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Abstract 21 

Ascorbic acid (AA) is one of the most powerful natural antioxidant able to prevent enzymatic 22 

browning after exogenous treatment of minimally-processed products. The specific mechanism by 23 

which AA prevents enzymatic browning remains still debated and a direct effect of endogenous AA 24 

stimulation and browning has never been studied. The manipulation of AA pathway is a promising 25 

approach to study the biochemical mechanism by which AA acts as an anti-browning agent. In this 26 

work, cDNA of L-galactono-1,4-lactone dehydrogenase (GLDH), one of the key gene of the 27 

Smirnoff-Wheeler’s branch of AA biosynthetic pathway, was isolated from lettuce (Lactuca sativa 28 

L. cv ‘Iceberg’), a species highly prone to browning. The hypothesis that the overexpression of 29 

GLDH translates to AA accumulation and reduces the browning phenomena in lettuce leaves after 30 

cutting was tested. Our results indicate that transgenic lettuce plants, showing about 19-fold 31 

overexpression of GLDH as compared to wild type (WT), had about +30 % of AA concentration in 32 

mature leaves. Transgenic plants exhibited reduced browning over the leaves, even after 10 d after 33 

cutting, as demonstrated by higher values of L* and lower values of a* than control plants. Overall, 34 

these findings provide a first evidence of the role of endogenous AA as browning-preventing agent. 35 

The obtainment of T2 transgenic lettuce plants is a promising first step for further investigation 36 

addressed to determine the specific mechanism by which AA act as an anti-browning preservative. 37 

 38 

Keywords Agrobacterium-mediated transformation, Lactuca sativa, Ascorbic acid, L-galactono-39 

1,4-lactone dehydrogenase gene 40 

 41 

Abbreviations 42 

 43 

AA  L-Ascorbic acid (sum of reduced and oxidized form of ascorbic acid) 44 

ALO  D-arabinono--lactone oxidase 45 

AsA  Reduced form of ascorbic acid 46 

BAP  6-Benzylaminopurine 47 
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DHA  Dehydroascorbate 48 

DTT  Dithiothreitol 49 

ESTs  Expressed Sequence Tags 50 

GDP  Guanosine diphosphate 51 

GGT  GDP-L-galactose guanyltransferase  52 

GLDH L-galactono-1,4-lactone dehydrogenase 53 

GLO  L-gulono-1,4-lactone oxidase 54 

GUO  D-gluconolactone oxidase 55 

LsGLDH Lactuca sativa L-galactono-1,4-lactone dehydrogenase 56 

MS  Murashige and Skoog medium 57 

NAA  α-Naphthalene-acetic-acid 58 

POXs  Peroxidases 59 

PPOs  Polyphenol oxidases 60 

RACE  Rapid Amplification of cDNA Ends 61 

62 
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Introduction 63 

 64 

L-Ascorbic acid (AA), commonly known as vitamin C, is essential for human health and its 65 

biosynthetic pathway has been elucidated in animal since 1950s (Ishikawa et al. 2006). Despite the 66 

key role that AA plays also in plants, especially under stress condition (Gallie 2013), it is only in 67 

the last fifteen years that an understanding of its biosynthesis in plants has emerged (Smirnoff 68 

1996). 69 

Among other stressors, the effect of wounding, occurring for example during preparation of 70 

minimally-processed produce (or similarly to that induced by pathogens), consist in loss of sub-71 

cellular compartmentalization and release of phenols, which are normally located in cell vacuole. 72 

After mechanical cutting, phenols release represents a deleterious effect as those compounds 73 

become a high-affinity substrate for browning-related enzymes, such as peroxidases (POXs) or 74 

polyphenol oxidases (PPOs) (Saltveit 2000; Degl’Innocenti et al. 2007). This reaction severely 75 

compromised the shelf-life of browning-susceptible produce, such as lettuce. 76 

Exogenous AA is commonly utilized as an anti-browning agent, despite its intimal 77 

mechanism(s) of action has never yet been clarified. Three main mechanisms have been proposed: 78 

(i) AA may act as antioxidant, promoting the regeneration of O-quinones and preserving them from 79 

polymerization into brown pigments (Walker 1995; Alscher et al. 1997); (ii) AA can bind to 80 

histidine residues of PPOs catalytic site, increasing the enzymatic Km of PPO and reducing the 81 

turnover of PPO-triggered oxidized phenols (Osuga et al. 1994); (iii) as a weak acid, AA 82 

accumulation may lower cytosolic pH, thus down-regulating the activity of browning-promoting 83 

enzymes (POXs and PPOs) after cutting (Vamos-Vigyazo 1981; Landi et al. 2013). Among these 84 

three possible hypotheses, the latter appears less probable in lettuce as both PPOs and POXs 85 

maintain high activity under a wide range of pH (Landi et al. 2013). 86 

It has been found that leaf vegetables with constitutive high level of AA (such as rocket salad 87 

and spinach) result less prone to browning phenomena than do low-containing leaf vegetables, such 88 
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as lettuce (Degl’Innocenti et al. 2007, Bottino et al. 2009). Thus, the attempt to increase AA in a 89 

browning-sensitive commodity represents a promising first step to elucidate the involvement and 90 

mechanism by which AA can mitigate the effect of browning after cutting. In addition, despite in 91 

some countries (especially in Europe) transgenic plants are not allow as human and/or animal food 92 

source, outside these countries private companies may nevertheless be interested in the possibility 93 

of producing ascorbate-enhanced plants for niche markets (Ishikawa et al. 2006). 94 

Despite many works have demonstrated that AA is synthetized from hexose sugars in plants, 95 

some steps of AA pathway still remain uncertain. It seems established that AA can be synthetized 96 

following three alternative pathways: (i) the myo-inisitol pathway; (ii) the galacturonate pathway, 97 

and (iii) the Smirnoff-Wheeler’s pathway which involves the generation of AA from L-galactose 98 

(Wheeler et al. 1998) (Fig. 1). L-galactose is generated from mannose-1-phosphate by the 99 

conversion of guanosine diphosphate (GDP)-mannose to GDP-L-galactose by GDP-mannose-3′,5′-100 

epimerase (Wolucka et al. 2001) which is then converted to L-galactose. The enzyme that catalyses 101 

the latter step remained partially missing although GDP-L-galactose guanyltransferase (GGT) has 102 

been proposed to convert GDP-L-galactose to L-galactose-1-phosphate (Laing et al. 2007; Zhou et 103 

al. 2012). L-galactono-1,4-lactone is synthesized from the oxidation of L-galactose by the NADH-104 

dependent L-galactose dehydrogenase. Finally, L-galactono-1,4-lactone is oxidized to AsA by L-105 

galactono-1,4-lactone dehydrogenase (GLDH) (EC 1.3.2.3). 106 

Many genes involved in AA biosynthesis and recycling have been cloned, and transgenic 107 

plants containing modified levels of AA have been generated (reviewed in Hancock and Viola 108 

2002; Zhang et al. 2007; Cruz-Rus et al. 2012). Silencing/overexpression of genes encoding various 109 

enzymes in the AA biosynthesis and metabolic network lead to a decrease/increase in AA content 110 

(Alhagdow et al. 2007; Pineau et al. 2008; Badejo et al. 2009; Hemavathi-Upadhyaya et al. 2010; 111 

Yu et al. 2010; Bulley et al. 2012; Liu et al. 2013). A supported relationship between GLDH 112 

activity and AA biosynthesis (Ôba et al. 1994; Wheeler et al. 1998; Tabata et al. 2001; 2002; 113 

Tamaoki et al. 2003) has led to suggestion that this step may be a suitable target for manipulation of 114 
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AA biosynthesis in plants (Hancock and Viola 2005). Although no clear relationships among the 115 

AA content and GLDH protein amount, have been observed in wheat (Bartoli et al. 2005), tobacco 116 

(Imai et al. 2009), and tomato (Alhagdow et al. 2007), the overexpression of tobacco GLDH in BY-117 

2 cells under the constitutive CAMV35S promoter resulted in up to 4-fold increased enzyme 118 

activity and a 60 % increase in the AA pool size (Tokunaga et al. 2005). In addition, antisense 119 

suppression of GLDH mRNA led to a significant decline in both GLDH activity and AA levels (-30 120 

%) in the transgenic tobacco BY-2 cells (Tabata et al. 2001). 121 

In this study we tested the hypothesis that lettuce (L. sativa L. cv ‘Iceberg’) transgenic plants, 122 

which overexpressed a GLDH cDNA (LsGLDH), translate to increased AA concentration, and 123 

consequently less browning appearance in leaves. This work represents the first report in which the 124 

AA content has been manipulated by overexpression of GLDH cDNA in Compositae, a large family 125 

which numbers several edible crops and the first clear evidence that endogenous AA can act as anti-126 

browning compound. 127 

 128 

Materials and methods 129 

 130 

Plant material and growth condition 131 

 132 

L. sativa seeds (cv ‘Iceberg’, purchased from Blumen, Milan, Italy) were germinated in Petri dishes, 133 

on filter papers moistened with distilled water at 23 ± 1 °C in the dark. After three-four days, 134 

germinated seeds were transferred to 8 cm diameter pots containing a 60:40 mixture of soil and 135 

sand, respectively. Seedlings were grown in a growth chamber at 23 ± 1 °C under a 16-h 136 

photoperiod. Irradiances at the top of the seedlings were 500 mol photons m
-2

 s
-1

 provided by High 137 

Pressure Sodium Lamps HPST 400W/E40/H0 (Venture Lighting Italia S.r.l., Milan, Italy). 138 

 139 

Isolation of complete GLDH mRNA in lettuce 140 
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 141 

Two expressed sequence tags (ESTs) of L. sativa (DY974309) and L. serriola (BQ987137) from 142 

the TIGR Plant Transcript Assembly (http://blast.jcvi.org/euk-blast/plantta_blast.cgi) and 143 

corresponding to fragments of GLDH-related sequences were identified. The EST sequences were 144 

used to choose the primers (LAC1F and LAC4R) for PCR amplification of the GLDH cDNA in 145 

lettuce (Online Resource 1). The primer LAC1F is placed 36 bp before the putative start codon of 146 

the GLDH gene. 147 

Total RNA was extracted from young leaf blades of 20-day-old lettuce plants with the TriPure 148 

Isolation Reagent, according to the manufacturer’s instructions (Roche Diagnostics GmbH, 149 

Germany). Total RNA (4 g), was used with the Superscript
TM

 II pre-amplification kit (Invitrogen 150 

S.R.L., Life Technologies, Carlsbad, CA), to produce the first strand cDNA in conditions 151 

recommended by manufacturer. One cDNA fragment was obtained with the primer combination 152 

LAC1F-LAC4R. The following PCR conditions were used: 94 °C for 4 min, 35 cycles (30 s at 94 153 

°C, 30 s at 64 °C, 60 s at 72 °C), 72 °C for 7 min. The cDNA fragment sequencing allowed 154 

choosing primers to use in the 3’RACE (Rapid Amplification of cDNA Ends) approach, according 155 

to the manufacturer’s instructions (Invitrogen). A 3’RACE was conducted using the GLDH-specific 156 

primer LAC5F and the Universal Amplification Primer (UAP) 9 (Online Resource 1) with the 157 

following PCR conditions: 94 °C for 4 min, 35 cycles (30 s at 94 °C, 30 s at 60 °C, 30 s at 72 °C), 158 

72 °C for 7 min. 159 

To obtain a full-length GLDH CDS a PCR was performed with the specific primers LAC1F 160 

and LAC6R (Online Resource 1). The PCR conditions were: 94 °C for 4 min, 35 cycles (30 s at 94 161 

°C, 30 s at 58 °C, 100 s at 72 °C), 72 °C for 10 min. The PCRs were performed with a Phusion® 162 

high-fidelity DNA polymerase (Thermo Scientific, St. Leon, Germany), according to the 163 

manufacturer’s instructions. 164 

All PCR products were separated using electrophoresis on a 1 % TAE-agarose gel and 165 

visualized with Gel Red
TM

 Nucleic Acid Stain (Biotium, Inc. Hayward, CA) under UV light. 166 
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Selected amplified products were purified using the Wizard® SV Gel and PCR Clean-UP System 167 

(Promega, Madison, WI). Several purified products were inserted into the pGEM®-T easy vector 168 

(Promega), and transformed in Escherichia coli JM109 competent cells (Promega). Plasmid cDNA 169 

was prepared using Wizard® Plus Minipreps DNA Purification Kit (Promega). Several clones were 170 

automatically sequenced on both strands by MWG Eurofins Operon (Ebersberg, Germany). 171 

Sequence data from this article have been deposited in GenBank under the accession number 172 

HG810915.2. 173 

 174 

Database searches and phylogenetic analysis 175 

 176 

Database searches were carried out using the BLAST program at the National Center for 177 

Biotechnology Information (NCBI) (Altschul et al. 1997). PROSITE and PFAM databases were 178 

searched to identify conserved domains (Bateman et al. 2002; Falquet et al. 2002). Mito ProtII-179 

v1.101 software at the ExPASy Bioinformatics Resource Portal was used for the prediction of 180 

putative mitochondrial targeting sequences and cleavage (Claros and Vincens 1996). The deduced 181 

GLDH amino acid sequence of lettuce was compared to GLDH sequences of other higher plants. 182 

The amino acid sequence from Volvox carteri (GenBank accession no. XM002947966) was used as 183 

out-group in the phylogenetic analysis. The evolutionary history was inferred using the Minimum 184 

Evolution (ME) method (Rzhetsky and Nei 1992). The percentages of replicate trees in which the 185 

associated taxa clustered together in the bootstrap test (100 replicates) are shown next to the 186 

branches (Felsenstein, 1985). The evolutionary distances were computed using the Poisson 187 

correction method (Zuckerkandl and Pauling 1965) and are expressed as units of amino acid 188 

substitutions per site. The ME tree was searched using the Close-Neighbor-Interchange (CNI) 189 

algorithm (Nei and Kumar 2000) at a search level of 1. The Neighbour-joining algorithm (Saitou 190 

and Nei 1987) was used to generate the initial tree. All positions containing gaps and missing data 191 
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were eliminated from the dataset (Complete deletion option). A total of 543 positions were found in 192 

the final dataset. Phylogenetic analyses were conducted in MEGA4 (Tamura et al. 2007). 193 

 194 

Semi-quantitative RT-PCR analysis 195 

 196 

To analyze LsGLDH transcript levels, total RNA extractions were carried out from cotyledons of 5-197 

day-old WT plants (C), internodal stem of 60-day-old plants (ST), young leaf blade (2 cm long) of 198 

20-day-old plants (YL), completely expanded leaf blades of about 30-day-old plants (mature leaf, 199 

ML), vegetative shoots (VS) of 20-day-old plants, young inflorescences (YI) of 60-day-old plants. 200 

Total RNA was extracted with the TriPure Isolation Reagent, according to the manufacturer’s 201 

instructions (Roche Diagnostics GmbH, Mannheim, Germany). To exclude DNA contamination, 202 

digestion of extracts was performed with DNase I-RNase free (Dasit Sciences S.r.l., Cornaredo, 203 

Milan, Italy) as previously described (Sambrook and Russell 2001). To determine the integrity of 204 

the RNA and to ensure that equal amounts of RNA were added to each reaction, 1 g of RNA from 205 

each sample was separated via electrophoresis in formaldehyde-formamide gel. 206 

First strand cDNA was synthesized using iScript™ cDNA synthesis Kit (Bio-Rad) following 207 

the manufacturer’s instructions. PCRs were performed using gene-specific primers for LsGLDH 208 

(LsGLDHF and LsGLDHR; Online Resource 1). To normalize the amount of RNA of each sample, 209 

an amplification of the constitutively expressed lettuce Lstub3 gene (GenBank accession number 210 

AB232706.1), encoding a -tubulin 3 was carried out using the specific primers Lstub3F and 211 

Lstub3R (Online Resource 1). Primers were designed to amplify a 115, and 96 bp fragments for 212 

LsGLDH and Lstub3, respectively. The number of PCR cycles was chosen in the exponential 213 

range of amplification. The PCR conditions were 94 °C for 4 min, 28 cycles (30 s at 94 °C, 30 s at 214 

60 °C, 10 s at 72 °C), 5 min at 72 °C for Lstub3; 94 °C for 4 min, 32 cycles (30 s at 94 °C, 30 s at 215 

59 °C, 10 s at 72 °C), 5 min at 72 °C for LsGLDH. Amplifications were carried out with Gene 216 

Amp
®
 PCR System 2700 thermocycler (Applied Biosystems). The PCR products were separated by 217 
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electrophoresis on a 2.0 % TAE-agarose gel and visualized with Gel Red
TM

 Nucleic Acid Stain 218 

under UV light. The experiment was repeated with three independent RNA extractions. The relative 219 

amount of each PCR product was quantified using a Bio-Rad Quantity One Software (Bio-Rad 220 

Laboratories Inc, Hercules, CA). The relative intensity of each LsGLDH product was expressed as 221 

percentage with respect to the Lstub3 product (100 %). 222 

 223 

Material for the production of transgenic plants 224 

 225 

Lettuce seeds (L. sativa cv ‘Iceberg’) were immersed in 70 % ethanol for 1 min and rinsed with 226 

sterile distilled water. Later on, seeds were surface sterilized in 10 % (v/v) ‘ACE’ bleach (Procter & 227 

Gamble S.r.l., Rome, Italy) for 15 min under a pressure of 400 mm Hg, followed by three washes in 228 

sterile distilled water. The seeds were placed on solidified agar (0.8 % w/v) Murashige and Skoog 229 

(MS; 1962) medium with 3 % (w/v) sucrose, at pH 5.7 (20 mL aliquots per 9 cm Petri dish; 10-15 230 

seeds per dish). Seeds were germinated at 23 ± 1 °C (16-h photoperiod, 100 μmol m
-2

 s
-1

, daylight 231 

fluorescent tubes). Cotyledons were excised after 3-5 days for bacterial inoculation. 232 

 233 

Construction of PetE::GLDH cassette and growth of Agrobacterium tumefaciens strain 234 

 235 

Forward and reverse primers, LATF and LATR (Table 1) able to insert SalI restriction sites at the 236 

end of the GLDH cDNA were used. The PCR conditions were: 95 °C for 4 min, 35 cycles (30 s at 237 

94 °C, 30 s at 64 °C, 100 s at 72 °C), 72 °C for 10 min. The PCRs were performed with a Phusion® 238 

high-fidelity DNA polymerase (Thermo Scientific), according to the manufacturer’s instructions. 239 

The PCR products were separated using electrophoresis on a 1 % TAE-agarose gel and visualized 240 

with Gel Red
TM

 Nucleic Acid Stain under UV light. The selected amplified product was purified as 241 

stated above, inserted into the pGEM®-T easy vector (Promega), and transformed in Escherichia 242 
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coli JM109 competent cells (Promega). Plasmid cDNA was prepared as above and both strands of 243 

several clones were automatically sequenced. 244 

The transcript was then ligated in a pBIN19 derivative binary vector pVDH282 (Frugis et al., 245 

2001) containing an expression cassette (pea plastocyanin promoter PetE-NOS terminator). The 246 

cDNA was inserted exploiting a SalI restriction site downstream of pPetE and upstream of tNOS 247 

(Online Resource 2). The resulting binary vector was named pBINGLDH. 248 

The pBINGLDH construct was inserted in LBA4404 A. tumefaciens strain. Bacteria were 249 

grown from -70 °C glycerol stocks at 28 °C on Luria broth (LB) (Sambrook and Russell 2001) 250 

semi-solidified with 1.5 % (w/v) Bactoagar (Oxoid) and supplemented with kanamycin sulphate 251 

(100 mg L
-1

) and rifampicin (50 mg L
-1

). Overnight liquid cultures were incubated at 28 °C on a 252 

horizontal rotary shaker (180 rpm) and were initiated by inoculating 20 mL of liquid LB medium, 253 

containing kanamycin sulphate (50 mg L
-1

) and rifampicin (40 mg L
-1

), into 100 cm
3
 conical flasks. 254 

Bacterial cultures were grown to an O.D.600 of 1.0-1.5 prior to inoculation of explants. 255 

 256 

Plant transformation 257 

 258 

Cotyledons excised from 3-5-day-old seedlings were inoculated with A. tumefaciens and transgenic 259 

shoots regenerated using a modified procedure described by Curtis et al. (1994). Briefly, a total of 260 

600 explants were inoculated with A. tumefaciens and cultured on the shoot regeneration medium 261 

(15-20 explants per Petri dish). Shoot regeneration medium was made up of MS basal medium 262 

supplemented with 30 g L
-1

 of sucrose, 0.1 mg L
-1

 of α-naphthalene-acetic-acid (NAA), 0.5 mg L
-1

 263 

6-benzylaminopurine (BAP), 500 mg L
-1

 carbenicillin, 100 mg L
-1

 cefotaxime (Claforam, Roussel 264 

Laboratories, Uxbridge, UK), 50 mg L
-1

 kanamycin sulphate and 0.8 % (w/v) Bactoagar (Oxoid, 265 

Basingstoke, UK), pH 5.7. Regenerated shoots were rooted in vitro before being transferred to the 266 

growth chamber under described above conditions. The root induction medium containing MS basal 267 

medium supplemented with 30 g L
-1

 of sucrose, 50 mg L
-1

 kanamycin sulphate and 0.8 % (w/v) 268 
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Bactoagar, pH 5.7. Twelve independent T0 PetE::GLDH plants were selected by a PCR analysis 269 

using the primers PCPF and LAC4R (Online Resource 1). The Primer PCPF is placed 89 bp before 270 

the 3’end of the PetE promoter (GenBank accession number X68313). The PCR conditions were: 271 

95 °C for 4 min, 30 cycles (30 s at 94 °C, 30 s at 63 °C, 60 s at 72 °C), 72 °C for 7 min. The T0 272 

plants were grown until anthesis and self-pollinated to set T1 seeds. Selection for transgenic 273 

seedlings (T1 generation) was performed by germinating seeds on MS basal medium supplemented 274 

with 200 mg L
-1

 kanamycin sulphate, 30g L
-1

 of sucrose and 0.8 % (w/v) Bactoagar, pH 5.7 and 275 

PCR analysis. Rooted green seedlings were grown in growth chamber until anthesis and self-276 

pollinated to set T2 seeds. T2 homozygous seeds were selected as described for selection of 277 

transgenic plants (kanamycin-supplemented medium and PCR analysis) and were used for the 278 

further characterization of PetE::GLDH phenotype. 279 

 280 

Gene expression analysis by real-time RT-PCR (qPCR) 281 

 282 

Total RNA was extracted from leaf blades of about 30-day-old of both wild type (WT) and T2 283 

homozygous lettuce transgenic plants (PetE::GLDH) with the TriPure Isolation Reagent, according 284 

to the manufacturer’s instructions (Roche Diagnostics GmbH, Germany). The total RNA were 285 

isolated from sample collected immediately (t0) or 24 h (t1), 48 h (t2) and 72 h (t3) after the cutting. 286 

The RNA integrity was checked by gel electrophoresis and quantified with a microdrop and treated 287 

with RQ1 RNase-Free DNase (Promega) following the manufacturer’s instructions. First strand 288 

cDNA was synthesized using iScript™cDNA synthesis Kit (Bio-Rad) following the manufacturer’s 289 

instructions. Real-time quantitative RT-PCR (qPCR) was performed using an ABI Prism 7,300 290 

sequence detection system (Applied Biosystems) and gene-specific primers for LsGLDH 291 

(LsGLDHF and LsGLDHR) and Lstub3 (Lstub3F and Lstub3R; Online Resource 1). 292 

Quantitative PCR was performed using 50 ng of cDNA and iQSYBRGreen Supermix (Bio-Rad 293 

Laboratories), according to the manufacturer’s instructions. The thermal cycling conditions of RT-294 
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PCR were as follows: stage I 10 s at 50 °C, stage II 3 min at 95 °C, stage III (×40) 5 s at 95 °C + 30 295 

s at 60 °C. Three independent biological replicates were analyzed per each treatment. Relative 296 

quantification of specific mRNA levels was performed using the comparative 2
-Ct

 method (Livak 297 

and Schmittgen 2001). Expression values were normalized using the housekeeping gene Lstub3. 298 

 299 

AA determination 300 

 301 

AA was spectrophotometrically determined as described by Kampfenkel et al. (1995). The assay is 302 

based on the reduction of Fe
3+

 to Fe
2+

 by AsA and the spectrophotometric detection of Fe
2+

 303 

complexed with 2,2’-dipyridyl. AA was determined immediately (t0) or 24 h (t1), 48 h (t2) and 72 h 304 

(t3) after cutting in leaves stored under dark condition at 4 °C in 0.5-L polyethylene terephthalate 305 

boxes. Data were expressed as µg AA g
-1

 FW. 306 

 307 

Colour determination 308 

 309 

Leaf surface colour measurements were carried out at each time after cutting (0, 1, 2, 3, 10 days) in 310 

5 randomly selected leaves. In each selected leaf, colour was monitored in three spots by using 311 

standard CIE Lab* colour space coordinates determined by an Ocean Optic HR2000-UV-VIS-NIR 312 

spectrometer coupled whit a tungsten halogen DH2000 light source (Ocean Optics, USA). L* 313 

represents the lightness of colours (lightness index scale) and ranged from 0 for black to 100 for 314 

white; a* value represents redness and greenness (a* and –a*, respectively). After cutting, leaves 315 

were stored under dark condition at 4 °C in 0.5-L polyethylene terephthalate boxes for monitoring 316 

color changes over time. 317 

 318 

Statistical analysis 319 
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 320 

The experiment was repeated twice with similar results; a representative run is reported herein. 321 

Reported data for semi-quantitative RT-PCR, real-time RT-PCR (qPCR), AA content, and colour 322 

parameters represent at least the mean ± SD of five biological replications (n = 5 Homogeneity of 323 

variance among data was evaluated using Bartlett’s test (p = 0.05). ). The percentage data were 324 

analyzed after arcsine transformation. Means were subjected to two-way analyses of variance 325 

(ANOVA) with genotype (G) and storage (S) as variability factor. Mean were separated after 326 

Tukey’s test (p = 0.05). 327 

 328 

Results 329 

 330 

Isolation and sequence analysis of LsGLDH cDNA 331 

 332 

LsGLDH cDNA contains a complete open reading frame (ORF) of 1,833 bp, flanked by 5’- and 3’-333 

untranslated regions (UTR) of 36 and 88 bp, respectively (Online Resource 3). The putative peptide 334 

LsGLDH is 610 amino acids long with a theoretical pI of 8.68 and a calculated molecular weight of 335 

69.2 kDa (Fig. 2a). It contains a mitochondrial targeting sequence (probability of export to 336 

mitochondria 0.73) with the cleavage site FR/YA similar to other known GLDHs (Fig. 2a). N-337 

terminal sequence analysis of GLDH isolated from cauliflower mitochondria showed that the 338 

mature protein starts exactly at the tyrosine (Y) of the predicted cleavage site (Østergaard et al. 339 

1997). It is likely that LsGLDH is processed to a mature protein by a removal of an N-terminal 340 

peptide of 107 amino acids, which probably takes place during transport of GLDH into 341 

mitochondria. Therefore, the mature LsGLDH protein consists of 503 amino acid residues having a 342 

calculated molecular weight of 57.2 kDa and a pI of 6.68. GLDH and related aldonolactone 343 

oxidoreductases involved in vitamin C biosynthesis belong to the vanillyl-alcohol oxidase (VAO) 344 

flavoprotein family. Members of this family share a two-domain folding topology, comprising a 345 
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conserved N-terminal FAD binding domain and a C-terminal cap domain that determines the 346 

substrate specificity. The active site is located at the interface of the domains (Fraaije et al. 1998; 347 

Leferink et al. 2008). Analysis of LsGLDH amino acid sequence identified a putative N-terminal 348 

FAD-binding domain between residues 128 and 264, wherein is located a motif 
157

VGSGLSP
163

 349 

common to GLDHs characterized from plants (Fig. 2a). From the alignment, it is evident that 350 

GLDH in plants lacks the histidine residue involved in covalent flavinylation in GUO, ALO and 351 

GLO, but contains a leucine residue instead (Leu161 in LsGLDH, Fig. 2a, Online Resource 3 and 352 

Online Resource 4), indicating that the flavin cofactor is non-covalently bound to the protein 353 

(Leferink et al. 2008). The essential Glu-Arg pair found in the active site of GLDH from 354 

Arabidopsis thaliana (Leferink et al. 2009) is also present in LsGLDH (Fig. 2a, Online Resource 3 355 

and Online Resource 4). The arginine 487 is crucial for the stabilization of the anionic form of the 356 

reduced FAD cofactor (Leferink et al. 2009); while the glutamic acid 485 is involved in productive 357 

substrate binding (Leferink et al. 2009). 358 

Although plant GLDH have been identified as integral membrane proteins of the inner 359 

mitochondrial membrane (Siendones et al. 1999; Bartoli et al. 2000; Hancock and Viola 2005), we 360 

did not find any transmembrane regions in the sequence of mature LsGLDH. Analogous results was 361 

reported for the sequence of Arabidopsis GLDH (Leferink et al. 2008). 362 

The domain specific to D-arabinono-1,4-lactone oxidase, which is involved in the final step of 363 

the D-erythroascorbic acid biosynthesis pathway, has been also identified (Fig. 2a Online Resource 364 

3). 365 

Sequence and phylogenetic analyses revealed that LsGLDH was related with GLDH genes of 366 

other species (Fig. 2b and Online Resource 5). A search in GenBank database with the BLAST 367 

program showed that LsGLDH shared a query coverage of 95-99 % and the highest amino acid 368 

identity (73-76 %) with GLDH proteins of Camellia sinensis (GenBank accession numbers 369 

KF619448), N. tabacum (GenBank accession number BAB13368), Malus domestica (GenBank 370 
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accession number FJ752244), Fragaria vesca subsp. vesca (GenBank accession number 371 

XP_004303609) and Ipomoea batatas (GenBank accession number BAA34995; Imai et al. 1998). 372 

 373 

Transcription analysis of LsGLDH in lettuce organs 374 

 375 

The semi-quantitative RT-PCR was used to analyse the steady state levels of LsGLDH mRNA in 376 

various organs of WT lettuce (Fig. 3a). LsGLDH was consistently transcribed in all samples 377 

analyzed (i.e., cotyledons, internodal stem, young and mature leaves, vegetative shoots and young 378 

inflorescences), and the highest mRNA levels occurred in internodal stem and expanded leaf blades 379 

(Fig. 3a, b). 380 

 381 

Regeneration of PetE::GLDH transgenic plants 382 

 383 

Callus production was induced from the proximal end of cotyledon explants infected by 384 

Agrobacterium on shoot induction medium supplemented with 50 mg L
-1

 kanamycin. Each 15 days, 385 

calli were transferred onto fresh shoot induction medium containing 50 mg L
-1

 kanamycin to select 386 

transgenic lettuce shoots. After 40-50 days, multiple adventitious shoots from explants infected by 387 

Agrobacterium were induced (Online Resource 6). Several green shoots were transferred to MS 388 

basal medium supplemented with 50 mg L
-1

 kanamycin for rooting (Online Resource 6). The rooted 389 

shoots were transplanted into the soil through acclimation steps (see Material and methods section 390 

and Online Resource 6). The frequency of independent putatively transgenic plants was low 391 

(24/600, 4.0 %). Twelve putative transformed plants (T0) were selected on the basis of the presence 392 

of the PetE::GLDH construct assessed by a PCR-based method (Fig. 4a). The twelve plants, 393 

heterozygous for the transgene PetE::GLDH, were grown until anthesis to seed set (Online 394 

Resource 6). Several T1 seeds of each progeny germinated on medium supplemented with 395 

kanamycin sulphate were grown until maturity for obtaining homozygous T2 seeds. Homozygous 396 
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T2 transgenic progenies were also assessed by a PCR-based approach (Fig. 4b and Online Resource 397 

6). 398 

 399 

Real-time RT-PCR GLDH expression in mature leaves 400 

 401 

Former transformation experiment in lettuce with gene under the control of the CaMV 35S 402 

promoter failed, resulting in no constitutive expression of the gene of interest (data not shown). 403 

Hence, we decided to overexpress the GDHL gene under the control of the pea plastocyanin 404 

promoter, which is considered a constitutive promoter, although not strong as the CaMV 35S, and 405 

slightly light dependent (Pwee and Gray 1993; Brown et al. 2005). Transgenic plants exhibited an 406 

increase (p < 0.05) in the expression of the gene of almost 19-fold change that proved the successful 407 

transformation (Fig. 5a). Moreover, although there was a decrease of the expression levels of 408 

GDHL upon leaf-cutting, transgenic lettuce showed almost 8-fold change higher levels in 409 

comparison to WT. 410 

 411 

AA content and colour determination 412 

 413 

GLDH overexpressing plants had about +29 % of constitutive (t0) AA content in mature leaves as 414 

compared to WT plants (p < 0.001; Fig. 5b). Similar enhancement of AA was maintained after 415 

cutting in transgenic lettuce leaves (t1-t3 values averaged 127.9 µg g
-1

 FW versus 96.6 found in WT; 416 

p < 0.01). 417 

CIE Lab* colour values highlight as GLDH overexpressing plants showed a less steep decline of 418 

luminosity after cutting (p < 0.001) until to the last day of storage as compared to the WT 419 

counterpart (L*, Fig. 5c). From 72 h after cutting, values of greenness increased less steeply in 420 

transgenic plants (a*; Fig. 5d) and remained lower till to the last days of the experiment (10 d after 421 

cutting; p < 0.01). 422 
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 423 

Discussion 424 

 425 

The manipulation of AA biosynthesis in plants can be a useful strategy to add new insight either in 426 

plant basic or applicative research, such instance that oriented toward reduction of loss of 427 

minimally-processed produce due to browning phenomena. Obtained results offer the evidence that 428 

transformation of lettuce with GLDH cDNA effectively lead to: (i) overexpression of LsGLDH, 429 

even 24, 48 and 72 h after cutting, (ii) incremented concentration of AA (about +30 %) 430 

accumulated in mature leaves and (iii) reduced browning phenomena after cutting. In addition, as 431 

LsGLDH proteins have never been isolated in a member of Compositae, and thus an in-depth 432 

polypeptide investigation and phylogenetic analyses among other plant families are provided here. 433 

The putative LsGLDH polypeptide sequence presented a mitochondrial targeting signal in the 434 

amino terminal end, rich in Ala, Leu, Arg, and Ser residues (6, 13, 7, and 18, respectively) and with 435 

relatively few Asp, Glu, Ile, and Val residues (0, 3, 3, and 2, respectively). This composition is 436 

similar to that reported for other known GLDHs and matched the characteristics of mitochondrial 437 

target peptides (von Heije 1986; Pateraki et al. 2004). The existence of a FAD binding domain 438 

suggests that the flavin group is involved in the reaction catalysed by GLDH (Ôba et al. 1995). 439 

Many aldonolactone oxidoreductases contain a covalently bound FAD cofactor (Salusjärvi et al. 440 

2004; Logan et al. 2007). LsGLDH lacks the histidine involved in covalent attachment of the FAD 441 

cofactor, but contains a leucine (Leu161) at this position. Replacement of Leu into His in 442 

Arabidopsis GLDH revealed that the presence of a histidine at this position does not initiate 443 

covalent binding of the cofactor (Leferink et al. 2008). Covalent coupling of the FAD cofactor is 444 

likely an autocatalytic process, requiring a preorganized binding site (Fraaije et al. 2000). Based on 445 

the analysis of predicted amino acid sequence LsGLDH showed high homology to GLDH proteins 446 

of C. sinensis and other GLDHs sequences (e.g., Malus domestica, Ipomea batatas and Nicotiana 447 

tabacum). Further phylogenetic analysis showed that LsGLDH cluster in the same sub-group of the 448 
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Camelia sinensis GLDH within a major monophyletic clade of the eudicot asterids and separated 449 

from members of the rosid clade. 450 

Although it has been established that GLDH catalyses the last step of AA biosynthetic 451 

pathway in several plant species (Østergaard et al. 1997; Ioannidi et al. 2009; Li et al. 2010; Cocetta 452 

et al. 2012; Xu et al. 2013), no clear correlation between AA content and expression of GLDH has 453 

always been detected. An extensive analysis performed in cabbage showed that the expression 454 

pattern of the major genes in the D-Man/L-Gal branch of AA pathway, including GLDH, have a 455 

higher expression levels in cultivar with higher AA content (Ren et al. 2013). Similarly, during 456 

apple fruit formation, a greater transcription and activity of GLDH in young fruit contributed to 457 

increase the AA content (Li et al. 2011). Post-transcriptional regulation of GLDH has also been 458 

proposed in different organs of some species or under stress condition (Bartoli et al. 2005; Loscos et 459 

al. 2008). In our work, the highest levels of GLDH mRNA were found in internodal stems and 460 

mature leaves of WT lettuce. However, in all the other organs the mRNA was consistently 461 

transcribed suggesting that in lettuce GLDH is not a tissue-specific prerogative. Together, these 462 

results suggest the complexity of AA biosynthesis and that the importance of different enzymes is 463 

strictly related to plant species, organ, tissue and developmental stage taken into consideration, but 464 

anyway it points out GLDH as a promising candidate for AA manipulation. 465 

Studies carried out with transgenic plants, in which AA pathway has been manipulated trough 466 

overexpression/silencing of GLDH, indicate that the role of this gene in AA biosynthesis is 467 

controversial, too. Alhagdow et al. (2007) observed that tomato GLDH silencing did not exhibit 468 

clear changes in AA contents compared with WT plants. By contrast, in A. thaliana GGT transgenic 469 

lines had the highest AA accumulation with a 2.9-fold increase to the WT, which was followed by 470 

GLDH (1.8-fold) and L-galactose-1-phosphate phosphatase transgenic lines (1.5-fold) (Zhou et al. 471 

2012). In our study, the overexpression of GLDH in lettuce plants is consistent with higher AA 472 

content in agreement with that observed by Tokunaga et al. (2005). 473 
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The higher AA concentration found in transformed lettuce plants correlate with reduced 474 

browning development over the leaves after wounding. GLDH overexpressing plants showed higher 475 

levels of luminosity (L*) than WT after wounding. This is indicative of low levels of browning 476 

since browning is associated with the oxidation of phenolics and their polymerization into dark-477 

brown pigments (King et al. 1991; Ke and Salveit 1989). In addition, transgenic plants also showed 478 

a less marked increase in a* values. This parameters is considered related to browning, too 479 

(Castañer et al. 1999) since increment of this values are mainly associated with the breakdown of 480 

chlorophyll and hence to the reduction of leaf greenness. In agreement, Martin-Diana et al. (2005) 481 

found that high temperature treatment of lettuce leaves (50 °C) leading to degradation of browning-482 

related enzyme (such as polyphenol oxidase and peroxidase) reduced the browning appearance after 483 

cutting and leaves maintained higher L*, lower a* values as compared to lettuce leaves treated with 484 

lower temperatures (25 °C and 4 °C). In addition, it has been demonstrated that exogenous AA 485 

spray over lettuce leaves provoke L* to decrease less markedly than unsprayed leaves, and 486 

immersion of lettuce leaves in a solution containing 1% AA exhibited a less pronounced increment 487 

in a* values (Rivera et al. 2006). Overall, these results underline a clear correlation between 488 

overexpression of GLDH, increment of AA and the reduction of browning appearance over lettuce 489 

leaves. These GLDH transgenic plants represent a first promising model which has revealed the role 490 

of endogenous AA in the prevention of browning, but further experiments are necessary to clarify 491 

the mechanism by which AA influences the enzymatic browning. 492 

In addition, it has been also revealed that GLDH influences other processes besides AA 493 

biosynthesis (Alhagdow et al. 2007; Pineau et al. 2008; Schertl et al. 2012). GLDH is localized in 494 

the inner mitochondrial membrane (Siendones et al. 1999), and forms part of a 850-kDa complex 495 

that represents a minor form of the respiratory NADH dehydrogenase complex (complex I) 496 

(Heazlewood et al. 2003). The characterization of an Arabidopsis knock-out mutant lacking the 497 

gene encoding GLDH was found to have drastically reduced amounts of complex I (Pineau et al. 498 

2008) and the central metabolism of plant mitochondria was significantly changed, too. Therefore, 499 
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this transgenic lettuce also represents a useful tool for experiments aimed to study the basis of 500 

complex I and the mitochondrial respiration chain in sensu lato. 501 
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Figure legends 719 

 720 

Fig. 1 Three postulated pathways for ascorbic acid biosynthesis in plants. Among them, only the 721 

Smirnoff-Wheeler’s branch has been confirmed trough studies with transgenic plants and almost all 722 

the enzymes have been characterized in some species. The only missing step remains the 723 

conversion of GDP-L-galactose to L-galactose-1-phosphate even though a GDP-L-galactose 724 

guanyltransferase has been proposed by Dowdle et al. (2007) to catalyze this reaction.  725 

 726 

Fig. 2 Sequence analysis of L-galactono-1,4-lactone dehydrogenase (GLDH) from Lactuca sativa 727 

(LsGLDH). a Predicted amino acids sequence of LsGLDH. The cleavage site FR/YA, amino acids 728 

for mitochondrial targeting, is in red and bold characters. A motif (
157

VGSGLSP
163

), common to 729 

other GLDHs, is in orange characters. Within this motif the Leu (L)161 residue is boxed. The FAD-730 

binding domain is in bleu and bold characters. The Glu (E)485 and the Asp (R)487 residues are 731 

boxed and in bold-brown character. The domain specific to D-arabinono-1,4-lactone oxidase is 732 

underlined. b Dendrogram between 14 GLDH proteins. The GLDH amino acid sequences and the 733 

relative GenBank accession numbers are reported in Online Resource 5. Consensus tree was 734 

inferred using the Minimum Evolution (ME) method. The Neighbor-joining algorithm was used to 735 

generate the initial tree. The optimal tree with the sum of branch length = 1.82969450 is shown. All 736 

positions containing gaps and missing data were eliminated from the dataset (Complete deletion 737 

option). A total of 543 positions in the final dataset were found. The L. sativa GLDH is underlined 738 

and the percentages of replicate trees in which the associated taxa clustered together in the bootstrap 739 

test (100 replicates) are shown next to the branches. Phylogenetic analyses were conducted in 740 

MEGA4. The GLDH amino acid sequence from Volvox carteri (GenBank accession no. 741 

XM002947966) was used as outgroup in the phylogenetic analysis 742 

 743 
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Fig. 3 Steady-state level of LsGLDH mRNAs in lettuce organs. a Representative results of RT-PCR 744 

analysis: the experiments were repeated three times with consistent results. RNA was prepared from 745 

cotyledons (C), internodal stems (ST), young leaf blades (YL), completely expanded leaf blade 746 

(mature leaves, ML), vegetative shoots (VS) and young inflorescences (YI). RT-PCR was carried 747 

out using primers described in Online Resource 1. Details of the PCR conditions are provided in 748 

Materials and methods section. Transcript accumulation of the Lstub3 gene was used as an internal 749 

amplification control. The RT-PCR products were resolved on a TAE 2.0 % agarose gel. M 750 

indicates the PhiX 174 DNA HaeIII Digest DNA ladder. b Results from analyses of the RT-PCR 751 

transcript accumulations performed with the Bio-Rad’s Quantity One software and expressed as 752 

percentage of the Lstub3 product (100 %) ± SD. The values denoted with the same letter are not 753 

significantly different at the 0.05 probability level according to Tukey’s test 754 

 755 

Fig. 4 Screening of putatively transformed plants conducted by a PCR approach with the primer 756 

combination PCPF and LAC4R. The size (1,176 bp) of expected PCR product is indicated. a T0 757 

putatively transformed plants: three plants (lane 1, 2 and 3) showed a clear signal as well the 758 

positive control (lane 5, DNA of vector); lane 4, T0 non-transformed plants (escape); lane 6, DNA 759 

from non-transformed wild type (WT) Lactuca sativa (L); lane 7, sterile distilled water (H20). M 760 

indicates the PhiX 174 DNA HaeIII Digest DNA ladder. b T2 transformed plants. Six randomly 761 

chosen plants (from 5.1 to 5.6) from a homozygous progeny selected in a kanamycin-supplemented 762 

medium that showed the expected amplified PCR-product. L, DNA from non-transformed WT L. 763 

sativa; H20, sterile distilled water. M indicates the 1Kb XL ladder (5 PRIME) 764 

 765 

Fig. 5 GLDH transcription levels (a), and total ascorbate (AA) (b) in a WT line (n = 5) and in an 766 

overexpressing line (n = 5) of Lactuca sativa at different time points: t0, immediately after cutting; 767 
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t1, 24 h after cutting; t2, 48 h after cutting; t3, 72 h after cutting. For GLDH transcription level, data 768 

were normalized using β-tubulin 3 (Lsβtub3) as housekeeping gene. Luminosity (L*) level (c); and 769 

greenness (a*) evaluated in WT (white circles) and transgenic plants (dark circles) at 1,2,3,10 days 770 

after cutting (d). Means were subjected to two-way analyses of variance (ANOVA) with genotype 771 

(G) and storage (S) as variability factor. Mean were separated after Tukey’s test (p = 0.05). 772 

Author Contribution Statement: ML and MF equally contributed to this study. ML, MF, LG and 773 

CP designed the experiments and analysis. AB, performed Agrobacterium-mediated transformation 774 

and real time RT-PCR experiments. MS performed database searches and phylogenetic analysis. 775 

ML, MF, CP wrote the manuscript. 776 
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List of primers used for amplification of GLDH cDNA of Lactuca sativa (LsGLDH) and genetic transformation study 

 

Use       Primer  Primer sequence 5’-3’ 

 

Amplification of cDNAs fragments   LAC1F forward, 5’-GAGCCGATGTGATGAATCCCGGA-3’ 

       LAC4R reverse, 5’-GCTTCATCGAGGCTATACTTGGGC-3’ 

 

3’-RACE      LAC5F forward, 5’-TGGAGGTCAACAATGGGTCTCTG-3’ 

UAP9  reverse, 5’-GACCACGCGTATCGATGTCGAC-3’ 
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Full length isolation of LsGLDH cDNA  LAC1F forward, 5’-GAGCCGATGTGATGAATCCCGGA-3’ 

       LAC6R reverse, 5’-CCTTTTTAGTACTTGAATCCTCTTC-3’ 

 

Construction of PetE::GLDH cassette  LATF  forward, 5’-GGGTCGACATGTTGCGATCTCTCCGATTCC-3’ 

       LATR  reverse, 5’-GGGTCGACTTAAGTTGCATTATCTTCTATTGG-3’ 

 

Analysis of putative transgenic lettuce plants  PCPF  forward, 5’-GCCACGTCGGAGGATAACATCC-3’ 

       LAC4R reverse, 5’-GCTTCATCGAGGCTATACTTGGGC-3’ 

 

Gene transcription analysis    Ls tub3F forward, 5’-CAGGATCAGGAATGGGAACTC-3’ 

       Ls tub3R reverse, 5’-CCTTGGGAGAAGGGAATACAG-3’ 

       LsGLDHF forward, 5’-CCACTTACTACTCCTTCCCTTTC-3’ 

       LsGLDHR reverse, 5’-TGAGTCCCGCTCCAATTAAC-3’ 
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Overexpression of L-galactono-1,4-lactone dehydrogenase (GLDH) gene correlates with 

increased ascorbate concentration and reduced browning in leaves of Lactuca sativa after 

cutting 

 

Marco Landi, Marco Fambrini, Alice Basile, Mariangela Salvini, Lucia Guidi, Claudio Pugliesi
*
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Nucleotide sequences of Lactuca sativa L-galactono-1,4-lactone dehydrogenase (LsGLDH) (EMBL 

GenBank accession number HG810915.2). In bold characters and highlighted in green and magenta 

are the start and the stop codon, respectively. The region encoding the cleavage site Phenilalanine-

Arginine/Tyrosine-Alanine (FR/YA) amino acids for mitochondrial targeting is in bold and red 

characters (see also Fig. 2A). Highlighted in light bleu is the region encoding the FAD-binding 

domain (Fraaije et al. 1998; Leferink et al. 2008). Highlighted in yellow is the codon for the 

Leucine (L) at position 161 of the LsGLDH amino acid sequence. Highlighted in gray are the 

codons for the Glutamic acid (E) and Arginine (R) at position 485 and 487 of the LsGLDH amino 

acid sequence, respectively. Double underlined is the region encoding the domain specific to D-

arabinono-1,4-lactone oxidase 

 

GAGCCGATGTGATGAATCCCGGAAAAATCAATACAAATGTTGCGATCTCTCCGATTCCAGCGATCCCTCCAAT

CCTCCGTTATCCACCGCAAAAACCCACATTTCAACAACACCCTCGAAACCCTATCTTCTTCACCTA

CCACTAAAACCCCTCCAATAAACCTCATACGTCAATTTTCTTCATCATCTCCACCGCCGCCAACAC

CGCCGCCTCTATCCGCCACGCCATCTACTTCCTCTGAACTCCGGAAGTACCTCGGATACTCCGCAC

TCCTCCTCAGCTGCGCCGTCGCCACTTACTACTCCTTCCCTTTCCCTGAAAACGCAAAACACAAAA

AGGCCCAACTCTTCCGGTACGCCCCTATTCCCGATGACCTCCACACGGTCGTTAATTGGAGCGGGA

CTCACGAAGTACAGACCCGGGTCTTCCTCCAACCCGAAAGTTTAGAAGAATTGGAGAAGATTGTGA

AGGATGCCGACGAGAAGAAGCAGAAGATCCGTCCTGTTGGATCCGGGTTATCCCCGAATGGAATCG

GTTTGGCCCGTGGTGGGATGGTGAATCTGGCTTTGATGGATAAAGTTTTGGAGGTGGATAAAGAGA

AGAAAACGGTTCGGGTACAGGCAGGCATTCGAGTCCAGCAACTTGTCGATGTTGTCAAGGATCATG

GCATTACTTTGCAGAACTTTGCGTCTATCAGAGAACAACAAATTGGTGGCATTGTTCAGGTAGGTG
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CTCATGGTACTGGTGCAAAGTTGCCTCCGATTGATGAGCAGGTTATCAGCATGAAATTGGTTACCC

CTGGAAAGGGAACAATCGAAATTTCAAAAGACAAAAACCCTGAACTGTTCTATTTAGCTCGATGCG

GGCTTGGTGCATTTGGGGTTGTTGCTGAAGTTACTCTCCAATGTGTTGAGAGACAGGAACTTGTAG

AACACACATTTGTCTCAAACTTGACTGAAATCAAGAAGAAACACAAAAAGCTTCTAAATGACAACA

AGCATGTAAAGTACCTTTACATACCATATACAGACACTGTTGTAGTGGTGACATGTAACCCTGTTT

CCAAATGGAAAGGCCCACCCAAATTTAAGCCCAAGTATAGCCTCGATGAAGCTTTACAACCTGTTC

GTGATCTATACAAAGAATCATTACAAAAGTACAAACGCCAACCAAATGAAAACGACTCAAAGGTTT

CAGACCTTACATTTACTGAACTAAGAGACAAGTTACTATCCATTGATCCTCTTAACAAAGACCATG

TTAAGAAAATCAATGAAGCAGAATCCGAATTTTGGAAGAGATCAGAGGGATTTAGGGTAGGGTGGA

GCGATGAAATTTTAGGGTTTGATTGTGGAGGTCAACAATGGGTCTCTGAGACATGTTTTCCAGCTG

GAACTTTATCAAAACCAAACATGAAAGATCTTAAATTTATAGAAGAAGTTATGGAATTAATAGAGA

AAGAAGAGATTCCTGCTCCTTCACCTATAGAACAAAGATGGTCTGCTTCTAGCAAAAGTTTGATGA

GTCCTGCTTCAAGTGAATCAAATGATGATATTTTCTCATGGGTGGGTATAATTATGTATCTTCCTA

CATCAGATGCTCGACAAAGGAAACAAATAACAGAAGAATTTTTTCATTATAGGCATCTCACTCAAA

CACGTTTTTGGAATCAATATTCAGCTTTTGAACATTGGGCCAAAATTGAGGTTCCAAAAGACAAAA

ACGAGCTTGCAGCCCTACAAGAAAGGCTAAGAGCACGATTCCCTGTTGATGCATTCAACAAAGCAC

GAAAAGAGTTGGATCCGAATCGTATTCTTTCCAATGCCATGGTGGAGAAGATGTTCCCAATAGAAG

ATAATGCAACTTAATTACCAAAATTTATGTGTAAATTACATGAAGAGGATTCAAGTACTAAAAAGGATATCAAATTTT
AAAAATAATGTCTTCATATCCTACAAATAAAAAA 
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Multiple sequence alignment of the full length amino acid sequence of LsGALDH with several 

aldonolactone oxidoreductases. The GenBank accession numbers (NCBI) used for the multiple 

sequence alignment are: NtGLDH, tobacco GLDH (AB024527); SlGLDH, tomato GLDH 

(HM587129); LsGLDH, lettuce GLDH (HG810915.2); AtGLDH, Arabidopsis thaliana GLDH 

(AB042279); RnGUO, rat GUO (P10867); ScALO, Saccharomyces cerevisiae ALO (P54783); 

PgGLO, Penicillium griseoroseum GLO (AAT80870); TbALO, Trypanosoma brucei ALO 

(AAX79383). Alignment was performed using CLUSTAL W. Amino acid residue numbers are 

shown on the right. The arrow indicates the putative cleavage site (red characters) of the 

mitochondrial targeting sequence in plant GLDH (FR⁄YA). The histidine residue involved in 

covalent binding of the FAD cofactor in GUO, ALO and GLO are highlighted in green. In the same 

position, the leucine residues of plant GLDHs are highlighted in yellow. The arginine residues 

(R487 in LsGLDH), crucial for the stabilization of the anionic form of the reduced FAD cofactor, 

are highlighted in green (Leferink et al. 2009). The glutamic acid residues (E485 in LsGLDH), 

involved in productive substrate binding, are highlighted in gray (Leferink et al. 2009). The FAD-

binding domain (Fraaije et al. 1998; Leferink et al. 2008) is red upperlined. 

 
NtGLDH          MLRSLTSKR----SLQSLLHYHHHPLLRPNPHPTPFNP----------RPFSSTPGPT-- 44 

SlGLDH          MLRSFASKR----SLQSLLHHHYR-RCRQNPQFPIFNP----------RPFSSSPGPP-- 43 

LsGLDH          MLRSLRFQR----SLQSSVIHRKNPHFNNTLETLSSSPTTKTPPINLIRQFSSSSPPPPT 56 

AtGLDH          MLRSLLLRRSVGHSLGTLSPSSSTIRSSFSPHRTLCTTG---------QTLTPPPPPPPR 51 

RnGUO           ------------------------------------------------------------ 

ScALO           ------------------------------------------------------------ 
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TbALO           ------------------------------------------------------------ 

PgGLO           ------------------------------------------------------------ 

                                                                             

 

NtGLDH          --------TSESELRKYIGYTLLLLGCGAATYYSFPFPENAKHKKAQLFRYAPLPDDLHT 96 

SlGLDH          --------SSDAELRKYIGYTLLLLGSAAATYNSFPFSEDARDKKAQLFRYAPLPDDLHT 95 

LsGLDH          PPPLSATPSTSSELRKYLGYSALLLSCAVATYYSFPFPENAKHKKAQLFRYAPIPDDLHT 116 

AtGLDH          PPPPPPATASEAQFRKYAGYAALAIFSGVATYFSFPFPENAKHKKAQIFRYAPLPEDLHT 111 

RnGUO           ---------------------------MVHGYKGVQFQN--------------------- 12 

ScALO           -------------------------MSTIPFRKNYVFKN--------------------- 14 

TbALO           --------------------------MGQETMSDGTWTN--------------------- 13 

PgGLO           --------------MLSPKPAFLLLLLHAVFGSAYRWFN--------------------- 25 

                                                    : :                      

 

NtGLDH          VSNWSGTHEVQTRTFLQPEAIEELEGIVKTANEKKQRIRPVGSGL--------SPNGIGL 148 

SlGLDH          VSNWSGTHEVRTRTFLQPESVEELEGIVKEANVRKHKIRPVGSGL--------SPNGIGL 147 

LsGLDH          VVNWSGTHEVQTRVFLQPESLEELEKIVKDADEKKQKIRPVGSGL--------SPNGIGL 168 

AtGLDH          VSNWSGTHEVQTRNFNQPENLADLEALVKESHEKKLRIRPVGSGL--------SPNGIGL 163 

RnGUO           ---WAKTYGCSPEVYYQPTSVEEVREVLALAREQKKKVKVVGGGH--------SPSDIAC 61 

ScALO           ---WAGIYSAKPERYFQPSSIDEVVELVKSARLAEKSLVTVGSGH--------SPSNMCV 63 

TbALO           ---FANIGKCFPRKHHYPNTVEEVSSIIKVINSAGERCRVVGGGK--------SPNSCTF 62 

PgGLO           ---WQFEVTCQSDAYIAPHNEHAAAEFLKEQYPKSSHIKVVGNGHGFGNLTTCVDNALTE 82 

                   :       .  .  *        .:            **.*           .     

 

NtGLDH          TRAGMVNLALMDMVLYVDEE----KKTVTVQAGIRVQQLVDAIKEYGITLQNFASIREQQ 204 

SlGLDH          TRAGMVNLALMDKVLSVDKE----NKRVTVQAGIRVQQLVDEIKEFGITLQNFASIREQQ 203 

LsGLDH          ARGGMVNLALMDKVLEVDKE----KKTVRVQAGIRVQQLVDVVKDHGITLQNFASIREQQ 224 

AtGLDH          SRSGMVNLALMDKVLEVDKE----KKRVTVQAGIRVQQLVDAIKDYGLTLQNFASIREQQ 219 

RnGUO           TDGFMIHMGKMNRVLQVDKE----KKQITVEAGILLADLHPQLDEHGLAMSNLGAVSDVT 117 

ScALO           TDEWLVNLDRLDKVQKFVEYPELHYADVTVDAGMRLYQLNEFLGAKGYSIQNLGSISEQS 123 

TbALO           TNGHLIHMDRLNRITSIDEK----SMTIVCEGGALISDVFERLSAHDLMLRCVPSFVQTT 118 

PgGLO           KPTYIVSLTNLKKLHIDKKN-----LTVTFGAGWDVDDLIQELKANDLSFSNLGVERVQN 137 

                    :: :  :. :    :        :   .*  : ::   :   .  :  .        

 

NtGLDH          IGGIVQVGAHGTGAKLPPIDEQVISMKLVTPAKGTIEISKEKDPELFYLARCGLGGLGVV 264 

SlGLDH          IGGIVQVGAHGTGARLPPIDEQVISMKVVTPAKGTIEISKEKDPELFYLARCGLGGLGVV 263 

LsGLDH          IGGIVQVGAHGTGAKLPPIDEQVISMKLVTPGKGTIEISKDKNPELFYLARCGLGAFGVV 284 

AtGLDH          IGGIIQVGAHGTGARLPPIDEQVISMKLVTPAKGTIELSREKDPELFHLARCGLGGLGVV 279 

RnGUO           VAGVIGSGTHNTGIKHGILATQVVALTLMTADGEVLECSESRNADVFQAARVHLGCLGII 177 

ScALO           VAGIISTGSHGSSPYHGLISSQYVNLTIVNGKGELKFLDAENDPEVFKAALLSVGKIGII 183 

TbALO           VGGVIATATHSSGIRSRSISDCVVRLQLVDGRG-ILHTFDASTPKELSLSACHLGMLGVV 177 

PgGLO           FVGAASTGTHGSGSDLGNIATQIIGLRVLDSQGGLRVINEKHNAEELKAFRISLGALGLI 197 

                . *    .:*.:.     :    : : ::              .. :      :* :*:: 

 

NtGLDH          AEVTLQCVERQELVEHTFLSNMKDIKK--NHKKFLSDNKHVKYLHIPYTDAVVVVTCNPI 322 

SlGLDH          AEVALQCVERQELVEHTFLSNMKDIKK--NHKKFLSENKHVKYLYIPYTDAVVVVTCNPM 321 

LsGLDH          AEVTLQCVERQELVEHTFVSNLTEIKK--KHKKLLNDNKHVKYLYIPYTDTVVVVTCNPV 342 

AtGLDH          AEVTLQCVARHELVEHTYVSNLQEIKK--NHKKLLSANKHVKYLYIPYTDTVVVVTCNPV 337 

RnGUO           LTVTLQCVPQFHLQETSFPSTLKEVLD--NLDSHLKRSEYFRFLWFPHTENVSIIYQDHT 235 

ScALO           VSATIRVVPGFNIKSTQEVITFENLLK--QWDTLWTSSEFIRVWWYPYTRKCVLWRGNKT 241 

TbALO           VSVTLQAEKKRLWRIESRPIPFRKLTEGDTLKKRIAESEFYRFFWMPNTDQCYESTAEFV 237 

PgGLO           TELTIKVQPTQLLKKTTKVLNATSDYS--------KMYNELAQLYKEHDRMTVWGPHFDW 249 

                   :::                 .  .           :                      

 

NtGLDH          SKSRGPPKHKPKYTTEEALQHVRVLYRESLKKYRGQVA---------------------- 360 

SlGLDH          SKEKGPPKNKPKYTAEEALQHVRDLYWESLTKYR-------------------------- 355 

LsGLDH          SKWKGPPKFKPKYSLDEALQPVRDLYKESLQKYK-------------------------- 376 

AtGLDH          SKWSGPPKGKPKYTTDEAVQHVRDLYRESIVKYRVQDSGK-------------------- 377 

RnGUO           NK---APSSASNWFWDYAIGFY-------------------------------------- 254 

ScALO           TDAQNGPAKS-WWGTKLGRFFYETLLWISTKIYAP------------------------- 275 

TbALO           GEEGADQTKRVDESIKLAMGKKHEATLPMTAGNTITKLTSSKLRNFSSEKCNSTGEDYQM 297 

PgGLO           NAKSQSWDLEPTYFLSYWEPTN-------------------------------------- 271 
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                               .                                             

 

NtGLDH          -------DSGSP-EPEIDELSFTELRDKLLALDPLNKVHVIEINKAEVEFWRKSEGYRVG 412 

SlGLDH          -------DSGSPSEPEIVELSFTELRDKLLAMDPLNKEHVIKVNKAEAVYWRKSEGYRVG 408 

LsGLDH          -------RQPNENDSKVSDLTFTELRDKLLSIDPLNKDHVKKINEAESEFWKRSEGFRVG 429 

AtGLDH          -------KSPDSSEPDIQELSFTELRDKLLALDPLNDVHVAKVNQAEAEFWKKSEGYRVG 430 

RnGUO           ------------------------LLEFLLWTSTYLPCLVGWINRFFFWMLFNCKKESSN 290 

ScALO           ---------------------LTPFVEKFVFNRQYGKLEKSSTGDVNVTDSISGFNMDCL 314 

TbALO           WLRNQRTLRTRICKILKGSWLRHGVVEAALAAAVIQPGIQPYINRTYRRLFYNAPEVQYG 357 

PgGLO           ---------------------YTGVRNCTLNYCANGCGDCKKEYICYDEVTDAASCSPQG 310 

                                        . :  :                               

 

NtGLDH          WSDEILGFDCGGHQWVSETCFPAGTLSKPSMKDLEYIEELMQLIEKE-SVPAPAPIEQRW 471 

SlGLDH          WSDEILGFDCGGHQWVSETCFPAGTLSKPSMKDLEYIEELMQLIEKE-SVPAPAPIEQRW 467 

LsGLDH          WSDEILGFDCGGQQWVSETCFPAGTLSKPNMKDLKFIEEVMELIEKE-EIPAPSPIEQRW 488 

AtGLDH          WSDEILGFDCGGQQWVSESCFPAGTLANPSMKDLEYIEELKKLIEKE-AIPAPAPIEQRW 489 

RnGUO           LSHKIFTYECRFKQHVQDWAIPR-------EKTKEALLELKAMLEAHPKVVAHYPVEVRF 343 

ScALO           FSQFVDEWGCPMDNGLEVLRSLDHSIAQAAINKEFYVHVPMEVRCSNTTLPSEPLDTSKR 374 

TbALO           TSLECFTFDCLFKQWACEWAIDIS-------NVMPAFHYLRGLISSE-NLSVHFPVEFRF 409 

PgGLO           VCSRGFYAEIEHFLPIEYFAEAATN---------YTIFQQGQTSRMKAPYNKQMVMQHRS 361 

                 .                                  .         .           :  

 

NtGLDH          TACS------------------KSRMSPAYSSADDDIFSWVGIIMYLPTMDARQRRQITE 513 

SlGLDH          TACS------------------KSRMSPAYSSADDDIFSWVGIIMYLPTMDARQRRQITE 509 

LsGLDH          SASS------------------KSLMSPASSESNDDIFSWVGIIMYLPTSDARQRKQITE 530 

AtGLDH          TARS------------------KSPISPAFSTSEDDIFSWVGIIMYLPTADPRQRKDITD 531 

RnGUO           TRGD------------------DILLSPCFQRDS----CYMNIIMYRPYGKDVPR----- 376 

ScALO           TNTSPGPVYGNVCRPFLDNTPSHCRFAPLENVTNSQLTLYINATIYRPFGCNTPIHKWFT 434 

TbALO           TGAD------------------TAALSPAHGRQT----CWIGIVMYRPYLRHARDT---- 443 

PgGLO           LKGD------------------DTYLSPVNTYNLGPDLSGVFGVIEIDWIQEYNNFTTLW 403 

                   .                     ::*            :   :                

 

NtGLDH          EFFHYRHMT------QAQLWDHYSAFEHWAKIEVPKDKEELAALQERLKKKFP--VDAYN 565 

SlGLDH          EFFHYRHMT------QSQLWDQYSAFEHWAKIEVPKDKEELAALQARLKKKFP--VDAYN 561 

LsGLDH          EFFHYRHLT------QTRFWNQYSAFEHWAKIEVPKDKNELAALQERLRARFP--VDAFN 582 

AtGLDH          EFFHYRHLT------QKQLWDQFSAYEHWAKIEIPKDKEELEALQARIRKRFP--VDAYN 583 

RnGUO           ---LDYWLA------YETIMKKFGGRPHWAKAHN--------CTQKDFEEMYPT-FHKFC 418 

ScALO           LFENTMMVAGGKPHWAKNFLGSTTLAAGPVKKDTDYDDFEMRGMALKVEEWYGEDLKKFR 494 

TbALO           ---LRYYDA------FSKAMTVMGGRPHWAKYYT--------WGPEQMLKAYGKNWEDFL 486 

PgGLO           QNQELAHEF------LPQFGETYNARSHWNKMSAP--------NATYTLEKFPK-LPEFL 448 

                                              *                    :      :  

 

NtGLDH          QARKELDPNRILSN----NMLEKLFI---------- 587 

SlGLDH          QARKELDPNRILSN----NMLEKLFPSSEAV----- 588 

LsGLDH          KARKELDPNRILSN----AMVEKMFPIEDNAT---- 610 

AtGLDH          KARRELDPNRILSN----NMVEKLFPVSTTA----- 610 

RnGUO           DIREKLDPTGMFLN----SYLEKVFY---------- 440 

ScALO           KIRKEQDPDNVFLANKQWAIINGIIDPSELSD---- 526 

TbALO           LFRKKMDPEGVFLNGWFNSLSGNSPVLNSTISHL-- 520 

PgGLO           AIQKRQDPKCQFVN----EFLVEQLGITRCANYISV 480 

                  :.. **   :                         
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List of 14 amino acid sequences of L-galactono-1,4-lactone dehydrogenase (GLDH) used for the 

phylogenetic analysis (Fig. 2b). The GenBank accession numbers are in brackets 

 

Lactuca sativa (HG810915.2) 

 

MLRSLRFQRSLQSSVIHRKNPHFNNTLETLSSSPTTKTPPINLIRQFSSSSPPPPTPPPLSATPSTSSELRKYLGYSALL

LSCAVATYYSFPFPENAKHKKAQLFRYAPIPDDLHTVVNWSGTHEVQTRVFLQPESLEELEKIVKDADEKKQKIRPVGSG

LSPNGIGLARGGMVNLALMDKVLEVDKEKKTVRVQAGIRVQQLVDVVKDHGITLQNFASIREQQIGGIVQVGAHGTGAKL

PPIDEQVISMKLVTPGKGTIEISKDKNPELFYLARCGLGAFGVVAEVTLQCVERQELVEHTFVSNLTEIKKKHKKLLNDN

KHVKYLYIPYTDTVVVVTCNPVSKWKGPPKFKPKYSLDEALQPVRDLYKESLQKYKRQPNENDSKVSDLTFTELRDKLLS

IDPLNKDHVKKINEAESEFWKRSEGFRVGWSDEILGFDCGGQQWVSETCFPAGTLSKPNMKDLKFIEEVMELIEKEEIPA

PSPIEQRWSASSKSLMSPASSESNDDIFSWVGIIMYLPTSDARQRKQITEEFFHYRHLTQTRFWNQYSAFEHWAKIEVPK

DKNELAALQERLRARFPVDAFNKARKELDPNRILSNAMVEKMFPIEDNAT 

 

Camellia sinensis (KF619448) 

 

MFRALNIRRSLYQALHHHHHHHHHHHHHHHHPLSQPLKTLSSTQNPNLTRPFCSSTSSSSSEAEFRKYVGYFALLVGCGI

ATYYSFPFPENAKHKKAQLFRYAPLPDDLHTVSNWSGTHEVQTRVFLQPESIQELETIVRDANVQKQKIRPVGSGLSPNG

IGLTRLGMVNLALLDRVLEVDKEKKTVRVEAGIRVQQLVDGIKDYGLTLQNFASIREQQIGGIVQVGAHGTGARLPPIDE

QVVSMKLVTPAKGTIEVSKEKDPELFYLARCGLGALGVVAEVTLQCVERQELVEHTFVSNTEEIKKNHKKFLSENKHVKY

LYIPYTDTVVVVRCNPVSKWKGPPKFKPKYSHDEAMQNVRDLYQESLKKYRRAVTTTESVDNNEQDINDLSFTELRDKLL

ALDPLNKNHIIKVNQAEAEFWRKSEGYRVGWSDEILGFDCGGQQWVSETCFPAGTLSKPSMKDLEYIEELMQLIDKEAIP

APAPIEQRWTARSKSLMSPASSTADDDIFSWVGIIMYLPTMDARQRKEITDEFFHYRHLSQSQLWDRYSAYEHWAKIEVP

KDKDELATLQARLRKRFPVDAYNKARRELDPNHILSNNMLEKLFPQSDII 

 

Ipomoea batatas (AB017357) 

 

MFRAHHFRRSLRSLLAHSHSHPHSNPHINPRLLCSLSSQPPSSDAEVRKYIGYTVLVLGCAAATYYSFPFPADAKHKKAQ

LFRYAPLPDDLHTVTNWSGTHEVQTRTFLQPESLQELEAAVKDSNEKKQKIRPVGSGLSPNGIGLTRAGMVNLGLMDKVL

EVDKEKKRVTVQAGIRVQQLVDSIKEYGLTLQNFASIREQQVGGIVQVGAHGTGARLPPIDEQVISMKLVTPAKGTIEIS

KEKDPDLFYLARCGLGGLGVVAEVTLQCVERQELVEHTYISNMKDIKKNHKKLLSENKHVKYLHIPYTDAVVVVTCNPIS

attachment to manuscript
Click here to download attachment to manuscript: ESM_5.pdf 
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KWKGPPKYKPKYSPEEAVGHVQDLYRESLKKYRSTENESEINELSFTELRDKLLALDPLNTDHVKKTNQAEAEFWRKSEG

YRVGWSDEILGFDCGGHQWVSETCFPAGTLSKPSMKDLEFIEQLMQLIEKESIPAPAPIEQRWTACSKSLMSPAYSSVDD

DIFSWVGIIMYLPTMDARERKHITEEFFHYRHLTQAHLWDHYSAYEHWAKIEVPKDKEELQALQARLRKKFPVDAYNRAR

QELDPNRILSNNMLEKLFPSS 

 

Nicotiana tabacum (AB024527) 

 

MLRSLTSKRSLQSLLHYHHHPLLRPNPHPTPFNPRPFSSTPGPTTSESELRKYIGYTLLLLGCGAATYYSFPFPENAKHK

KAQLFRYAPLPDDLHTVSNWSGTHEVQTRTFLQPEAIEELEGIVKTANEKKQRIRPVGSGLSPNGIGLTRAGMVNLALMD

MVLYVDEEKKTVTVQAGIRVQQLVDAIKEYGITLQNFASIREQQIGGIVQVGAHGTGAKLPPIDEQVISMKLVTPAKGTI

EISKEKDPELFYLARCGLGGLGVVAEVTLQCVERQELVEHTFLSNMKDIKKNHKKFLSDNKHVKYLHIPYTDAVVVVTCN

PISKSRGPPKHKPKYTTEEALQHVRVLYRESLKKYRGQVADSGSPEPEIDELSFTELRDKLLALDPLNKVHVIEINKAEV

EFWRKSEGYRVGWSDEILGFDCGGHQWVSETCFPAGTLSKPSMKDLEYIEELMQLIEKESVPAPAPIEQRWTACSKSRMS

PAYSSADDDIFSWVGIIMYLPTMDARQRRQITEEFFHYRHMTQAQLWDHYSAFEHWAKIEVPKDKEELAALQERLKKKFP

VDAYNQARKELDPNRILSNNMLEKLFI 

 

Malus domestica (FJ752244) 

 

MQRALTLRRSVESLHHHNHLRAITPTTVPQNPLTQVSSTRALSTLSSPSSPAPSSSSSELRKYLGYTALVLFSAAATYYS

FPFPENAKHKKAQIFRYAPLPEDLHTVSNWSGTHEVQTRVFHQPETLEELEKVVKDAHEKKSRIRPVGSGLSPNGIGLSR

AGMVNLALMDKVLEVDKEKKRVRVQAGIRVQQLVDGIKEHGITLQNFASIREQQIGGILQVGAHGTGARLPPMDEQVISM

KLVTPAKGTIEVSKEKDPELFYLARCGLGGLGVVAEVTIQCVDRQELVEHTTVSTMAEIKKNHKKLLSENRHVKYLYIPY

TDTVVVVKCNPVSKWKGPPKFTPKYSSDEAIQHVRDLYRECLQKYRVVPDKSEVDMNELSFTELRDKLLALDPLDKDHVA

KVNQAEAEFWKKSEGYRVGWSDEILGFDCGGQQWVSETCFPAGTLAKPSMKDLEYIEGVKQLIEKNEIPAPAPIEQRWAA

CTRRPMSPASSTREDDILSWVGIIMYLPTTDPRQRKEITEEFFHYRRLTQTQLWDKYSAYEHWAKIEVPKDKDELAALQD

RLRKRFPVDAYNKARRELDPNRVLSNSKLEKLFPLSDTI 

 

Solanum lycopersicum (HM587129) 

 

MLRSFASKRSLQSLLHHHYRRCRQNPQFPIFNPRPFSSSPGPPSSDAELRKYIGYTLLLLGSAAATYNSFPFSEDARDKK

AQLFRYAPLPDDLHTVSNWSGTHEVRTRTFLQPESVEELEGIVKEANVRKHKIRPVGSGLSPNGIGLTRAGMVNLALMDK

VLSVDKENKRVTVQAGIRVQQLVDEIKEFGITLQNFASIREQQIGGIVQVGAHGTGARLPPIDEQVISMKVVTPAKGTIE

ISKEKDPELFYLARCGLGGLGVVAEVALQCVERQELVEHTFLSNMKDIKKNHKKFLSENKHVKYLYIPYTDAVVVVTCNP

MSKEKGPPKNKPKYTAEEALQHVRDLYWESLTKYRDSGSPSEPEIVELSFTELRDKLLAMDPLNKEHVIKVNKAEAVYWR

KSEGYRVGWSDEILGFDCGGHQWVSETCFPAGTLSKPSMKDLEYIEELMQLIEKESVPAPAPIEQRWTACSKSRMSPAYS

SADDDIFSWVGIIMYLPTMDARQRRQITEEFFHYRHMTQSQLWDQYSAFEHWAKIEVPKDKEELAALQARLKKKFPVDAY

NQARKELDPNRILSNNMLEKLFPSSEAV 

 

Arabidopsis thaliana (AB042279) 

 

MLRSLLLRRSVGHSLGTLSPSSSTIRSSFSPHRTLCTTGQTLTPPPPPPPRPPPPPPATASEAQFRKYAGYAALAIFSGV

ATYFSFPFPENAKHKKAQIFRYAPLPEDLHTVSNWSGTHEVQTRNFNQPENLADLEALVKESHEKKLRIRPVGSGLSPNG

IGLSRSGMVNLALMDKVLEVDKEKKRVTVQAGIRVQQLVDAIKDYGLTLQNFASIREQQIGGIIQVGAHGTGARLPPIDE

QVISMKLVTPAKGTIELSREKDPELFHLARCGLGGLGVVAEVTLQCVARHELVEHTYVSNLQEIKKNHKKLLSANKHVKY

LYIPYTDTVVVVTCNPVSKWSGPPKGKPKYTTDEAVQHVRDLYRESIVKYRVQDSGKKSPDSSEPDIQELSFTELRDKLL

ALDPLNDVHVAKVNQAEAEFWKKSEGYRVGWSDEILGFDCGGQQWVSESCFPAGTLANPSMKDLEYIEELKKLIEKEAIP

APAPIEQRWTARSKSPISPAFSTSEDDIFSWVGIIMYLPTADPRQRKDITDEFFHYRHLTQKQLWDQFSAYEHWAKIEIP

KDKEELEALQARIRKRFPVDAYNKARRELDPNRILSNNMVEKLFPVSTTA 

 

Fragaria x ananassa (AY102631) 

 

MQRALTLKRTLQSLPRITKNPLISGRAFCNASTPSPSPASASELRKYMGYTALVLFCGAATYYSFPFPEDAKHKKAQIFR

YAPLPEELHTVSNWSGTHEVQTRVFHQPETLEELEKVVKEANARKYRIRPVGSGLSPNGIGLSRAGMVNLALMDEVLEVD

REKKRVRVQAGIRVQQLVDGIKDQGLTLQNFASIREQQIGGILQVGAHGTGARLPPIDEQVISMKLVTPAKGTIEVSKEK

DPELFYLARCGLGGLGVVAEVTLQCVERQELVEHTTVSNMEENKKNHKKLFSENKHVKYLYIPYTDTVVIVTCNPVSKWK

GPPKFKPKFTTDEAIQHVRDLYRDCLRKYRVVPDNSVDVDEPSFTELRGKLIALNPLNKDHIVKMNQAEAEFWRKSEGYR

VGWSDEILGFDCGGQQWVSETCFPAGTIAKPSMKDLEYIEDLKQLIEKEEIPAPAPIEQRWTASSKSPMSPASSLKGDNI

FSWVGIIMYLPTTDARQRKDITEEFFHYRHLTQTRLWDTYSSYEHWAKIEVPKDKEQLTALRARLRKRYPVDAYNKARSE

LDPSRILSNVKLGKLFPSSDTI 

 

Cucumis sativus (HQ446099) 
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MLNFLSLRRSIHYFRHRRLQISPTAAISKPPFNPPRPFSTVSPSPSSSSFDSELRKYLGYGALVIFCGAATYYSFPFPEN

AKHKKAQIFRYAPLPEDLHTVSNWSGTHEVWTRVFHQPENLEQLEQVVKQANEKKARIRPVGSGLSPNGIGLSRMGMVNL

ALMDKVLEVDKEKKRVRVQAGIRVQQLVDGIKEYGLTLQNFASIREQQIGGIIQVGAHGTGAKLPPIDEQVIAMKLVTPA

KGTIEISKDKDPELFLLARCGLGGLGVVAEVTLQCVERQELVEHTYISNMKDIKKNHKKLLADNKHVKYLYIPYTDAIVV

VTCNPISKWRGPPKFKPKYTSEEAIQHVRDLYVESLKKYSASEERDMNEISFTELRDKLLALDPLNKEHVIKVNQAEAEF

WRKSEGYRVGWSDEILGFDCGGQQWVSETCFPAGTLAKPNMKDIEYIEELKQLIEKKNIPAPAPLEQRWTARSKSPMSPA

SSTAEDDIFSWVGIIMYLPTSDARQRKEITEEFFHYRHLTQTLLWDQYSAFEHWAKIEVPKDKDELAALQARLRKRFPVD

EYNKARRALDPNKILSNNKLEKLFSSTDTV 

 

Capsicum annuum (AY547352) 

 

MLRSFISKRSLQSFLRYHHHHHHRAHRRPFSTTPGPPTADAELRKYIGYTLLLVASGAATYYSFPFPENARDKKAQLFRY

APLPDDLHTVTNWSGTHEVRTRTFLQPESIEQLEGIVKEGHERKHKIRPVGSGLSPNGIGLTRAGMVNLALMDKVLSVDK

EKKRVTVQAGIRVQQLVDEIKEYGITLQNFASIREQQIGGIVQVGAHGTGARLPPIDEQVISMKLVTPAKGTIEISKEKD

PELFYLARCGLGGLGVVAEVTLQCVERQELVEHTFLSNMKDIKKNHKKFLSENKHVKYLHIPYTDAVVVVTCNPVSKLRG

PPKHKPIYTTEEALQHVRDLYQESLKKYRSQVAASGSPDEPEVDELSFTELRDKLLVMDPLNKEHVIKVNKAEAEYWRKS

EGYRVGWSDEILGFDCGGHQWVSETCFPAGTLSKPSMKDLEYIEELMQLIEKESVPAPAPIEQRWTACSKSQMSPAYSSA

DDDIFSWVGIIMYLPTMDARQRKQITEEFFHYRHMTQAQLWDRYSAFEHWAKIEVPKDKEELAALQARLKKKFPVDAYNQ

ARNELDPNHILSNNMLEKLFPSSEAQ 

 

Solanum tuberosum (FJ755844) 

 

MLRSFTSKRSLQSLLHHRRCRQNPQFPIFNPRLFSSSPGPPSSDAELRKYIGYTLLVLGSAAATYYSFPFSENARDKKAQ

LFRYAPLPDDLHTVSNWSGTHEVRTRTFLQPESIEDLEGIVKEANVRKHKIRPVGSGLSPNGIGLTRAGMVNLALMDKVL

SVDKEKKRVTVQAGIRVQQLVDEIKEFGITLQNFASIREQQIGGIVQVGAHGTGARLPPIDEQVISMKLVTPAKGTIEIS

KEKDPELFYLARCGLGGLGVVAEVTLQCVERQELVEHTFLSNMKDIKKNHKKFLSENKHVKYLYIPYTDAVVVVTCNPMS

KRKGPPKNKPKYTTEEALQHVRDLYLESLTKYRGQVTDSGSPDEPEIVELSCTELRDKLLAMDPLNKEHVIKVNKAEAEY

WRKSEGYRVGWSDEILGFDCGGHQWVSETCFPAGTLSKPSMKDLEYIEELMQLIEKESVPAPAPIEQRWTACSKSRMSPA

YSSVDDDIFSWVGIIMYLPTMDARQRRQITEEFFHYRHMTQAQLWDHYSAFEHWAKIEVPKDKEELTALQARLKKKFPVD

AYNQARKELDPNRILSNNMLEKLFPSSEAV 

 

Ricinus communis (XM_002531455) 

 

MLRFLSLRRSLHHHHASKPLNSSSTLKHPFNPARTLSTSSTSSTSSTSSSSSLSDAELRKYLGYTALLLFSGAATYYSFP

FSDTAKHKKAQIFRYAPLPEDLHTVSNWSGTHEVQTRDFHQPEDLHQLEELVKDSNEKRAKIRPVGSGLSPNGIGLARGG

MVNLGLMDKVLEVDQEKKRVRVEAGIRVQELVDGIKDFGITLQNFASIREQQIGGIIQVGAHGTGARLPPIDEQVISMKL

VTPAKGTIEISKEKDPELFYLARCGLGGLGVVAEVTLQCVERQELVEHTYISNMKDIKKNHKKLLSENKHVKYLYIPYTD

SVVVVTCNPVSKWKGPPKFKPKYSQDEAIQHVRDLYKESLEKYRTGVVAGKSVDNDEMDINELSFTELRDKLLALAPLNK

DHVIKVNLAEAEFWRKSEGYRVGWSDEILGFDCGGQQWVSETCFPAGTLSKPSMKDLEYIEELKQLIEKEEIPAPAPIEQ

RWTARSQSSMSPASSSAEDDIFSWVGIIMYLPTMDARQRKDITEEFFHYRHLTQAQLWDKYSCFEHWAKIEVPKDKEEIA

ALQARLRKRFPVDAYNKARKELDPNRILSNNILEKLFPLSDTI 

 

Malpighia glabra (EU683445) 

 

MFRFITLNRTLRHQYNHRKTLIPAVQLKPTPTRTFCTSPPTATDSEVRKYLGYTALFIFCGAATYYSFPFSENAKHKKAQ

IFRYAPLPEDLHTVSNWSGTHEVQTRNFHQPETINELEELVKVSNEKKERIRPVGSGLSPNGIGLSRLGMVNLALVDKVL

EVDKEKKRVRVQAGIRVQELVDGIKEHGLTLQNFASIREQQIGGIVQVGAHGTGARLPPIDEQVISMKLVTPAKGTIEIS

KDKDPELFYLARCGLGGLGVVAEVTLQCVERQQLVEHTYISNMKDIRKNHKKLLSDNKHVKYLYIPYTDAVVVVTCNPVS

KWRGVPKFTPKYTEDEALQHVRDLYQEPLNKYRGGEITSKSSEDDSPDINELSFTELRDKLLALDPLNKDHVIKVNQAEA

EFWRKSEGYRVGWSDEILGFDCGGQQWVSETCFPAGTLANPSMQDLDYIEDLKQLIEKEDIPAPAPIEQRWTARSQSSMS

VASSSKEDDIFSWVGIIMYLPTMDARQRKEITEEFFHYRHLTQAELWDKYSAYEHWAKIEVPKDKEELEALLERLKKRFP

VDAYNKARKELDPNKILSNNKLEKLFPSLDAI 

 

Volvox carteri (XM_002947966) 

 

MTPGASGIFFAPRLQPHSRRGYGGVAGIPRGVLGGGGGEVAGAYVPPAAGGVGGAQHRDSPTRRAVGNFLRVLLPVSGIA

VWTRYFQPVSEEEVEAFLHIASVRGETLRPAGSGLSPNGLALSGEGVLALGAMDRVLRVDKNKMQVTVQAGARVQQVVEA

LAPQGLALQNYASIREQQIGGITQVGAHGTGPRIPPVDEQVVDMRLSTPGLGTLQLSDEEEPELFRLARVGLGSLGVMTE

ATLRVVPREPLIERTFTASRAEVHRNHVKWLQQNKHIKYLYIPYTDTVVVVQVNPPRTPEELQAAREEAAKPAHPEAERT

HALRRLYATVAAPESAPTASTTISATAPAPDTAAPTDPWWVAAVNAAEAEYWRRSAGVRVGFSDDLLAFDCGGQQWVLEV

AFPVAASLDGLKPGARTRDLEFLEALMAEIKKARLPAPSPIEVRWTSGSSSPLSPAAGPPESVHCWVGIIMYLPEEPEAR
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EKVTQAFRGYTRLVESKLMPRFDATWHWAKLETSSRPEGELEGLVRPRLASRFGSALGALSRYRAVLDPQGTLANKWLDA

VLGPVPKQQQQAQERQAQE 
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