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Abstract

The Simple Plant Location Problem is a well-known (andNP-hard)
combinatorial optimisation problem arising in logistics. We present
some new results concerned with the associated family of polyhedra.
Our starting point is a family of valid inequalities derived by Karen
Aardal. We strengthen that family, using a mixed-integer rounding ar-
gument, and then show that the strengthened family can itself be easily
generalised. We then show that the original family, the strengthened
family, and the generalised family each contain an exponentially large
number of facet-defining members.

Keywords: facility location; combinatorial optimisation; branch-and-
cut; polyhedral combinatorics

1 Introduction

The Simple Plant Location Problem (SPLP), sometimes called the Uncapac-
itated Facility Location Problem, is a classical and much-studied problem
in Operational Research. We are given a set I of facilities and a set J of
clients. The cost of opening facility i ∈ I is denoted by fi, and the cost of
assigning client j ∈ J to facility i ∈ I is denoted by cij . The task is to decide
where to open facilities, and then to assign each client to an open facility,
at minimum cost.

Balinski [2] showed that the set covering problem can be transformed
to the SPLP, which implies that the SPLP is NP-hard in the strong sense.
Surveys on theory, algorithms and applications of the SPLP include [9, 14,
15, 19, 21]. Here, we are concerned with the integer programming approach
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to the SPLP, and in particular on valid and facet-defining inequalities for
the associated polyhedra. We assume throughout that the reader is familiar
with the polyhedral approach to combinatorial optimisation. Readers who
are not are referred to standard textbooks, such as [4, 7, 13, 18].

Balinski [2] formulated the SPLP as follows:

min
∑

i∈I
∑

j∈J cijxij +
∑

i∈I fiyi (1)

s.t.
∑

i∈I xij = 1 (j ∈ J) (2)

xij ≤ yi (i ∈ I, j ∈ J) (3)

xij ∈ {0, 1} (i ∈ I, j ∈ J) (4)

yi ∈ {0, 1} (i ∈ I). (5)

Here, yi is a binary variable, taking the value 1 if and only if a facility i
is opened, and xij is a binary variable, taking the value 1 if and only if
client j is assigned to facility i. This formulation is now standard. The
constraints (2) are called assignment constraints, and the constraints (3)
are called variable upper bounds (VUBs).

The polyhedra associated with the formulation (1)–(5) have been studied
in depth, and several families of valid and facet-defining inequalities are
known [1, 3, 5, 6, 8, 10, 12]. We will review these in the next section. We
will be particularly interested in a family of inequalities derived by Karen
Aardal [1], that we call (p,q) inequalities. We will show the following:

• The (p, q) inequalities can be easily strengthened, leading to what we
call aggregated mixed-integer rounding (AMIR) inequalities.

• The (p, q) and AMIR inequalities in turn can be easily generalised.

• For all p and q such that p mod q = 1, there exist exponentially many
facet-defining (p, q) inequalities, and exponentially many facet-defining
generalised (p, q) inequalities that are not (p, q) inequalities.

• For all p and q, there exist exponentially many facet-defining AMIR
inequalities, and exponentially many facet-defining generalised AMIR
inequalities that are not AMIR inequalities.

In a companion paper [11], we will present separation algorithms for these
new families and also for some known families.

The paper is structured as follows. The literature is reviewed in Section
2. The new valid inequalities are introduced in Section 3, and the facet proofs
are given in Section 4. Finally, some concluding remarks are in Section 5.

The following notation is used throughout the paper. We let m denote |I|
and n denote |J |. We let P (m,n) denote the SPLP polytope, i.e., the convex
hull of all pairs (x, y) ∈ R(m×n)+m that satisfy the constraints (2)–(5). To
avoid using subscripted subscripts, we sometimes write x(i, j) instead of xij ,
and y(i) instead of yi. Moreover, sometimes we write x(E) for

∑
{i,j}∈E xij ,

x(S : T ) for
∑

i∈S
∑

j∈T xij and y(S) for
∑

i∈S yi.
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2 Literature Review

Since the SPLP literature is vast, we focus here on papers that present
polyhedral results, and refer the reader to [9, 14, 15, 19, 21] for surveys of
other approaches.

2.1 Dimension and trivial facets

Cornuéjols & Thizy [10] showed that the dimension of P (m,n) is mn+m−n,
and that the affine hull is described by the assignment constraints (2). It is
also shown that the VUBs (3), the non-negativity constraints xij ≥ 0 for all
i and j, and the upper bounds yi ≤ 1 for all i define trivial facets of P (m,n).
Cho et al. [5] showed that the assignment constraints and the trivial facets
completely describe P (m,n) if and only if m ≤ 2 or n ≤ 2 (or both).

2.2 Valid inequalities

Cornuéjols et al. [8] showed the following. Let p and q be integers satisfying
2 ≤ q < p ≤ m and p ≤ n, with p not a multiple of q. Let s1, . . . , sp be
distinct facilities, let t1, . . . , tp be distinct clients, and take indices modulo
p, so that, for example, sp+1 is identified with s1. Then, the inequality

p∑
i=1

i+q−1∑
j=i

x(si, tj) ≤
p∑

i=1

y(si) + p− dp/qe (6)

is valid for P (m,n).
We call the inequalities (6) circulant inequalities. Figure 1 represents

a circulant inequality with p = 8 and q = 3. The large and small circles
represent facilities and clients, respectively, and the edges represent variables
that appear on the left-hand side. Guignard [12] showed that circulant
inequalities with p = q + 1, which we call simple, define facets. Cornuéjols
& Thizy [10] showed that non-simple circulant inequalities do not.

The circulant inequalities with q = 2 (and therefore p odd) are called
odd cycle inequalities [5, 10]. Guignard’s result implies that the only odd
cycle inequalities that define facets are the ones with p = 3, which we
call 3-cycle inequalities. Cho et al. [5] showed that the addition of the
3-cycle inequalities to the ones present in the LP relaxation of (1)–(5) gives
a complete description of P (m,n) when m = 3.

Cornuéjols & Thizy [10] presented the following generalisation of the
simple circulant inequalities. Let p and t be integers with 2 ≤ t < p ≤ m
and

(
p
t

)
≤ n. Let S ⊆ I be any facility set with |S| = p, and let T ⊆ J

be any client set with |T | =
(
p
t

)
. Let G be any bipartite graph with node

sets S and T , such that, for every set S′ ⊂ S with |S′| = t, there exists a
j ∈ T that is connected to each node in S′ and no other nodes. (Figure 2
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Figure 1: Graph corresponding to a circulant inequality with p = 8 and
q = 3.
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Figure 2: Graph corresponding to a facility-subset inequality with p = 5
and t = 2.

shows such a graph G for the case p = 5, t = 2. The nodes in S are labelled
s1, . . . , s5 and the nodes in T are labelled t12, . . . , t45.) Finally, let E denote
the edge set of G. Then the following inequality defines a facet.

x(E) ≤ y(S) +

(
p

t

)
+ t− p− 1. (7)

We call these inequalities facility-subset inequalities. They reduce to simple
circulant inequalities when t = p− 1.

Another family of facet-defining inequalities was given by Cho et al. [6].
Let j1, j2 and j3 be three clients, and let S12, S13, S23 and S123 be disjoint
subsets of I. (We permit S123 to be empty.) Then we have:

x(S12 : {j1, j2}) + x(S13 : {j1, j3}) + x(S23 : {j2, j3}) +
1
2 x
(
S123 : {j1, j2, j3}

)
≤ 1 + y(S12 ∪ S13 ∪ S23) + 1

2 y(S123).
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Figure 3: Graphical representation of 3-client inequalities.

We call these inequalities 3-client inequalities. (Figure 3 gives a graphical
representation of them. The dashed lines represent x variables that have a
coefficient of 1/2 on the left-hand side, and the circle in the centre repre-
sents y variables that have a coefficient of 1/2 on the right-hand side.) They
reduce to 3-cycle inequalities when |S12| = |S13| = |S23| = 1 and S123 = ∅.
It is shown in [6] that the addition of the 3-client inequalities to the con-
straints present in the LP relaxation of (1)–(5) gives a complete description
of P (m,n) when n = 3.

Aardal [1] generalised the circulant inequalities as follows. Let p and q
be as before, let S ⊆ I be any facility set with |S| ≥ dp/qe and let T ⊆ J
be any client set with |T | = p. Let G be any bipartite graph with node sets
S and T , such that each node in S has degree q in G. Finally, let E denote
the set of edges of G. Then the inequality

x(E) ≤ y(S) + p− dp/qe (8)

is valid. We call these inequalities (p, q) inequalities. Aardal does not discuss
conditions for them to define facets.

Some additional inequalities, called fan and wheel inequalities, were pre-
sented in Cánovas et al. [3]. We skip details, for the sake of brevity.

2.3 Lifting and replicating

Recall that non-simple circulant inequalities do not define facets. Cornuéjols
& Thizy [10] showed that non-simple circulant inequalities with p mod q = 1
can be lifted, to make them facet-defining, by increasing the left-hand side
coefficients of some x variables from 0 to 1. Cho et al. [6] proved that, in fact,
any valid inequality with binary coefficients on the variables can be made
facet-defining by lifting in this way. Unfortunately, lifting itself is a hard
(possibly NP-hard) problem. In fact, even lifting the odd cycle inequalities
(with p > 3) is rather involved [6, 10].
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We will also need the following result of Cho et al. [6], which enables one
to create facets from facets by “replicating” facilities:

Theorem 1 (Cho et al. [6]) Suppose the inequality αTx ≤ βT y + γ is
valid for P (m,n), where α ∈ {0, 1}mn and β ∈ {0, 1}m. For any fixed s ∈ I,
let α̃ ∈ {0, 1}(m+1)×n and β̃ ∈ {0, 1}m+1 be defined by setting α̃ij = αij for
i = 1, . . . ,m and j = 1, . . . , n, α̃m+1,j = αsj for j = 1, . . . , n, β̃i = βi for
i = 1, . . . ,m, and β̃m+1 = βs. Then the inequality α̃Tx ≤ β̃T y + γ is valid
for P (m + 1, n). Moreover, it defines a facet of P (m + 1, n) if the original
inequality defines a facet of P (m,n).

In what follows, when we speak of “replicating” an inequality, we mean repli-
cating facilities whose y variables have a non-zero coefficient on the right-
hand side of the inequality. We remark that replicating a (p, q) inequality
yields an inequality of the same type, but this is not so for circulant, simple
circulant, odd cycle or facility subset inequalities.

3 New Valid Inequalities

In this section, we present three new families of valid inequalities, and point
out some special cases of interest.

3.1 AMIR inequalities

In this subsection, we will present some new inequalities, that dominate the
(p, q) inequalities. We will need the following lemma:

Lemma 1 Let p, q, S and E be as in the definition of the (p, q) inequalities
(Subsection 2.2). In any feasible SPLP solution, x(E) ∈ Z+, y(S) ∈ Z+,
x(E) ≤ p and x(E) ≤ q y(S).

Proof. Integrality and non-negativity are implied by (4) and (5). The
inequality x(E) ≤ p is implied by the non-negativity of x and the assignment
constraints (2) for the clients in T . The inequality x(E) ≤ q y(S) is implied
by the VUBs (3) for all {i, j} ∈ E. �

The new inequalities are presented in the following theorem.

Theorem 2 Let p, q, S and E be as in the definition of (p, q) inequalities
(Subsection 2.2). Let k denote bp/qc and r denote p mod q. (Note that
1 ≤ r < q by assumption). The following inequality is valid for P (m,n):

x(E) ≤ r y(S) + k(q − r). (9)

Moreover, it is equivalent to the (p, q) inequality (8) when r = 1, but stronger
when r ≥ 2.

6



Proof. Consider the following two-dimensional mixed-integer set:{
(X,Y ) ∈ R+ × Z+ : 0 ≤ X ≤ p, X ≤ qY

}
.

It is well known (see, e.g., [16, 17]) that the only non-trivial facet-defining in-
equality for the convex hull of this set is the so-called mixed-integer rounding
(MIR) inequality

X ≤ rY + k(q − r).
Replacing X with x(E) and Y with y(S), and using Lemma 1, we obtain
the inequality (9). This shows that (9) is valid for P (m,n).

To see that the inequality (9) reduces to a (p, q) inequality when r = 1,
just note that kq = p − r. To see that it dominates the (p, q) inequality
when r > 1, note that the (p, q) inequality can be derived by dividing the
inequality (9) by r, multiplying the trivial inequality x(E) ≤ p by (r− 1)/r,
and summing together the two resulting inequalities. �

Figure 4 provides a graphical illustration of Lemma 1 and Theorem 2
for the case p = 8 and q = 3. The dots represent, for each possible value
of x(E), the corresponding lower bound on y(S) given by the inequality
y(S) ≥ dx(E)/3e. The dashed line represents the inequality y(S) ≥ x(E)−5,
which is equivalent to the (p, q) inequality (8) in this case. The solid line
passing through the points (6, 2) and (8, 3) represents the inequality 2y(S) ≥
x(E) − 2, which is equivalent to the new inequality (9) in this case. It is
clear that the (p, q) inequality is redundant.

Since the inequalities (9) were derived by constructing the “aggregated”
variables x(E) and y(S), and then applying the MIR procedure, we will call
them aggregated mixed-integer rounding (AMIR) inequalities. We remark
that some apparently similar inequalities, called residual capacity inequal-
ities, were derived by Leung & Magnanti [16] for the capacitated plant lo-
cation polytope. However, the residual capacity inequalities become trivial
in the uncapacitated case, being implied by the non-negativity condition on
x. Moreover, the bipartite graphs associated with residual capacity inequal-
ities are complete, whereas this need not be the case for AMIR inequalities.
Therefore the two families of inequalities are distinct.

Note that the coefficients of the y variables in AMIR inequalities are not
binary in general. Therefore, Theorem 1 cannot be applied to them. Yet,
if one does replicate an AMIR inequality, the result is just another AMIR
inequality. Note also that each circulant inequality (6) is equivalent to or
dominated by an AMIR inequality of the form:

p∑
i=1

i+q∑
j=i

x(si, tj) ≤ r
p∑

i=1

y(si) + k(q − r). (10)

We call these special AMIR inequalities strengthened circulant inequalities.
We remark that they are different from the lifted circulant inequalities pre-
sented in [6, 10].
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Figure 4: Representation of (p, q) and AMIR inequalities when p = 8 and
q = 3.

3.2 Generalised (p, q) inequalities

Now we present a family of valid inequalities that contains the (p, q) inequal-
ities.

Theorem 3 Let p and q be positive integers with 2 ≤ q < p ≤ m and p ≤ n,
with p not a multiple of q. Let T ⊆ J be any client set with |T | = p, and let
S ⊆ I be any facility set such that |S| ≥ dp/qe. Let G be any bipartite graph
with node sets S and T , such that the degree of each node in S is a (positive)
multiple of q. For each i ∈ S, let d(i) be the degree of i in G. (Figure 5
shows a suitable graph G for the case p = 5 and q = 2. Facilities s1, . . . , s5
have degree two, but the facility s6 has degree four.) Finally, let E denote
the set of edges of G. Then the following ‘generalised (p, q)’ inequality

x(E) ≤
∑
i∈S

d(i)

q
yi + p− dp/qe (11)

is valid for P (m,n).

Proof. Let

y′(S) =
∑
i∈S

d(i)

q
yi.

Also let k be defined as in Theorem 2.
In a feasible solution, y′(S) must be integer. Moreover, x(E) ≤ p due

to the assignment constraints (2), and x(E) ≤ q y′(S) due to the VUBs (3).
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We now consider two cases. First, suppose y′(S) ≥ k + 1. Then the right-
hand side of (11) is at least p. The inequality (11) is then trivially valid,
since x(E) cannot exceed p. Second, suppose that y′(S) ≤ k. Multiplying
the inequality y(S) ≤ k by q − 1 and re-arranging, we obtain 0 ≤ −(q −
1) y′(S) + k(q − 1). Adding to this the valid inequality x(E) ≤ q y′(S),
we obtain x(E) ≤ y′(S) + k(q − 1). This implies the inequality (11), since
k(q − 1) = p− bp/qc − (p mod q) ≤ p− dp/qe. �

Note that generalised (p, q) inequalities, like AMIR inequalities, do not
have binary coefficients for the y variables. Therefore, Theorem 1 cannot
be applied to them either. Yet, if one does replicate a generalised (p, q)
inequality, the result is another generalised (p, q) inequality.

3.3 Generalised AMIR inequalities

One can perform the strengthening and the generalisation simultaneously,
yielding what we call generalised AMIR inequalities. This is shown in the
following proposition.

Proposition 1 Let p, q, S, T , G, E and d(i) be as defined in Theorem 3,
and let k and r be defined as in Theorem 2. Then the following ‘generalised
AMIR’ inequality

x(E) ≤ r
∑
i∈S

d(i)

q
yi + k(q − r) (12)

is valid for P (m,n).

Proof. Similar to the proof of Theorem 2. �

As in the previous two subsections, if one replicates a generalised AMIR
inequality, the result is just another generalised AMIR inequality.
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Figure 6: Hierarchy of inequalities for the SPLP.

To aid the reader, we display in Figure 6 a hierarchy of seventeen key
families of valid inequalities. An arrow from one class to another means
that the latter is a proper generalisation of, or dominates, the former. The
prefixes “repl.”, “gen.” and “str.” stand for “replicated”, “generalised” and
“strengthened”, respectively, and “circ.” stands for “circulant”. (We do not
include the lifted odd cycle or circulant inequalities in the figure, partly
for clarity, but also because there is no closed-form expression for their
left-hand sides. Also, we do not include the replicated simple circulant or
facility-subset inequalities, for clarity.) One can see that the generalised
AMIR inequalities subsume all other inequalities in the figure, apart from
the 3-client and facility subset inequalities.

4 New Facets

In this section, we examine conditions under which the (p, q) and AMIR in-
equalities, and their generalisations, define facets of P (m,n). In Subsection
4.1, we characterise the facet-defining (p, 2) inequalities. In Subsection 4.2,
we present some facet-defining (p, q) and AMIR inequalities with q > 2. In
Subsection 4.3, we present some facet-defining generalised (p, q) and AMIR
inequalities.
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4.1 Facet-defining (p, 2) inequalities

Recall (from the result of Guignard [12] mentioned in Subsection 2.2) that 3-
cycle inequalities define facets. Moreover, from Theorem 1 in Subsection 2.3,
replicated 3-cycle inequalities define facets as well. Therefore (see Figure 6)
both 3-cycle and replicated 3-cycle inequalities are examples of facet-defining
(p, 2) inequalities. A natural question is whether there exist any other facet-
defining (p, 2) inequalities. In this subsection, we show that, in fact, there
exist exponentially many inequalities of this type.

Recall that, associated with any given (p, q) inequality, there is a bipar-
tite graph G with vertex set S ∪ T and edge set E. When q = 2, each node
in S is adjacent to exactly 2 nodes in T . We will find it helpful to define a
reduced graph, denoted by G−. The vertex set of G− is T , and the edge set,
denoted by E−, is defined as follows. There is an edge {u, v} in E− if and
only if there exists some i ∈ S such that the edges {i, u} and {i, v} exist in E.
This construction is illustrated in Figure 7. The graph G on the left corre-
sponds to a (p, 2) inequality with S = {s1, . . . , s6} and T = {t1, . . . , t5}. The
large and small circles represent facilities in S and clients in T , respectively,
and the lines represent the edges in E. The inequality is:

x(s1, t1) + x(s1, t2) + · · ·+ x(s6, t4) + x(s6, t5) ≤ 2 +
6∑

i=1

y(si).

The corresponding reduced graph G− is shown on the right. So, for example,
the edge {t1, t2} is present in E− because the edges {s1, t1} and {s1, t2} exist
in E.

We now define a certain property that G− may or may not have:

Definition 1 The reduced graph G− = (T,E−) is said to be super-matchable
if, for every edge {u, v} ∈ E− and every node w ∈ T \{u, v}, there is a perfect
matching of the nodes in T \ {u, v, w}.
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So, for example, the reduced graph G− shown on the right of Figure 7 is not
supermatchable, because, if we take the edge {t1, t2} and the node t5, the
nodes t3 and t4 cannot be matched. On the other hand, the graph shown
in Figure 8 is super-matchable. For example, if we take the edge {1, 3} and
the node 5, the remaining nodes, 2, 4, 6 and 7, can be matched using the
edges {2, 4} and {6, 7}.

The property of being super-matchable turns out to be crucial for deter-
mining whether a (p, 2) inequality defines a facet.

Theorem 4 A (p, 2) inequality defines a facet of P (m,n) if and only if the
associated reduced graph G− is super-matchable.

Proof. From the result in [6] on lifting, mentioned in Subsection 2.3, it
suffices to show that a (p, 2) inequality can be lifted if and only if G− is
super-matchable. So, consider an edge {u, v} in G−, and let i be a facility
in S such that the edges {i, u} and {i, v} are in G. (Note that there may be
more than one such facility.) Consider the lifted inequality that is obtained
by changing the coefficient of xiw from zero to one, for some w ∈ T \ {u, v}.
To see whether this lifted inequality is valid, we attempt to construct a
feasible SPLP solution that violates it, in which xiw takes the value 1. Note
that, in such a solution, yi must take the value 1 as well. Then, to maximise
the left-hand side of the lifted inequality, it pays to set xiu and xiv to one
as well. Now we have a contribution of 3 to the left-hand side and 1 to the
right-hand side. Then, the only way the lifted inequality could be violated
would be for the remaining p− 3 clients in T to be served by only (p− 3)/2
of the remaining facilities in S. This can happen if and only if those p − 3
clients can be matched in G−.

To complete the proof, it suffices to show that it is not possible to lift xij
when i ∈ I\S and/or j ∈ J \T . To see this, just note that any extreme point
of P (m,n) that satisfies the (p, 2) inequality at equality and has xij = yi = 1
violates the lifted inequality. �
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The above theorem explains why the odd cycle inequalities define facets
if and only if p = 3. Indeed, the reduced graph corresponding to an odd
cycle inequality is itself an odd cycle on p nodes. A odd cycle on 3 nodes
(i.e., a triangle) is (trivially) super-matchable, but an odd cycle on p ≥ 5
nodes is not.

The following proposition presents an exponentially large family of super-
matchable graphs, which corresponds to an exponentially large family of
facet-defining (p, 2) inequalities.

Proposition 2 Let p ≥ 5 be an odd integer and let k be an integer with
2 ≤ k ≤ bp/2c. Let G(p, k) be the graph with vertex set {1, . . . , p}, and an
edge between nodes i and j if and only if |i − j| mod p ≤ k. (The graph in
Figure 8 is G(7, 2).) Then G(p, k) is super-matchable.

Proof. One can check that, if one removes any three nodes from such a
graph, the remaining nodes can be matched. �

We remark that the graphs G(p, k) are a special case of the so-called an-
tiwebs, defined by Trotter [20] in the context of set packing. We remark
also that replicating a (p, 2) inequality has no effect on the associated re-
duced graph. Therefore, if a (p, 2) inequality defines a facet, then so does
an inequality obtained from it by replicating.

4.2 Facet-defining (p, q) and AMIR inequalities

Now, observe that the simple circulant and replicated simple circulant in-
equalities, in addition to the facet-defining (p, 2) inequalities described in
the previous subsection, are facet-defining AMIR inequalities. A natural
question is whether there exist any other facet-defining AMIR inequalities,
or indeed (p, q) inequalities. The following theorem and corollary shows that
this is indeed the case.

Theorem 5 Let p and q be positive integers with 2 ≤ q < p ≤ n, m ≥
(
p
q

)
and p not a multiple of p. Let S be a set of facilities such that |S| =

(
p
q

)
,

and let T be a set of clients such that |T | = p. Let G be any bipartite graph
with node sets S and T , such that, for every set T ′ ⊂ T with |T ′| = q, there
exists an i ∈ S that is connected to each node in T ′ and no other nodes.
(Figure 9 shows a suitable graph G for the case p = 5, q = 2. The five nodes
in T are labelled t1, . . . , t5 and the ten nodes in S are labelled s12, . . . , s45.)
Let E denote the edge set of G, and let k and r be defined as in Theorem 2.
The AMIR inequality (9) defines a facet of P (m,n).

Proof. Since AMIR inequalities do not have binary coefficients for the y
variables in general, we cannot use the same technique that we used to prove
Theorem 4. Instead, we use a “dual” proof.
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So, let us call an extreme point of P (m,n) a “root” of the AMIR in-
equality if it satisfies it at equality, and let αTx + βT y = γ be an equation
that is satisfied by all roots. One can check (cF. Figure 4) that there are
two kinds of roots. One kind has X = p− r and Y = k, and the other has
X = p and Y = k + 1.

Consider any j ∈ J \ T and any root (of either kind) such that client
j is assigned to an open facility in S. We can obtain another root (of the
same kind) by assigning client j to any other open facility. By symmetry,
this shows that αij takes the same value for all i ∈ I. Due to the assignment
constraints (2), we can assume that this value is zero.

Next, consider any i ∈ I \ S, and any root (of either kind) such that
facility i is closed. By opening that facility, we obtain another root (of the
same kind). By symmetry, this shows that βi = 0 for all i ∈ I \ S.

Next, consider any j ∈ T , and any root of the first kind such that client
j is assigned to a facility in I \ S. By assigning j to any other open facility
i such that {i, j} /∈ E, we obtain another root. By symmetry, this shows
that αij takes the same value for all i ∈ I such that {i, j} /∈ E. Due to the
assignment constraints (2), we can assume that this value is zero.

So far, we have shown that the equation αTx + βT y = γ must take the
form ∑

{i,j}∈E

αijxij =
∑
i∈S

βiyi + γ.

Now consider a root of the second kind. There must exist a facility i ∈ S
that has fewer than q clients in T assigned to it. Accordingly, there must
exist a client j ∈ T that is currently assigned to a facility in S \ {i}, but
for which {i, j} ∈ E. We can obtain another root of the second kind by
assigning that client to i instead. By symmetry, this shows that, for any
given client j ∈ T , the coefficient αij takes the same value for all i such that
{i, j} ∈ E.

Now, consider any pair j, j′ ∈ T , and let i ∈ S be such that both {i, j}
and {i, j′} belong to E. Consider any root of the first kind such that facility
i is open, client j is assigned to facility i, and client j′ is assigned to an open
facility in I \ S. We obtain another root by assigning client j′ to facility i
and assigning client j to the open facility in I \S. By symmetry, this shows
that αij takes the same value for all {i, j} ∈ E.

We have now shown that the equation αTx + βT y = γ must take the
form

α0

∑
{i,j}∈E

xij =
∑
i∈S

βiyi + γ,

where α0 is a scalar. Now, for any i ∈ S, consider a root of the second kind
such that facility i is open and exactly r clients are assigned to i. By closing
facility i, and assigning each of those r clients to an open facility in I \ {i},
we obtain another root. This shows that βi = rα0. Therefore, the equation
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Figure 9: Graph G corresponding to a facet-defining AMIR inequality with
p = 5 and q = 2.

αTx+ βT y = γ must take the form:

α0

∑
{i,j}∈E

xij = rα0

∑
i∈S

yi + γ.

Now, if α0 were equal to zero, γ would have to be zero, and the equation
would become vacuous. So α0 6= 0. Dividing the equation by α0, we obtain:∑

{i,j}∈E

xij = r
∑
i∈S

yi + γ,

and the only possible value for γ is the one given in the AMIR inequality
(9). �

Corollary 1 For all p and q with 2 ≤ q < p and p mod q = 1, there exist
facet-defining (p, q) inequalities.

Proof. When p mod q = 1, the facet-defining AMIR inequalities described
in Theorem 5 are (p, q) inequalities. �

Note that the number of facet-defining inequalities described in both
Theorem 5 and Corollary 1 grows exponentially with both m and n. Note
also that, in these inequalities, there is one facility for each suitable subset
of clients. This is to be contrasted with the facility subset inequalities (7),
in which there is one client for each suitable subset of facilities.

With a little work, it can be shown that replicating a facet-defining
AMIR or (p, q) inequality leads to another facet-defining AMIR or (p, q) in-
equality, respectively. In this way, one can generate still more facet-defining
AMIR and (p, q) inequalities. We omit details for brevity. We also leave open
the question of finding a necessary and sufficient condition for an AMIR or
(p, q) inequality to define a facet.
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Now, recall that the strengthened circulant inequalities (10) are a special
case of the AMIR inequalities. For these inequalities, we have the following
negative result:

Proposition 3 Strengthened circulant inequalities do not define facets if
either of the following holds: (i) p > 3q/2, (ii) q+ 2 ≤ p ≤ 3q/2 and p = m.

Proof (sketch). For brevity, we only sketch the proof. Let x(E) denote
the left-hand side of the inequality, let S denote {s1, . . . , sp} and let r denote
p mod q. Just as in the proof of Theorem 5, every root of a strengthened
circulant inequality satisfies one of the following two conditions:

• x(E) = p and y(S) = dp/qe,

• x(E) = p− r and y(S) = bp/qc.

Moreover, the special structure of the graph G associated with a strength-
ened circulant inequality implies that, for a root of the second kind, the open
facilities are “spread out”, in the sense that |(i mod p)− (i′ mod p)| ≥ q for
all pairs i, i′ of open facilities.

We now consider four cases:

1. p > 2q. One can check that, in this case, all roots (of either kind)
satisfy the equation x(si, ti+q+r) = 0 for i = 1, . . . , p.

2. 3q/2 < p < 2q and q is odd. One can check that all roots satisfy the
equation x

(
si, ti+(q−1)/2

)
= y(si) for i = 1, . . . , p.

3. 3q/2 < p < 2q and q is even. One can check that all roots satisfy the
equations x(si, ti+q/2−1) = x(si, ti+q/2) = y(si) for i = 1, . . . , p.

4. q + 2 ≤ p ≤ 3q/2 and p = m. One can check that all roots satisfy the
equation x(si, ti+q) = x(si, ti+q+1) for i = 1, . . . , p.

In each case, the inequality cannot define a facet. �

Note that, when p = q+1, the strengthened circulant inequalities reduce
to simple circulant inequalities, which are facet-defining. We do not know
if there exist any other facet-defining strengthened circulant inequalities.

4.3 Facet-defining generalised (p, q) and AMIR inequalities

Another natural question is whether there exist any facet-defining gener-
alised AMIR or (p, q) inequalities that are not just AMIR or (p, q) inequal-
ities. The following theorem shows that this is indeed the case.
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Theorem 6 Let p, q, S, T , G and E be as defined in Theorem 5, and let
k and r be defined as in Theorem 2. Now suppose that we enlarge S and E,
by adding h new facility nodes to G, along with edges connecting each new
facility node to a set of clients in T , in such a way that the degree of each
new facility node is a multiple of q. (For example, we could take the graph G
shown in Figure 9, which has p = 5 and q = 2, and add one new facility node,
say s1234, which is adjacent to client nodes t1 to t4. The resulting graph G′

is shown in Figure 10. The labels of the ten original facility nodes have been
omitted, for clarity.) The generalised AMIR inequality (12) corresponding
to the resulting graph defines a facet of P (m+ h, n).

Proof. Let H denote the set of added facilities. From Theorem 5, the
AMIR inequality associated with the original graph G defines a facet of
P (m,n). Also, any root of the original AMIR inequality can be converted
into a root of the generalised AMIR inequality simply by closing all of the
facilities in H. Now, the dimension of P (m + h, n) is h(n + 1) more than
that of P (m,n), since we have added h new y variables and hn new x
variables. So, it suffices to construct n + 1 new affinely-independent roots
of the generalised AMIR inequality for each s ∈ H.

Let s ∈ H be fixed. One of the desired roots can be obtained easily by
taking a root of the AMIR inequality, opening facility s, closing the facilities
in H \ {s}, and assigning no clients to facility s. To construct the other n
roots for the given s, we proceed as follows. Let T (s) be the set of clients
that are adjacent to s, and note that |T (S)| equals d(s), the degree of node
s in the graph. For each client t ∈ T (S), we construct a root by opening
facility s, assigning the clients in T (S)\{t} to facility s, and opening exactly
k + 1 − d(s)/q of the facilities in S, chosen in such a way that each of the
p − d(s) + 1 clients in (T \ T (S)) ∪ {t} can be assigned to one of them.
Finally, for each client j ∈ J \ T (S), we construct a root by opening facility
s and assigning all of the clients in T (s)∪ {j} to it, then opening k− d(i)/q
facilities in S and assigning q of the clients in T \ T (s) to each of them. �

Corollary 2 For all p and q with 2 ≤ q < p and p mod q = 1, there exist
facet-defining generalised (p, q) inequalities that are not (p, q) inequalities.

Proof. When p mod q = 1, the facet-defining generalised AMIR inequali-
ties described in Theorem 6 are generalised (p, q) inequalities. �

Again, the number of facet-defining inequalities described in both The-
orem 6 and Corollary 2 grows exponentially with both m and n. We leave
open the question of finding a necessary and sufficient condition for a gen-
eralised (p, q) or AMIR inequality to define a facet.
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Figure 10: Representation of a facet-defining generalised (5, 2) inequality.

5 Conclusion

Although the SPLP has been studied in depth from a polyhedral point of
view, Aardal [1] left open the question of whether there exist any facet-
defining (p, q) inequalities. We have shown that, in fact, for any fixed p
and q, the number of such inequalities grows exponentially as the number of
facilities and/or clients grows. Moreover, we have presented three stronger
and/or more general families of valid inequalities, and shown that they too
contain exponentially many facet-defining members.

In our companion paper [11], we turn our attention to algorithmic is-
sues. In particular, we present exact and heuristic separation algorithms for
several different families of inequalities, and test their practical performance
within a branch-and-cut algorithm for the SPLP.
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