient of isothermal compressibility obtained
for 512 TIP4P waters at 298.15 K and various P. The numbers in parentheses are the statistical
uncertainties in the last digit.

P (atm) ρ (g/cm3) 106k◦

T (atm
−1)

1 0.99754(2) 51.93(1)
100 1.00276(5) 50.57(3)
200 1.00779(5) 44.84(6)
500 1.02294(5) 45.25(3)
1000 1.04587(4) 40.11(2)
1500 1.06675(5) 35.96(2)
2000 1.08560(5) 32.56(2)
4000 1.14779(6) 22.80(2)
6000 1.19479(6) 18.30(7)
8000 1.2349(2) 14.50(2)
10000 1.26846(6) 12.05(1)

3.2. P dependence of water density and compressibility157

In this section we present models to describe how the water number density,ρ,158

changes along the isotherm at T 298 K.In agreement with the observed P de-159

pendence of the average volume of a fixed number of water molecules a good160

description was obtainedby the following expression:161

1

ρ(P )
= t0 + t1P + t2P

2ln(P/P0) + t3P
2.5 + t4P

3 (7)

whereP0 is the unity used for pressure, here 1 atm,t0, t1 , t2, t3 andt4 are con-162

stant parameters. As shown in Fig. 4, this equation performsvery well in fitting163

TIP4P simulation results as well as experimental data [25] (see Supporting Infor-164

mation(SI) for parameters).Less satisfactory fitting was instead found with the165
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Figure 4: Pressure dependence of the water number density (a) and the isothermal compressibility
(b) at T = 298.15 K. Simulation results of this work computed for boxes of 512 TIP4P waters
are indicated by filled squares (for statistical uncertainties and units see Table 2). Comparison
is shown with other simulation results (empty squares) obtained for boxes of 512 TIP5P waters
[24], and with experimental results (stars). Lines indicate results obtained using least-square fits
to simulation and experimental data of the number density with Eqs. 7 and 8 from which the
corresponding isothermal compressibility was obtained using Eq.5. Short dashed lines refer to
literature data [23] obtained from the quadratic fit of< V > of 365 TIP4P waters.
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semi-empirical Tait equation and even the modified Tait equation [26]. Instead,166

a quadratic fit of the average volume was found acceptable only in a limited pres-167

sure range up to approximately 3000 atm. This simple model has been used in this168

range to fit data of a smaller box of TIP4P waters [23]. The curve is reported in169

the figure and clearly shows disagreement with our data for pressure greater than170

3000 atm.171

In describing the density dependence on pressure, a stringent test on the validity of172

models is provided by the examination of their performanceson isothermal com-173

pressibility, which is related to the pressure derivative of the density by Eq. (5).174

As shown in Fig. 4 (b), Eq. (7) is able to predict generally quite well both simu-175

lation and experimental data. However, systematic errors shown at P greater than176

6000 atm when fitting experimental data suggest that in this range results obtained177

with this equation should be interpreted with caution. Thus, to improve compress-178

ibility results, an alternative expression was also considered. The quantity−k◦

TV179

obtained from the simulation results gives an estimate of the slope of the volume180

curve plotted against P. The fitting of this curve suggested the following equation181

for P dependence of density182

1

ρ(P )
=

1

ρ0
+

(ab− c)ln(bP + 1) + bcP

b2
. (8)

(See Supporting Information(SI) for parameters a, b, c). This equation can be seen183

as a modified Tait equation and gives good density fitting withimproved slope at184

higher pressures when comparison is made with experimentaldata. However,185

on simulation results, no significant improvement with respect to Eq. (7) was186

observed and in this case we show in the figure only the curves that fit TIP4P data187
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with this equation.188

3.3. Small cavities (n ≤ 2): P dependence ofµ∗ and G(r)189

Here we show results obtained from the exact relation written in terms of the190

first two moments, which is valid for small cavities with a radius so that no more191

than two centers of the solvent can be found in the spherical volume. At each192

value of Pover the range from 1 to 10000 atm,the average number of oxygen193

pairs in a specific spherical region was computed by numerical integration of the194

O-O rdf in pure water (see Fig. 3). Once this quantity was obtained, µ∗ and195

G(r) were computed using the exact relations, Eq. (1) and Eq.(3) respectively196

[10]. As expected, the cost of cavity formation increases asthe pressure increases197

when radii are sufficiently large, while for cavity radii less than 0.6Å there is no198

significant effect of the pressure (see Fig. 5(a)).Namely, with the ”radius” of a199

water molecule of around 1.35̊A, these cavities are inappropriate to host a real200

solute. Following Reiss et al., in this case, one can think that a point solute has201

been added to the solvent. However, when excluding a volume to the motion of202

solvent centers it is not always necessary to associate thiswith the addition of a203

solute molecule. These small cavities show, nonetheless, asignificant effect of204

increasing pressure.205

In the examined range, G(r) increases with the radius with larger slopes at greater206

P. As shown in Fig. 5(b), comparison with values directly computed by simula-207

tions at 1 atm and 8000 atm is good. The sudden drop inthe curves indicates208

the failure of Eq. (1) for larger cavity radii so thatn > 2 [4]. This equation is209

valid up to a radius that slightly decreases as the pressure increases, passing from210

1.83Å at 1 atm to 1.77Å at 10000 atm. At a first glance, this decrease appears211
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Figure 5:Small cavities (n ≤ 2) at T=298 K. Pressure effect on the radial dependence of (a)µ∗

( Eq. (1)) and G(r) (b) (Eq. (3)) over the range from 1 to 10000 atm. In Eq. (1)< n > and
< n(n− 1) > were obtained from simulation results ofρ and O-O rdfs (Fig. 3) [3, 4, 10]. Filled
squares represent G(r) results from the same equations but with < n > and< n(n − 1) > from
Eq. (7) and Eq. (9). G(r) values from the contact values of thecavity-water oxygen rdfs computed
by MC simulations of cavities in TIP4P waters are also shown for some radii at 1 atm (filled red
circles) and at 8000 atm (filled green circles).
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to be related to the slight decrease in the most probable O-O distance observed212

at greater P (Fig. 3). However,it certainly arises fromthe increased number of213

oxygen pairs obtained by integration of O-O rdf in a range of distances up to twice214

the cavity radius (see Eq. (5) of Ref. [10]). In this regard, we can noticethat rdf215

values increase with an increase of pressure at distances ofthe first peak tail and216

around the first minimum. As a consequence, the probability of occurrence of217

oxygen triplets in a sphere of fixed radius increases with P, so determiningthe218

observed smaller range of applicability for Eq. (1).219

For a cavity of radiusr, a quadratic fit ofµ∗ against pressure can be used. Alter-220

natively, using the exactrelation written in terms of the first two moments,it is221

possible to exploit the well established dependence on pressure ofρ (see Section222

3.2). To follow this route it is convenient to describe indirectly the P dependence223

of the average number of oxygen pairs observed in a sphericalregion by its de-224

pendence on< n >. It was found that the natural logarithm of this quantity can225

be expressed as226

log
[< n(n− 1) >

2

]

= B ×

[

log
(< n >2

2

)

− < n >
]

(9)

where227

< n >=
4

3
πr3ρ(P ) (10)

and the factor B is a function of the cavity radius and of< n > (P ) as detailed228

in Appendix A, where a justification of Eq. (9) is given [27].We recall that we229

apply Eq. (9) to small radii such that no more than two water-oxygen centers can230

occur inside the spherical volume. In this case< n(n − 1) > /2 is equal to the231
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probability that exactly 2 centers can be found in this volume [3]. Therefore, this232

equation is consistent with the probability expression found within information233

theory when a Poisson default model is used (see for example Hummer et al.234

[12]). However, in the present work, differently from solutions coming from this235

theory, the B factor is sought as function of< n > instead ofn. This implies that236

parameters are here independent of< n >. We notice that the form proposed237

to describe how factor B dependson r and< n > correctly gives a number of238

pairs equal to zero when< n > goes to zero andfits the data very well (n ≤ 2).239

Hence, usingρ from Eq. (7) in Eq. (10) and introducing< n > in Eq. (9),240

µ∗ can be computed from the first two moments by Eq. (1) and, in this manner,241

its derivatives with respect to r and P can be readily evaluated along the isotherm.242

In particular, the first and second derivatives with respectto r were computed at243

any P to obtain G(r) andG′(r). Comparison with results obtained using< n >244

and< n(n− 1) > (via O-O rdfs integrals) from simulations is very good over the245

range of pressures investigated. For simplicity, in Fig. 5 (b) comparison of G(r) is246

shown for some selected values of P.247

3.4. Parametrization of the approximate SPT expression andsimple models248

In this section,the approximate SPT expression and simple models derived from249

the thermodynamic of surfaces [15] are used to estimateµ∗ and G(r) for cavity250

radii larger than 1.7̊A. As already cited in the literature [28, 5, 10, 6, 29],similarly251

to these simple models, the approximate SPT expression can be written as the252

sum of a surface and volume terms.Nevertheless, a fundamental distinction253

betweenthem concerns the limiting radius where they have been formulated,254

this beingsubnanometric for the approximate SPT and macroscopic for simple255
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models. Such a distinction is important because the number of independent256

parameters is different and these correspond to different quantities related to one257

other. This implies that, despite their similarities, these expressions can present258

different problemswhen parametrized at very high pressure.259

260

3.4.1. Approximate SPT: the change ofaw with increasing P261

The simplest and most commonly used SPT expression needs only the solvent262

number density andthe definition of the size parameter of the solvent molecule263

(aw), which can be identified with its hard-sphere diameter.Inadequacies of this264

expression are well known from studies at ambient pressure [16, 5, 21, 10], but265

undoubtedly it is very attractive due to its simplicity. As afirst approach,for wa-266

ter solvent, this parametercould be fixed at the distance corresponding to the first267

maximum of O-O rdf (Fig. 3). This is very slightly influenced by P, changing by268

only 0.01Å in passing from ambient pressure to 10000 atm. At ambient condi-269

tions, its value is 2.76̊A which is very close to the value proposedfor aw in the270

earlier work of Pierotti [13]. However, the comparison withsimulation results of271

µ∗ and G(r) for hard-sphere solutes in TIP4P water has suggested that the optimal272

value for this parameter is around 2.9Å [5, 10].273

On the basis of the above, only a slight dependence on P is predictable for this274

parameter in the case that it is assumed to be related to the most probable O-O275

distance.Hence, once the functionsaw(P ) andρ(P ) are established,the approx-276

imate SPT expression can be used to obtain an estimate of the surface tension277

parameter [28, 5, 29]. With the assumptions made above,γ̃ would increase with278

increasing P because of the dominant effect of increasing density. Is this correct?279
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In order to answer this question, we compare the G(r) values calculated at 8000280

atm using the approximate SPT expression with those obtained from Monte Carlo281

simulations.282

Fig. 6 (a) demonstrates that the approximate SPT expressioncompletely fails in283

describingthis quantity at high pressure.The main problem with this expression284

is its incapability to scale correctly from small to large cavity radii. Differently to285

what has been observed at ambient conditions [10], comparison with simulation286

results shows a qualitative disagreement. This happens forvalues ofaw in a quite287

large range (1.50 − 2.94 Å ). Reducing this parameter, the convergence to the288

asymptotic value of G(r) is as rapid as that observed for simulation results,even if289

with an incorrect sign of the curve’s slope. This indicates that a simple reduction290

of the value of this parameter is not sufficient to significantly improve the perfor-291

mance of the approximate SPT expression. However, it would seem reasonable to292

presume a value for̃γ which at 8000 atm is lower than that at 1 atm, in contrast293

with what is found ifaw is chosen on the basis of the most probable O-O distance.294

Namely, this is valid within the usual approach for which theexcluded volume295

times P is included inµ∗, as in Eq. (2).296

297

3.4.2. Fitting with the simple model at 8000 atm298

Working within the framework of the thermodynamics of surfaces ( Eq. (2) and299

Eq. (4)), with the simplest model (α = 0) for the cavity surface term, one has to fix300

the value of two independent parameters,γ̃ andδ̃. These can be determined from301

the linear fitting of the surface contribution to the derivative of µ∗ with respect to302

r. Linear fitting of data at 8000 atm compared with that at 1 atm shows a generally303
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Figure 6: Contact values of the cavity-water oxygen rdfs forcavities in TIP4P water at 298 K. (a)
Results at 8000 atm: from MC NPT simulations (circles with error bars); from approximate SPT
expression [13, 14, 10] with values for the water diameter parameter (aw ) between 1.5̊A and 2.94
Å (orange lines); from fitting with the simple model, i.e. using Eqs. 2 - 4 as indicated by the arrow
(read text); results for small cavities from Eq. 1 (solid black line). (b)Effect of increasing pressure,
as indicated by the arrow, over the range from 1 to 10000 atm for G(r) results obtained from Eqs.
3 and 4 using exact SPT conditions. For the parameters dependence on P see Fig. 7. As in (a),
circles with error bars are used for MC NPT simulation results at 8000 atm.
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better performance together with a striking reduction ofγ̃ and the increase of̃δ304

[10] ( γ̃ = 35.4dynes/cm andδ̃= 3.8Å when radii less than 2̊A are not included305

in the data). In contrast to the approximate SPT expression,this model gives a306

good description of G(r) (Fig. 6 (a)), while the addition of the term depending on307

α is necessary to improve the fit if radii less than 2Å are included in the data. In308

this casẽγ = 43dynes/cm, δ̃= 4.1Å andα = 6.4Å3 were obtained.309

310

3.4.3. Using exact SPT conditions to parametrize the simplemodel along the311

isotherm312

Alternatively to fitting, oncẽγ is fixed, parameters̃δ andα can be obtained by313

imposing continuity for G(r) and its derivative at a cavity radius value at the ex-314

treme of validity of Eq. (1). Results are shown in Fig. 6 (b) and compared with315

simulation results at 8000 atm. By using this procedure, dependence on P of both316

parameters is obtained by exploiting Eqs. (7)- (10) for an assumed expression317

γ̃(P ). Resultspresented in Sections 3.4.1 and 3.4.2suggest a decrease in this pa-318

rameter with increasing pressure when very far from ambientconditions. In fact,319

reasonable agreement with G(r) simulation data at 8000 atm is obtained for̃γ in320

the range of 35-48 dynes/cm. [10].321

However, despite the failure to predict correct results forradii less than 6̊A , at322

large radii the approximate SPT expressioncan be used to computẽγ(ρ). Using323

theρ value from simulations, values of̃γ in the range above were obtained from324

the approximate SPT expression foraw in the range between 2.2-2.4̊A. Thus,325

it could appear justifiable to fix the high pressure asympototic value of this pa-326

rameter at 2.4̊A , which is close to the O-O minimum contact distance in water.327

Dependence on P of this parameter might be modeled by assuming a transition328
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between the values of the low and high pressure limits. An example is given in329

Fig. 7 (a)(blue curve). We notice thatthe corresponding̃γ (P) profile ( green330

curve) predicts reasonable values at 1 and 8000 atm where itshows a positive and331

negative slope respectively.332

However, thisapproach can result somewhat arbitary without some additional333

information on the pressure at whichthe slope sign changes.For this reason the334

pressure profile of parameterγ̃ was preferred based on simulation results of G(r)335

obtained for the largest cavity studied in this work (6.05Å). When these values336

were introduced into the approximate SPT expression, the correspondingaw were337

found to be in good agreement up to 8000 atm with the hypotizedpressure profile338

for this parameter(in Fig. 7 (a) you can compare squares with the blue line).339

On the contrary,when using Eq. (3) and Eq. (4),γ̃ was varied until G(r) values340

reached agreement with simulation results. At the same time, parameters̃δ andα341

were determined by the requirement of continuity for G(r) and G′(r) at a cavity342

radius value of 1.67̊A with the values obtained fromEq. (1). This was readily343

done at any possible value of P by exploiting Eq. (7) and Eq. (9). Fig. 7 shows the344

pressure dependence for all parameters entering Eq. (4), includingw0, which was345

finally fixed by imposing continuity forµ∗. Results confirm that the slope sign for346

γ̃ is positive at 1 atm and negative at 8000 atm, even if the profile in comparison347

to that obtained from the approximate SPT presents a less pronounced curvature348

with a different position for the maximum value. Nevertheless, such disagreement349

is within statistical uncertainties oñγ, which are unfortunately very sensitive to350

statistical uncertainties on G(r).351

In contrast tõγ, all the other parameters show a pressure dependence with positive352
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Figure 7: P dependence at T=298 K for parameters enteringµ∗ computed by using the simple
model (Eq. (2). (a)̃γ obtained from G(r) forr = 6.05Å (triangles, left scale) fitted by a quadratic
function (solid black line). The squares (right scale) are for the corresponding values of SPT pa-
rameteraw . The green line representsγ̃ values derived by approximate SPT fromaw (P) described
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Eq. (3) of Ref. [10] ).
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slope throughout the examined range with a steep increase atP greater than 8000353

atm. Such behavior is not of easy interpretation in the absence of a clear physical354

meaning of these parameters. We merely note that this alternative parametrization355

leads to values which are in agreement with those obtained byfitting, in particular356

at 8000 atm. Thus, contact values of cavity-O rdfs at 8000 atmfrom the radial357

derivative ofµ∗ are in agreement with simulation results and fitted values (Fig. 6358

(a)). In Fig. 6 (b), results from the same equation are shown over the range of P359

from 1 to 10000 atm.360

4. Conclusions361

Simulation results of water distribution around a cavity at8000 atm presented362

in this work clearly show a very different behavior with respect to 1 atm when363

increasing the cavity radius. In particular, the concurrent progressive dewetting364

at the contact distance is peculiar of low pressure conditions, while at very high365

pressure there is persisting structure.366

The rdf’s contact value, G(r), is confirmed to be a valid quantity in parametrizing367

and testing heuristic expressions for the excess chemical potential. In contrast to368

the approximate SPT expression, simple expressions formulated within the ther-369

modynamic of surfaces are able to catch the main features of cavities in water370

over a wide range of pressure. However, in this framework there are possible371

improvements by testing pressure derivatives of the excesschemical potential on372

excess volumes and excess compressibility. To this aim, themethod adopted here373

to find pressure dependence of parameters appears quite convenient due to the374

use of pressure dependence of pure water quantities and onlylimited and easily375

available information on cavities in water. At least for theexpression tested in this376
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work, which adopts the common division of the excess chemical potential in terms377

of the accessible surface and the exclusion volume, it was found that parameters378

determined with this method are in agreement with values obtained from normal379

fitting procedures.380

5. Appendix A381

We notice that Eq. (9) has been applied to small cavities suchthat the maximum382

number of oxygen centers observed in pure water in a sphere ofradiusr is 2. In383

this case, the average number of oxygen pairs observed in thesame region is the384

probability of finding exactly 2 centers[3]. Given that thisis a rare event, as first385

approximation one can assume a Poisson distribution [30]386

P2 =
< n >2

2!
exp[− < n >]. (11)

Thus, Eq. (9) corresponds to a modified Poisson distribution, namely387

P2 = [
< n >2

2!
exp[− < n >]]B(r,<n>) (12)

whereB is a function of the cavity radius and on the solvent density through the388

average number of oxygen centers in the spherical volume. Itwas found that,389

regardless of the pressure,the B value is generally greater than 1 when< n > is390

less than 1. For radii at the extreme of the interval for whichthe maximum value391

of n is 2,< n > is around of 1 and B approaches 1 (Fig. 8 (a)).392

Therefore, a smaller average number of pairs is observed with respect to the Pois-393

son distribution for smaller radii. To further examine deviations from the Poisson394
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Figure 8: (a)The radial dependence of the exponent B in the modified Poisson distribution (Eq.
(12)) and the correlation index CI (Eq. (14)) at 1 atm and 8000atm. B computed from Eq. 15
in terms of< n > using Eq. 7 forρ. Crosseover with horizontal lines indicate cavity radii at
which the modified distribution coincides with a Poisson distribution. (b)Pn, the probability to
find exactly n water-oxygen in a spherical region. Results refer to a radius of 1.8̊A at 1 atm and
8000 atm. Points indicates simulation results, while the curves comes from parabolic fitting of the
probability described with the modified Poisson distribution with B from eq. 15.
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distribution, also the ratio between variance and< n > has been taken into ac-395

count. This ratio is 1 for the Poisson distribution of a certain, unlimited number396

of events. Whenn can assume a maximum value of 2, only three possible events397

can occur, and if alsoP1 follows a Poisson distribution, this ratio would be:398

σ2
n

< n >
=

< n >

1+ < n >
+ 1− < n > . (13)

By assuming that< n > is given by Eq. (10) and computing variance from< n >399

and the average number of pairs, the following index was computed:400

CI =
σ2
n

< n >
−

(

σ2
n

< n >

)

Poisson

. (14)

Here the same symbol used for the clustering index introduced for comparison401

with the Poisson distribution in studies of drop clusteringis adopted. A plot of402

CI versus the cavity radius is shown in Fig. 8 (a) for pressures of 1 atm and 8000403

atm. It can be noted that CI is zero approaching the radius at the extreme of the404

interval for which the maximum value ofn is 2. This radius is quite close to that405

at which the exponentB in Eq. (12) is 1.406

In order to compute the pressure derivative of the excess chemical potential, de-407

pendence ofB on < n > was studied at fixedr by looking for a model that at408

the same time works well for different cavity radii. In this respect it was also409

important that optimized parameters showed continuous dependence onr. For410

cavities in which the maximum number of oxygen centers is 2, it was found that411

such dependence is reasonably described by the following expression412
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B
[

r, < n >
]

= b0(r) + b1(r) < n > +b2(r) < n >2 +

+
b3(r)

< n >
(15)

where parametersb0, b1, b2 andb3 are functions ofr. Also a second-degree poly-413

nomial fit was taken into account as it is also able to describethe observed depen-414

dence. Nevertheless, Eq. (15) was prefered on the basis of a systematically lower415

value ofχ2
ν and generally better behavior of residual observed by comparing the416

two models for the same choice of weights.417

Hence, from a study of the number of pairs against cavity radius at a fixed pres-418

sure, parameters entering Eq. (15) can have the general form419

bk(r) = α0 +

l1
∑

l=1

αlr
l +

l2
∑

l=1

βlr
−l (16)

with αl andβl independent of density. A strict test of radial dependence of these420

functions regards the prediction ofG(r) values by computing the derivative ofµ∗421

with respect tor. In fact, this implies also a good description of first derivatives422

of these functions. A possible radial dependence ofb0, b1, b2 andb3 is given by423

the following expressions:424

b0(r) = α0 + α1 r + α2 r
2 +

β1

r
+

β2

r2
(17)

b1(r) =
β1

r
+

β2

r2
+

β3

r3
+

β4

r4
+

β5

r5
(18)

b2(r) =
β4

r4
+

β5

r5
+

β6

r6
+

β7

r7
+

β8

r8
(19)
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b3(r) = α1 r + α2 r
2 + α3 r

3 + α4 r
4 + α5 r

5. (20)

According to these equations and Eq. (10) , radial dependence ofB is the same425

as that ofb0. Appropriate values ofαl andβl were found for each coefficientbk426

entering Eq. (15) by least squares minimization [27].427

Finally, for a specific cavity radius at constant pressure, the probabilityPn was428

obtained from Eqs. (9) and Eq. (10) usingρ from Eq. (7) and fitted with the form429

derived from an information theory based on the first two moments and using a430

flat default model, namely431

Pn = exp[λ0 + λ1n+ λ2n
2]. (21)

The curves obtained in this manner for a cavity of 1.8Å are shown in Fig. 8432

(b) at 1 and 8000 atm. These curves practically overlap thoseobtained fitting the433

simulation results. At 1 atm, our results compare very well with the information434

theory results obtained by Hummer et al. [12] using another model potential for435

water.436
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