Accepted Manuscript

Title: Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff

Author: Silvia Ghimenti Sara Tabucchi Francesca G. Bellagambi Tommaso Lomonaco Massimo Onor Maria Giovanna Trivella Roger Fuoco Fabio Di Francesco

PII:	S0731-7085(14)00635-9
DOI:	http://dx.doi.org/doi:10.1016/j.jpba.2014.11.052
Reference:	PBA 9867
To appear in:	Journal of Pharmaceutical and Biomedical Analysis
Received date:	7-8-2014
Revised date:	4-11-2014
Accepted date:	8-11-2014

Please cite this article as: S. Ghimenti, S. Tabucchi, F.G. Bellagambi, T. Lomonaco, M. Onor, M.G. Trivella, R. Fuoco, F. Di Francesco, Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff, *Journal of Pharmaceutical and Biomedical Analysis* (2014), http://dx.doi.org/10.1016/j.jpba.2014.11.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Highlights

- A non-invasive sampling of volatile organic compounds in exhaled breath is proposed
- A method to determine sevoflurane and isopropyl alcohol in breath is developed
 - Hospital staff exposure levels to sevoflurane and isopropyl alcohol are assessed

4 5

2

Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography-mass spectrometry for exposure assessment of hospital staff.

Silvia Ghimenti^a, Sara Tabucchi^a, Francesca G. Bellagambi^a, Tommaso Lomonaco^a, Massimo Onor^b, Maria Giovanna Trivella^c, Roger Fuoco^a, Fabio Di Francesco^{a,c,*}

^a Department of Chemistry and Industrial Chemistry, University of Pisa, Via del Risorgimento 35, 56126, Pisa, Italy

^b Institute of Chemistry of Organometallic Compounds, CNR, Via Moruzzi 1, 56124, Pisa, Italy

^c Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy

* Corresponding Author

Phone number: +39 0502219308; Fax: +39 0502219260

E-mail address: fabio.difrancesco@unipi.it

6 Abstract

7 Volatile anesthetics and disinfection chemicals pose ubiquitous inhalation and dermal exposure 8 risks in hospital and clinic environments. This work demonstrates specific non-invasive breath 9 biomonitoring methodology for assessing staff exposures to sevoflurane (SEV) anesthetic, 10 documenting its metabolite hexafluoroisopropanol (HFIP) and measuring exposures to isopropanol 11 (IPA) dermal disinfection fluid. Methods are based on breath sample collection in Nalophan bags, 12 followed by an aliquot transfer to adsorption tube, and subsequent analysis by thermal desorption 13 gas chromatography-mass spectrometry (TD-GC-MS). Ambient levels of IPA were also monitored. 14 These methods could be generalized to other common volatile chemicals found in medical environments. Calibration curves were linear ($r^2 = 0.999$) in the investigated ranges: 0.01 - 1000 15 16 ppbv for SEV, 0.02 - 1700 ppbv for IPA, and 0.001 - 0.1 ppbv for HFIP. The instrumental detection 17 limit was 10 pptv for IPA and 5 pptv for SEV, both estimated by extracted ion-TIC chromatograms, 18 whereas the HFIP minimum detectable concentration was 0.5 pptv as estimated in SIM acquisition 19 mode. The methods were applied to hospital staff working in operating rooms and clinics for blood 20 draws. SEV and HFIP were present in all subjects at concentrations in the range of 0.7-18, and 21 0.002 - 0.024 ppbv for SEV and HFIP respectively. Correlation between IPA ambient air and breath 22 concentration confirmed the inhalation pathway of exposure (r = 0.95, p < 0.001) and breath-borne 23 IPA was measured as high as 1500 ppbv. The methodology is easy to implement and valuable for 24 screening exposures to common hospital chemicals. Although the overall exposures documented 25 were generally below levels of health concern in this limited study, outliers were observed that 26 indicate potential for acute exposures.

27

28 Keywords

29 Occupational exposure, hospital staff, sevoflurane, isopropyl alcohol, breath analysis

30 **1. Introduction**

31 Hospital staff may be exposed to many potentially harmful substances [1-2]. Volatile anaesthetics 32 and alcoholic disinfectants are two main classes of harmful volatile substances commonly found in 33 hospital environments [2]. Alcohol-containing hand rubs and gels are widely used in the healthcare 34 environment for hand decontamination. Two representative compounds of these classes of volatile 35 pollutants were selected, namely sevoflurane (SEV), a widely used anaesthetic gas, and isopropyl 36 alcohol (IPA), one of the main components of skin antiseptics. Since there is a real risk of 37 contamination for exposed hospital personnel, a monitoring to these substances is very important 38 for the protection of hospital staff' health.

39 SEV (fluoromethyl 2,2,2-trifluoro-1-trifluoromethylethyl ether) is used in anaesthesiology for 40 invasive surgery due to its favourable pharmacokinetic properties, i.e. low blood-gas partition 41 coefficient and tissue solubility, fast metabolism and low cardio-depressant effect [3-4]. The low 42 blood solubility leads to the rapid induction of anaesthesia and a rapid recovery afterwards. SEV is 43 directly eliminated via exhaled breath and indirectly metabolized in the liver by the isoenzyme 44 CYP2E1 [5-7], with the formation of inorganic and organic fluorides such as hexafluoroisopropanol 45 (HFIP) and HFIP-glucuronide. Most HFIP is excreted in 12 hours, and only very low 46 concentrations are found two days after anaesthesia [8]. The unconjugated fraction, which 47 represents less than 15% of total HFIP concentration [5-6], is eliminated via exhaled breath.

Occupational exposure by the inhalation of anaesthetics may produce several collateral effects. Hospital staff working in operating and recovery rooms, and dental clinics, are the most exposed workers. Since the early 1980s, various epidemiological studies have suggested that chronic exposure to low doses of anaesthetic gases is an occupational risk factor for spontaneous abortion and congenital defects [9-15]. Furthermore, long-term occupational exposure to trace levels of anaesthetic mixtures, including halogenated compounds, has been shown to affect lymphatic

systems. Acute headaches, asthenia, neurobehavioral changes and effects on performance have alsobeen reported [16-17].

56 SEV may thus pose a hazard to hospital workers, and the European and United States health 57 authorities recommend exposure limits for volatile anaesthetics. Although an occupational exposure 58 standard for SEV has never been set in Europe, a target level of 20 ppm as an 8-h time-weighted 59 average (TWA) has been recommended [18]. On the other hand, the U.S. National Institute of 60 Occupational Health and Safety (NIOSH) recommends a general exposure limit of 2 ppm for all 61 volatile anaesthetics, which is mostly interpreted as a ceiling value [19].

62 The second widespread contaminant in hospital environments is IPA. It is very often used as a 63 cleaning agent and as a solvent in mild disinfectants, antiseptic solutions and rubbing alcohols [20-21]. This compound is rapidly absorbed and distributed throughout the body after inhalation, 64 ingestion or absorption through the skin, but most intoxication are related to oral ingestion [22]. The 65 volume of distribution of IPA in the human body is 0.5 L Kg⁻¹. A half-life ranging from 2.5 to 6.4 66 67 hours is estimated, which could be longer in the case of high blood concentrations occurring in 68 intoxication due to the saturation of alcohol dehydrogenase (ADH). Elimination mainly depends on 69 the liver (80-90%) and kidneys [22]. The critical step in the biotransformation of IPA is oxidation to 70 acetone, which is catalysed by the liver enzyme ADH [23-25]. Unlike alcohols such as methanol or 71 ethylene glycol, the toxic effects of IPA are directly related to the molecule rather than its 72 metabolites [21, 23]. IPA has an anaesthetic effect and irritates the respiratory mucosa if inhaled 73 [25-28] as well as the central nervous system (CNS) [20, 22].

Different safety and occupational health agencies indicate threshold values for exposure to IPA in ambient air. The European agency for safety and health at work (EU-OSHA) enforces a legal ambient air permissible exposure limit (PEL) of 400 ppmv averaged over an 8-h work shift. The same TWA limit of 400 ppmv and a short-term exposure limit (STEL) of 500 ppmv are reported in the NIOSH guide to chemical hazards and by the American conference of governmental industrial hygienists (ACGIH) [26].

Several analytical methods are suitable for monitoring exposure to potentially dangerous environmental volatile organic compounds (VOCs). The determination of SEV and IPA is mainly implemented in biological matrices such as blood and urine, or in ambient air. Although studies on plasma and urinary biomarkers of low-level occupational exposure to SEV have been carried out in the last few decades [29-32], few studies have been carried out by analysing ambient air and no study to the best of our knowledge has examined the exhaled breath of hospital staff.

86 In two studies, SEV concentrations, ranging from 0.1 to 12 ppm, were determined by photo acoustic 87 infrared spectrometry in the ambient air of operating rooms [33-34]. Room staff exposure was 88 related to the anaesthetic doses as well as the duration of the intervention, the position of the room 89 staff, and the type and functioning of the ventilation system in an operating room. In another study, 90 a portable ambient air analyser called MIRAN 1B, which used a single beam infrared 91 spectrophotometer was applied to measure SEV background concentrations (4 - 17 ppm) in working 92 environments during gaseous induction with the anaesthetic [18]. Other studies involved hospital 93 personnel exposed to volatile anaesthetics, using MIRAN 1B to evaluate halogenated anaesthetic 94 concentrations in the gas samples thus leading to the conclusion that exposures for post-operative nurses may exceed NIOSH ceilings [35]. Nurses who are exposed to volatile anaesthetics exhaled 95 96 by patients were involved in several studies because they are particularly exposed to anaesthetic 97 gases, as well as the staff working in operating theatres [36].

98 IPA poisoning can be diagnosed by normal acid-base parameters, the evaluation of hyperosmolarity 99 (the most common laboratory abnormality associated with isopropanol poisoning), and positive 100 nitroprusside reactions in urine and/or blood [20-21, 23]. At the same time, a non-invasive 101 biological monitoring of IPA-exposed workers can be carried out by ambient air, saliva, or urine 102 analysis [37-40]. Two important institutions for workplace safety, NIOSH and EU-OSHA, have 103 proposed methods to monitor IPA exposure in ambient air.

The analytical method proposed by NIOSH to determine IPA in ambient air was based on sampling
air in an adsorption tube (coconut shell charcoal) followed by thermal desorption gas-

106 chromatography analysis with flame ionization detector [41]. Two 8-mm o.d. (6-mm i.d.) Anasorb[®]
107 747 tubes in series were proposed in the OSHA method. Analytes were eluted with a 60/40 N,N108 dimethylformamide/carbon disulphide solution which was then analysed by gas-chromatography
109 with flame ionization detector. The detection limit of the overall procedure was 13 ppb [42].

In standard methods, SEV and IPA are routinely monitored in working ambient air, however determination in exhaled breath would be a more meaningful measurement of hospital personnel exposure. Based on this background information, we optimized a previously published analytical methodology [8, 43] involving the collection of mixed exhaled breath samples in disposable Nalophan bags and analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). This methodology was then used to determine SEV and IPA to assess exposure levels in a hospital environment.

117 VOCs found in human breath are linked to various physiological conditions as they represent the 118 products of metabolism in human bodies, and VOCs detected in human breath can be directly 119 correlated to specific diseases or environmental contaminations. In fact, the determination of 120 exogenous substances, or their metabolites, in the exhaled breath may reveal their possible 121 assumption.

122 Being able to detect metabolites uniquely correlated with the intake of exogenous substances is an 123 additional advantage of breath analysis compared to ambient air analysis. The determination of 124 contaminants such as SEV and IPA in exhaled breath should help to better assess exposure levels in 125 the workplace. In addition, compared to traditional specimen testing, breath analysis is a non-126 invasive approach. It is a simple alternative to traditional specimen testing in both clinical diagnosis 127 and therapeutic monitoring, and when quantifying exposure at work, [44-46]. Breath analysis can 128 also easily be expanded to the analysis of other potentially harmful VOCs that require monitoring in 129 the workplace.

- 130
- 131

132 **2. Material and methods**

133 2.1 Chemical reagents

Fluoromethyl 2,2,2-trifluoro-1-trifluoromethylethyl ether (with a purity > 99.9%) was purchased from Abbott (USA). 1,1,1,3,3,3-hexafluoro-2-propanol (puriss. p.a. standard for GC grade > 99.0%) was purchased from Fluka, Sigma-Aldrich (Italy). Isopropyl alcohol was purchased from AccuStandard, Inc. Chemical Reference Standard (USA). Labelled isopropanol-D8 and toluene-D8 (both puriss. p.a. standard for GC grade of 99.8%) were purchased from ARMAR Chemicals (Switzerland). Reagents were stored at 4 °C to minimize the risk of evaporation.

140

141 2.2 Preparation of standards

A gaseous standard of IPA, SEV and HFIP (MIX3) was prepared by evaporating 5 μ L of each liquid standard in a pre-evacuated glass flask (2 L) equipped with a septum and held at 37 °C. The calculated concentrations were 830 ppmv for IPA, 480 ppmv for SEV and 610 ppmv for HFIP. MIX3 was diluted injecting known volumes in the flow of pure air (Hydrocarbon free, purity of 99.5%, Sol, Italy) at 500 mL min⁻¹ during Nalophan bags (5 L) filling. The resulted gaseous standard mixture was further diluted in the same way to obtain mixtures at suitable concentrations for the method performances evaluation.

A gaseous mixture of labelled isopropanol-D8 and toluene-D8 (MIX 2D), for use as an internal standard, was prepared by evaporation of 5 μ L of both compounds in a 2 L glass flask equipped with a septum, pre-evacuated and held at 37 °C. The corresponding concentrations were 830 ppmv and 600 ppmv, respectively.

153

154

155

157 2.3 Air and breath sample collection

The ambient air was collected using a gas-tight cylindrical glass vessel containing a Nalophan bag (approximate volume of 1 L) connected to room air by a short PTFE tube (1/4 inch i.d.) and a bulkhead union mounted on the vessel lid (Fig. 1A). A pump, connected to the vessel by a second bulkhead union on the lid, decreased the pressure in the gap between the bag and the vessel wall, thus inflating the bag. After collection, room air samples were analysed in the same way as the breath samples.

164 Disposable bags (approximate volume of 3 L) were made from a roll of Nalophan tube (polyethylene terephthalate film, thickness 20 µm) supplied by Kalle (Germany). One end of the 165 166 Nalophan bag was rolled and tightened by nylon cable ties. The other end was wrapped and 167 tightened around a PTFE tube (1/4 inch i.d.) connected to a stopcock, a one-way valve, and a 168 mouthpiece, as shown in Fig. 1B. All parts of the sampling system were made of inert materials and 169 were freshly sterilized before sample collection. Each subject was asked to calmly fill a bag with 170 multiple deep breaths. All subjects who volunteered to join the study gave written informed consent 171 prior to their participation. The breath sampling was carried out in two different applications.

172

173 2.3.1 Application A: monitoring of SEV exposure levels

Mixed breath samples were collected from five anaesthesiologists (2 males, 3 females), aged between 27 and 33 years (average value 29 ± 2 years), working in different operating rooms at the university hospital in Pisa, Italy. Work shifts were organized on a weekly basis with five consecutive working days followed by two days of rest. Sample collection was designed to assess the effects of both the working day and the working week. Three different samples of exhaled breath were collected from each subject. The first sample was collected when the anaesthesiologist arrived at the hospital at the beginning of the first day of work (t₀), the second sample at the end of

181 the same day (t_1) and the last sample was collected at the end of the anaesthesiologist's working 182 week (t_2) .

183 The sampling of ambient air inside the operating room was not taken for safety reasons and in order 184 not to hamper the surgical operations in progress.

185

186 2.3.2 Application B: monitoring of IPA exposure levels

To assess IPA exposure of hospital staff, mixed breath and ambient air samples were simultaneously collected in a room specifically used for blood drawings, before the beginning of the work shift (t_0), and 90 (t_1) and 180 (t_2) minutes later. For this application, nine nurses (3 males, 6 females), aged between 22 and 43 years (average value 29 ± 9 years), were enrolled at the Institute of Clinical Physiology (National Research Council, Pisa, Italy) in a time span of two months.

192

193 2.4 Sample analysis

194 Sampling bags containing air or breath samples were stabilised at 37 (\pm 1) °C in a thermostated box 195 for half an hour to prevent water condensation. An aliquot of the sample (250 mL) was then flowed 196 through a drying tube filled with 9 g of anhydrous sodium sulphate (SKC, Italy) for water removal, 197 and transferred into a glass adsorption tube packed with 250 mg of 60/80 mesh Tenax GR phase 198 (70% Tenax TA, 2.6-diphenyl-p-phenylene oxide and 30% graphite, Supelco, USA). During the 199 sample transfer, the sampling bag and the drying tube were kept at 37 °C, whereas the adsorption 200 tube was kept at ambient temperature. A low flow pocket pump (210-1002TX, SKC, Italy) was used to transfer breath samples into adsorption tubes, using a constant flow of 50 mL min⁻¹ for 5 201 \min^{-1} . The adsorption tubes were then thermally desorbed by an automated two-stage thermal 202 203 desorption unit (STD 1000, DANI Instrument, Italy) equipped with an internal focusing trap packed 204 with 70 mg of Tenax GR. During the first desorption stage, carried out at 250 °C for 5 min under a helium splitless flow of 35 mL min⁻¹, the sample was concentrated in a cold trap at 5 °C. The cold 205

206 trap was then flashed at 250 °C to inject the analytes into the capillary column (DB-624, 60 m 207 length, 0.25 mm internal diameter, 1.4 µm film thickness, Agilent Technologies, USA) of the gas 208 chromatograph (Trace GC Ultra, Thermo Electron Corporation, USA) coupled to a quadrupole 209 mass spectrometer (Trace DSQ, Thermo Electron Corporation, USA) operated in the positive 210 electron impact (EI) ionization mode (70 eV). Chromatograms were collected in both total ion 211 current (TIC) and selected ion monitoring (SIM) acquisition modes. The ions at m/z 45, 131 and 99 212 were used for IPA, SEV and HFIP identification and quantification, respectively. The ions at m/z 49 213 were used for isopropanol-D8 and m/z 98 for toluene-D8. The oven temperature program was 35 °C for 10 min, 4 °C min⁻¹ to 130 °C, 2 min hold, 20 °C min⁻¹ to 250 °C, 10 min hold, 25 °C min⁻¹ to 214 215 260 °C, 15 min hold. The total GC-MS run time was 56 minutes. The temperature of the injector was set at 200 °C. Helium (constant pressure 210 kPa, split flow of 10 mL min⁻¹) was used as 216 217 carrier gas. Dedicated software controlled the thermal desorption unit (TD Manager, DANI 218 Instrument, Italy) and the GC-MS (Xcalibur, Thermo Electron Corporation, USA). The GC-MS 219 response factor stability unit was checked daily by injecting 50 μ L of labelled MIX2D. The analysis 220 of all the collected samples was carried out in triplicate.

The chemical stability of IPA, SEV and HFIP was evaluated by filling Nalophan bags with standard mixtures and then analysed soon after filling (t_0) and after 0.5, 2.5, 5 and 24 hours. For this purpose, 2.5 mL of MIX3 were injected in the aspiration flow during the filling of Nalophan bags (5 L) with pure air at 500 mL min⁻¹. The calculated concentration of SEV, HFIP and IPA in the bag was 240, 305 and 415 ppbv, respectively. 250 mL of gaseous mixture were loaded into the adsorption tube at 50 mL min⁻¹ and 50 μ L of MIX2D were injected in the aspiration flow during the sample transfer. Adsorption tube was finally analysed in the same way as the breath samples.

228 Relative response factors to labelled internal standards were calculated according to the following:

229

230 $K = (A_i \times m_{D8})/(A_{D8} \times m_i)$ (1)

where A_i and m_i are the chromatographic peak areas (a.u.) and the theoretical amounts (ng loaded in the adsorption tube) of the *i*th compound, respectively. A_{D8} and m_{D8} are the chromatographic peak areas (a.u.) and the theoretical amounts (ng loaded in the adsorption tube) of the internal labelled standards, respectively. To determine *K*, 50 µL of each standard (MIX3 and MIX2D) were injected in the aspiration flow during the transfer of 250 mL of pure air into the adsorption tube at 50 mL min⁻¹. Five adsorption tubes were analysed in the same way as the breath samples.

Isopropanol-D8 was used as internal standard for the quantification of IPA and SEV, whereastoluene-D8 was used for the quantification of HFIP..

240

241 **3. Results and discussion**

242 *3.1 Analytical performance*

243 The analytical method had already been proposed and validated in previous studies [8, 43]. In this 244 study, the application to assess workers' exposure to potentially harmful VOCs in a hospital 245 environment was tested. Stability test showed that within 5 h there were no significant variations of 246 IPA (415 ppbv), SEV (240 ppbv) and HFIP (305 ppbv) concentrations in the Nalophan bags and a 247 decrease of about 10% within 24 h was observed. Standard gaseous mixtures prepared according to 248 the method described in 2.2 were analysed as described in 2.4. Seven points calibration curves showed a good linearity ($r^2 = 0.999$) in the ranges 0.01-1000 ppbv for SEV, 0.001 - 0.1 ppbv for 249 250 HFIP, and 0.02-1700 ppbv for IPA.

The instrumental detection limits (IDLs), calculated considering the concentrations producing a signal-to-noise ratio equal to 3, were 10 pptv for IPA, and 5 pptv for SEV. The HFIP minimum detectable concentration was 0.5 pptv as estimated in SIM acquisition mode.

254 In the experimental conditions, the retention time of IPA, SEV, HFIP, isopropanol-D8 and toluene-

255 D8 was 9.14, 7.35, 23.43, 8.86 and 25.37 minutes, respectively.

The mean relative response factors (n=5), with a RSD of about 6%, were 0.87 for IPA, 1.34 for SEV and 0.54 for HFIP.

258 *3.2 Determination of SEV in breath samples*

All subjects involved in the study were working eight hours per day, and participated in surgeries of different types and length carried out in different operating rooms for a maximum of six hours each shift. They were of a similar age but were of different sexes and body weights. Potential exposures were also different, depending on the kinds of surgery and doses of anaesthetic used.

263 Fig. 2 shows SEV (A) and HFIP (B) concentrations measured in the collected breath samples. . A 264 mean SEV/HFIP breath concentration ratio of 170 ± 150 was observed, in good agreement with the 265 pharmacokinetic model previously described [8]. SEV was measured in most samples, but in four 266 out of five t₀ samples, the concentration was below the IDL. This reasonably means that usually 267 concentrations lower than 5 pptv remained in the subject's breath after the weekend rest. 268 Concentration profiles during the week did not seem to follow the same pattern for all the 269 anaesthesiologists. In three cases, SEV concentrations were higher at the end of the first working 270 day (t_1) than at the end of the working week (t_2) . If time between two consecutive working days is 271 insufficient to let SEV concentrations drop below the IDL, then a cumulative increase in 272 concentration during the working week would be observed, resulting in higher SEV levels in t_2 273 samples. Instead, our results appeared more compatible with a highly variable exposure, in which 274 daily variability plays a major role.

Note that SEV concentration in breath was always very low, far below the limit of 2 ppm suggested
by NIOSH in ambient air [19].

Our statistics are insufficient to draw ultimate conclusions and we lack data concerning SEV concentrations in ambient air, since we were not allowed to access surgery rooms during surgeries as this was considered to pose risks for patients. However, it seems that the exposure of workers involved in the study was of acceptable levels. This is very important, because the risk of harmful

- effects from chronic occupational exposure to SEV is so serious that NIOSH declared that a safe level of exposure for waste-anaesthetic gases could not be identified, and recommended that risks should be minimized by "reducing exposures to the greatest extent possible" [19].
- 284

285 *3.3 Determination of IPA in air and breath samples*

An antiseptic water-alcohol solution containing 70% of IPA was identified as the likely source of isopropyl alcohol in the air of the blood sampling room. Cotton balls were typically soaked with the solution and used to disinfect the skin before blood sampling, then thrown into a basket.

Fig. 3 shows IPA levels in breath versus concentrations measured in the air. The good correlation (r = 0.95, p < 0.001) between these concentrations suggests that breath levels can be used at the same time to monitor exposure and to have an idea of the level of ambient contamination. In a hospital, where largely variable conditions are found in different rooms depending on use, breath levels will be a weighted average of the concentrations based on the time spent by the subjects in the different areas.

During our study, an accidental exposure to higher than normal IPA concentration levels occurred to a subject who probably remained very close to the basket containing the waste cotton balls. In this case, a concentration of 1500 ± 70 ppbv was measured, compared to a mean value of 20 ± 20 ppbv determined in the other nurses' exhaled breath. This level is in any case far below the TWA limit of 400 ppmv and a STEL of 500 ppmv recommended by NIOSH for ambient air [26], and concentration in breath decreased more than seven times in about half an hour, suggesting that the risks for health remained quite low.

302

303

304

305 **4. Conclusions**

306

307 In hospitals, anaesthetic gases, antiseptics and disinfectants are a primary source of air 308 contamination. The consequent presence of potentially harmful VOCs in the air poses a risk for 309 hospital staff in terms of acute and chronic exposure.

Our method was successfully used to measure the two representative contaminants - SEV and IPA in breath, and may also be exploited to determine volatile metabolites of xenobiotics, such as HFIP in the breath samples. HFIP is a biologically damped metabolite of SEV, and so longer-term chronic exposures would eventually appear as the metabolite despite the fact that the on-board original SEV may have already been lost to exhaled volatilization.

Managing cotton balls soaked with IPA undoubtedly requires careful storage pending disposal. In addition there should be a ventilation system in any environment where potentially harmful volatile substances are used, such as anaesthetic gases.

However, appropriate precautions are taken in the workplace environment of the subjects involved in our study, as demonstrated by the fact that the concentrations of the analytes of interest were all below the recommended legal limits.

The main advantages of our method are non-invasiveness and the simple sampling procedure compared to conventional biological fluids (e.g. blood and urine). In addition, the method enables the determination of both SEV and IPA at concentration levels far below the occupational exposure limits in both exhaled breath and ambient air. This indicates that in conjunction with other monitoring programs our method could be used for sensitive, short-term monitoring of hospital personnel exposed to potentially harmful VOCs as well as for monitoring staff exposure to other potentially harmful VOCs.

328

329 Acknowledgements

- 330 The authors wish to thank Dr. C. Comite (Azienda Ospedaliero Universitaria Pisana, Pisa, Italy) and
- 331 Prof. A. Ceccarini (Department of Chemistry and Industrial Chemistry, University of Pisa, Italy) for
- their assistance.
- 333

333	
334	Captions
335	
336	Fig. 1. (A) Air sampling system composed by (1) pump, (2) PTFE tube, (3) three-ways stop valve,
337	(4) Nalophan bag, (5) vessel; (B) Breath sampling system composed by (1) disposable mouthpiece,
338	(2) non-return valve, (3) stopcock, (4) Nalophan bag.
339	
340	Fig. 2. SEV (A) and HFIP (B) levels (ppbv) in trainees' exhaled breath. Each trainee filled the
341	sampling bags at the beginning of the working week (t_0) , at the end of the first day of work (t_1) , and
342	at the end of the last working day (t ₂).
343	
344	Fig. 3. IPA concentrations in workers' breath samples versus IPA concentrations in ambient air.
345	

345

346 **References**

- V. Bessonneau, L. Mosqueron, A. Berrubé, G.Mukensturm, S. Buffet-Bataillon, J.P.
 Gangneux, O. Thomas, VOC contamination in hospital, from stationary sampling of a large
 panel of compounds, in view of healthcare workers and patients exposure assessment, PLoS
 One 8 (2013) e55535 (14pp).
- U.M. Hellgren, E.Palomäki, M. Lahtinen, H. Riuttala, K. Reijula, Complaints and symptoms
 among hospital staff in relation to indoor air and the condition and need for repairs in
 hospital buildings, Scand. J. Work Environ. Health 4 (2008) 58-63.
- S.S. Patel, K.L. Goa, Sevoflurane: a review of its pharmacodynamic and pharmacokinetic
 properties and its clinical use in general anaesthesia, Drugs 51 (1996) 658-700.
- J.F. Belda, M. Soro, R. Badenes, A. Meiser, M.L. Garcia, G. Aguilar, F.J. Marti, The
 predictive performance of a pharmacokinetic model for manually adjusted infusion of liquid
 sevoflurane for use with the anesthetic-conserving device (AnaConDa): a clinical study,
 Anesth. Analg. 106 (2008) 1207-1214.
- E.D. Kharasch, M.D. Karol, C. Lanni, R. Sawchuk, Clinical sevoflurane metabolism and
 disposition: I. Sevoflurane and metabolite pharmacokinetics, Anesthesiology 82 (1995)
 1369-1378.
- 363 [6] E.D. Kharasch, Biotransformation of sevoflurane, Anesth. Analg. 81 (1995) S27-38.
- N. Jiaxiang, N. Sato, K. Fujii, O. Yuge. Urinary excretion of hexafluoroisopropanol
 glucuronide and fluoride in patients after sevoflurane anesthesia, J. Pharm. Pharmacol. 45
 (1993) 67-69.
- 367 [8] S. Ghimenti, F. Di Francesco, M. Onor, M.A. Stiegel, M.G. Trivella, C. Comite, N. Catania,
- 368 R. Fuoco, J.D. Pleil, Post-operative elimination of sevoflurane anesthetic and

- 369 hexafluoroisopropanol metabolite in exhaled breath: pharmacokinetic models for assessing
- 370 liver function, J. Breath. Res. 7 (5), 036001 (2013) (10pp).
- 371 [9] E.N. Cohen, B.W. Jr Brown, D.L. Bruce, H.F. Cascorbi, T.H. Corbett, T.W. Jones, C.E.
- Whitcher, A survey of anesthetic health hazards among dentists, J. Am. Dent. Assoc. 90 (1975) 1291-1296.
- R.P. Knill-Jones, B.J. Newman, A.A. Spence, Anesthetic practice and pregnancy. Controlled
 survey of male anaesthetists in the United Kingdom, Lancet 2 7939 (1975) 807-809.
- 376 [11] T.N. Tannenbaum, R.J. Goldberg, Exposure to anesthetic gases and reproductive outcome.
- A review of the epidemiologic literature, J. Occup. Med. 27 (1985) 659-668.
- J.F. Boivin, Risk of spontaneous abortion in women occupationally exposed to anaesthetic
 gases: a meta-analysis, Occup. Environ. Med. 54 (1997) 541-548.
- [13] K. Hoerauf, W. Funk, M. Harth, J. Hobbhahn, Occupational exposure to sevoflurane,
 halothane and nitrous oxide during paediatric anaesthesia. Waste gas exposure during
 paediatric anaesthesia, Anaesthesia 52 (3) (1997) 215-219.
- [14] K. Hoerauf, C. Koller, K. Taeger, J. Hobbhahn, Occupational exposure to sevoflurane and
 nitrous oxide in operating room personnel, Int. Arch. Occup. Environ. Health 69 (2) (1997)
 134-138.
- A. Bargellini, S. Rovesti, A. Barbieri, R. Vivoli, R. Roncaglia, E. Righi, P. Borella, Effects
 of chronic exposure to anesthetic gases on some immune parameters, Sci. Tot. Environ. 270
 (2001) 149-156.
- J.B. Brodsky, E.N. Cohen, Health experiences of operating room personnel, Anesthesiology
 63 (1985) 461-463.
- [17] R. Lucchini, L. Belotti, M.G. Cassitto, A. Faillace, M. Margonari, G. Micheloni, M.L.
 Scapellato, V. Somenzi, T. Spada, F. Toffoletto, R. Gilioli, Neurobehavioral functions in
 operating room personnel: a multicenter study, Med. Lav. 88 (1997) 396-405.

- J.E. Hall, K.A. Henderson, T.A. Oldham, S. Pugh, M. Harmer, Environmental monitoring
 during gaseous induction with sevoflurane. Br. J. Anaesth. 79 (1997) 342-345.
- 396 [19] National Institute of Occupational Safety and Health (NIOSH). Criteria for a recommended
 397 standard: occupational exposure to waste anesthetic gases and vapors, DHEW publication
- 398 Washington, D.C., 1974.
- 399 [20] D. Jammalamadaka, S. Raissi, Ethylene glycol, methanol and isopropyl alcohol intoxication,
 400 Am. J. Med. Sci. 339 (2010) 276-281.
- 401 [21] S. Abramson, A.K. Singh, Treatment of the alcohol intoxications: ethylene glycol, methanol
 402 and isopropanol, Curr. Opin. Nephrol. Hypertens. 9 (2000) 695-701.
- 403 [22] J.A. Kraut, I. Kurtz, Toxic alcohol ingestions: clinical features, diagnosis, and management,
 404 Clinical Journal of the American Society of Nephrology 3 (2008) 208-225.
- 405 [23] F. Zaman, A. Pervez, K. Abreo, Isopropyl alcohol intoxication: a diagnostic challenge, Am.
 406 J. Kidney Dis. 40 (2002) E12.
- 407 [24] International Agency for Research on Cancer (IARC), IARC monographs on the evaluation
 408 of the carcinogenic risk of chemicals to man, Lyon, 1999 pp. 223-243.
- 409 [25] J.F. Treon, M.J. Stasik, Encyclopaedia of Occupational Health and Safety, in ILO, Geneva,
 410 1983, 109.
- 411 [26] American Conference of Governmental Industrial Hygienists (ACGIH), Documentation of
 412 the Threshold Limit Values, 4th ed., p. 238. ACGIH, Cincinnati, OH., 1980).
- 413 [27] J. Rich, R.T. Scheife, N. Katz, L.R. Caplan, Isopropyl alcohol intoxication, Arch. Neurol. 47
 414 (3) (1990) 322-324.
- 415 [28] P.G. Lacouture, S. Wason, A. Abrams, F.H. Jr. Lovejoy, Acute isopropyl alcohol
 416 intoxication. Diagnosis and management, Am. J. Med 75 (1983) 680-686.
- 417 [29] M. Imbriani, P. Zadra, S. Negri, A. Alessio, L. Maestri, S. Ghittori, Biological monitoring of
 418 occupational exposure to sevoflurane (in Italian), Med. Lav. 92 (2001) 173-180.

- 419 [30] A. Accorsi, A.Barbieri, G.B. Raffi, F.S. Violante, Biomonitoring of exposure to nitrous
 420 oxide, sevoflurane, isoflurane and halothane by automated GC/MS headspace urinalysis. Int.
 421 Arch. Occup. Environ. Health 74 (2001) 541-548.
- 422 [31] M. Buratti, C. Valla, D. Xaiz, G. Brambilla, A. Colombi, D etermination of
 423 hexafluoroisopropanol, a sevoflurane urinary metabolite, by 9-fluorenylmethyl
 424 chloroformate derivatization, J. Chromatog. B 776 (2002) 237-243.
- 425 [32] A. Accorsi, B. Morrone, I. Domenichini, S. Valenti, G.B. Raffi, F.S. Violante, Urinary
 426 sevoflurane and hexafluoro-isopropanol as biomarkers of low-level occupational exposure to
 427 sevoflurane, Int. Arch. Occup. Environ. Health. 78 (2005) 369–378.
- K. Hoerauf, C. Koller, K. Taeger, J. Hobbhahn, Occupational exposure to sevoflurane and
 nitrous oxide in operating room personnel, Int. Arch. Occup. Environ. Health 69 (2) (1997)
 134-138.
- 431 [34] K. Hoerauf, W. Funk, M. Harth, J. Hobbhahn, Occupational exposure to sevoflurane,
 432 halothane and nitrous oxide during paediatric anaesthesia. Waste gas exposure during
 433 paediatric anaesthesia, Anaesthesia 52 (1997) 215-219.
- 434 [35] D.I. Sessler, J.M. Badgwell, Exposure of Postoperative Nurses to Exhaled Anesthetic Gases,
 435 Anesth. Analg. 87 (1998) 1083-1088.
- K.A. Cope, W.T. Merritt, D.A. Krenzischek, J. Schaefer, J. Bukowski, W.M. Foster, E.
 Bernacki, T. Dorman, T.H. Risby, Phase II collaborative pilot study: preliminary analisys of
 central neural effects from exposure to volatile anesthetics in the PACU, J. Perianesth. Nurs.
 17 (2002) 240-250.
- F. Brugnone, L. Perbellini, P. Apostoli, M. Bellomi, D. Caretta, Isopropanol exposure:
 environmental and biological monitoring in a printing works, Brit. J. Ind. Med. 40 (1983)
 160-168.
- 443 [38] T. Kawai, T. Yasugi, S. Horiguchi, Y. Uchida, O. Iwami, H. Iguchi, O. Osamu Inoue, T.
- 444 Takao Watanabe, H. Haruo Nakatsuka, M. Ikeda, Biological monitoring of occupational

- 445 exposure to isopropyl alcohol vapor by urinalysis for acetone, Int. Arch. Occun. Environ.
 446 Health. 62 (1990) 409-413.
- 447 [39] S. Ghittori, L. Maestri, P. Maraccini, M. Imbriani, Acetone in urine as biological index of
 448 occupational exposure to isopropyl alcohol, Ind. Health. 34 (1996) 409-414.
- 449 [40] D.M. Rose, A. Muttray, O. Mayer-Popken, D. Jung, J. Konietzko, Saliva as an alternate for
- 450 blood to measure concentrations of acetone under exposure to isopropanol, Eur. J. Med. Res.
 451 4 (1999) 529-532.
- [41] National Institute of Occupational Safety and Health (NIOSH). Manual of Analytical
 Methods (NMAM) 4th ed., Washington D.C., 1994.
- [42] Department of Labor, Occupational Safety and Health Administration, OSHA Analytical
 Methods Manual, 2nd ed., Salt Lake City, U.S., 1993.
- [43] S. Ghimenti, S. Tabucchi, T. Lomonaco, F. Di Francesco, R. Fuoco, M. Onor, S. Lenzi,
 M.G. Trivella. Monitoring breath during oral glucose tolerance tests. J. Breath Res. 7 (2013)
- 458 017115 (7pp).
- 459 [44] W. Miekisch, J.K. Schubert, G.F.E. Noeldge-Schomburg, Diagnostic potential of breath
 460 analysis-focus on volatile organic compounds, Clin. Chim. Acta 347 (2004) 25-39.
- 461 [45] F. Di Francesco, R. Fuoco, M.G. Trivella, A. Ceccarini, Breath analysis: trends in
 462 techniques and clinical applications, Microchem. J. (2005) 79 405-410.
- 463 [46] A.L.C. Amorim, Z.L. Cardeal, Breath air analysis and its use as a biomarker in biological
 464 monitoring of occupational and environmental exposure to chemical agents, J. Chromatog.
 465 B 853 (2007) 1-9.
- 466

