Carba-D,L-allal- and -D,L-galactal-derived vinyl N-nosyl aziridines as useful tools for the synthesis of 4-deoxy-4-(N-nosylamino)-2,3-unsaturated-5a-carbasugars
 Valeria Di Bussolo, ${ }^{* * *}$ Ileana Frau, ${ }^{\text {,4. }}$ Lucilla Favero, ${ }^{\text {, }}$ Vittorio Bordoni, ${ }^{\text {b }}$ Stefano Crotti, ${ }^{2,}$ Gloria Uccello Barretta, ${ }^{,}$Federica Balzano, ${ }^{,}$Paolo Crotti ${ }^{\mathrm{p}}$.* ${ }^{\text {s Dipartimento di Chimica e Chimica Industriale, Università di Pisa, }}$

 Via G. Moruzzi 3, 56124 Pisa, Italy${ }^{\text {}}$ Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy

Abstract

The novel carba-D,L-allal- and carba-D,L-galactal-derived vinyl N-nosyl aziridines were prepared and the regio- and stereoselective behavior in opening reactions with O - and N nucleophiles examined. The carbaglycosylating ability of the novel aziridines, as deduced by the amount of 1,4-addition products (1,4-regioselectivity) obtained in the acid-catalyzed methanolysis taken as a model reaction, is similar or superior to that observed with the corresponding carba-D,L-allal- and -D,L-galactal-derived vinyl epoxides, respectively. In all 1,2- and 1,4-addition products obtained, a N-nosylamino group is regio- and stereoselectively introduced at the $\mathrm{C}(4)$ carbon of a 1,2- or 2,3-unsaturated carbasugar, susceptible to further elaborations toward aminocyclitol derivatives. The stereoselective synthesis of the corresponding, enantiomerically pure carba-D,L-allal- and -D,L-galactal-derived vinyl N-acetyl aziridines is also described.

Keywords: Vinyl aziridines, 4-(N-nosylamino)-carbasugars, Carbaglycosylation, Regioselectivity.

1.Introduction

Carbasugars, a particular family of cyclitols, are compounds structurally related to carbohydrates with the only difference being the replacement of the endocyclic oxygen with a methylene group. ${ }^{1}$ This structural modification is responsible for an increased chemical stability and makes carbasugars valuable mimics of the corresponding carbohydrates. ${ }^{2}$

[^0]Within the carbasugar family, aminocyclitols, also regarded as amino carbasugars, can be found in nature in several families of natural and clinically important antibiotics. ${ }^{3}$ Moreover, aminocyclitols represent interesting scaffolds in drug discovery. In fact, these structures are present in currently used therapeutic agents, ${ }^{4}$ and turn out to be attractive substrates for targeting many key pathways implicated in disorders such as diabetes, viral infections and cancer. ${ }^{5}$

Although the synthesis of amino carbasugars has been investigated and reviewed extensively, ${ }^{5,6}$ new versatile methodologies for their preparation still represent an interesting challenge in synthetic carbohydrate chemistry.

Following our experience with vinyl epoxides ${ }^{7}$ and N-activated aziridines, ${ }^{7 \mathrm{e}, 8}$ we herein present a stereoselective synthesis of 2,3-unsaturated-4-(N-protected-amino) carbasugars by using carba-D,L-glycal-derived vinyl N-nosyl aziridines, as suitable precursors.

Recently, racemic and enantiopure vinyl epoxides 1α and $1 \beta,{ }^{9}$ the carba analogs of the previously studied D-allal-and D-galactal-derived vinyl epoxides $\mathbf{2} \alpha$ and $\mathbf{2} \boldsymbol{\beta}$, ${ }^{7 c-f, h-1}$ were synthesized and their regio- and stereoselective behavior examined in addition reactions with several $\mathrm{O}-, \mathrm{C}-\mathrm{N}-$ and S-nucleophiles. In particular, by using MeOH as a model O-nucleophile, the possibility of considering these epoxides suitable for the stereoselective construction of carba-O-glycosides and/or mixed carba-oligo-saccharides was checked. For such an application, a complete or high 1,4regioselective behavior with associated high stereoselectivity, in the opening reactions, is required. This behavior, defined as carbaglycosylating ability, is determined by the total amount of 1,4addition products obtained. ${ }^{9}$

The results obtained after acid methanolysis indicated an interesting carbaglycosylating ability for epoxide 1α, with moderate syn-stereoselectivity, as shown by 68% (1.8:1 syn/anti ratio) and 57% 1,4-regioselectivity (4.7:1 syn/anti ratio) under protocol $A\left(0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}\right)$ and synthetically more interesting protocol B reaction conditions (MeOH, 6 equiv, in $10^{-2} \mathrm{~N}$ $\mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), respectively. ${ }^{9 \mathrm{a}, 10}$ In this framework, diastereoisomeric epoxide $\mathbf{1} \boldsymbol{\beta}$ turned out to be a very poor carbaglycosyl donor, as shown by the low 1,4-regioselectivity (20%) observed under the corresponding protocol A, and by the complete anti-1,2-regioselectivity ($>99 \%$) found under the corresponding protocol B reaction conditions. These results and the structures of all the addition
products obtained in the acid methanolysis of epoxides 1α and $\mathbf{1 \beta}$ (methoxy alcohols 3-8), are shown in Scheme 1. ${ }^{9 a, 10}$

Scheme 1. Regio- and stereoselectivity of vinyl carba epoxides $\mathbf{1} \alpha$ and $\mathbf{1 \beta}$ in the acid methanolysis under protocol A and protocol B reaction conditions.

As an extension of our interest toward glycal-derived systems and their corresponding carba analogues, and looking for new, effective carbaglycosyl donors, our attention was directed to the diastereoisomeric carba-D,L-allal- and -D,L-galactal-derived vinyl N-nosyl aziridines $\mathbf{9 \alpha} \boldsymbol{\alpha}$-Ns and $\mathbf{9 \beta - N s}$, the carba analogs of the corresponding, previously studied D-allal- and D-galactal-derived N-nosyl aziridines $\mathbf{1 0 \alpha - N s}$ and $\mathbf{1 0 \beta - N s} .^{7 e, 8 c}$

The examination of the regio- and stereoselective behavior in nucleophilic opening reactions could indicate whether aziridines $\mathbf{9} \boldsymbol{\alpha} \mathbf{- N s}$ and $\mathbf{9 \beta - N s}$ are effective carbaglycosyl donors with
simultaneous, completely regio- and stereoselective introduction of a $-(N$-nosylamino) group at $\mathrm{C}(4)$-carbon of a 2,3 -unsaturated carbasugar system as shown in 11, with high levels of syn-1,4stereoselectivity, if possible, when alcohols (ROH) are used as carbaglycosyl acceptors (Scheme 2). The presence of the double bond and the easy deprotection of the -(N-nosylamino) group, ${ }^{8 c}$ could make carbapyranosides 11 suitable for further elaborations toward biologically interesting aminocyclitols, ${ }^{3-6}$ through a new synthetic approach (Scheme 2 , where only N-nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$ Ns is shown, for simplicity).

Scheme 2. The conceivable behavior of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns as a carbaglycosyl donor in the acid alcoholysis, with complete 1,4 -syn-stereoselectivity and simultaneous complete regio- and stereoselective introduction of a $-(N$-nosylamino) group at $\mathrm{C}(4)$ carbon of a 2,3-unsaturated carbasugar.

In this preliminary examination of their regio- and stereoselective behavior in nucleophilic addition reactions, N-nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}$-Ns and $\mathbf{9 \beta}$-Ns were prepared in a racemic form. However, in view of a possible use of these systems for the construction of compounds of biological interest, an enantioselective route to both aziridine systems, in the form of N-acetyl analogs, as ($3 S, 4 R, 5 S$)$\mathbf{9} \boldsymbol{\alpha}-\mathbf{A c}$ and $(3 R, 4 S, 5 S)-\mathbf{9 \beta}-\mathbf{A c}$, has been disclosed, also.

(3S,4R,5S)-9 $\boldsymbol{\alpha}$-Ac
(3R,4S,5S)-9ß-Ac

2. Results and discussion

The stereoselective synthesis of vinyl aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$ was carried out by means of the same protocol starting from azidolysis of the corresponding epoxide with the opposite configuration 1β and $\mathbf{1} \alpha$, respectively.

For the synthesis of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns, the azidolysis of epoxide $\mathbf{1} \boldsymbol{\beta}$ by NaN_{3} in a 1:1 THF/ $\mathrm{H}_{2} \mathrm{O}$ mixture ${ }^{11}$ turned out to be completely 1,2-regio- and anti-stereoselective affording trans 3,4-azido alcohol 12 as the only reaction product (Scheme 3). ${ }^{12}$

Scheme 3. Synthesis of vinyl N-nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$.
trans 3,4-Azido alcohol $\mathbf{1 2}$ was reduced by polimer-supported $\mathrm{PPh}_{3}\left(\mathrm{PS}_{-}-\mathrm{PPh}_{3} \text {, Aldrich }\right)^{8 \mathrm{~b}}$ in a heterogeneous phase $\left(20: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right)$ to the corresponding trans 3,4 -amino alcohol $\mathbf{1 3}$, which was obtained in good yield (96%) and was sufficiently pure to be directly used in the next step. Regioselective N-nosylation of the amino group of $\mathbf{1 3}$ by a $\mathrm{NsCl} / \mathrm{NEt}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ protocol afforded N nosyl derivative 14. Subsequent O-mesylation by $\mathrm{MsCl} / \mathrm{Py}$ of the free -OH functionality gave trans N-nosyl- O-mesyl derivative 15 . The treatment of mesylate 15 under basic conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeCN}\right)$ gave the cyclization to the desired aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ which was obtained with a good overall yield (69\%), through a 5 step sequence, starting from epoxide $\mathbf{1 \beta}$ (Scheme 3).

The treatment of epoxide $1 \boldsymbol{\alpha}$ with NaN_{3} in 1:1 THF/ $\mathrm{H}_{2} \mathrm{O}^{11}$ mixture afforded trans 3,4-azido alcohol $\mathbf{1 6}$ as the only reaction product. ${ }^{12}$ Reduction of azido alcohol $\mathbf{1 6}$ to trans 3,4-amino alcohol 17 by PS- PPh_{3} in THF/ $\mathrm{H}_{2} \mathrm{O},{ }^{8 \mathrm{~b}}$ followed by regioselective N-nosylation to N-nosyl derivative $\mathbf{1 8}$ and subsequent O-mesylation by $\mathrm{MsCl} / \mathrm{Py}$ protocol led to trans N-nosyl- O-mesyl derivative 19. Basecatalyzed $\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeCN}\right)$ cyclization of $\mathbf{2 0}$ afforded pure aziridine $\mathbf{9 \beta} \boldsymbol{\beta} \mathbf{- N s}$ (64% overall yield through 5 steps starting from epoxide 1α, Scheme 4).

Scheme 4. Synthesis of vinyl N-nosyl aziridine 9ß-Ns.

Aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$, even if prudentially stored at $-15^{\circ} \mathrm{C}$, turned out to be sufficiently stable also at room temperature.

A theoretical conformational study (performed with DF, density functional theory calculation, in vacuum) carried out on simplified models (see Supplemetary data, sections 4.1, 4.2 and 4.3), has indicated that N-nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns largely exists as the favored conformer $\mathbf{9} \boldsymbol{\alpha}$ '-Ns (nearly a 70:30 equilibrium between the two conformers $9 \boldsymbol{\alpha}$ '-Ns and $\mathbf{9 \alpha} \boldsymbol{\prime}$-Ns) whereas aziridine $\mathbf{9 \beta - N s}$ practically exists as the only, highly favored, conformer $9 \boldsymbol{\beta}$ '-Ns (about 99%, Scheme 5). It is worth noting that the favored conformer $9 \boldsymbol{\alpha}$ - $\mathbf{N s}$ in aziridine $\mathbf{9 \alpha} \boldsymbol{\alpha}$-Ns and the highly favored conformer $9 \boldsymbol{9} \boldsymbol{\prime}$-Ns in aziridine $\mathbf{9 \beta}$-Ns have the same ring conformation with the side chain ($\mathrm{CH}_{2} \mathrm{OBn}$) axial in $\mathbf{9} \boldsymbol{\alpha}^{\prime}$ - $\mathbf{N s}$ and equatorial in $\mathbf{9 \beta}$ '-Ns (Scheme 5).

Scheme 5. Theoretical conformational analysis of N-nosyl aziridines $\mathbf{9 \alpha - N s}$ and $9 \beta-\mathbf{N s}$.

2.1. Regio- and stereoselective behavior of N-nosyl aziridines $\mathbf{9 \alpha - N s}$ and $\mathbf{9 \beta - N s}$ in nucleophilic

 addition reactionsMethanolysis and acetolysis reactions were carried out under acidic conditions (protocol A and B reaction conditions) ${ }^{10}$ and aminolysis reactions were carried out in the presence of a Lewis acid as $\mathrm{Sc}(\mathrm{OTf})_{3}($ protocol $A) .{ }^{10}$ Conversely, alkaline acetolysis (AcONa/DMF) and azidolysis reactions $\left(\mathrm{NaN}_{3} /\right.$ THF- $\left.\mathrm{H}_{2} \mathrm{O}\right)(\text { protocol } B)^{10}$ did not necessitate any catalyst. Alkaline methanolysis $(\mathrm{MeONa} / \mathrm{MeOH})$ afforded only complex reaction mixtures. The results will be presented in the following sections.
2.1.1. Regio- and stereoselective behavior of N-nosyl aziridines $\mathbf{9} \alpha-N s$ and $\mathbf{9 \beta - N s}$ in nucleophilic addition reactions of MeOH (O-nucleophile) under acid conditions

The regio- and stereochemical behavior of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns in the acid methanolysis turned out to be strictly dependent on the reaction conditions and, in particular, on the aziridine: MeOH ratio.

In fact, when the methanolysis was carried out using $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution in MeOH , that is in the presence of a large amount of the nucleophile (protocol A reaction conditions, see Table 1), ${ }^{10}$ the reaction did not show regio- and/or stereoselectivity affording a 38:30:32 mixture of trans-3-methoxy-4-(N-nosylamino)-derivative 20 (anti-1,2-addition product), trans-1-methoxy-4-(N -nosylamino)-derivative 21 (anti-1,4-addtion product) and cis-1-methoxy-4-(N-nosylamino)derivative 22 (syn-1,4-addition product) (${ }^{1} \mathrm{H}$ NMR spectroscopy) (entry 1, Table 1). When the methanolysis of aziridine $\boldsymbol{9} \boldsymbol{\alpha}$-Ns was performed using a $2.5 \cdot 10^{-3} \mathrm{~N}$ TsOH solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing a drastically reduced amount of MeOH in such a way that aziridine: $\mathrm{TsOH}: \mathrm{MeOH}$ ratio $=$ 1:0.1:6 (protocol B reaction conditions), ${ }^{10}$ a completely 1,2-regio- and anti-stereoselective behavior was observed, with the exclusive production of anti-1,2-addition product 20 (entry 2, Table 1).

Table 1. Regio- and stereoselectivity of acid methanolysis and acetolysis of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns, under protocol A and B reaction conditions. ${ }^{\text {a,b }}$

${ }^{\text {a }}$ Protocol A reaction conditions: the nucleophile $(\mathrm{MeOH}$ or AcOH$)$ is the reaction solvent in the presence of the acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.
${ }^{\mathrm{b}}$ Protocol B reaction conditions: aziridine:nucleophile $(\mathrm{MeOH}$ or AcOH$)$ ratio $=1: 6$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bimim}]\left[\mathrm{BF}_{4}\right]$, as the reaction solvent, in the presence of the acid $(\mathrm{TsOH}, 0.1 \mathrm{eq})$; aziridine: AcONa ratio $=1: 4$ in the alkaline acetolysis in DMF.
${ }^{\mathrm{c}}$ Total amount of 1,4-addition products (carbaglycosylating ability).

Aziridine $9 \boldsymbol{\beta}-\mathbf{N s}$ showed a similar regio- and stereochemical behavior but, surprisingly, obtained under diametrically opposed reaction conditions. Actually, under protocol B reaction conditions, ${ }^{10}$ a 40:35:25 mixture of trans-3-methoxy-4-(N-nosylamino)-derivative 27 (anti-1,2addition product), trans-1-methoxy-4-(N-nosylamino)-derivative 28 (anti-1,4-addtion product) and
cis-1-methoxy-4-(N-nosylamino)-derivative 29 (syn-1,4-addition product) (${ }^{1} \mathrm{H}$ NMR spectroscopy) was obtained indicating a non-regioselective behavior (entry 2, Table 2). On the contrary, when the methanolysis reaction of aziridine $\mathbf{9 \beta} \mathbf{- N s}$ was repeated under protocol A reaction conditions, ${ }^{10} \mathrm{a}$ complete 1,2-regio- and anti-stereoselective addition was observed with the isolation of anti-1,2addition product $\mathbf{2 7}$, as the only reaction product (entry 1 , Table 2).

Table 2. Regio- and stereoselectivity of acid methanolysis and acetolysis of aziridine $\mathbf{9 \beta} \boldsymbol{\beta} \mathbf{- N s}$ under protocol A and B reaction conditions. ${ }^{\text {a,b }}$

Entry	Reagents	anti-1,2- addition product	anti-1,4-addition product	syn-1,4-addition product
1	$\mathrm{MeOH} / 0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}{ }^{\text {a }}$	>99	-	-
2	MeOH (6 equiv) $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\mathrm{b}}$	40	35	25
3	$\begin{gathered} \mathrm{MeOH}(6 \text { equiv }) \\ 2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} \\ 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\text { bimim }]\left[\mathrm{BF}_{4}\right]^{\mathrm{b}} \end{gathered}$	40	28	32
4	$\mathrm{AcOH} / 0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}{ }^{\text {a }}$	36	64	
5	$\begin{gathered} \text { AcOH (6 equiv) } \\ 2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\mathrm{b}} \end{gathered}$	30	70	$]^{\text {c }}$

$6 \quad \mathrm{AcONa}$ (4 equiv)/ $\mathrm{DMF}^{\text {b }} \quad>99$

[^1]${ }^{\mathrm{b}}$ Protocol B reaction conditions: aziridine:nucleophile (MeOH or AcOH) ratio $=1: 6$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bimim}]\left[\mathrm{BF}_{4}\right]$, as the reaction solvent, in the presence of the acid $(\mathrm{TsOH}, 0.1 \mathrm{eq})$; aziridine: AcONa ratio $=1: 4$ in the alkaline acetolysis in DMF.
${ }^{\mathrm{c}}$ Total amount of 1,4-addition products (carbaglycosylating ability).

The reason for the different regiochemical behavior of aziridines $\mathbf{9 \alpha - N s}$ and $\mathbf{9 \beta - N s}$ under the same reaction conditions (see entries 1 and 2 , Tables 1 and 2) can be rationalized by considering the influence that the different acid reaction conditions (protocol A and B) could have on the conformational equilibrium in the two aziridines.

A DFT theoretical conformational study on protonated aziridine $\mathbf{9 \beta - N s} \mathbf{- H}$, the species likely present under acid conditions, carried out with and without the solvent, simulated in an explicit way by one molecule of MeOH (theoretical model C and D, respectively), has indicated, first of all, that the protonation occurs inside the ring with the bulky -Ns group outside (Schemes 6 and 7, and Supplementary data, sections 4.3 and 4.4).

In the presence of one molecule of MeOH (theoretical model C), the most favored minimum energy structure shows the presence of two bridge-type intermolecular hydrogen bonds in which MeOH is contemporarily hydrogen-bonded to the protonated aziridine nitrogen and the oxygen of the $6-\mathrm{OBn}$ functionality of the cis-disposed equatorial side chain. The occurrence of these hydrogen bonds determines the exclusive presence of the highly favored conformer $\mathbf{9 \beta} \mathbf{\prime}$-Ns-H with the side $\mathrm{CH}_{2} \mathrm{OBn}$ chain equatorial (about 99%, Scheme 6 and Supplementary data, section 4.4). ${ }^{13}$

On the contrary, in the absence of MeOH (theoretical model D), the occurrence of an intramolecular hydrogen bond between the protonated aziridine and the oxygen of the $6-\mathrm{OBn}$ group of the cis-disposed axial side chain, possible only through conformer $\mathbf{9 \beta}$ "-Ns-H, makes this conformer consistently present at the equilibrium ($\mathbf{9 \beta} \boldsymbol{\prime}$-Ns-H : $\mathbf{9 \beta}$ "-Ns-H conformers ratio nearly 81: 19, Scheme 6 and Supplementary data, section 4.3).

By admitting that theoretical models C (presence of one molecule of MeOH) and D (absence of MeOH) correspond to experimental protocol A (presence of a large amount of MeOH , solvent of the reaction) ${ }^{10}$ and protocol B reaction conditions (presence of only a small amount of $\mathrm{MeOH}, 6$ equiv, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the reaction solvent), ${ }^{10}$ respectively, nucleophilic attack by MeOH under protocol A (corresponding to model C) necessarily occurs at aziridine $C(3)$-carbon of the only present conformer $\mathbf{9 \beta} \boldsymbol{\prime}$ 'Ns-H through a sterically unhindered, highly favored trans diaxial opening of the aziridine ring (route a, eq. 1, Scheme 6). ${ }^{14}$ In this way, the corresponding anti-1,2-addition product $\mathbf{2 7}$, is reasonably the only reaction product, as experimentally observed ($>99 \%$, entry 1 , Table 2).

On the other hand, under protocol B (corresponding to theoretical model D) nucleophilic attack can reasonably occur on both conformers $\mathbf{9 \beta} \mathbf{\prime} \mathbf{- N s} \mathbf{- H}$ and $\mathbf{9 \beta} \boldsymbol{\prime}$-Ns-H, consistently present at the equilibrium (eq. 2, Scheme 6). In this framework, even if nucleophilic attack at the aziridine $\mathrm{C}(3)$-carbon of conformer $\mathbf{9 \beta}$ '-Ns-H remains highly favored (a trans-diaxial opening process, route a), ${ }^{14}$ nucleophilic attack on conformer $\mathbf{9 \beta}$ "-Ns-H, necessarily occurring at the more reactive vinyl $\mathrm{C}(1)$-carbon in a conjugated fashion through routes \boldsymbol{b} and \boldsymbol{c}, becomes competitive and a 40:35:25 mixture of anti-1,2-27 (route a), anti-1,4-28 (route b), and syn-1,4-addition product $\mathbf{2 9}$ (route \boldsymbol{c}) is reasonably obtained, as found experimentally (eq. 2, Scheme 6 and entry 2, Table 2). ${ }^{15}$ Nucleophilic attack at $\mathrm{C}(3)$-aziridine carbon of protonated conformer $\mathbf{3 \beta}$ "-Ns-H does not occur because it corresponds to a stereoelectronically disfavored trans-diequatorial ring opening process. ${ }^{14,16,17}$

Scheme 6. Theoretical conformational analysis of protonated aziridine $\mathbf{9 \beta} \mathbf{\beta} \mathbf{N s}-\mathbf{H}$ in the presence (theoretical model C) and absence of one molecule of MeOH (theoretical model D), and regio- and stereoselectivity of aziridine $\mathbf{9 \beta} \mathbf{- N s}$ in acid methanolysis under protocol A and B reaction conditions.

In the case of protonated aziridine $\mathbf{9} \boldsymbol{\alpha} \mathbf{- N s} \mathbf{- H}$, due to the trans relationship between protonated aziridine nitrogen and $-\mathrm{CH}_{2} \mathrm{OBn}$ side chain, no intramolecular hydrogen bond of the type observed
with aziridine $\mathbf{9 \beta} \mathbf{\beta} \mathbf{- N s - H}$ under acid conditions can occur. As a consequence, almost the same theoretical protonated conformer $\mathbf{9} \boldsymbol{\alpha}^{\prime}-\mathbf{N s}-\mathbf{H}: \mathbf{9} \boldsymbol{\alpha} \boldsymbol{\prime}$-Ns-H ratio has been found both in the presence (nearly $50: 50$, theoretical model C) and in the absence of one molecule of MeOH (nearly $54: 46$, theoretical model D) (Scheme 7 and Supplementary data, sections 4.5 and 4.6). ${ }^{18}$

On the basis of the conformational analysis, the stereo- and regioselective result observed in the acid methanolysis of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns can be explained by the amount of nucleophile present in the reaction mixture and the different reactivity of the two conformers $\mathbf{9} \boldsymbol{\alpha} \mathbf{\prime}-\mathrm{Ns}-\mathrm{H}$ and $\mathbf{9} \boldsymbol{\alpha}$ " $\mathbf{- N s} \mathbf{- H}$.

In the presence of only a small amount of MeOH (protocol B), nucleophilic attack occurs only at the aziridine $\mathrm{C}(3)$-carbon of the protonated conformer $\mathbf{3} \boldsymbol{\alpha}^{\boldsymbol{\prime}} \mathbf{- N s} \mathbf{- H}$, due to the possibility of having a highly favored trans-diaxial ring opening process (route a, eq. 1, Scheme 7 and entry 2, Table 1). ${ }^{14}$ As a consequence, anti-1,2-addition product 20 is the only reaction product, as observed. On the contrary, when the reaction is carried out in the presence of a large amount of nucleophile (MeOH as solvent, protocol A), nucleophilic attack in a conjugated fashion at the vinyl $\mathrm{C}(1)$-carbon of the protonated aziridine $\mathbf{9} \boldsymbol{\alpha} \boldsymbol{=} \mathbf{- N s} \mathbf{- H}$, equally from the α and β direction, becomes competitive to nucleophilc attack at the $\mathrm{C}(3)$-carbon of conformer $\mathbf{9} \boldsymbol{\alpha} \mathbf{\prime} \mathbf{- N s} \mathbf{- H}$. As a consequence a mixture of all the possible addition products is obtained: anti-1,2-20 (38\%, route a), anti-1,4-21 (30%, route b) and syn-1,4-addition product 22 (32%, route \boldsymbol{c}) (eq. 2, Scheme 7 and entry 1, Table 1). ${ }^{14,17}$

Scheme 7. Theoretical conformational analysis of protonated aziridine $\mathbf{9} \boldsymbol{\alpha} \mathbf{- N s} \mathbf{- H}$ in the presence (theoretical model C) and absence of one molecule of MeOH (theoretical model D) and regio- and stereoselectivity of aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ in acid methanolysis under protocol A and B reaction conditions.

The results obtained with MeOH , as a model O-nucleophile, indicate that N-nosyl aziridines $\mathbf{9 \alpha - N s}$ and $\mathbf{9 \beta - N s}$ are not completely 1,4-regioselective, under the experimented reaction conditions, in presence of the nucleophile as a solvent or as a reagent (protocol A and B). However, the overall amount of 1,4-addition products (anti- and syn-adducts) is sufficiently high (62 and 60% from $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta} \mathbf{- N s}$, entries 1 and 2 , Tables 1 and 2, respectively) to make aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathrm{Ns}$ and $\mathbf{9 \beta - N s}$ be considered useful in carbaglycosylating processes. Moreover, a comparison with the corresponding results obtained with epoxides 1α and 1β indicates that the carbaglycosylating ability of aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}(62 \%$, protocol A) and $\mathbf{9 \beta}$-Ns $(60 \%$, protocol B) is similar and superior to the maximum value obtained with the corresponding epoxides 1α (68%, protocol A and 57%, protocol B) and $\mathbf{1 \beta}(20 \%$, protocol $A)$, respectively. ${ }^{9 \mathrm{a}, 19}$
2.2. Acid methanolysis of epoxides $\mathbf{1 \alpha}$ and $\mathbf{1 \beta}$ and N-nosyl aziridines $9 \alpha-N s$ and $9 \beta-N s$ in the presence of an ionic liquid (IL)

On the basis of the above described results, some different conditions able to influence positively the regioselectivity of the methanolysis reactions toward 1,4-addition products, and thus the carbaglycosylating ability, not only with aziridines $\mathbf{9} \alpha-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$, but also with the related, previously studied, epoxides $\mathbf{1} \alpha$ and $\mathbf{1} \boldsymbol{\beta},{ }^{9}$ were tried. Considering that an increase in the $1,4-$ addition process could reasonably be obtained by an opening process characterized by a more diffused carbocation-like intermediate, the use of an ionic liquid (IL) was envisaged. ${ }^{20}$

Two different ILs, butylmethylimidazolium tetrafluoroborate ([bmim][BF $\left.\mathrm{B}_{4}\right]$) (IL1) and benzylbutylimidazolium tetrafluoroborate ([bzbim][BF 4$]$) (IL2), soluble in organic solvents, were checked.

IL1 and IL2 were used as solvent or cosolvent in different acidic reaction conditions (10^{-2} $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH}$). The nucleophile (MeOH) was present in a large amount when cosolvent of the reaction with IL ($1: 1 \mathrm{MeOH} / \mathrm{IL}$ ratio, protocol A), or only in a controlled amount (6 equiv) with respect to the epoxide, when IL or $1: 1 \mathrm{IL} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture was the solvent of the reaction (protocol B). The result obtained with epoxides $\mathbf{1} \boldsymbol{\alpha}$ and $\mathbf{1} \beta$ are reported in Tables 3 and 4, respectively, where the results previously obtained under standard conditions are also reported (entries 1 and 2 , Tables 3 and 4). ${ }^{9 a}$

Table 3. Regio- and stereoselectivity, with indication of the carbaglycosylating ability, of epoxide $1 \boldsymbol{\alpha}$ in acid methanolysis reactions (protocol A and B) under standard conditions and in the presence of an IL.

\qquad 30 \qquad
\qquad 20 \qquad 50^{c}
${ }^{\mathrm{a}}$ See ref. 9a.
${ }^{\mathrm{b}}(A)$: protocol $A ;(B)$: protocol B (see Tables 1 and 2 and ref. 10).
${ }^{\mathrm{c}}$ Total amount of 1,4-addition products (carbaglycosylating ability).

Table 4. Regio- and stereoselectivity, with indication of the carbaglycosylating ability, of epoxide 1β in acid methanolysis reactions (protocol A and B) under standard conditions and in the presence of an IL.

Entry Reaction conditions
1

2

3

$$
0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}(A)^{\mathrm{a}, \mathrm{~b}}
$$

MeOH (6 equiv) in $10^{-2} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(B)^{\mathrm{a}, \mathrm{b}}$ $10^{-2} \mathrm{NH}_{2} \mathrm{SO}_{4}$ in
$1: 1 \mathrm{MeOH} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right](A)^{\mathrm{b}}$ MeOH (6 equiv) in
$4 \quad 2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH}$ /

$$
1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right](B)^{\mathrm{b}}
$$

$\begin{array}{ccc}\text { anti-1,2-addition } \\ \text { product } & \text { anti-1,4-addition } & \text { syn-1,4-addition } \\ \text { product } & \text { product }\end{array}$
80
>99

67
\square
5 \qquad
$20^{\text {c }}$ 15 \qquad
-
\qquad
23 \qquad 10
$33{ }^{\text {c }}$
51 \qquad 31 \qquad
\qquad 18 \qquad
49^{c}
$5 \quad \begin{gathered}\mathrm{MeOH}(6 \text { equiv) in } \\ 2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right](B)^{\mathrm{b}}\end{gathered}$

$$
10^{-2} \mathrm{NH}_{2} \mathrm{SO}_{4} \text { in }
$$

6
$1: 1 \mathrm{MeOH} /[\mathrm{bzbim}]\left[\mathrm{BF}_{4}\right](A)^{\mathrm{b}}$
84
\qquad 27 \qquad
\qquad
20 \qquad
47^{c}
\qquad

- \qquad 16 \qquad
$16^{\text {c }}$

[^2]${ }^{\mathrm{b}}(A)$: protocol $A ;(B)$: protocol B (see Tables 1 and 2 and ref. 10).
${ }^{\mathrm{c}}$ Total amount of 1,4-addition products (carbaglycosylating ability).

An examination of the regio- and stereoselectivity obtained in the methanolysis of epoxides $\mathbf{1} \boldsymbol{\alpha}$ and $\mathbf{1} \boldsymbol{\beta}$, limited to the more interesting protocol B reaction conditions (B, Tables 3 and 4), indicates how these new reaction conditions are able to increase the 1,4-regioselectivity in both the epoxides, particularly in epoxide $\mathbf{1} \boldsymbol{\beta}$. Actually, a 1.4 (from 57 to 80%, entries 2 and 4, Table 3) and 2.4 times increase (from 20 to 49% entries 1 and 4 , Table 4) is observed in epoxide $\mathbf{1} \boldsymbol{\alpha}$ and $\mathbf{1} \boldsymbol{\beta}$, respectively.

In accordance with expectations, the presence of IL favors, by delocalization, an increase in partial positive charge at the $\mathrm{C}(1)$-carbon further from the inductive electron- withdrawing effect of the protonated oxirane oxygen (structure 32, Scheme 8 where only epoxide $\mathbf{1 \beta}$ is shown for simplicity). Subsequent conjugate attack of the nucleophile (MeOH) on that carbon of epoxides $\mathbf{1} \boldsymbol{\alpha}$ and $\mathbf{1 \beta}$ can more easily occur with the corresponding increased formation of syn- and anti-1,4addition products (entries 4, Tables 3 and 4). ${ }^{15}$

Scheme 8. Effective delocalized intermediate species in the acid methanolysis of epoxide $\mathbf{1 \beta}$ in the presence of IL.

In both epoxides, the best result is obtained when the nucleophile is present only in a limited amount (6 equiv, protocol B reaction conditions) in a $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{IL}$ mixture as the solvent in the presence of $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH}$ as the acid (entries 4, Tables 3 and 4). Remarkably, the best result obtained with epoxide $\mathbf{1} \boldsymbol{\alpha}$ (80% 1,4-addition, entry 4 , protocol B, Table 3) is accompanied, for the first time, with a consistent level of syn-stereoselectivity (76%, with syn-/anti-1,4-addition product ratio $=19: 1) .{ }^{15}$ The remaining is constituted by the usual anti-1,2-addition product which, in these conditions, reaches its lowest result (20\%).

These last results confirm, once again, that epoxide $\mathbf{1} \boldsymbol{\alpha}$ is an efficient carbaglycosyl donor in the reaction with O-nucleophiles. At the same time, epoxide $\mathbf{1} \beta$ shows 1,4 -addition values (49%, entry 4, protocol B, Table 4) which makes also this system interesting for further synthetic applications.

Differently from what observed with epoxides $1 \boldsymbol{\alpha}$ and $\mathbf{1 \beta}$, the use of ILs in the methanolysis of aziridines $\mathbf{9 \alpha - N s}$ and $\mathbf{9 \beta - N s}$ was, unfortunately, unsuccessful and the regioselective results obtained under protocol B reaction conditions (entries 3, Tables 1 and 2) are completely similar to those previously obtained under the corresponding standard conditions (entries 2, Tables 1 and 2).

2.3. Acid and basic acetolysis of aziridines $\mathbf{9} \alpha-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$

Acid acetolysis reactions, carried out both under protocol A and B reaction conditions, indicated that the regioselctive behavior of aziridines $\mathbf{9 \alpha - N s}$ and $\mathbf{9 \beta - N s}$ is almost the same, giving similar mixtures of corresponding 1,2- and 1,4-addition products in both cases [about 30/40:70/60 1,2-/1,4-addition products ratio from $\mathbf{9} \boldsymbol{\alpha}$-Ns (entries 4 and 5, Table 1) and $\mathbf{9} \boldsymbol{\beta}-\mathbf{N s}$ (entries 4 and 5, Table 2)]. In this framework, it is worth noting that, in the case of azridine $\mathbf{9 \beta - N s}$, anti-1,4-adduct 31 is the only 1,4-addition product obtained and almost the same mixture of anti-1,2- $\mathbf{3 0}$ and anti-1,4-adduct 31 is obtained both under protocol A and protocol B reaction conditions. The peculiarity of this result with azridine $\mathbf{9 \beta} \mathbf{\beta} \mathbf{- N}$, also in a comparison with the results obtained in the corresponding methanolysis reactions, let us think that anti-1,4-adduct $\mathbf{3 1}$ could not be an addition product, but the result of a partial isomerization of allyl acetate $\mathbf{3 0}$ (anti-1,2-addition product), the only addition product and primary reaction product, in a type of acid-catalyzed suprafacial, completely stereoselective [3,3]sigmatropic rearrangement, as here shown (Scheme 9). ${ }^{22}$

Scheme 9. Hypothesized stereoselecive formation of anti-1,4-addition product $\mathbf{3 1}$ from corresponding anti-1,2-addition product $\mathbf{3 0}$ in the acid acetolysis of aziridine $\mathbf{9 \beta} \mathbf{\beta} \mathbf{- N s}$.

Alkaline acetolysis reactions [AcONa (4 equiv)/DMF, protocol B] of both aziridines $\mathbf{9} \boldsymbol{\alpha} \mathbf{- N s}$ and $\mathbf{9 \beta} \mathbf{- N s}$ turned out to be completely 1,2-regio- and anti-stereoselective with the exclusive isolation of the corresponding trans-3-acetoxy-4-(N-nosylamino) derivative 23 and 30 from aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$, respectively (entries 6 , Table 1 and 2 , and Scheme 10). In this way, a simple, completely regio- and stereoselective procedure is available for the synthesis of 4-deoxy-4-
(N -nosylamino)-3- O -acetyl-derivatives having relative $5 a$-carba-D,L-glucal (23) and $5 a$-carba-D,Lgulal configuration (30), respectively, and containing easily removable N - and O-protective groups (Scheme 10). ${ }^{8 c}$

Scheme 10. Alkaline acetolysis of aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathrm{Ns}$ and $\mathbf{9 \beta}$-Ns.

2.4. Regio- and stereoselective behavior of N-nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}$-Ns and $\mathbf{9 \beta - N s}$ in nucleophilic addition reactions of N -Nucleophiles

Aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9} \boldsymbol{\beta}-\mathbf{N s}$ react with $\mathrm{Et}_{2} \mathrm{NH}$ under protocol A reaction conditions (amine as the solvent) only in the presence of a Lewis acid, as $\mathrm{Sc}(\mathrm{OTf})_{3}$. Under these conditions, both aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta} \mathbf{- N s}$ afforded, in a completely 1,2 -regio- and anti-stereoselective fashion, the corresponding anti-1,2-addition product, trans-3-(N, N-diethylamino)-4-(N-nosylamino) derivatives 33 and 36, respectively (Scheme 11).

Scheme 11. Regio- and stereoselectivity of aminolysis and azidolysis of N-nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$.

As for the azidolysis reactions, carried out by means of the previously described protocol $\left(\mathrm{NaN}_{3}\right.$ in THF/ $\left.\mathrm{H}_{2} \mathrm{O}\right),{ }^{11}$ aziridine $\boldsymbol{9} \boldsymbol{\alpha}$-Ns turned out to be mainly 1,2-regio- and anti-stereoselective, affording a 77:23 mixture of anti-1,2-addition product, trans-3-azido-4-(N-nosylamino) derivative 34 and anti-1,4-addition product, trans-1-azido-4-(N-nosylamino) derivative 35 (${ }^{1} \mathrm{H}$ NMR), whereas aziridine $\mathbf{9 \beta - N s}$ showed a completely anti-1,2-regioselective behavior with the isolation of trans-3-azido-4-(N-nosylamino) derivative 37, as the only reaction product (Scheme 11).

The results obtained indicate that the behaviour of aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$ with an amine and azide ion is dominated by the nucleophilicity of the reagents which directs, completely in 9β Ns ($>99 \%$) and mostly in $\mathbf{9 \alpha - N s}$ (77-99\%), the ring opening toward an anti-1,2-addition process.
2.5. Functionalization of the double bond of model anti-1,2-addition products from N-nosyl aziridines $9 \alpha-N s$ and $9 \boldsymbol{\beta}-\mathrm{Ns}$

The reactivity in electrophilic reactions of the double bond of model anti-1,2-addition products, as trans-3-methoxy-4-(N-nosylamino) derivatives 20 and 27 and trans-3-acetoxy-4-(N nosylamino) derivatives $\mathbf{2 3}$ and $\mathbf{3 0}$ obtained from aziridines $\mathbf{9 \alpha - N s}$ and $\mathbf{9 \beta - N s}$, respectively (Tables 1 and 2 and Scheme 10), was checked. These compounds were subjected to two typical electrophilic addition reactions such as epoxidation and catalytic dihydroxylation.

Epoxidation of trans-3-acetoxy-4-(N-nosylamino)-1,2-unsaturated derivatives $\mathbf{2 3}$ and $\mathbf{3 0}$ by the $\mathrm{MCPBA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ protocol is not stereoselective and mixtures of the corresponding diastereoisomeric epoxides 38 and 39 (72: 28 ratio), from 23, and 40 and 41 (42:58 ratio), from 30, were obtained, then separated by preparative TLC (Scheme 12) (see Supplementary data, sections 3.3 and 3.4, for NMR identifications of epoxides 38-41 and considerations on the absence of diastereoselectivity found in their formation). ${ }^{23}$

Scheme 12. Epoxidation by MCPBA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ protocol of acetates 23 and $\mathbf{3 0}$ (anti-1,2-addition products).

On the contrary, catalytic dihydroxylation by $\mathrm{OsO}_{4} / \mathrm{NMO}$ protocol of trans-3-methoxy-4-(N -nosylamino)-1,2-unsaturated derivatives $\mathbf{2 0}$ and $\mathbf{2 7} 7^{24}$ carried out at room temperature in a t $\mathrm{BuOH} /$ acetone mixture turned out to be completely stereoselective in both cases and cis diol 42, a 4-deoxy-4-(N-nosylamino)-5a-carba- α-D,L-glucopyranose derivative, and 43, a 4-deoxy-4-(N -nosylamino)-5a-carba- β-D,L-idopyranose derivative, were obtained from 20 and 27, respectively, as the only reaction products (Schemes 13 and 14).

Scheme 13. Catalytic dihydroxylation of anti-1,2-addition product 20 by $\mathrm{OsO}_{4} / \mathrm{NMO}$ protocol.

In order to make the determination (${ }^{1} \mathrm{H}$ NMR) of the structure and configuration of the addition products easier, cis diols $\mathbf{4 2}$ and $\mathbf{4 3}$ were transformed into the corresponding diacetates 42diAc and 43-diAc (Schemes 13 and 14).

Scheme 14. Catalytic dihydroxylation of anti-1,2-addition product 27 by $\mathrm{OsO}_{4} / \mathrm{NMO}$ protocol.

An accurate examination of the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds, together with considerations based on the mechanism of the dihydroxylation reaction (complete synstereoselectivity) and an appropriate conformational analysis, confirmed the structure and configuration for $\mathbf{4 2 - d i A c}$ and $\mathbf{4 3 - d i A c}$, and thus for the corresponding cis diols $\mathbf{4 2}$ and $\mathbf{4 3}$, shown in Schemes 13 and 14.

In particular, the presence in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2}$-diAc of a trans diaxial relationship between the $\mathrm{H}(3)$ proton and the vicinal $\mathrm{H}(2)$ and $\mathrm{H}(4)$ protons ($J_{2,3}=J_{3,4}=9.7 \mathrm{~Hz}$) unequivocally indicated the exclusive presence of the corresponding triequatorial conformer 42'-diAc, the relative configuration at the $\mathrm{C}(1)$ and $\mathrm{C}(2)$ carbons and, as a consequence, the given structure (Scheme 13).

In the case of 43-diAc, the presence in the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum of a trans diaxial relationship between the $\mathrm{H}(1)$ proton and the axial $\mathrm{H}(5 \mathrm{aax})$ proton $\left(J_{1,5 \mathrm{aax}}=11.8 \mathrm{~Hz}\right)$ and of an axial-equatorial relationship with the $\mathrm{H}(2)$ proton $\left(J_{1,2}=3.1 \mathrm{~Hz}\right)$ unequivocally indicated the exclusive presence of the corresponding conformer 43'-diAc with the $-\mathrm{CH}_{2} \mathrm{OBn}$ side chain equatorial, the relative configuration at $\mathrm{C}(1)$ and $\mathrm{C}(2)$ carbons and, as a consequence, the given structure (Scheme 14).

The structures of 42-diAc and 43-diAc indicate that dihydroxylation occurred in both diastereoisomeric methoxy derivatives 20 and 27 with a completely anti facial selectivity with respect to the direction of the corresponding allyl substituent (-OMe). As for the remaining two substituents, while the $-\mathrm{CH}_{2} \mathrm{OBn}$ substituent seems to have no influence on the reaction, the β directed - NHNs group, axial in conformer $27,{ }^{24}$ could be responsible for the observed longer reaction time (96 h) found for methoxy derivative $\mathbf{2 7}$, when compared with diastereoisomeric
derivative 20 (15 h), by exerting steric hindrance to the β-face-approaching electrophile (Scheme 14).

The interesting behavior observed with the racemic N-nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}$-Ns and $\mathbf{9 \beta} \mathbf{\beta} \mathbf{- N s}$ in nucleophilic addition reactions, and the increased importance of aminocyclitols in medicinal chemistry ${ }^{3-6}$ prompted us to synthesize structurally related enantiomerically pure aziridines. Considering that the - NHAc substituent is biologically interesting, we thought appropriate to direct our efforts toward enantiopure N-acetyl aziridines ($3 S, 4 R, 5 S$)- $\mathbf{9} \boldsymbol{\alpha}$-Ac and ($3 R, 4 S, 5 S$)- $\mathbf{9} \boldsymbol{\beta}$-Ac (Scheme 15). Actually, in a consistent difference with aziridines $\boldsymbol{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\boldsymbol{9} \boldsymbol{\beta}-\mathbf{N s}$ which transfer at the C(4)-carbon a-NHNs group (Scheme 2 and Tables 1 and 2), when aziridines $9 \boldsymbol{\alpha}$-Ac and $\mathbf{9 \beta}$-Ac are subjected to the corresponding ring opening reactions, a -NHAc group is regio- and stereoselectively introduced at the $\mathrm{C}(4)$ carbon of an unsaturated carbasugar system [carbaglycal44α and 44β (1,2-addition product) and/or pseudocarbaglycal-derivative 45α and 45β (1.4addition product)] with a clear added value to the products (Scheme 15). Both -NHAc and NHNs ${ }^{8 c}$ group can be easily deprotected to corresponding free amino group. However, this step, probably unavoidable in - NHNs substituted derivatives in order to have biologically interesting compounds, could not be necessary in the case of corresponding -NHAc substituted products.

Scheme 15. Hypothesized behavior of aziridines $\mathbf{9 \alpha - A c}$ and $\mathbf{9 \beta - A c}$ in nucleophilic addition reactions.

As previously described for the racemic N-nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}$-Ns and $\mathbf{9 \beta}$-Ns (Schemes 3 and 4), the synthesis of the new, non racemic N-acetyl aziridines $\mathbf{9} \boldsymbol{\alpha}$-Ac and $\mathbf{9 \beta}$-Ac starts from the corresponding enantiomerically pure vinyl epoxide of opposite configuration (-)-1 $\boldsymbol{\beta}$ and (-)-1 $\boldsymbol{\alpha}$, respectively (Schemes 16 and 17). ${ }^{9 b}$

Following the corresponding protocol, azidolysis $\left(\mathrm{NaN}_{3} / \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}\right)$ of epoxide (-)-1 $\boldsymbol{\beta}$ afforded trans 3,4 -azido alcohol $(+)$ - $\mathbf{1 2}$, as the only reaction product, which was then reduced by means of $\mathrm{PS}-\mathrm{PPh}_{3}$ to trans $\mathbf{3 , 4}$-amino alcohol $(+) \mathbf{- 1 3}$. The treatment of amino alcohol $(+)$ - $\mathbf{1 3}$ by $\mathrm{AcCl} / \mathrm{NEt}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ turned out to be completely regioselective with the exclusive formation of the corresponding N-acetyl derivative (+)-46 which was mesylated ($\mathrm{MsCl} / \mathrm{P}$) to give the fully protected derivative (+)-47. Base-catalyzed (t-BuOK) cyclization of trans N-acetyl- O mesyl derivative (+)-47 in anhydrous MeCN afforded the desired, enantiomerically pure N-acetyl aziridine (-)-9 $\boldsymbol{\alpha}-\mathbf{A c}[57 \%$ overall yield, for 5 steps starting from epoxide (-) $\mathbf{- 1 \beta}$] (Scheme 16).

Scheme 16. Synthesis of vinyl N-acetyl aziridine (-)-9 $\boldsymbol{\alpha}$-Ac.

The corresponding procedure starting from enatiomerically pure epoxide $(-)-1 \boldsymbol{\alpha}^{9 b}$ was followed for the synthesis of aziridine (-)-9 $\boldsymbol{\beta}-\mathbf{A c}$, as shown in Scheme 17. Azidolysis of epoxide (-)- $1 \boldsymbol{\alpha}$ by the $\mathrm{NaN}_{3} / 1: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ protocol afforded, as the only reaction product, trans 3,4 -azido alcohol (-)-16, which was then reduced ($\mathrm{PS}-\mathrm{PPh}_{3}$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$) to the corresponding trans 3,4amino alcohol (+)-17. Regioselective N-acetylation of trans 3,4-amino alcohol (+)-17 by AcCl/Et ${ }_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded N-acetyl derivative (+) $\mathbf{- 4 8}$ which was mesylated ($\mathrm{MsCl} / \mathrm{Py}$) to give trans N -acetyl- O-mesyl derivative (+)-49. The treatment of $(+)-49$ with t - BuOK in anhydrous MeCN afforded enantiomerically pure N-acetyl aziridine (-)-9及-Ac [54\% overall yield for 5 steps starting from epoxide (-)-1 $\boldsymbol{\alpha}]$ (Scheme 17).

Scheme 17. Synthesis of vinyl N-acetyl aziridine (-)-9ß-Ac.

As the chiral starting epoxides $(-)-1 \boldsymbol{\alpha}$ and $(-)-\mathbf{1} \boldsymbol{\beta}$ had been prepared in a stereodivergent fashion starting from commercially available (+)-tri- O-acetyl-D-glucal, the common starting material and chiral source, ${ }^{9 b}$ the same can be said for enantiomerically pure N-acetyl aziridines (-)$\mathbf{9 \alpha - A c}$ and (-)-9 $\boldsymbol{\beta}-\mathbf{A c}$ which derive from epoxides (-)-1 β and (-)-1 $\boldsymbol{\alpha}$, respectively, in a completely stereoselective fashion.

Contrary to expectations based on racemic N-nosyl aziridines $\mathbf{9 \alpha} \boldsymbol{\alpha}$-Ns and $\mathbf{9 \beta} \mathbf{- N s}$, the corresponding enantiomerically pure N-acetyl aziridines (-)- $\mathbf{9} \boldsymbol{\alpha}-\mathbf{A c}$ and (-)- $\mathbf{9 \beta - A c}$ turned out to be not particularly stable and had to be stored at $-20^{\circ} \mathrm{C}$.

2.7. Structures and configurations

The structure and configuration of regioisomeric 1,2- and 1,4-addition products obtained in the opening reactions of aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$ have been determined by compared analysis of homonuclear scalar (COSY), dipolar (NOESY) and heteronuclear scalar (HSQC) correlations in their 2D NMR maps and by taking into account that the configuration at the $\mathrm{C}(4)$-carbon necessarily corresponds to that of the starting aziridine.

1,2-Addition products obtained in the opening reactions of aziridines $\mathbf{9} \alpha$-Ns and $\mathbf{9 \beta}$-Ns have been characterized by the presence of scalar correlations of the corresponding vinyl $\mathrm{H}(1)$ proton with the methylene protons at the $\mathrm{C}(5 \mathrm{a})$-carbon.

The relative configuration at the C(3)-carbon of anti-1,2-addition products 20, 23, $\mathbf{3 3}$ and 34, obtained from aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathrm{Ns}$, and $\mathbf{2 7}, \mathbf{3 0}, \mathbf{3 6}$ and $\mathbf{3 7}$, obtained from aziridine $\mathbf{9 \beta - N s}$, has been determined by the coupling constant value between the diaxial ($J_{3,4}=8.7-9.7 \mathrm{~Hz}$) or diequatorial $\mathrm{H}(3)-\mathrm{H}(4)$ proton relationship ($J_{3,4}=3.5-4.0 \mathrm{~Hz}$) in the corresponding compounds from $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$, respectively, and by the presence of NOE between the $\mathrm{H}(3)$ proton and the NH in the corresponding compounds from aziridine $\mathbf{9 \beta - N s}$. Moreover, a theoretical conformational study had indicated that anti-1,2-addition products from both aziridines $\mathbf{9 \alpha - N s}$ and $\mathbf{9 \beta - N s}$ almost completely exist in the corresponding conformer with the $-\mathrm{CH}_{2} \mathrm{OBn}$ side chain equatorial (Scheme 18). ${ }^{24}$ In this framework, the presence of a diequatorial $\mathrm{H}(3)-\mathrm{H}(4)$ protons relationship ($J_{3,4}=4.3 \mathrm{~Hz}$) in compound $\mathbf{2 4}$, obtained in the acetolysis of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns, clearly indicated the corresponding relative configuration at the $\mathrm{C}(3)$-carbon and, as a consequence, the structure of syn-1,2-addition product (Scheme 18). ${ }^{17}$

20,23,33,34 ($\left.\mathrm{J}_{3,4}=8.7-9.7 \mathrm{~Hz}\right)$
syn-1,2-addition product

$24\left(J_{3,4}=4.3 \mathrm{~Hz}\right)$ and/or

22,26
syn-1,4-addition product

syn-1,4-addition product

$\mathrm{NuH}=\mathrm{MeOH}, \mathrm{AcOH}, \mathrm{NaN}_{3}, \mathrm{NHEt}_{2}$
$27,30,36,37\left(J_{3,4}=3.5-4.0 \mathrm{~Hz}\right)$
anti-1,2-addition product

Scheme 18. $\mathrm{H}(3)-\mathrm{H}(4)$ protons coupling constant $\left(J_{3,4}\right)$ in anti-1,2-addition products from aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9} \boldsymbol{\alpha}$-Ns and syn-1,2-addition product from aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$, NOEs in anti-1,2-addition products from aziridine $\mathbf{9 \beta} \mathbf{- N s}$ and syn- and anti-1,4-addition products from both aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta}$-Ns.

1,4-Addition products obtained in the opening reactions of aziridines $\mathbf{9} \boldsymbol{\alpha}$-Ns and $\mathbf{9 \beta}-\mathrm{Ns}$ have been characterized by means of the corresponding allyl $\mathrm{H}(1)$ proton which gives rise to intense NOEs on the methylene ring protons $\left[\mathrm{H}\left(5 \mathrm{a}_{\mathrm{ax}}\right)\right.$ and $\left.\mathrm{H}\left(5 \mathrm{a}_{\mathrm{eq}}\right)\right]$ and on the $\mathrm{H}(2)$ vinyl proton (Scheme 18).

The relative configuration at the $\mathrm{C}(1)$-carbon of anti-1,4-addition products $\mathbf{2 1}$ and $\mathbf{2 5}$ from aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ has been established on the basis of the intense $\mathrm{H}(1) / \mathrm{H}(5)$ dipolar interaction, as expected for a $\mathrm{H}(1) / \mathrm{H}(5)$ cis-1,3-diaxial arrangement. By contrast, in the case of the corresponding syn-1,4-addition products 22 and 26, both $\mathrm{H}(1)$ and $\mathrm{H}(4)$ protons produce NOE on the methylene proton $\mathrm{H}\left(5 \mathrm{a}_{\mathrm{ax}}\right)$, confirming the presence of a cis relationship between the $\mathrm{H}(1)$ and $\mathrm{H}(4)$ protons.

In accordance with the above described results and with the structures shown in Scheme 18, opposite contacts are observed in the case of 1,4-addition products obtained by nucleophilic addition to aziridine $\mathbf{9 \beta - N s}$: an intense $\mathrm{H}(1) / \mathrm{H}(5)$ dipolar interaction is found in syn-1,4-addition product 29, whereas in the corresponding anti-1,4-addition products 28 and 31, $\mathrm{H}(1)$ and NH protons produce NOE on the methylene proton $\mathrm{H}\left(5 \mathrm{a}_{\mathrm{ax}}\right)$.

In the case of epoxides 36-41 (Scheme 12), due to the conformational strain of the bicyclo structures, the relative configurations at the $\mathrm{C}(1)$ and $\mathrm{C}(2)$ carbons have been established on the basis of the comparison of dipolar interactions produced by $\mathrm{H}(1), \mathrm{H}(4)$ or NH on the methylene ring protons $\mathrm{H}\left(5 \mathrm{a}_{\mathrm{ax}}\right) / \mathrm{H}\left(5 \mathrm{a}_{\mathrm{eq}}\right)$ (Scheme 12) in a similar way as discussed for the assignment of the configuration at the $\mathrm{C}(1)$ carbon of syn-1,4-addition products from aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns (epoxides $\mathbf{3 8}$ and 40) or anti-1,4-addition products from aziridine $\mathbf{9 \beta - N s}$ (epoxides 39 and 41) (see Supplementary data, section 3.3).

2.8. Conclusions

The new carba-D,L-allal- and carba-D,L-galactal-derived vinyl N-nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$ have been prepared and their regio- and stereoselective behavior examined in ring opening reactions with $O-(\mathrm{MeOH}$ and AcOH$)$ and N -nucleophiles (azide anion and diethylamine). In particular, by means of acid methanolysis, taken as a model reaction, their tendency to give 1,4addition products (the so-called carbaglycosylating ability, as the total amount of syn- and/or anti-1,4-adducts) was checked, in view of a possible use of these activated carbaglycal system in the regio- and stereoselective construction of alkyl 4-deoxy-4-(N-nosylamino)-2,3-unsaturated-5a-carba- O-glycosides. The results have indicated that the carboglycosylating ability of aziridines $9 \boldsymbol{\alpha}-$ Ns and $\mathbf{9 \beta}$-Ns is similar (62%, entry 1 Table 1, and 60%, entry 2 Table 2, respectively) to that of the corresponding carba-D,L-allal-derived epoxide $1 \boldsymbol{\alpha}$ (57-68\%), and decidedly superior to carba-D,L-galactal epoxide $\mathbf{1 \beta}$ (20\%) (Scheme 1). ${ }^{\text {9a }}$ The use of an Ionic Liquid (IL), as co-solvent in the acid methanolysis reaction, determines a consistent increase in the carboglycosylating ability of epoxides $\mathbf{1} \boldsymbol{\alpha}(80 \%)$ and $\mathbf{1} \boldsymbol{\beta}$ (49\%) (entries 4, Tables 3 and 4), but has no effect with aziridines $\mathbf{9} \boldsymbol{\alpha}-$ Ns and $\mathbf{9 \beta} \mathbf{\beta - N s}$. The catalytic dihydroxylation by $\mathrm{OsO}_{4} / \mathrm{NMO}$ of the residual $\mathrm{C}(1)-\mathrm{C}(2)$ unsaturation
of model anti-1,2-addition products from aziridines $\mathbf{9} \boldsymbol{\alpha} \mathbf{- N s}$ and $\mathbf{9 \beta - N s}$ turned out to be completely stereoselective and could constitute a new protocol for the stereoselective synthesis of 4-N-protected-aminocyclitol-derivatives. Alternatively, MCPBA oxidation of further model anti-1,2addition products led to pairs of diastereoisomeric epoxides which were obtained pure by TLC separation. These epoxides could act as effective and stereoselective carbaglycosyl donors for the synthesis of 4-deoxy-4-(N-nosylamino)-5a-carba-D,L- α - or - β-glycosides, ${ }^{23}$ and appropriate studies will be reported in due course on the regio- and stereoselective behavior of these oxirane systems in the corresponding nucleophilic opening reactions in order to evaluate this point.

3. Experimental

3.1.General

All reactions were performed in a flame-dried modified Schlenk (Kjeldahl shape) flask fitted with a glass stopper or rubber septum under a positive pressure of argon. Flash column chromatography was performed employing 230-400 mesh silica gel (Macherey-Nagel). Analytical TLC were performed on Alugram SIL G/UV 254 silica gel sheets (Macherey-Nagel) with detection by 0.5% phosphomolybdic acid solution in 95% EtOH. $\mathrm{NaN}_{3}, \mathrm{PS}^{2}-\mathrm{PPh}_{3}, \mathrm{NsCl}, \mathrm{MsCl}, \mathrm{AcOH}, \mathrm{HPLC}$ grade MeOH , anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN , pyridine and DMF over molecular sieves were purchased from Aldrich and used without purification. $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from sodium/benzophenone. Racemic epoxides $\mathbf{1} \boldsymbol{\alpha}$ and $\mathbf{1 \beta},{ }^{9 \mathrm{a}}$ and enantiomerically pure epoxides (-)-1 $\boldsymbol{\alpha}$ and $(-) \mathbf{- 1} \boldsymbol{\beta},{ }^{9 b}$ were prepared as previously described. Racemic trans 3,4 -azido alcohols $\mathbf{1 2}$ and $\mathbf{1 6}$ had been previously described. ${ }^{9 \mathrm{a}}$ Routine ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 250 and 62.5 MHz , respectively. ${ }^{1} \mathrm{H}$ NMR COSY, NOESY and HSQC experiments were performed with a spectrometer operating at 600 MHz . IR spectra were obtained by means of a FTIR spectrophotometer. Elemental analyses were performed at Dipartimento di Farmacia, University of Pisa, by means of Carlo Erba Automated CHN Analyzer model 1106.

3.2. Synthesis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns

3.2.1. Azidolysis of epoxide $\mathbf{1} \beta$ by NaN_{3} in 1:1 THF/ $\mathrm{H}_{2} \mathrm{O}$

A solution of epoxide $\mathbf{1} \beta(0.150 \mathrm{~g}, 0.694 \mathrm{mmol})$ in distilled THF $(1.70 \mathrm{~mL})$ was added to a solution of $\mathrm{NaN}_{3}\left(0.068 \mathrm{~g}, 1.041 \mathrm{mmol}, 1.5\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1.70 \mathrm{~mL})$ and the reaction mixture was stirred for 20 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, evaporation of the washed (brine) organic solution gave trans 3,4 -azido alcohol $12(0.155 \mathrm{~g}, 86 \%$ yield $),{ }^{\text {9a }}$ pure as a yellow liquid, which was used in the next step without any further purification.

3.2.2. 6-O-Benzyl-3-deoxy-3-amino-5a-carba-D,L-gulal (13)

Polymer-supported $\mathrm{PPh}_{3}\left(\mathrm{PS}_{-} \mathrm{PPh}_{3}, 3 \mathrm{mmol} / \mathrm{g}\right)(0.339 \mathrm{~g}, 1.017 \mathrm{mmol}, 1.70$ equiv) was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone and methanol, dried at $60^{\circ} \mathrm{C}$ for 3 h and allowed to swell in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ 20:1 $(6.0 \mathrm{~mL})$ for 30 minutes without stirring. ${ }^{8 \mathrm{~b}}$ A solution of trans 3,4 -azido alcohol $\mathbf{1 2}^{9 \mathrm{a}}(0.155 \mathrm{~g}$, 0.598 mmol) in THF (1.0 mL) was added dropwise to the above prepared suspension of $\mathrm{PS}^{2}-\mathrm{PPh}_{3}$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ and the reaction mixture was stirred for 48 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the filtered (Celite ${ }^{\circledR}$) organic solution afforded a crude product consisting of
trans 3,4-amino alcohol $\mathbf{1 3}(0.134 \mathrm{~g}, 96 \%$ yield), practically pure as a white, crystalline solid, mp $96-98^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.15$ (9:1 AcOEt/MeOH); FTIR $v_{\max }$ (Nujol) 3355 (broad), 1453, 1364, 1199, 1176, $1073,909 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.69(\mathrm{ddt}, 1 \mathrm{H}, J=9.9,3.3,1.3 \mathrm{~Hz}), 5.54-$ $5.63(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{dd}, 1 \mathrm{H}, J=6.7,2.2 \mathrm{~Hz}), 3.66(\mathrm{dd}, 1 \mathrm{H}, J=6.7,2.9 \mathrm{~Hz}), 3.59(\mathrm{dd}$, $1 \mathrm{H}, J=9.2,5.4 \mathrm{~Hz}), 3.22-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 137.9,129.7,128.6,128.0,127.8,127.2,76.1,73.7,72.6,52.0,35.2,26.2$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 72.70; H, 8.20; N, 6.00. Found: C, $72.55 ; \mathrm{H}, 8.01 ; \mathrm{N}, 5.74$.

3.2.3. 6-O-Benzyl-3-deoxy-3-(N-nosylamino)-5a-carba-D,L-gulal (14)

A solution of trans 3,4-amino alcohol $13(0.134 \mathrm{~g}, 0.575 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5$ $\mathrm{mL})$ was treated at $0^{\circ} \mathrm{C}$ with $\mathrm{Et}_{3} \mathrm{~N}(0.096 \mathrm{~mL}, 0.69 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NsCl}(0.140 \mathrm{~g}, 0.632$ mmol, 1.1 equiv) and the reaction mixture was stirred for 2 h at room temperature. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude residue consisting of N-nosyl derivative $14(0.238 \mathrm{~g}, 99 \%$ yield), as a yellow viscous liquid, sufficiently pure to be directly used in the next step: $\mathrm{R}_{f}=0.42$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) $3310,1539,1416,1365,1248,1070,788 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.09-$ $8.18(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.78-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.39(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~s}$, $2 \mathrm{H}), 4.31-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.40(\mathrm{~m}, 3 \mathrm{H}), 1.84-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.77(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta 147.4,137.7,133.8,133.6,132.8,131.3,130.6,128.2,127.5,127.4$, 125.0, 122.6, 73.1, 71.9, 71.1, 54.2, 45.9, 33.9, 24.2. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ S: C 57.41; H, 5.30; N, 6.69. Found: C, 57.26; H, 5.11; N, 6.43.

3.2.4. 6-O-Benzyl-4-O-mesyl-3-deoxy-3-(N-nosylamino)-5a-carba-D,L-gulal (15)

A solution of N-nosyl derivative $14(0.458 \mathrm{~g}, 1.096 \mathrm{mmol})$ in anhydrous pyridine $(5.0 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with $\mathrm{MsCl}(0.169 \mathrm{~mL}, 2.192 \mathrm{mmol}, 2.0$ equiv) and the reaction mixture was stirred for 12 h at the same temperature. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of the washed $(10 \%$ aqueous HCl , saturated aqueous NaHCO_{3} and brine) organic layer afforded a crude residue (0.525 g) consisting of trans N-nosyl- O-mesyl derivative $\mathbf{1 5}\left(\mathrm{H}^{1} \mathrm{NMR}\right)$ which was subjected to flash chromatography. Elution with a $1: 1$ hexane/ AcOEt mixture afforded trans N-nosyl- O-mesyl derivative 15 ($0.478 \mathrm{~g}, 88 \%$ yield), pure as a white solid $\mathrm{mp} 53-55{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.33$ (1:1 hexane/AcOEt); FTIR $v_{\max }($ Nujol $) 3310,1537,1414,1344,1165,1072,918,844,731 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.22-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.43(\mathrm{~m}, 5 \mathrm{H}), 5.95-$ 6-05 (m, 1H), 5.42-5.52 (m, 1H), $5.35(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.91-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=11.6$ $\mathrm{Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.22(\mathrm{bs}, 1 \mathrm{H}), 3.36-3-47(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.42(\mathrm{~m}, 1 \mathrm{H})$,
1.98-2.15 (m, 1H), 1.79-1.97 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta 147.9,137.9,134.0,133.3,132.6$, 132.1, 128.7, 128.2, 128.1, 125.6, 121.4, 77.4, 73.3, 69.4, 52.4, 37.8, 32.8, 23.5. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$: C 50.79; H, 4.87; N, 5.63. Found: C, $50.48 ; \mathrm{H}, 4.61 ; \mathrm{N}, 5.59$.

3.2.5 (1S*, 5S*, $6 R^{*}$)-5-(Benzyloxymethyl)-7-nosyl-7-azabicyclo[4.1.0]hept-2-ene ($\mathbf{9} \boldsymbol{\alpha} \boldsymbol{\alpha}-\mathrm{Ns}$)

A solution of trans N-nosyl- O-mesyl derivative $15(0.145 \mathrm{~g}, 0.292 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(15.0 \mathrm{~mL})$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.121 \mathrm{~g}, 0.877 \mathrm{mmol}, 3.0$ equiv) at room temperature and the reaction mixture was stirred for 1 h at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, evaporation of the filtered organic solution afforded N-nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns $(0.113 \mathrm{~g}, 97 \%$ yield) practically pure, as a pale yellow liquid: $\mathrm{R}_{f}=0.60$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) 1542, 1364, 1332, 1164, 1123, 1087, 1058, $950 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.17-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.67-$ 7-79 (m, 3H), 7.28-7.41 (m, 5H), 5.88-5.99 (m, 1H), 5.78-5.87 (m, 1H), 4.52 ($\mathrm{s}, 2 \mathrm{H}), 3.56-3-64(\mathrm{~m}$, $1 \mathrm{H})$, 3.28-3.48 (m, 3H), 2.10-2.26 (m, 2H), 1.94-2.09 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta 147.8,134.3$, 132.4, 131.2, 128.6, 127.8, 124.7, 124.9, 124.0, 121.1, 73.3, 70.5, 44.9, 38.9, 29.9, 23.7. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: C 59.99; H, 5.03; N, 6.99. Found: C, 59.87; H, 4.84; N, 6.71.

3.3. Synthesis of N-nosyl aziridine $\mathbf{9} \boldsymbol{\beta}$-Ns

3.3.1. Azidolysis of epoxide $\mathbf{1} \boldsymbol{\alpha}$ by NaN_{3} in 1:1 $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$

A solution of epoxide $1 \boldsymbol{\alpha}(0.138 \mathrm{~g}, 0.639 \mathrm{mmol})$ in distilled THF (1.6 mL) was added to a solution of $\mathrm{NaN}_{3}\left(0.062 \mathrm{~g}, 0.958 \mathrm{mmol}, 1.5\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{~mL})$ and the reaction was stirred for 20 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, evaporation of the washed (brine) organic solution afforded trans 3,4 -azido alcohol $16\left(0.136 \mathrm{~g}, 82 \%\right.$ yield) ${ }^{9}{ }^{\text {a }}$ pure as a yellow liquid, which was used in the next step without any further purification.

3.3.2. 6-O-Benzyl-3-deoxy-3-amino-5a-carba-D,L-glucal (17)

PS- $\mathrm{PPh}_{3}(3 \mathrm{mmol} / 1 \mathrm{~g})\left(0.617 \mathrm{~g}, 1.85 \mathrm{mmol}, 1.70\right.$ equiv) was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone and methanol, dried at $60^{\circ} \mathrm{C}$ for 3 h and allowed to swell in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ 20:1 (10.5 mL) for 30 minutes without stirring. ${ }^{8 b}$ A solution of trans 3,4 -azido alcohol $\mathbf{1 6}^{9 \mathrm{~b}}(0.282 \mathrm{~g}, 1.088 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added dropwise to the above suspension of $\mathrm{PS}-\mathrm{PPh}_{3}$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ and the reaction mixture was stirred for 48 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the filtered (Celite ${ }^{\circledR}$) organic solution afforded a crude product consisting of trans 3,4-amino alcohol 17 (0.241 $\mathrm{g}, 95 \%$ yield), practically pure as a white solid, $\mathrm{mp} 92-95^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.10(9: 1 \mathrm{AcOEt} / \mathrm{MeOH}) ;$ FTIR $v_{\max }$ (Nujol) 3350 (broad), 1455, 1364, $11921176,1084,915 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 7.20-$ 7.39 (m, 5H), 5.66 (ddd, $1 \mathrm{H}, J=9.5,4.1,1.7 \mathrm{~Hz}$), 5.13 (ddd, $1 \mathrm{H}, J=9.5,4.5,2.6 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H})$,
3.87-3.95 (m, 1H), 3.76 (dd, $1 \mathrm{H}, J=9.2,3.7 \mathrm{~Hz}), 3.65-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=9.2,6.2 \mathrm{~Hz})$, 2.65-3.00 (m, 3H), 2.26-2.37 (m, 1H), 2.07-2.17 (m, 1H), 1.81-1.93 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 139.9, 129.5, 129.3, 128.7, 128.6, 128.4, 76.4, 74.3, 72.5, 56.7, 41.4, 30.4. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 72.70; H, 8.20; N, 6.00. Found: C, 72.55; H, 7.91; N, 5.66.

3.3.3. 6-O-Benzyl-3-deoxy-3-(N-nosylamino)-5a-carba-D,L-glucal (18)

A solution of trans 3,4-amino alcohol $17(0.230 \mathrm{~g}, 0.987 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0$ $\mathrm{mL})$ was treated at $0^{\circ} \mathrm{C}$, with $\mathrm{Et}_{3} \mathrm{~N}(0.165 \mathrm{~mL}, 1.184 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NsCl}(0.240 \mathrm{~g}, 1.084$ $\mathrm{mmol}, 1.1$ equiv) and the reaction mixture was stirred for 4 h at room temperature. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude residue consisting of N-nosyl derivative 18 ($0.408 \mathrm{~g}, 99 \%$ yield), as a yellow viscous liquid, sufficiently pure to be directly used in the next step: $\mathrm{R}_{f}=0.24$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) 3357 (broad), 1537, 1439, 1164, 1118, 1070, 1023, 736. $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.13-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{ddd}$, $1 \mathrm{H}, J=10.0,4.6,2.3 \mathrm{~Hz}), 5.58(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.38-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz})$, $4.45(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.86-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=9.3,4.2 \mathrm{~Hz}), 3.52(\mathrm{dd}, 1 \mathrm{H}, J=9.3$, 6.1 Hz), 3.47-3.59 (m, 1H), 3.31-3.35 (m, 1H), 1.82-2.14 (m, 3H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta 148.0$, $137.8,133.5,133.1,131.5,129.1,128.7,128.1,127.9,126.3,125.6,74.5,73.6,72.7,59.6,39.6$, 28.0. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ S: C 57.41; H, 5.30; N, 6.69. Found: C, $57.18 ; \mathrm{H}, 5.06$; N, 6.35.

3.3.4. 6-O-Benzyl-4-O-mesyl-3-deoxy-3-(N-nosylamino)-5a-carba-D,L-glucal (19)

A solution of N-nosyl derivative $18(0.458 \mathrm{~g}, 1.096 \mathrm{mmol})$ anhydrous pyridine $(5.0 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with $\mathrm{MsCl}(0.169 \mathrm{~mL}, 2.192 \mathrm{mmol}, 2.0$ equiv) and the reaction mixture was stirred for 12 h at the same temperature. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of the washed (10% aqueous HCl , saturated aqueous NaHCO_{3} and brine) organic layer afforded a crude residue (0.525 g) consisting of trans N-nosylamino- O-mesyl derivative 19 ($\mathrm{H}^{1} \mathrm{NMR}$) which was subjected to flash chromatography. Elution with a $1: 1$ hexane/ AcOEt mixture afforded trans N-nosyl- O-mesyl derivative 19 ($0.478 \mathrm{~g}, 88 \%$ yield), pure as a white solid, $\mathrm{mp} 53-55{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.22(1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (Nujol) 3325, 1539, 1441, 1423, 1344, 1167, 1119, 1094, 952, $776 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.11-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 5 \mathrm{H})$, $5.79(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.65-5.75(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{ddd}, 1 \mathrm{H}, J=10.1,4.0,2.3 \mathrm{~Hz}), 4.82(\mathrm{dd}, 1 \mathrm{H}, J=$ $9.4,8.4 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.26-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, 1 \mathrm{H}, J$ $=9.4,4.5 \mathrm{~Hz}), 3.58(\mathrm{dd}, 1 \mathrm{H}, J=9.4,2.7 \mathrm{~Hz}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.41(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}\right) \delta$ $148.3,138.2,134.1,133.4,130.9,130.8,130.7,128.5,128.1,127.8,125.7,123.9,81.1,73.4,69.5$,
56.7, 52.7, 39.7, 29.9. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$: C 50.79; H, 4.87; N, 5.63. Found: C, 50.71; H, 4.92; N, 5.54.

3.3.5. ($1 R^{*}, 5 S^{*}, 6 S^{*}$)-5-(Benzyloxymethyl-)7-nosyl-7-azabicyclo[4.1.0]hept-2-ene ($\mathbf{9} \boldsymbol{\beta} \boldsymbol{\beta}-\mathrm{Ns}$)

A solution of trans N-nosyl- O-mesyl derivative $19(0.227 \mathrm{~g}, 0.458 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(22.0 \mathrm{~mL})$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.190 \mathrm{~g}, 1.374 \mathrm{mmol}, 3.0$ equiv) at room temperature, and the reaction mixture was stirred for 1 h at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, evaporation of the filtered organic solution afforded N-nosyl aziridine $9 \boldsymbol{\beta} \mathbf{- N s}(0.175 \mathrm{~g}, 95 \%$ yield $)$ practically pure, as a pale yellow liquid: $\mathrm{R}_{f}=0.58$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) 1541, 1364, 1331, 1161, 1123, 1089, 1059, $948 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.10-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.59-$ 7-78 (m, 3H), 7.28-7.38 (m, 5H), 5.85-6.04 (m, 2H), $4.49(\mathrm{~d}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 4.41(\mathrm{~d}, 1 \mathrm{H}, J=11.8$ $\mathrm{Hz}), 3.59(\mathrm{dt}, 1 \mathrm{H}, J=7.1,1.8 \mathrm{~Hz}), 3.42-3.56(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.3,138.4,134.3,133.6,132.1,131.1,128.6,127.8,124.7,120.4,73.5,73.1$, 44.5, 40.1, 31.5, 24.3. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: C 59.99; H, 5.03; N, 6.99. Found: C, 59.75; H, 4.92; N, 6.68. CONTROLLARE SPETTRO

3.4. Reactions of N-nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$ with MeOH (O-nucleophile) under acid conditions

3.4.1. Methanolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns with $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}$ (protocol A)

N-Nosyl aziridine $9 \boldsymbol{\alpha}$-Ns $(0.060 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added to $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}(6.0 \mathrm{~mL})$ and the resulting reaction mixture was stirred 2 h at room temperature. After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, solid NaHCO_{3} was added. Evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution, afforded a crude product ($0.062 \mathrm{~g}, 96 \%$ yield) consisting of a 38:30:32 mixture of (N-nosylamino)-methoxy derivatives 20, 21 and 22 (${ }^{1} \mathrm{H}$ NMR) (entry 1, Table 1) which was subjected to preparative TLC, using a $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\mathrm{Pr})_{2} \mathrm{O}$ mixture as the eluant. Extraction of the three most intense bands afforded trans-3-methoxy-4-(N-nosylamino)- 20 ($0.013 \mathrm{~g}, 20 \%$ yield), trans- 21 ($0.012 \mathrm{~g}, 19 \%$ yield) and cis-1-methoxy-4-(N-nosylamino) derivative 22 ($0.012 \mathrm{~g}, 18 \%$ yield).

6-O-Benzyl-3-O-methyl-4-deoxy-4-(N-nosylamino)-5a-carba-D,L-glucal (20): a liquid, $\mathrm{R}_{f}=0.31$ (6:4 hexane/AcOEt); FTIR $v_{\max }$ (liquid film) 3346, 1536, 1441, 1341, 1162, 1086, $732 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.10-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.72-5.84$
(m, 1H), $5.58(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.47(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}$, $J=11.7 \mathrm{~Hz}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=9.1,4.4 \mathrm{~Hz}), 3.51-3.60(\mathrm{~m}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.46(\mathrm{~m}, 1 \mathrm{H})$, 1.94-2.19 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 146.6,137.5,135.2,131.9,131.8,130.3,128.0,127.5$, 127.0, 126.8, 124.0, 123.6, 80.4, 72.5, 70.7, 56.8, 54.6, 37.9, 28.5. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}$ 58.32; H, 5.59; N, 6.47. Found: C, 58.44; H, 5.31; N, 6.14.

Methyl 6-O-benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- β-D,L-erithro-hex-2-enopyranoside (21): a liquid, $\mathrm{R}_{f}=0.39\left[9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\operatorname{Pr})_{2} \mathrm{O}\right] ;$ FTIR $v_{\max }$ (liquid film) $3390,1537,1452,1416,1344$, 1161, 1077, 1061, $1010 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{dd}, 1 \mathrm{H}, J=7.4,2.0 \mathrm{~Hz}), 7.84(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.4,1.8 \mathrm{~Hz}$), 7.60-7.74 (m, 2H), 7.26-7.41 (m, 5H), 5.78 (ddd, $1 \mathrm{H}, J=10.1,3.7,1.8 \mathrm{~Hz}$), 5.28-5.38 $(\mathrm{m}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.00-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.21-$ $2.33(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.58(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.0,138.5,134.8$, 133.7, 133.1, 132.4, 131.1, 129.1, 128.5, 127.7, 127.6, 125.5, 75.2, 73.3, 70.8, 56.0, 53.0, 31.8, 29.9. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ S: C 58.32; H, 5.59; N, 6.47. Found: C, 58.24; H, 5.37; N, 6.08.

Methyl 6-O-benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- α-D,L-erithro-hex-2-enopyranoside (22): a liquid, $\mathrm{R}_{f}=0.28$ [9:1 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\operatorname{Pr})_{2} \mathrm{O}\right]$; FTIR $v_{\max }$ (liquid film) $3357,1539,1453,1410,1346$, 1164, 1074, $935 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 7.82(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.5$ $\mathrm{Hz}), 7.68(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}), 7.60(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.5 \mathrm{~Hz}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H}), 5.82-5.91(\mathrm{~m}$, $1 \mathrm{H}) 5.52(\mathrm{dd}, 1 \mathrm{H}, J=9.9,2.1 \mathrm{~Hz}), 5.42(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.01-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.65$ (dd, $1 \mathrm{H}, J=7.7,3.8 \mathrm{~Hz}$), 3.53 (dd, $1 \mathrm{H}, J=9.4,4.3 \mathrm{~Hz}$), $3.43(\mathrm{dd}, 1 \mathrm{H}, J=9.4,3.7 \mathrm{~Hz}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, 1.93-2.03 (m, 1H), 1.54-1.80 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.9,138.6,134.9,133.6,133.0$, 131.7, 130.9, 129.3, 127.7, 127.6, 127.5, 125.4, 73.1, 71.6, 70.5, 56.8, 52.7, 36.4, 29.5. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C 58.32; H, 5.59; N, 6.47. Found: C, 58.46; H, 5.27; N, 6.11.

3.4.2. Methanolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$ - Ns with $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing MeOH (6 equiv) (protocol B)

N-nosyl aziridine $9 \boldsymbol{\alpha}-\mathbf{N s}(0.020 \mathrm{~g}, 0.050 \mathrm{mmol})$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (2.0 mL) containing $\mathrm{MeOH}\left(0.012 \mathrm{~mL}, 0.30 \mathrm{mmoli}, 6.0\right.$ equiv) and $\mathrm{TsOH}_{2} \mathrm{O}(0.001 \mathrm{~g}, 0.005 \mathrm{mmol}, 0.1$ equiv) (aziridine: $\mathrm{TsOH}: \mathrm{MeOH}=1: 0.1: 6$) and the resulting mixture was stirred 18 h at room temperature. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude reaction product consisting of trans-3-methoxy-4-(N nosylamino) derivative 20 ($0.019 \mathrm{~g}, 90 \%$ yield) (entry 2, Table 1).

3.4.3. Methanolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\beta} \mathbf{- N s}$ with $0.2 \mathrm{~N}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}$ (protocol A)

N-nosyl aziridine $\mathbf{9 \beta - N s}(0.020 \mathrm{~g}, 0.050 \mathrm{mmol})$ was added to a $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}(2.0 \mathrm{~mL})$ and the resulting reaction mixture was stirred 2 h at room temperature. After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, solid NaHCO_{3} was added. Evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution, afforded a crude product $(0.020 \mathrm{~g}, 92 \%$ yield) consisting of 6 -O-benzyl-3-O-methyl-4-deoxy-4-(N-nosylamino)-5a-carba-D,L-gulal (27) (entry 1, Table 2), pure as a yellow liquid: $\mathrm{R}_{f}=0.85\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\mathrm{Pr})_{2} \mathrm{O}, 2\right.$ runs); FTIR $v_{\max }$ (liquid film) 3346, 1538, 1441, 1422, 1361, 1260, 1165, 1079, $1015 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.13-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 1 \mathrm{H})$, 7.59-7.72 (m, 2H), 7.28-7.40 (m, 5H), $5.91(\mathrm{dt}, 1 \mathrm{H}, J=10.0,3.4 \mathrm{~Hz}), 5.64-5.76(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~s}$, 2 H), 3.89-3.98 (m, 1H), $3.45(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}$), 3.29-3.39 (m, 2H), $3.13(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{dt}, 1 \mathrm{H}, J=$ $5.8,2.8 \mathrm{~Hz}), 2.14-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{dd}, 1 \mathrm{H}, J=19.0,8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 147.9,138.2$, $135.2,133.3,132.9,131.1,130.9,128.6,127.8,127.7,125.3,124.1,76.5,73.2,70.6,56.7,52.9$, 33.6, 25.6. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C 58.32; H, 5.59; N, 6.47. Found: C, 58.19; H, 5.33; N, 6.54 .

3.4.4. Methanolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\beta}-\mathrm{Ns}$ with $2.510^{-3} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing MeOH (6 equiv) (protocol B)

N-nosyl aziridine $9 \boldsymbol{\beta}$-Ns ($0.060 \mathrm{~g}, 0.15 \mathrm{mmol}$) was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (6.0 mL) containing $\mathrm{MeOH}\left(0.036 \mathrm{~mL}, 0.90 \mathrm{mmoli}, 6.0\right.$ equiv) and $\mathrm{TsOH} \mathrm{H}_{2} \mathrm{O}(0.003 \mathrm{~g}, 0.015 \mathrm{mmoli}, 0.1$ equiv) (aziridine: $\mathrm{TsOH}: \mathrm{MeOH}=1: 0.1: 6$) and the resulting mixture was stirred 18 h at room temperature. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude reaction product ($0.061 \mathrm{~g}, 94 \%$ yield) consisting of a 40:35:25 mixture of N-(nosylamino)-methoxy derivatives 27, 28 and 29 (${ }^{1} \mathrm{H} N \mathrm{NM}$) (entry 2, Table 2) which was subjected to preparative TLC using a $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\operatorname{Pr})_{2} \mathrm{O}$ mixture as the eluant. Extraction of the three most intense bands afforded trans-3-methoxy-4-(N-nosylamino)- 27 (0.018 g, 28% yield), trans- 28 ($0.014 \mathrm{~g}, 22 \%$ yield) and cis-1-methoxy-4-(N-nosylamino) derivative 29 ($0.009 \mathrm{~g}, 14 \%$ yield).

Methyl 6-O-benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- α-D,L-threo-hex-2-enopyranoside

 (28): a liquid, $\mathrm{R}_{f}=0.64\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\mathrm{Pr})_{2} \mathrm{O}, 2\right.$ runs); FTIR $v_{\max }$ (liquid film) 3392, 1537, 1453, 1416, 1359, 1259, 1164, 1094, 1077, $1012 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.10-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.88$ (m, 1H), 7.62-7.74 (m, 2H), 7.27-7.40 (m, 5H), 5.88 (dd, 1H, $J=10.1,4.2 \mathrm{~Hz}), 5.76$ (d, 1H, $J=7.8$ $\mathrm{Hz}), 5.64(\mathrm{dd}, 1 \mathrm{H}, J=10.1,4.2 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.07-4.22$(m, 1H), 3.69 (dd, 1H, $J=8.0,4.0 \mathrm{~Hz}$), $3.57(\mathrm{dd}, 1 \mathrm{H}, J=9.4,7.8 \mathrm{~Hz}), 3.41(\mathrm{dd}, 1 \mathrm{H}, J=9.1,5.4$ $\mathrm{Hz}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{dt}, 1 \mathrm{H}, J=14.1,3.3 \mathrm{~Hz}), 1.61-1.71(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.9,138.1,133.5,135.1,133.1,130.9,129.9,129.8,128.6,127.9,125.5,73.3,71.8$, 70.8, 56.6, 50.8, 34.5, 27.3. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C 58.32 ; H, 5.59; N, 6.47. Found: C, 58.02; H, 5.24; N, 6.12.

Methyl 6-O-benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- β-D,L-threo-hex-2-enopyranoside (29): a liquid, $\mathrm{R}_{f}=0.60\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\operatorname{Pr})_{2} \mathrm{O}, 2\right.$ runs $) ;$ FTIR $v_{\max }$ (liquid film) $3341,1538,1453$, $1420,1347,1260,1166,1087 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.11-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.88(\mathrm{~m}, 1 \mathrm{H})$, $7.62-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.78-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.43$ (ddd, 1H, J $=10.0,4.8,2.0 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.07-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.71-$ $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.16(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 147.9,138.3,135.3,133.6,132.9,130.9,130.7,129.8,128.6,127.9$, $127.8,125.5,75.0,73.5,71.6,56.2,50.6,36.9$, 27.3. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C 58.32; H , 5.59 ; N, 6.47. Found: C, 58.13; H, 5.74; N, 6.29.
3.5. Reaction of aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathrm{Ns}$ and $\mathbf{9} \beta$-Ns with AcOH (O-nucleophile) under basic and acid conditions

3.5.1. Acetolysis of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns with AcONa in $\mathbf{2 0 \%}$ aqueous DMF (protocol B)

$\mathrm{AcONa}(0.049 \mathrm{~g}, 0.60 \mathrm{mmol}, 4.0$ equiv) was added to a solution of N-nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ ($0.060 \mathrm{~g}, 0.15 \mathrm{mmol}$) in 20% aqueous DMF (3.5 mL) and the resulting reaction mixture was stirred 2 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (brine) organic solution afforded a crude reaction product (0.067 g) mainly consisting of trans 3-acetoxy-4-(N-nosylamino)derivative 23 (entry 6, Table 1), which was subjected to flash chromatography. Elution with a 1:1 hexane/AcOEt mixture afforded 3-O-acetyl-6-O-benzyl-4-deoxy-4-(N-nosylamino)-5a-carba-D,Lglucal (23) ($0.054 \mathrm{~g}, 78 \%$ yield), pure as a pale yellow liquid: $\mathrm{R}_{f}=0.40$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) $3348,1727,1536,1442,1342,1259,1162,1074,1026 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 8.09-8.15 (m, 1H), 7.83-7.88 (m, 1H), 7.59-7.72 (m, 2H), 7.27-7.39 (m, 5H), 5.79-5.88 (m, 1H), $5.42-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz})$, $3.85(\mathrm{dd}, 1 \mathrm{H}, J=14.0,8.7 \mathrm{~Hz}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=9.4,4.1 \mathrm{~Hz}), 3.49(\mathrm{dd}, 1 \mathrm{H}, J=9.4,5.3 \mathrm{~Hz}), 2.29-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.6,147.7,138.3,135.9$, 133.2, 133.1, 130.6, 130.0, 128.5, 127.7, 127.6, 125.3, 125.0, 73.4, 73.1, 70.9, 56.6, 39.0, 29.0, 20.7. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$: C 57.38; H, 5.25; N, 6.08. Found: C, 57.06 ; H, 5.34; N, 5.87.

3.5.2. Acetolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns with $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}$ (protocol A)

N-nosyl aziridine $9 \boldsymbol{\alpha}-\mathbf{N s}(0.060 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added to a $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}(3.0 \mathrm{~mL})$ and the reaction mixture was stirred 1 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude reaction product ($0.067 \mathrm{~g}, 97 \%$ yield) consisting of an 8:22:45:25 mixture of trans- 23 and cis-3-acetoxy-4(N-nosylamino)- 24, trans- 25 and cis-1-acetoxy-4-(N-nosylamino) derivative $26\left({ }^{1} \mathrm{H}\right.$ NMR) (entry 4, Table 1), which was subjected to preparative TLC using a 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\mathrm{Pr})_{2} \mathrm{O}$ mixture as the eluant. Extraction of the three most intense bands afforded cis-3acetoxy-4-(N-nosylamino)- 24 ($0.012 \mathrm{~g}, 17 \%$ yield), trans- 25 ($0.021 \mathrm{~g}, 30 \%$ yield) and cis-1-acetoxy-4-(N-nosylamino) derivative 26 ($0.010 \mathrm{~g}, 14 \%$ yield).

3-O-acetyl-6-O-benzyl-4-deoxy-4-(N-nosylamino)-5a-carba-D,L-altral (24), a colourless oil: FTIR $v_{\max }($ liquid film $) 3494,1731,1540,1413,1259,1093,1018 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.10-8.15(\mathrm{~m}, 1 \mathrm{H})$, $7.83-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.90-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.83,(\mathrm{~d}, 1 \mathrm{H}, J=9.1$ $\mathrm{Hz}), 5.57-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{t}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.79-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.71(\mathrm{~m}, 2 \mathrm{H})$, 2.32-2.46 (m, 1H), 2.15-2.28 (m, 2H), $1.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.2,147.9,138.5,133.9,133.4$, 130.6, 128.6, 128.0, 127.8, 125.7, 123.5, 73.6, 70.8, 67.5, 54.3, 34.8, 31.8, 22.9. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C} 57.38 ; \mathrm{H}, 5.25 ; \mathrm{N}, 6.08$. Found: C, $57.21 ; \mathrm{H}, 5.09 ; \mathrm{N}, 6.00$.

6-O-Benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- β-D,L-erithro-hex-2-enopyranosyl acetate (25), a colourless oil: FTIR $v_{\max }($ liquid film $) 3335,1726,1539,1441,1417,1360,1259,1165$, $1068,1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 8.10(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.5 \mathrm{~Hz}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.5 \mathrm{~Hz}), 7.56-$ $7.78(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 5.61-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{dt}, 1 \mathrm{H}, J=10.2,2.1 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}), 5.29-5.40\left(\mathrm{~m}, W_{1 / 2}=15.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.11-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}, J=9.1$, 4.3 Hz), $3.42(\mathrm{dd}, 1 \mathrm{H}, J=9.1,3.3 \mathrm{~Hz}$), 2.13-2.34 (m, 1H), $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.7,148.0,138.4,134.8,133.7,133.1,131.0,130.8,130.7,128.5$, 127.8, 127.6, 125.5, 73.3, 70.2, 69.2, 52.4, 40.9, 31.6, 22.8. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$: C 57.38; H, 5.25; N, 6.08. Found: C, 57.10; H, 4.94; N, 5.69.

6-O-Benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- α-D,L-erithro-hex-2-enopyranosyl acetate (26), a colourless oil: FTIR $v_{\max }\left(\right.$ liquid film) $3494,1731,1540,1413,1259,1093,1018 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 8.10(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.5 \mathrm{~Hz}), 7.85(\mathrm{dd}, 1 \mathrm{H}, J=7.7,1.5 \mathrm{~Hz}), 7.58-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.40$ (m, 5H), 5.81 (ddd, 1H, $J=9.6,4.3,2.0 \mathrm{~Hz}$), 5.59 (dd, $1 \mathrm{H}, J=9.6,2.2 \mathrm{~Hz}$), $5.41(\mathrm{~d}, 1 \mathrm{H}, J=8.5$ $\mathrm{Hz}), 5.14-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, 1 \mathrm{H}, J=9.4,4.1 \mathrm{~Hz}), 3.45(\mathrm{dd}$,
$1 \mathrm{H}, J=9.4,3.5 \mathrm{~Hz}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.7,148.0$, 138.4, 134.8, 133.7, 133.3, 133.2, 131.0, 128.6, 127.8, 127.7, 125.5, 73.3, 70.3, 65.6, 52.4, 36.8, 30.5, 21.4. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$: C 57.38 ; H, 5.25; N, 6.08. Found: C, 57.22; H, 5.04; N , 5.95 .
3.5.3. Acetolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$ - $\mathbf{N} \boldsymbol{s}$ with $2.510^{-3} \mathrm{NTsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing AcOH (6 equiv) (protocol B)
N-nosyl aziridine $9 \boldsymbol{\alpha}$-Ns $(0.020 \mathrm{~g}, 0.050 \mathrm{mmol})$ was treated with $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (0.5 mL) containing $\mathrm{AcOH}(0.018 \mathrm{~g}, 0.017 \mathrm{~mL}, 0.30 \mathrm{mmol}, 6$ equiv) and the reaction mixture was stirred 16 h at room temperature. Usual work-up afforded a crude reaction product consisting of 11:29:19:41 mixture of trans- 23 and cis-3-acetoxy-4-(N-nosylamino)- 24, trans- $\mathbf{2 5}$ and cis-1-acetoxy-4-(N-nosylamino) derivative $26\left({ }^{1} \mathrm{H} N \mathrm{NM}\right)$ (entry 5, Table 1).

3.5.4. Acetolysis of N-nosyl aziridine $\mathbf{9} \boldsymbol{\beta}$-Ns with AcONa in 20% aqueous DMF (protocol B)

AcONa ($0.050 \mathrm{~g}, 0.60 \mathrm{mmol}, 4.0$ equiv) was added to a solution of N-nosyl aziridine $\mathbf{9 \beta - N s}$ ($0.060 \mathrm{~g}, 0.15 \mathrm{mmol}$) in 20% aqueous DMF (3.5 mL) and the resulting reaction mixture was stirred 2 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (brine) organic solution afforded a crude reaction product (0.068 g) mainly consisting of trans-3-acetoxy-4-(N-nosylamino) derivative $\mathbf{3 0}$ (entry 6, Table 2) which was subjected to flash chromatography. Elution with a $1: 1$ hexane/AcOEt mixture afforded 3-O-acetyl-6-O-benzyl-4-deoxy-4-(N-nosylamino)-5a-carba-D,Lgulal (30) ($0.052 \mathrm{~g}, 75 \%$ yield), pure as a pale yellow liquid: $\mathrm{R}_{f}=0.45$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }($ liquid film $) 3361,1731,1539,1441,1424,1362,1258,1236,1166,1090,1013 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.15-8.24(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.67,7.77(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.43(\mathrm{~m}, 5 \mathrm{H}), 5.97-$ $6.07(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.74(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{t}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 3.95(\mathrm{dt}, 1 \mathrm{H}, J=9.1,3.4 \mathrm{~Hz}), 3.48-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=9.1,5.7 \mathrm{~Hz}), 2.10-2.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.92(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.2,147.0,138.3,134.2,133.7,133.0$, 132.4, 131.4, 128.6, 128.0, 125.4, 122.7, 73.5, 70.6, 68.1, 53.0, 33.7, 29.9, 21.2. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}$ S: C 57.38; H, 5.25; N, 6.08. Found: C, $57.54 ; \mathrm{H}, 5.18 ; \mathrm{N}, 6.03$.

3.5.5. Acetolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\beta} \mathbf{- N s}$ with $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}$ (protocol A)

N-nosyl aziridine $9 \boldsymbol{\beta}$-Ns $(0.040 \mathrm{~g}, 0.10 \mathrm{mmol})$ was added to a $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}$ solution $(2.0 \mathrm{~mL})$ and the reaction mixture was stirred 1 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude reaction product $(0.045 \mathrm{~g}, 98 \%$ yield) consisting of a $36: 64$ mixture of trans-3-acetoxy-4-(N -
nosylamino)- $\mathbf{3 0}$ and trans-1-acetoxy-4-(N-nosylamino) derivative $\mathbf{3 1}$ (${ }^{1} \mathrm{H}$ NMR) (entry 4, Table 2) which was subjected to preparative TLC using a $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\mathrm{Pr})_{2} \mathrm{O}$ mixture as the eluant. Extraction of the two most intense bands afforded trans-3-acetoxy-4-(N-nosylamino) derivative $\mathbf{3 0}$ ($0.010 \mathrm{~g}, 22 \%$ yield) and 6 -O-benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- α-D,L-threo-hex-2-enopyranosyl acetate (31) ($0.019 \mathrm{~g}, 41 \%$ yield) pure as a pale yellow oil: $\mathrm{R}_{f}=0.53$ (9:1 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\mathrm{Pr})_{2} \mathrm{O}\right)$; FTIR $v_{\max }$ (liquid film) 3261, 1731, 1539, 1441, 1424, 1362, 1258, 1236, 1166, $1090,1013 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.08-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.74(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.77-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{dd}, 1 \mathrm{H}, J=7.9,3.9 \mathrm{~Hz}), 4.51(\mathrm{~d}$, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.10-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=9.3,8.1 \mathrm{~Hz}), 3.43$ (dd, $1 \mathrm{H}, J=9.3,5.3 \mathrm{~Hz}), 2.29-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.6$, 148.0, 138.3, 133.6, 133.2, 133.1, 131.4, 130.8, 128.7, 128.3, 128.0, 127.9, 125.6, 73.7, 70.9, 65.9, 50.6, 35.0, 28.1, 21.6. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$: C 57.38; H, 5.25; N, 6.08. Found: C, 57.14; H, 4.93; N, 5.81.
3.5.6. Acetolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\beta}$ - Ns with $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing AcOH (6 equiv) (protocol B)
N-nosyl aziridine $9 \boldsymbol{\beta}$-Ns $(0.020 \mathrm{~g}, 0.050 \mathrm{mmol})$ was treated with $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (0.5 mL) containing $\mathrm{AcOH}(0.018 \mathrm{~g}, 0.017 \mathrm{~mL}, 0.30 \mathrm{mmol}, 6$ equiv) and the reaction mixture was stirred 18 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude reaction product (0.021 g , 91\% yield) consisting of a 30:70 mixture of trans-3-acetoxy-4-(N-nosylamino)- $\mathbf{3 0}$ and trans-1-acetoxy-4-(N-nosylamino) derivative 31 (${ }^{1} \mathrm{H}$ NMR) (entry 5, Table 2).
3.6. Acid methanolysis of epoxides 1α and 1β and N-nosyl aziridines $9 \alpha-N s$ and $9 \beta-N s$ in the presence of an ionic liquid (IL)
3.6.1. Acid methanolysis of epoxide $1 \boldsymbol{\alpha}$ with $2.5 \cdot 10^{-3} \mathrm{~N}$ TsOH in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ solution containing MeOH (6 equiv) (protocol B)

Typical procedure. A solution of epoxide $1 \boldsymbol{\alpha}(0.011 \mathrm{~g}, 0.051 \mathrm{mmol})$ in $2.510^{-3} \mathrm{~N} \mathrm{TsOH}$ in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bimim}]\left[\mathrm{BF}_{4}\right]$ mixture $(1.0 \mathrm{~mL})$ containing $\mathrm{MeOH}(12.0 \mu \mathrm{~L}, 0.0098 \mathrm{~g}, 0.306 \mathrm{mmol}, 6$ equiv) was stirred 18 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude reaction product (0.012 g , 97\% yield) consisting of a 20:76:4 mixture of corresponding methoxy alcohols derivatives 3 (anti-

1,2-addition product), 4 (syn-1,4-addition product) and 5 (anti-1,4-addition product), ${ }^{9 \mathrm{a}}$ respectively (${ }^{1} \mathrm{H}$ NMR) (entry 4, Table 3).
3.6.2. Methanolysis of epoxide 1β with $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH}$ in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ solution containing MeOH (6 equiv) (protocol B)

Following the typical procedure, a solution of epoxide $\mathbf{1 \beta}(0.011 \mathrm{~g}, 0.051 \mathrm{mmol})$ in $2.5 \cdot 10^{-3} \mathrm{~N}$ TsOH in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bimim}]\left[\mathrm{BF}_{4}\right]$ mixture $(1.0 \mathrm{~mL})$ containing $\mathrm{MeOH}(12.0 \mu \mathrm{~L}, 0.0096 \mathrm{~g}, 0.306$ mmol, 6 equiv) was stirred 18 h at room temperature. Usual workup afforded a crude reaction product ($0.011 \mathrm{~g}, 89 \%$ yield) consisting of a $51: 31: 18$ mixture of corresponding methoxy alcohols derivatives 6 (anti-1,2-addition product), 7 (syn-1,4-addition product) and 8 (anti-1,4-addition product),, ${ }^{\text {ad }}$ respectively (${ }^{1} \mathrm{H}$ NMR) (entry 4, Table 4).
3.6.3. Methanolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns with $2.510^{-3} \mathrm{~N}$ TsOH in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ solution containing MeOH (6 equiv) (protocol B)

Typical procedure. A solution of N-nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}(0.010 \mathrm{~g}, 0.025 \mathrm{mmol})$ in $2.5 \cdot 10^{-3} \mathrm{~N}$ TsOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bimim}]\left[\mathrm{BF}_{4}\right]$ mixture ($1: 1$) (1.0 mL) containing $\mathrm{MeOH}(6.0 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 6$ equiv) was stirred 18 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (saturated aqueous NaHCO_{3} and brine) organic solution afforded a crude reaction product (0.010 g , 99% yield) consisting of trans-3-methoxy-4-(N-nosylamino) derivative $20\left({ }^{1} \mathrm{H} N M R\right.$) (entry 3, Table 1).
3.6.4. Methanolysis of N -nosyl aziridine $\mathbf{9} \boldsymbol{\beta}$-Ns with $2.5 \cdot 10^{-3} \mathrm{~N}$ TsOH in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /[\mathrm{bmim}]\left[B F_{4}\right]$ solution containing MeOH (6 equiv) (protocol B)

Following the typical procedure, a solution of N-nosyl aziridine $\mathbf{9 \beta - N s}(0.010 \mathrm{~g}, 0.025 \mathrm{mmol})$ in $2.5 \cdot 10^{-3} \mathrm{~N} \mathrm{TsOH}$ in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /[\operatorname{bimim}]\left[\mathrm{BF}_{4}\right]$ mixture $(1.0 \mathrm{~mL})$ containing $\mathrm{MeOH}(6.0 \mu \mathrm{~L}, 0.15$ mmol, 6 equiv) was stirred 18 h at room temperature. Usual workup afforded a crude reaction product $(0.010 \mathrm{~g}, 99 \%$ yield) consisting of a 40:28:32 mixture of trans-3-methoxy-4-(N-nosylamino)- 27, trans- 28 and cis-1-methoxy-4-(N-nosylamino) derivative $29\left({ }^{1} \mathrm{H}\right.$ NMR) (entry 3 , Table 2).

3.7. Reactions of N -nosyl aziridines $\mathbf{9} \boldsymbol{\alpha}$-Ns and $\mathbf{9} \boldsymbol{\beta}-\mathrm{Ns}$ with NaN_{3} and NHEt_{2} (N -Nucleophiles)

3.7.1. Reaction of N -nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$ - $\mathbf{N s}$ with NaN_{3} in 1:1 THF/ $\mathrm{H}_{2} \mathrm{O}$ (protocol B)

A solution of N-nosyl ziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns ($0.033 \mathrm{~g}, 0.0825 \mathrm{mmol}$) in distilled THF (0.3 mL) was added to a solution of $\mathrm{NaN}_{3}\left(0.0059 \mathrm{~g}, 0.091 \mathrm{mmol}, 1.1\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and the reaction mixture was stirred 4 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, evaporation of the washed (brine) organic solution afforded a crude reaction product ($0.035 \mathrm{~g}, 96 \%$ yield) consisting of 77:23 mixture of trans-3-azido-4-(N-nosylamino)- 34 and trans-1-azido-4-(N-nosylamino) derivative 35 which was subjected to preparative TLC, using a 7:3 hexane/AcOEt mixture as the eluant. Extraction of the two most intense bands afforded trans-3-azido-4-(N-nosylamino)- 34 (0.015 g , 41% yield) and trans-1-azido-4-(N-nosylamino) derivative 35 ($0.005 \mathrm{~g}, 14 \%$ yield).

6-O-Benzyl-3,4-dideoxy-3-azido-4-(N-nosylamino)-5a-carba-D,L-glucal (34): a colourless liquid, $\mathrm{R}_{f}=0.56$ (7:3 hexane/AcOEt); FTIR $v_{\max }$ (liquid film) 3334, 2094, 1536, 1422, 1358, 1257, 1165, $1119,1084,1061,1027,916 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.16-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.66-$ $7.76(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.41(\mathrm{~m}, 5 \mathrm{H}), 5.85-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.51(\mathrm{~d}, 1 \mathrm{H}, J=9.0$ $\mathrm{Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 3.72-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, 1 \mathrm{H}, J=9.7$, $4.2 \mathrm{~Hz}), 3.50-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.15(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 140.4,136.1,134.8,133.3,132.4,132.0,130.6,129.9,129.1,126.9,125.6,74.2,71.5$, 58.5, 53.4, 41.4, 33.0. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$: C 54.16; H, 4.77; N, 15.79. Found: C, 54.09; H, 4.54; N, 15.55 .

6-O-Benzyl-4-(N-nosylamino)-2,3,4-trideoxy-5a-carba- β-D,L-erithro-hex-2-enopyranosyl azide (35): a colourles liquid, $\mathrm{R}_{f}=0.36$ ($7: 3$ hexane $/$ AcOEt); FTIR $v_{\max }$ (liquid film) 3354, 2094, 1646, $1540,1453,1356,1257,1167,1093,1062 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.11$ (dd, $1 \mathrm{H}, J=7.3,2.1 \mathrm{~Hz}$), 7.83-7.88 (m, 1H), 7.62-7.76 (m, 2H), 7.27-7.41 (m, 5H), 5.69 (ddd, 1H, $J=10.1,2.3,1.8 \mathrm{~Hz}), 5.45$ (dt, 1H, $J=10.1,2.2 \mathrm{~Hz}), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.04-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.87-4.03(\mathrm{~m}$, $1 \mathrm{H}), 3.54(\mathrm{~d}, 2 \mathrm{H}, J=4.2 \mathrm{~Hz}), 2.20-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 147.9$, $138.3,134.7,133.8,133.2,131.2,131.0,130.0,128.6,127.9,127.7,125.5,73.4,70.2,57.0,52.4$, 41.1, 31.8. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$: C 54.16; H, 4.77; N, 15.79. Found: C, 54.29; H, 4.49; N, 15.39.

3.7.2. Reaction of N -nosyl aziridine $\mathbf{9} \boldsymbol{\beta}$-Ns with NaN_{3} in 1:1 THF/ $\mathrm{H}_{2} \mathrm{O}$ (protocol B)

A solution of N-nosyl aziridine $\mathbf{9 \beta - N s}(0.022 \mathrm{~g}, 0.055 \mathrm{mmol})$ in distilled THF $(0.2 \mathrm{~mL})$ was added to a solution of $\mathrm{NaN}_{3}\left(0.004 \mathrm{~g}, 0.061 \mathrm{mmol}, 1.1\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ and the reaction mixture was stirred 4 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, evaporation of the washed (brine) organic solution afforded a reaction product ($0.023 \mathrm{~g}, 99 \%$ yield) consisting of trans-3-
azido-4-(N-nosylamino) derivative $37(0.020 \mathrm{~g})$ which was subjected to preparative TLC using a 7:3 hexane/AcOEt mixture as the eluant. Extraction of the most intense band afforded pure $6-0-$ benzyl-3,4-dideoxy-3-azido-4-(N-nosylamino)-5a-carba-D,L-gulal (37), ($0.021 \mathrm{~g}, 86 \%$ yield), a liquid, $\mathrm{R}_{f}=0.39$ (hexane/AcOEt 7:3); FTIR $v_{\max }$ (liquid film) 3342, 2096, 1538, 1442, 1422, 1360, 1242, 1166, 1098, 1078, $1012 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.10-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.89(\mathrm{~m}, 1 \mathrm{H})$, 7.61-7.74 (m, 2H), 7.27-7.41 (m, 5H), 6.00-6.10 (m, 1H), $6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.60-5.70(\mathrm{~m}$, $1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 3.31-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.47(\mathrm{~m}$, $2 \mathrm{H}), 1.76-1.94(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.9,137.9,134.8,133.6,133.1,132.4,130.9,128.6$, 127.9, 127.6, 125.5, 122.0, 73.3, 70.3, 59.1, 54.5, 33.9, 25.5. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}$ 54.16; H, 4.77; N, 15.79. Found: C, 54.11; H, 4.91; N, 15.74.

3.7.3. Reaction of N-nosyl aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns with $E t_{2} \mathrm{NH}$ (protocol A)

N-nosyl aziridine $9 \boldsymbol{\alpha}$-Ns $(0.015 \mathrm{~g}, 0.0375 \mathrm{mmol})$ was dissolved in distilled $\mathrm{Et}_{2} \mathrm{NH}(1.5 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 2 days in the presence of $\mathrm{Sc}(\mathrm{OTf})_{3}$ ($0.0018 \mathrm{~g}, 0.00375 \mathrm{mmol}, 0.1$ equiv). Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (brine) organic solution afforded a reaction product $(0.016 \mathrm{~g}, 90 \%$ yield) consisting of trans-3-(N,N-diethylamino)-4-(N-nosylamino) derivative 33 which was subjected to preparative TLC, using a 6:4 hexane/AcOEt mixture as the eluant. Extraction of the most intense band afforded 6 -O-benzyl-3,4-dideoxy-3-(N,N-diethylamino)-4-(N-nosylamino)-5a-carba-D,L-glucal (33) ($0.012 \mathrm{~g}, 68 \%$ yield), pure as a pale yellow liquid: $\mathrm{R}_{f}=0.38$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) 3372, 1542, $1460,1401,1347,1304,1170,1120,1065,1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.09-8.20(\mathrm{~m}, 1 \mathrm{H})$, $7.84-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 5 \mathrm{H}), 5.71-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.60(\mathrm{~m}, 1 \mathrm{H})$, $4.51(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=9.0,3.4 \mathrm{~Hz}), 3.47-3.64(\mathrm{~m}$, $2 \mathrm{H}), 3.07-3.20\left(\mathrm{~m}, 1 \mathrm{H}, W_{1 / 2}=17.8 \mathrm{~Hz}\right), 2.15-2.41(\mathrm{~m}, 6 \mathrm{H}), 1.95-2.09(\mathrm{~m}, 2 \mathrm{H}), 0.67(\mathrm{t}, 6 \mathrm{H}, J=7.1$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.7,138.7,137.0,132.9,132.7,130.8,128.7,128.5,127.9,127.7$, 126.0, 125.4, 73.4, 72.6, 64.2, 57.0, 43.9, 41.2, 29.7, 13.3. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C} 60.86$; H, 6.60; N, 8.87. Found: C, 60.48; H, 6.28; N, 8.50.

3.7.4. Reaction of N -nosyl aziridine $\mathbf{9} \boldsymbol{\beta}$-Ns with $E t_{2} \mathrm{NH}$ (protocol A)

N-nosyl aziridine $\mathbf{9 \beta}$-Ns $(0.015 \mathrm{~g}, 0.0375 \mathrm{mmol})$ was dissolved in distilled $\mathrm{Et}_{2} \mathrm{NH}(1.5 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 4 days in the presence of $\mathrm{Sc}(\mathrm{OTf})_{3}$ ($0.0018 \mathrm{~g}, 0.00375 \mathrm{mmol}, 0.1$ equiv). Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the washed (brine) organic solution afforded a reaction product $(0.017 \mathrm{~g}, 96 \%$ yield) consisting of trans-3-(N,N-diethylamino)-4-(N-nosylamino) derivative $\mathbf{3 6}\left({ }^{1} \mathrm{H} N M R\right)$ which was subjected to preparative TLC,
using a 6:4 hexane/AcOEt mixture as the eluant. Extraction of the most intense band afforded $6-O-$ benzyl-3,4-dideoxy-3-(N,N-diethylamino)-4-(N-nosylamino)-5a-carba-D,L-gulal (36) ($0.011 \mathrm{~g}, 62 \%$ yield), pure as a pale yellow liquid, $\mathrm{R}_{f}=0.21$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) 3372 , 1541, 1454, 1406, 1347, 1304, 1170, 1120, 1065, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.05-8.12(\mathrm{~m}$, $1 \mathrm{H}), 7.78-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.71-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.58(\mathrm{~m}$, $1 \mathrm{H}), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}), 3.48-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=9.6$ $\mathrm{Hz}), 2.92-3.06\left(\mathrm{~m}, 1 \mathrm{H}, W_{1 / 2}=10.8 \mathrm{~Hz}\right), 2.70-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{q}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.91-2.27(\mathrm{~m}$, $3 \mathrm{H}), 0.72(\mathrm{t}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 138.7,134.7,133.4,132.8,131.0,129.2,128.5$, 127.9, 127.7, 127.6, 125.5, 125.1, 77.4, 73.1, 69.7, 59.1, 43.8, 35.0, 26.4, 13.3. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$: C 60.86; H, 6.60; N, 8.87. Found: C, 60.59 ; H, 6.39; N, 8.66.
3.8. Catalytic dihydroxylation of diastereoisomeric trans-3-methoxy-4-(N-nosylamino) derivatives 20 and 27 (anti-1,2-addition products) obtained by aziridines $9 \alpha-N s$ and $9 \beta-N s$, respectively
3.8.1.Catalytic dihydroxylation by $\mathrm{OsO}_{4} / \mathrm{NMO}$ protocol of trans-3.methoxy-4-(N-nosylamino) derivative 20

Typical procedure. A solution of trans-3-methoxy-4-(N-nosylamino) derivative $20(0.030 \mathrm{~g}$, $0.070 \mathrm{mmol})$ in an $1: 1 t-\mathrm{BuOH} /$ acetone mixture $(0.24 \mathrm{~mL})$ was added, at $0^{\circ} \mathrm{C}$ under stirring and in the dark, to a $50 \% \mathrm{p} / \mathrm{v}$ aqueous solution of N-methyl morpholine- N-oxide (NMO) (0.060 mL) and the resulting reaction mixture was treated with $2.5 \% \mathrm{p} / \mathrm{v} \mathrm{OsO}_{4}$ solution in $t-\mathrm{BuOH}(0.060 \mathrm{~mL})$ and stirred for 15 h at room temperature. Dilution with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the filtered (Celite ${ }^{\circledR}$) organic solution afforded a crude reaction product $(0.032 \mathrm{~g})$ consisting of cis diol $\mathbf{4 2}$ which was subjected to preparative TLC using a $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /(i-\mathrm{Pr})_{2} \mathrm{O}$ mixture as the eluant. Extraction of the most intense band afforded pure 6-O-benzyl-3-O-methyl-4-deoxy-4-(N-nosylamino)-5a-carba- α -D,L-glucopyranose (42), as a pale yellow oil ($0.024 \mathrm{~g}, 73 \%$ yield): FTIR $v_{\max }$ (liquid film) 3360 (broad), 1595, 1537, 1417, 1259, 1162, 1088, 1027, $798 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.09-8.16(\mathrm{~m}$, $1 \mathrm{H}), 7.77-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 4.41(\mathrm{~d}$, $1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 3.98-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{t}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 3.52-3.57$ (m, 2H), $3.47(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.4 \mathrm{~Hz}), 3.21(\mathrm{t}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.44(\mathrm{~m}, 1 \mathrm{H})$, 1.94-2.12 (m, 4H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.0,138.6,136.3,133.0,132.8,131.0,128.7,128.5$, $127.8,125.0,84.0,76.1,73.3,70.4,69.0,60.5,58.3,55.6,37.1,30.5,29.9$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}$ S: C 54.06; H, 5.61; N, 6.60. Found: C, 53.75; H, 5.37; N, 6.55.

A solution of cis diol $42(0.019 \mathrm{~g}, 0.040 \mathrm{mmol})$ in anhydrous pyridine $(1.0 \mathrm{~mL})$ was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred at room temperature overnight. Co-evaporation of the reaction mixture with toluene afforded a crude product $(0.021 \mathrm{~g})$ consisting of diacetate 42-diAc, which was subjected to preparative TLC, using a $1: 1$ hexane/AcOEt mixture as the eluant. Extraction of the more intense band afforded 1,2-di-O-acetyl-6-O-benzyl-3-O-methyl-4-deoxy-4-(N-nosylamino)-5a-carba- α-D, L-glucopyranose $\left(0.016 \mathrm{~g}, 73 \%\right.$ yield) pure as a pale yellow liquid: $\mathrm{R}_{f}=0.30$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) $3228,1736,1718$ (shoulder), 1537, 1454, 1366, 1344, 1249, 1238, 1163, 1075, 1047, 1024, $921 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.40$ $(\mathrm{m}, 5 \mathrm{H}), 5.38(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.32-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{dd}, 1 \mathrm{H}, J=9.7,2.9 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.7 \mathrm{~Hz}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 3.59-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{t}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 3.28(\mathrm{t}, 1 \mathrm{H}, J=9.7$ $\mathrm{Hz}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.1,170.0,147.8,138.4,136.2,133.1,132.8,131.4,128.5,128.0,127.8,124.9,81.4$, 75.7, 73.5, 70.1, 68.9, 60.1, 58.5, 37.8, 29.9, 21.3, 21.1. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}: \mathrm{C} 54.54 ; \mathrm{H}$, 5.49; N, 5.08. Found: C, 54.30; H, 5.23; N, 4,73.

3.8.2. Catalytic dihydroxylation by $\mathrm{OsO}_{4} / \mathrm{NMO}$ protocol of trans-3-acetoxy-4-(N-nosylamino) derivative 27

Following the typical procedure, the treatment of a solution of trans-3-acetoxy-4-(N nosylamino) derivative $27(0.030 \mathrm{~g}, 0.070 \mathrm{mmol})$ in an $1: 1 t-\mathrm{BuOH} /$ acetone mixture $(0.24 \mathrm{~mL})$ with $50 \% \mathrm{p} / \mathrm{v}$ aqueous solution of N -methyl morpholine- N -oxide (NMO) (0.060 mL) and $2.5 \% \mathrm{p} / \mathrm{v}$ OsO_{4} solution in $t-\mathrm{BuOH}(0.060 \mathrm{ml})$ for 96 h at room temperature afforded a crude reaction product consisting of cis diol 43 (0.031 g): FTIR $v_{\max }($ liquid film) 3360 (broad), 1594 (broad), 1537, 1417,1259, 1162, 1088, 1027, $798 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 7.98-8.04 (m, 1H), 7.57-7.67 (m, 2H), 7.24-7.37 (m, 6H), 4.50-4.53 (m, 1H), 4.34 (d, 1H, $J=11.9 \mathrm{~Hz}$), 4.27 (d, 1H, $J=11.9 \mathrm{~Hz}$), $3.72-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.79$ (m, 2H).

Di- O-acetylation of crude cis diol $43(0.031 \mathrm{~g}, 0.066 \mathrm{mmmol})$ by anhydrous pyridine (1.0 $\mathrm{mL}) / \mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ protocol afforded a crude product $(0.035 \mathrm{~g})$ consisting of diacetate 43-diAc which was subjected to preparative TLC using an $1: 1$ hexane/AcOEt mixture as the eluant. Extraction of the most intense band afforded 1,2-di-O-acetyl-6-O-benzyl-3-O-methyl-4-deoxy-4-(N-nosylamino)-5a-carba- β-D,L-idopyranose (43-diAc) $(0.026 \mathrm{~g}, 72 \%$ yield), pure as a pale yellow liquid: $\mathrm{R}_{f}=0.34$ ($1: 1$ hexane/AcOEt); FTIR $v_{\max }$ (liquid film) $3345,1739,1539,1428,1370,1259$,

1166, 1086, 1018, $797 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{dd}, 1 \mathrm{H}, J=7.7,1.8 \mathrm{~Hz}), 7.85(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.6,1.5 \mathrm{~Hz}), 7.70(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.5 \mathrm{~Hz}), 7.62(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.8 \mathrm{~Hz}), 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.06$ $(\mathrm{d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 5.39(\mathrm{t}, 1 \mathrm{H}, J=3.1 \mathrm{~Hz}), 5.07(\mathrm{ddd}, 1 \mathrm{H}, J=11.8,4.7,3.1 \mathrm{~Hz}), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 4.27(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.92(\mathrm{dt}, 1 \mathrm{H}, J=9.6,3.1 \mathrm{~Hz}), 3.46(\mathrm{dd}, 1 \mathrm{H}, J=9.6,7.6 \mathrm{~Hz})$, 3.26-3.34 (m, 2H), $3.25(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.85(\mathrm{~m}, 1 \mathrm{H})$, 1.57-1.65 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.2,169.9,147.8,138.4,134.7,133.6,133.0,130.9$, 128.6, 127.8, 127.6, 125.5, 79.1, 73.1, 70.9, 69.3, 68.6, 58.3, 51.9, 35.1, 29.9, 24.3, 21.1. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$: C 54.54; H, 5.49; N, 5.08. Found: C, 54.27; H, 5.12; N, 4.92.

Acknowledgments

This work was supported by the University of Pisa (University Funds 2014-2016).

Appendix A: Supplementary data

Supplementary data related to this article can be found at..

References and notes

1.

a) Suami T. Pure Appl. Chem. 1987; 59: 1509-1520.
b) Suami T, Ogawa S. Adv. Carbohydr. Chem. Biochem. 1990; 48: 21-90.
c) Agrofoglio L, Suhas E, Farese A, Condom R, Challand SR, Earl RA, Guedj R. Tetrahedron 1994; 50: 10611-10670.
d) Balci M, Sütbeyaz Y, Secen H. Tetrahedron 1990; 46; 3715-3742.
e) Arjona O, Gómez AM, López LC, Plumet J. Chem. Rev. 2007; 107:1919-2036.
f) Kilbas B, Balci M. Tetrahedron 2011;67: 2355-2389.
2. Ogawa S. In Carbohydrate Mimics: Concepts and Methods; Chapleur, Y., Ed.; WileyVCH: Weinheim, Germany, 1998.
3. Kudo F, Eguchi T. J. Antibiot. 2009; 62: 471-481.
4. a) Chen X, Zheng Y, Shen Y. Curr. Med. Chem. 2006; 13: 109-116.
b) Lin H, Sugimoto Y, Ohsaki Y, Ninomiya H, Oka A, Taniguchi M, Ida H, Eto Y, Ogawa S, Matsuzaki Y, Sawa M, Inoue T, Higaki K, Nanba E, Ohno K, Suzuki Y. Biochim. Biophys. Acta, Mol. Basis Dis. 2004;1689: 219-228.
c) Diaz L, Delgado A. Curr. Med. Chem. 2010; 17: 2393-2418.
5. a) Delgado A. Eur. J. Org. Chem. 2008; 3893-3906.
b) Kelebekli L, Kara Y, Celik M. Beilstein J. Org. Chem. 2010; 6: No. 15.
c) Harit VK, Ramesh NG. J. Org. Chem. 2016; 81: 11574-11586.
d) Berecibar A, Grandjean C, Siriwardena A. Chem. Rev. 1999; 99: 779-844.
6. a) Kapferer P, Birault V, Poisson J-F, Vasella A. Helv. Chim. Acta 2003; 86: 2210-2227.
b) Ogawa S, Funayama S, Okazaki K, Ishizuka F, Sakata Y, Doi F. Bioorg. Med. Chem. Lett. 2004; 14: 5183-5188.
c) Curti C, Zanardi F, Battistini L, Sartori A, Rassu G, Auzzas L, Roggio A, Pinna L, Casiraghi G. J. Org. Chem. 2006, 71; 225-230.
d) Gravier-Pelletier C, Maton W, Dintinger T, Tellier C, Le Merrer Y. Tetrahedron 2003; 59: 8705-8720.
e) Rassu G, Auzzas L, Pinna L, Zambrano V, Zanardi F, Battistini L, Marzocchi L,

Acquotti D, Casiraghi G. J. Org. Chem. 2002; 67: 5338-5342.
f) Vinader V, Haji-Abdullahi MH, Patterson LH, Afarinkia K. PLOS ONE 2013; 8: e82111.
g) Rassu G, Auzzas L, Zambrano V, Burreddu P, Pinna L, Battistini L, Zanardi F, Casiraghi G. J. Org. Chem. 2004; 69: 1625-1628.
h) Bwire RN, Majinda RR, Masesane IB, Steel PG. Pure. Appl. Chem. 2009; 81: 105112.
i) Masesane, IB, Batsanov AS, Howard JAK, Mondal R, Steel PG. Beilstein. J. Org. Chem. 2006; 2: No. 9.
7. a) Di Bussolo V, Frau I, Favero, L, Uccello-Barretta G, Balzano F, Crotti P. Tetrahedron 2015; 71: 6276-6284.
b) Di Bussolo V, Fiasella A, Favero, L, Frau I, Crotti P. Tetrahedron 2013; 69: 24682478.
c) Di Bussolo V, Checchia L, Romano MR, Favero, L, Pineschi M, Crotti P. Tetrahedron 2010; 66: 689-697.
d) Di Bussolo V, Fiasella A, Frau I, Favero L, Crotti P. Tetrahedron Lett 2010; 51: 4937-4941.
e) Di Bussolo V, Checchia L, Romano MR, Pineschi M, Crotti P. Org. Lett 2008; 10: 2493-2496.
f) Di Bussolo V, Favero L, Romano MR, Pineschi M, Crotti P. Tetrahedron 2008; 64: 8188-8201.
g) Di Bussolo V, Fiasella A, Romano MR, Favero, L, Pineschi M, Crotti P. Org. Lett. 2007; 9: 4479-4482.
h) Di Bussolo V, Caselli M, Romano MR, Pineschi M, Crotti P. J. Org. Chem 2004; 69: 8702-8708.
i) Di Bussolo V, Caselli M, Romano MR, Pineschi M, Crotti P. J. Org. Chem 2004; 69: 7383-7386.
j) Di Bussolo V, Caselli M, Pineschi M, Crotti P. Org. Lett. 2003; 5: 2173-2176.
k) Di Bussolo V, Caselli M, Pineschi M, Crotti P. Org. Lett. 2002; 4: 3695-3698.

See also: 1) Crotti P, Di Bussolo V, Favero L, Macchia F, Pineschi M. Tetrahedron 2002; 58: 6069-6091.
8. a) Di Bussolo V, Frau I, Pineschi M, Crotti P. Synthesis 2012; 44: 2863-2871.
b) Di Bussolo V, Fiasella A, Favero L, Bertolini F, Crotti P. Org. Lett. 2009; 11: 26752678.
c) Di Bussolo V, Romano MR, Pineschi M, Crotti P. Tetrahedron 2007; 63: 2482-2489.
d) Di Bussolo V, Romano MR, Favero L, Pineschi M, Crotti P. J. Org. Chem. 2006; 71: 1696-1699.
e) Di Bussolo V, Romano MR, Pineschi M, Crotti P. Org. Lett. 2005; 7: 1299-1302.
9. a) Di Bussolo V, Frau I, Checchia L, Favero L, Pineschi M, Uccello-Barretta G, Balzano F, Roselli G, Renzi G, Crotti P. Tetrahedron 2011; 67:4696-4709 and references therein (racemic $1 \boldsymbol{\alpha}$ and $\mathbf{1 \beta}$).
b) Frau I, Di Bussolo V, Favero L, Pineschi M, Crotti P. Chirality 2011; 23:820-826 (enantiopure $(3 S, 4 R, 5 R)-\mathbf{1} \boldsymbol{\alpha}$ and $(3 R, 4 S, 5 R)-\mathbf{1} \boldsymbol{\beta})$.
10. Protocol A reaction conditions: epoxide $\mathbf{1 \alpha}$ (or $\mathbf{1} \boldsymbol{\beta}$) or aziridine $\mathbf{9 \alpha - N s}$ (or $\mathbf{9 \beta - N s}$) is dissolved in the solvent/nucleophile ($\mathrm{MeOH}, \mathrm{AcOH}, \mathrm{Et}_{2} \mathrm{NH}$, as an example) in the presence of a catalyst, if necessary $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{TsOH}\right.$ or a Lewis acid). Under these conditions, the nucleophilic addition reaction occurs in the presence of a large excess of nucleophile, solvent of the reaction. Protocol B reaction conditions: epoxide 1α (or 1β) or aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns (or $\mathbf{9 \beta - N s}$) is dissolved in a non-nucleophilic solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, MeCN , as an example) containing the nucleophile (MeOH , AcOH , azide anion, 3-6 equiv). Under these conditions, the nucleophilic addition reaction occurs in the presence of only a small excess of nucleophile.
11. Tenaglia A, Waegell B. Tetrahedron Lett. 1988; 29:4851-4854.
12. Azidolysis of epoxides $\mathbf{1} \boldsymbol{\beta}$ and $\mathbf{1} \boldsymbol{\alpha}$ by the commonly used $\mathrm{NaN}_{3} / \mathrm{NH}_{4} \mathrm{Cl}$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ protocol turned out to be not regioselective and the desired anti-1,2-addition product 12, from 1β (Scheme 3) and 16 from 1α (Scheme 4) were obtained in a mixture with the corresponding anti-1,4-addition product (80:20 and 55:45 anti-1,2-/anti-1,4-addition product ratio from $\mathbf{1 \beta}$ and $\mathbf{1} \alpha$, respectively) (see ref. 9 a).
13. In the presence of $\mathbf{M e O H}, \mathbf{9} \boldsymbol{\beta} \mathbf{\prime} \mathbf{- N s}-\mathbf{H}: \mathbf{9 \beta}$ "-Ns-H protonated aziridine conformers ratio is identical (about 99:1) to that present under neutral conditions between corresponding
aziridine conformers $\mathbf{9 \beta}$ '-Ns and $\mathbf{9 \beta}$ "-Ns (Schemes 5 and 6 and Supplementary data, sections 4.1 and 4.4).
14. a) Crotti P, Di Bussolo V, Favero L, Macchia F, Renzi G, Roselli G. Tetrahedron 2002; 58:7119-7133.
b) Crotti P, Favero L, Gardelli C, Macchia F, Pineschi M. J. Org. Chem. 1995; 60:25142525.
c) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. In Conformational Analysis; Interscience: New York, 1965: pp 102, 296.
d) Fürst, A.; Plattner, P. A. Abstract of Papers $12^{\text {th }}$ International Congress of Pure and Applied Chemistry, New York, 1951: p 409.
15. The stereoelectronic requirements of the conjugate addition ($\mathrm{S}_{\mathrm{N}} 2$ '-type reaction) are satisfied by attack of the nucleophile at $\mathrm{C}(1)$-carbon of $\mathrm{C}(1)-\mathrm{C}(2) \pi$ system of vinyl aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$, in either of the two possible orientation (syn or anti) with respect to allyl $\mathrm{C}(3)-\mathrm{N}$ aziridine bond, acting as the leaving group. This reaction property justifies the reason why an absence of stereoselectivity is often observed in the formation of 1,4-addition products. See: Atkinson R. S. In Stereoselective Synthesis; Wiley: Chichester, England, 1995, pp 110-111.
16. Battistini C, Crotti P, Damiani D, Macchia F. J Org. Chem. 1978; 44:1643-1647 and references therein.
17. Regioisomeric nucleophilic attack at $\mathrm{C}(4)$-carbon in these three-membered vinyl heterocycles, as aziridines $\mathbf{9} \alpha-\mathrm{Ns}$ and $\mathbf{9 \beta - N s}$ and corresponding epoxides $1 \boldsymbol{\alpha}$ and $\mathbf{1 \beta}$, has never been observed.
18. It is worth noting that, compared with the corresponding aziridine conformers $9 \boldsymbol{\alpha}^{\prime}$ Ns: $9 \boldsymbol{\alpha}$ "-Ns ratio under neutral conditions, an increase of corresponding conformer $9 \boldsymbol{\alpha}$ "-Ns-H, with $-\mathrm{CH}_{2} \mathrm{OBn}$ side chain equatorial, is observed under acid conditions (from about 29% to about 46-50\%) (Schemes 5 and 7 and Supplementary data, sections 4.2, 4.5 and 4.6) .
19. The carbaglycosylating ability of aziridine $\mathbf{9 \beta} \mathbf{- N s}(60 \%$, entry 2 , Table 2) and epoxide
$1 \boldsymbol{\alpha}(57 \%$, Scheme 1 and entry 2, Table 3), since obtained by protocol B reaction conditions (presence of only a small excess of nucleophile, 6 equiv), is more synthetically interesting than that obtained by protocol A (nucleophile as the solvent) with aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns (62%, entry 1 , Table 1) and epoxide $\mathbf{1} \boldsymbol{\beta}$ (20%, Scheme 1 and entry 1, Table 4).
20. For the effect of ILs in favoring $\mathrm{S}_{\mathrm{N}} 1$-type reaction pathways, see:
a) Creary X, Willis ED, Gagnon M. J. Am. Chem. Soc. 2005; 127:18114-18120 and references therein.
b) Sasaki K, Matsumura S, Toshima K. Tetrahedron Lett. 2004: 45:7043-7047.
21. The results obtained in the acid acetolysis of aziridine $\mathbf{9} \boldsymbol{\alpha}$-Ns and in particular the presence of syn-1,2-addition product $\mathbf{2 4}$ (entries 4 and 5, Table 1) can be rationalized as previously admitted in order to justify the results and the presence of a corresponding syn-1,2-addition product in the acetolysis of epoxide $1 \boldsymbol{\alpha}$ (see ref. 9 a).
22. a) Grieco PA, Takigawa T, Bongers SL, Tanaka H. J. Am. Chem. Soc. 1980; 102: 75877588.
b) Shanmugam P, Rajasingh P. Tetrahedron 2004; 60: 9283-9295 and references therein.
23. Epoxides 38-41 appeared as possibly effective carbaglycosyl donors for the preparation of 4-deoxy-4-(N-nosylamino)-5a-carba-D,L-glycosides, as previously found with other related oxirane systems. See: Bordoni V, Porkolab V, Sattin S, Thépaut M, Frau I, Favero L, Crotti P, Bernardi A, Fieschi F, Di Bussolo V. RSC Adv. 2016; 6: 8957889584.
24. An appropriate conformational study carried out on methoxy derivatives 20 and 27, anti-1,2-addition products from aziridines $\mathbf{9} \boldsymbol{\alpha}-\mathbf{N s}$ and $\mathbf{9 \beta - N s}$, respectively, has indicated that the corresponding conformers $\mathbf{2 0}$, and $\mathbf{2 7}^{\prime}$, with the side chain $-\mathrm{CH}_{2} \mathrm{OBn}$ equatorial are highly favored and practically the only conformers present at the equilibrium (nearly 98$99 \%$, Schemes 13 and 14).

[^0]: * Corresponding author.
 ** Corresponding author.
 E-mail addresses: valeria.dibussolo@unipi.it (V. Di Bussolo),paolo.x.crotti@gmail.com (P. Crotti).
 ${ }^{1}$ Present address: QuintilesIMS via Roma 108, 20060 Cassina de Pecchi, Milano, Italy.
 ${ }^{2}$ Present address: Kedrion Biopharma, Gallicano, Lucca, Italy.

[^1]: ${ }^{\text {a }}$ Protocol A reaction conditions: the nucleophile $(\mathrm{MeOH}$ or AcOH$)$ is the reaction solvent in the presence of the acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.

[^2]: ${ }^{\mathrm{a}}$ See ref. 9 a .

