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ABSTRACT

In this paper, we study the sensor localization problem using
a drone. Our goal is to localize each sensor in the deploy-
ment area ensuring a predefined localization precision, i.e.,
a bound on the position error, whatever is the drone’s al-
titude. We show how to guarantee a-priori the precision
localization by satisfying few conditions. Such conditions
are totally novel aspects that have not been considered in
previous localization algorithms.

In the new localization technique, we first determine the
minimum ground distance that guarantees the predefined
bound on the position error. According to that distance, a
static path for the drone is designed. Then, the localization
mission proceeds in two steps: Initially, the drone computes
a rough estimation of the sensor position by using the first
three distance measurements it can take greater than the
minimum ground distance. Next the position is refined by
employing three distance measurements that, in addition to
the minimum ground distance, satisfy a specific geometric
layout. In this way, the localization precision is guaranteed
with just three measurements.
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1. INTRODUCTION
One of the first critical research issue in wireless sensor

networks (WSNs) is to determine the physical locations of
nodes on the ground.
Many existing localization algorithms require a large num-

ber of anchor nodes, i.e., nodes whose position is known a-
priori [7, 16, 17]. In the literature, localization algorithms
that use mobile anchor nodes have been considered to de-
crease the cost associated with the deployment of multiple
anchors and to maximize the localization accuracy [10]. The
use of mobile nodes has also been encouraged by the recent
advances in technology in the area of small unmanned ae-
rial systems, commonly known as drones [15]. One must be
aware, however, that specific problems occur planning the
localization mission for drones that fly at a certain altitu-
de.Indeed, when the drone is in plumb-line with the node to
be measured, a small imprecision on the line-of-sight (3D)
distance between the drone and the node will translate in-
to a very big error on their ground (2D) distance. Such an
error increases with the drone’s altitude.
To the best of our knowledge, no previous work on locali-

zation has given the bound of the position error as function
of the drone’s altitude. In this paper, we express the locali-
zation precision as function of the node-drone ground distan-
ce, of the drone altitude, and of the geometry of the ranging
waypoints; and we propose a drone localization technique
able to guarantee any predefined localization precision.
In this work, we assume that the drone can measure its al-

titude with negligible error. A technology allowing for such
precise altitude measurements is Differential GPS (DGPS)
[8]. We also assume that the drone infers the distance mea-
surements from the round-trip time of messages exchanged
with the nodes on the ground. Finally, to compute the posi-
tion of each non-localized node, the drone performs a trila-
teration method and returns the least-squares-error solution
as the estimated position.

Our Results.
• We prove by geometric considerations a bound on the

position error which reflects the drone’s altitude, the
drone-node ground distance, and the geometry of the
ranging waypoints (see Section 2). At the best of our
knowledge, such a bound is totally new;



• We design a new localization technique for flying an-
chors (see Sections 3): Our solution guarantees a pre-
defined bound on the position error by tuning a single
parameter;

• We experimentally evaluate our algorithm showing that
for a random deployment of sensors and for different
altitudes the predefined bound on the position error
is always satisfied; The gap between the experimen-
tal bound on the position error and the predefined
bound is of the order of centimeters, especially at high
altitudes (see Section 4).

1.1 Related Work
Drone-based localization of ground devices has been stu-

died in [3–5,12]. One of the most emblematic approaches is
the one given in [4] where a robot sweeps the entire area and
periodically broadcasts its GPS position. The nodes collect
such messages, called position broadcasts. The nodes finally
infer their own position by averaging all the received posi-
tion broadcasts. In our localization technique, the drone
computes the node position. Nonetheless, no one of these
works consider either the ground error due to the altitude
of the drone or the bound on the position error.

Another problem that uses static paths to sweep the de-
ployment area is drone-based data gathering from sensors
[2,6].In this case, a robot (either aerial, terrestrial, or under-
water) must collect data from a set of sparse and unconnec-
ted sensors. These papers propose path planning algorithms
that solve generalized forms of the Traveler Salesman Pro-
blem (TSP). The objective is usually to minimize the pa-
th length while respecting particular constraints. While a
single waypoint per sensor is sufficient for data gathering,
for sensor localization at least three distinct waypoints are
required for each sensor.

In [13], a path planning algorithm based on TSP is pro-
posed, instead, to securely verify the positions of a set of
devices.

Different trajectories that a mobile anchor (not necessary
a flying drone) can follow in order to localize a set of sensor
nodes are proposed in [9,10]. Although these works were not
interested in bounding the position error, they were intere-
sted in avoiding to select collinear waypoints for performing
the distance measurements for the same node. In Section 4,
we compare the bound of the position error of our technique
with that in [10].

Organization.

The rest of the paper is organized as follows: Section 2
proves a bound on the position error based on geometric
considerations. Section 3 describes the localization techni-
que and proves that it can be tuned to guarantee whatever
predefined localization precision. A large set of experimen-
ts is presented in Section 4. Finally, Section 5 offers some
conclusions and future work.

2. LOCALIZATION PRECISION
We consider an area Q of size Qx × Qy and a set of sen-

sors randomly deployed in Q that we want to localize using a
drone that flies at a non-negligible altitude hmax. The drone
regularly sends a message beacon as it moves and the ground
nodes that can hear the beacon reply with an ack message
to the drone. From the round-trip time, the drone infers

the distance between itself and the node. For measuring the
round-trip time, we assume that the drone employs impulse-
radio ultra-wideband (IR-UWB) technology, which has a
measurement precision of the order of centimeters [1, 11].

The positions along the path where the drone sends the
beacons and takes the distance measurements are called
waypoints. The waypoints from which a node P is mea-
sured are called the ranging waypoints of P and are denoted
as w1(P ), w2(P ), . . . , wm(P ). The ground is assumed to be
flat enough to allow the drone to be always in the line of
sight with the node to be measured. We define the com-
munication range r = min(rnode, rdrone) as the minimum
between the communication range rdrone of the drone and
the communication range rnode of the node. When the dro-
ne measures a node, it measures the slant distance s, that
is, the line-of-sight distance between the drone and the no-
de. Hence, the slant distance s cannot be greater than the
communication range r.

We assume that the slant distance measurements can be
subject to errors that depend on the employed technology
for reception of the messages. Our provable bound on the
position error is guaranteed up to a bound on the slant di-
stance error, called the slant precision ǫs. Moderate changes
in the drone position, for example due to the sudden wind
impact, can also be tolerated by our localization technique
as the localization precision holds up to a maximum altitude
hmax, starting from a minimum node-drone ground distance
dmin, and up to a maximum interwaypoint distance. Mo-
reover, when needed, for example because there are chances
that the altitude or the ground distance are not respected,
the drone can recompute its position during the mission.

A localization algorithm aims to determine for each sensor
P in Q its physical location after collecting a small number
of slant distances of P . Assuming that the communication
range is r and that the altitude is at most hmax, than the
drone can measure nodes up to ground distance:

dmax =
√

r2 − h2
max. (1)

From now on, let the ground precision ǫd and the loca-
lization precision ǫL be the upper bounds on the ground
distance error and on the position error, respectively. They
are both always worse than the slant precision. Especial-
ly if the waypoints are badly laid out with respect to the
node, small errors in the slant distances will translate in-
to big errors on the ground. Examples of bad layouts are
collinearity among the ranging waypoints (i.e., three of mo-
re waypoints that measure the same node are on the same
line) and waypoint collinearity with the node to be localized
(i.e., at least two waypoints and the point to be measured
are almost on the same line, see Fig. 1). If the waypoints
are collinear amongst themselves, the trilateration identifies
two positions, a real one and an “alias” one, both measured
with the same precision. To avoid the “alias” problem, it is
sufficient to never perform trilateration from three collinear
waypoints. Instead, to measure the waypoint collinearity
with the node, we introduce the angular aperture, which is
the minimum angle β(P ) formed by the node-waypoint di-

rections at P . In Fig. 1, β(P ) is the angle ̂w2(P )Pw3(P ). A
smaller angular aperture means a greater collinearity with
the node.

Having collected at least three slant distance measure-
ments for each non-localized node, the drone can determine
the positions of the node by performing trilateration. The



Figure 1: Angular aperture β(P ).

trilateration method, however, applies to the ground distan-
ces. Hence, the drone needs to translate the slant-distance
measurement s(w,P ) between its position in altitude w and
the node P into the ground distance d(w′, P ) between the
projection w′ of w on the ground and P . The drone easily
computes the ground distance d(w′, P ) =

√

s(w,P )2 − h2,
where h is the drone altitude. Note that d(w′, P ) denotes
the ground distance measurement and, as such, it is subject
to a ground error ed that depends on the slant error es. We
call slant precision ǫs the maximum absolute value1 of the
slant error and, since we assume the drone uses the IR-UWB
technology, ǫs is of order of centimeters [1]. Moreover, as we
mostly refer in our description to the projection of the way-
points on the ground, with a little abuse of notation, from
now on, we denote both the waypoint in altitude w and its
projection w′ on the ground with w if it is clear from the
context to which one we refer.

e

e

Figure 2: Relationship between slant error es and the ground
error ed.

Note that if all the ground distances and the slant distan-
ces are sufficiently large compared to the ground error and
the slant error, then the measurement circumferences of the
trilateration are linearizable at the node position, without
changing significantly the problem solution. In this way, the
measurement circumferences are approximated with measu-
rement lines, which are perpendicular to the waypoint-node
direction (see Fig. 2 and 3).

As shown in Fig. 2, the error ed on the ground distance
is es · 1

cos(α)
= es ·

√

1 + (h/d)2, where α is the angle of

incidence of the slant distance to the ground, d is the actual
ground distance, h is the actual drone’s altitude, and es is
the actual error on the measured slant distance. Thus, if
every measured node is at actual ground distance at least
d ≥ dmin from the ranging waypoint and the drone altitude
is at most hmax, than the maximum absolute value of the

1 For all the precisions in this paper, we give the maximum
absolute value.

Figure 3: Measurement lines forming a “star” shape. The
dashed red lines are the measurement lines. The black solid
lines are the measurement lines when the ground error is
maximum, i.e., ed = ±ǫd.

ground error, called the ground precision ǫd becomes:

ǫd = ǫs

√

1 +
h2
max

d2min

. (2)

Once the ground measures d(w1, P ), d(w2, P ), and d(w3, P )
have been computed for a node P from the ranging waypoint
w1 = (xw1 , yw1), w2 = (xw2 , yw2) and w3 = (xw3 , yw3), the
drone performs a trilateration to estimate the node position.
Due to the ground errors, the three measurement lines that
approximate the waypoint-node circles do not intersect at a
single point: Each different pair of measurement lines inter-
sects at a point; The three intersection points, one for each
different pair of the three measurement lines, delimit a small
area (see Fig. 3) which contains the position determined by
the last-squares-error method. The red “star” in Fig. 3 is
the area that contains the estimated position Pt whatever is
the ground error of the three measurement lines associated
with the three measures taken for node P .
The estimated position Pt = (x, y) is the point that mini-

mizes:

min δ21 + δ22 + δ23

s.t.
√

(xwi − x)2 + (ywi − y)2 + δi = d(wi, P )
for i = 1, 2, 3.

(3)

The maximum absolute value of the position error, called

Figure 4: Relationship between ground precision ǫd and
localization precision ǫL.

localization precision ǫL, occurs when the estimated position
is at the furthest vertex of the “star” shape. In Fig. 4, the
furthest vertex of the “star” occurs at the intersection point



of the two measurements lines approximating the circum-
ferences of radius d(P,w3) and d(P,w2) when the absolute
value of the ground error is ǫd. The angle centered at such
intersection point has width β because it is the supplemen-
tal angle of the angle formed in P by the waypoint-node
direction starting at w3 and at w2. Thus, by elementary
geometric considerations, the maximum error in Fig 4 is

ǫd

sin( β
2
)
. Repeating the same reasoning for all the 12 vertices

of the “star”, one can see that the distance of the vertices of
the “star” from P is either ǫd

cos( β
2
)
or ǫd

sin( β
2
)
where β varies

among the angles in which the turn angle at P is partitioned
by the waypoint-node directions. Since we have proved that
the furthest vertex of the “star“ is at distance ǫd

sin(
β(P )

2
)
[14]

where β(P ) is the angular aperture, then:

ǫL =
ǫd

sin(βmin

2
)
= ǫs ·

√

1 + (hmax/dmin)2

sin(βmin

2
)

(4)

where βmin is the minimum angular aperture among all the
nodes in Q.

3. THE LOCALIZATION TECHNIQUE
In this section, we present a localization technique that

uses a static path to sweep Q and that guarantees an a-priori
given localization precision ǫL.

3.1 Provable Bound on Position Error
From now on, we call the distance between every two

consecutive waypoints Iw and we fix

βmin

2
= tan−1

(

dmin

2√
3 dmin

2
+ 2Iw

)

. (5)

We say that any node P is correctly measured if the drone
can choose on its path three ranging waypoints w1(P ), w2(P )
and w3(P ) for P that satisfy the following constraints:

1. constraint dmax : d(wi(P ), P ) ≤ dmax, for 1 ≤ i ≤ 3;

2. constraint dmin : d(wi(P ), P ) ≥ dmin, for 1 ≤ i ≤ 3;

3. constraint βmin : β(P ) ≥ βmin.

By Eq. 4 and Eq. 5, a localization technique that correctly
measures all the nodes in Q guarantees:

ǫL = ǫs

√

(1 +
h2
max

d2
min

)(1 + tan2(βmin

2
))

tan(βmin

2
)

. (6)

Now suppose we want design a localization mission that
guarantees an a-priori fixed localization precision ǫL. Assu-
ming that the communication range r, the altitude hmax,
the interwaypoint distance Iw, and the slant precision ǫs are
fixed a-priori because of legal restrictions or technical rea-
sons, dmax and βmin follow from Eq. 1 and Eq. 5. Then, the
unique free parameter in Eq. 6 is dmin, which can be tuned
so as the a-priori required localization precision is obtained
for all the nodes in Q.

Table 1 lists dmin values analytically derived by Eq. 6 for
standard values of hmax and possible values of Iw, fixing
ǫs = 0.10 m. As one can see, a smaller localization precision
requires larger values of dmin. The same precision can be
pursued for increasing values of Iw choosing larger values of
dmin.

ǫL(m) 0.3 0.6 0.9 1.2
hmax (m) Iw(m)

160
2 149.28 60.30 39.87 30.30
5 158.35 65.39 44.30 34.38
10 173.12 72.98 50.60 39.99

90
2 86.63 35.44 23.76 18.28
5 95.55 40.14 27.72 21.84
10 110.02 46.88 33.09 26.52

Table 1: The values dmin that satisfy ǫL values. All the
measures are in meters.

Now, we will describe the new localization technique as-
suming we know the value dmin required to guarantee the
desired precision ǫL. In the next section, we start by de-
scribing the static path D that the drone will follow during
the localization. This is a simple scan path which has been
adapted in order to correctly measure all the nodes of Q.

3.2 Static Path D
The static path D consists of vertical scans connected by

horizontal scan, as depicted in Fig. 5. The waypoints belong
only to the vertical scans of D. The distance between two
consecutive waypoints is fixed to Iw. The waypoints along
the vertical scans are numbered bottom-up, starting from 0.
We say that a waypoint is even if it gets an even number.
Each vertical scan continues beyond the top and down bor-

ders for a segment of length Fy = (dmax − Iw)
√
3
2

and it is
rounded to start and finish with an even waypoint. Thus,

each vertical scan has length L = 2Iw
⌈

Qy+2Fy

2Iw

⌉

. Two con-

Figure 5: The static path D and the deployment area Q.

secutive vertical scans are connected by a horizontal segment
of length H = (dmax − dmin − 2Iw)

1
2
. Let H be termed the

inter-scan distance. The drone traverses one vertical scan
of D bottom-up and the next one top-down. The horizontal
segments are traversed from left to right (see Fig. 5). The
starting point of D is S = (sx, sy) = (−Fx−H,−Fy), where

Fx = dmin

2
. From the starting point, we can take correct

measurements for the bottom left corner of Q. Note that
neither Fx or H are rounded to be a multiple of Iw because
there are no waypoints on the horizontal segments of D .
The path D consists of two vertical scans outside Q that are
used to measure the nodes in the leftmost stripe of Q, follo-
wed by several vertical scan inside Q. The last vertical scan



is at distance no larger than ⌊ dmax−2Iw
2

⌋ from the rightmost
vertical border of the deployment area Q.

For each node, we select the three waypoints in two con-
secutive vertical scans, to avoid the ”alias“ problem due to
waypoints collinearity. To limit the selection of the th-
ree waypoints to two consecutive vertical scans, we assume
H ≥ dmin

2
. Therefore, we add the constraint:

dmin <
dmax

2
− Iw. (7)

3.3 Tessellation and Ranging Waypoints
In this section, we explain how to select on D the ranging

waypoints that correctly measure each possible node in Q.

Figure 6: The tessellation and, in gray, the stripe M i
R

measured by the vertical scans Si and Si−1.

Let the vertical scans in D be numbered from 0 to ν.
Consider on D two consecutive vertical scans Si−1 and Si,
with 1 ≤ i ≤ ν. Let xSi be the x-coordinate of the vertical
scan Si of D. In the following, we prove that the points of Q
on the right of Si whose x-coordinate belong to the interval
[

xSi + dmin

2
, xSi +

(dmax−Iw)
2

]

form the stripe of Q, named

M i
R and illustrated in Fig. 6, that can be correctly measured

from Si−1 and Si.
To decide how to associate the waypoints on Si and Si−1

with the nodes in Q, we logically tessellate M i
R as follows.

From every even waypoint w = (xw, yw) = (xw, 2tIw) on Si,
with 0 ≤ t ≤ ⌈ L

2Iw
⌉, we draw the two lines that pass through

w with slopem1 =
√
3 andm2 = −

√
3 denoted, respectively,

as up(w,m1) and dw(w,m2) (see Fig. 6). Such lines design
a lattice on M i

R, made of diamond shapes. Each vertex of
the lattice is uniquely associated with the diamond on its
left. Precisely, consider the vertex V = CV = (xV , yV )
in Fig. 6. It is associated with the diamond ∆(V ) (di-
splayed in dark gray) of vertices (listed in clockwise order

starting from V ): CV = V, DV =
(

xV − Iw√
3
, yV − Iw

)

,

AV =
(

xV − 2 Iw√
3
, yV

)

, and BV =
(

xV − Iw√
3
, yV + Iw

)

.

Observe that all the diamond shapes of the tessellation ha-
ve the same size. For every diamond ∆(V ), the horizontal
diagonal AV CV has length |AV CV | = 2Iw√

3
while the vertical

diagonal BV DV has length |BV DV | = 2Iw. Moreover, the

projections V ′ and V ′′ of V are waypoints on Si and Si−1

because their y-coordinate is multiple of Iw.
Let V be at the intersection of the lines up(VS ,

√
3) and

dw(VN ,−
√
3). VS and VN play a very important role in our

localization technique, along with the projection V ′ of V on
Si−1: Indeed, w1(P ) = VS , w2(P ) = V ′, and w3(P ) = VN

for each P in the diamond ∆(V ), represented by V .

Theorem 1. Fixing the vertex V = (xV , yV ) ∈ M i
R that

occurs at the intersection of the lines up(VS ,
√
3) and dw(VN ,

√
3),

the nodes in ∆(V ) are correctly measured by the ranging
waypoints VS, VN and the projection V ′′ of V on Si−1.

Proof. Fix w1(P ) = VS , w2(P ) = V ′′, and w3(P ) =
VN . First observe that since V occurs at the intersection
of the lines up(VS ,

√
3) and dw(VN ,−

√
3), by elementary

geometric arguments it holds that d(VS , V ) = d(VN , V ) =
2d(V ′, V ) = 2(xV − xSi), where V ′ is the projection of V
on Si. Thus, recalling that V belongs to the stripe M i

R on

the right of Si that is, dmin

2
≤ xV − xSi ≤ (dmax−2Iw)

2
, it

immediately follows that

dmin ≤ d(w1(V ), V ) ≤ dmax − 2Iw.

Moreover, it holds dmin < H + dmin
2

< d(w2(V ), V ) ≤ H

+ dmax−2Iw
2

< dmax. Thus, the dmin and dmax constraints
are satisfied for V .

To prove the dmin and dmax constraints for each internal
node P ∈ ∆(V ), let us first consider each node P in the
lower half-diamond ∆(V ), that is, the triangle AV CV DV of

∆(V ). Let P ′ be the projection of P on Si and let P̂ ′VSP
be the angle at VS between the ray VSP and the vertical
scan Si. Since d(VS , P

′) ≤ d(VS , V
′) because P belongs to

the triangle AV DV CV and P̂ ′VSP ≤ V̂ ′VSV , it holds that:

d(w1(V ), P ) =

d(w1(V ), P ′)

cos(P ′w1(V )P )
≤ d(w1(V ), V ′)

cos (P ′w1(V )P )
≤

d(w1(V ), V ′)

cos (V ′w1(V )V )
= d(w1(V ), V ) ≤ dmax − 2Iw.

Moreover, for each P in the triangle AV BV CV of ∆(V ),
consider the point P ′′ symmetric to P with respect to the
line V ′V which belongs to the triangle AV DV CV .
By the triangle inequality, given that V belongs to M i

R

and d(P ′′, P ) ≤ d(B,D), we have:

d(w1(V ), P ) ≤ d(w1(V ), P ′′) + d(P ′′, P ) ≤
d(w1(V ), P ′′) + 2Iw ≤ d(w1(V ), V ) + 2Iw ≤ dmax

Repeating the same reasoning, using w3(P ) = VN in place
of w1(P ) = VS , it can be proved that for each P ∈ ∆(V ), it
holds dmin ≤ d(VN , P ) ≤ dmax.

With regard to the dmin and dmax constraints for w2(P ),
let Z be the projection of P ∈ ∆(V ) on the diamond diago-
nal AC. It easily follows that d(w2(V ), P ) ≤ d(w2(V ), Z) +
d(Z,P ) ≤ d(w2(V ), V ) + Iw < H + dmax

2
− Iw < dmax, and

d(w2(V ), P ) ≥ d(w2(V ), Q) ≥ H + dmin

2
> dmin because

H > dmin

2
.

For the βmin constraint in vertex V , observe that the
tessellation divides the turn angle in V in equal angles.

Therefore, β(V ) = π
3
. Since tan(β(V )

2
) = 1√

3
, the βmin

constrained is satisfied.
In each diamond ∆(V ),minP∈∆(V ) β(P ) = β(AV ). Then,



45 50 55 60 65 70 75

105

110

115

120

125

130

135

C=V

B

D

I
w

=15, d
max

=244, d
min

=70, h=160, r=300

x
A

≤ x ≤ x
C

A=V‘W
2

y
B

≤
 y

 ≤
 y

D

48

50

52

54

56

58

Figure 7: The angular aperture β(P ) for P ∈ ∆(V ) with
V at distance 70m from a vertical scan S (xS = 0) and
Iw = 15m.
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for each P ∈ M i
R, βmin occurs at the vertex AV with mini-

mum x-coordinate. Moreover, βmin

2
= tan−1

(

dmin
2√

3
dmin

2
+2Iw

)

.

Figure 7 illustrates the width of the angle β(P ) in a
diamond shape of M i

R and gives evidence that β(AV ) =
minP∈∆(V ) β(P ). Figure 8 shows the fact that increasing

the distance of V from Si, β(AV ) increases.
Since we proved that from Si−1 and Si the nodes in M i

R

are correctly measured, considering all the pairs of consecuti-
ve scans (S0,S1), (S1,S2) . . . (Sν−1,Sν) we cover ∪ν

i=1M
i
R =

Q. Hence, all the nodes in Q can be correctly measured from
the vertical scans S0, . . . , Sν .

3.4 The Localization Mission
In this section, we describe the drone’s behaviour. The

drone follows the path D, and at each waypoint it sends a
message beacon. The non-localized nodes that can hear it
reply with an ack message to the drone. From the round-
trip time, the drone can infer the slant distance between
itself and the node, and from that, it computes the ground
distance. The drone locally saves all the ground distance
measurements for the nodes not yet localized.

For each node P , the drone first finds a rough estima-
te (without any guaranteed bound on the position error),

called P̂ , of the position of the node P . Then, the drone
locates the logical diamond ∆̂ where P̂ resides, and uses the
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Figure 10: The precision ǭL when r = 800m for different
altitudes when ǫL = 0.6m.

three ranging waypoints associated to ∆̂ to localize P with
guaranteed bound precision ǫL.

Precisely, to compute P̂ , the drone performs a trilatera-
tion with the first three distance measurements it collects
that satisfy the dmin constraint and that belong to two dif-
ferent vertical scans. From P̂ , it locates the closest vertical

scan Sσ(P̂ ), with index σ(P̂ ) =
⌊

x
P̂
+Fx

H

⌋

+ 1, on the left of

P̂ . Then, based on the distance between Sσ(P̂ ) and P̂ the
drone computes w1(P̂ ), w2(P̂ ), w3(P̂ ). Let:

ȳ1 =

⌊

yP̂
2Iw

−
⌈√

3(xP̂ − x
Sσ(P̂ ))

2Iw

⌉⌋

2Iw

ȳ3 =

⌊

yP̂
2Iw

+

⌈√
3(xP̂ − x

Sσ(P̂ ))

2Iw

⌉⌋

2Iw

ȳ2 =
(ȳ1 + ȳ3)

2

Then, if x
Sσ(P̂ ) ≤ xP̂ ≤ x

Sσ(P̂ ) + dmin

2
, the drone will

again trilaterate P after the distance measurements at the
three ranging points:

w1(P̂ ) =
(

x
Sσ(P̂ )−1 , ȳ1

)

(8)

w2(P̂ ) =
(

x
Sσ(P̂ )−2 , ȳ2

)

w3(P̂ ) =
(

x
Sσ(P̂ )−1 , ȳ3

)

Similarly, if x
Sσ(P̂ ) +

dmin

2
< xP̂ ≤ x

Sσ(P̂ )+1 , the locali-
zation will be completed as soon as the drone has collected
the distance measurements from the waypoints:

w1(P̂ ) =
(

x
Sσ(P̂ ) , ȳ1

)

(9)

w2(P̂ ) =
(

x
Sσ(P̂ )−1 , ȳ2

)

w3(P̂ ) =
(

x
Sσ(P̂ ) , ȳ3

)

In both cases, the localization of P will now satisfy the
bound ǫL since the three waypoints satisfy the dmin, dmax,
and βmin constraints.

In the next section we confirm our results by simulations.

4. EXPERIMENTAL EVALUATION
We have implemented the localization technique in Ma-

tlab. We simulate a localization mission by deploying at
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Figure 9: The precision ǭL when r = 300m.

0 100 200 300 400 500 600
0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

ε
L

w
=10,r=800, ε

L=0.3I

h=80

h=160

h=260

h=320

#nodes

0.305

Figure 11: The precision ǭL when r = 800m for different
altitudes when ǫL = 0.3m.

random a variable number n of nodes, with n = 100, 200
and 500, on a 1000m × 1000m map. In all experiments, the
drone travels along the path D and takes distance measure-
ments at the waypoints. We assume the slant precision to
be ǫs = 0.1m, as claimed by DecaWave for their IR-UWB
transceivers [1]. To simulate the slant distance between the
drone in position w at altitude h and the node P , we compu-
te the exact slant distance (without error) s =

√

|wP |2 + h2,
where |wP | is the Euclidean (exact) distance between the
projection of w on the ground and the (exact ) position of
P . Then we generate a slant error es ∈ [−ǫs, ǫs] and we say
that the slant distance measured by the drone is s(w,P ) =
(s+es). The ground distance (which includes the ground er-

ror) is computed as d(w,P ) =
√

s(w,P )2 − h2. Given three
ground measures, the estimate position of P is computed as
the least-squares-error solution of their trilateration.

For every tuple (r, hmax , dmax Iw, ǫL) reported in Table 2,
we generate 35 different localization missions. For each tu-
ple, we derive by Eq. 6 the value of dmin required to satisfy
the given ǫL. If such a value dmin does not satisfy Eq. 7, our
localization technique cannot achieve ǫL, unless we decrease
the value of Iw. Fixing n, for each mission, we simulate the
localization technique. We assume that the drone flies at al-
titude h = hmax or lower. Note that if the actual altitude
is smaller than hmax , the localization precision improves.

In order to evaluate the localization precision obtained
during the simulated mission, we evaluate the experimental
position precision ǫL(P ) for each node P . Formally, if P is
measured by w1, w2 and w3, we compute:

ǫL(P ) = ǫs

√

1 +
h2
max

min3
i=1{d2(wi,P )}

β(P )
2

. (10)

For each mission M , we record the worst experimental loca-
lization precision, that is, ǫL(M) = maxP∈Q(ǫL(P )). Then,
we compute the average of the worst experimental localiza-

tion precision ǭL =
∑35

i=1 ǫL(Mi)

35
. In our experiments we are

interested in comparing ǫL with ǭL.

r (m) hmax (m) dmax (m) Iw (m) ǫL (m)
300 160 254 [2, 5, 10] [0.9, 0.6]
300 90 286 [2, 5, 10] [0.6, 0.3]
800 160 784 [2, 5, 10] [0.6, 0.3]
800 90 795 [2, 5, 10] [0.6, 0.3]

Table 2: Values of the parameters used to generate the
localization missions. All the measures are expressed in
meters.

As shown in Fig. 9, the desired localization precision is
always greater than the average worst experimental locali-
zation precision. Not only, ǭL ≤ ǫL, but also ǫL(M) ≤ ǫL
for each individual mission. The distance between the desi-
red value ǫL and the experimental ǭL increases when dmin

increases and Iw increases. So the experiments guarantee
a better (i.e., smaller) localization precision when dmin is
larger.

When h = 160m and ǫL = 0.6m, dmin is greater than
when h = 90m and ǫL = 0.6m. In other words, a larger
dmin is required to achieve the same ǫL at higher altitudes
(see Fig. 9b and 9c). This shows that the experimental
localization precision is sensitive to the altitude.

For hmax = 160m and r = 300m, it is not possible –
with the current localization technique – to guarantee ǫL =
0.3m since dmin violates Eq. 7. The same precision can
be achieved with larger communication ranges or smaller
altitudes (see Table 2).



Figs. 10 and 11 plot the precision ǭL for r = 800m at dif-
ferent altitudes when the a-priori localization precision to be
guaranteed is ǫL = 0.6 and ǫL = 0.3, respectively. Althou-
gh the distance between the theoretical and the experimen-
tal precisions decreases when h increases, the experimental
localization precision is always smaller than ǫL.

In order to compare our localization technique with pre-
viously known localization algorithms, we evaluate in Fig. 12
the localization precision for the LMAT localization algori-
thm proposed in [10] when the transmission radius is equal
to dmax = 254m. The ranging waypoints are selected as in
LMAT. In other words, the dmin constraint is not verified,
while the collinearity with the node is low due to the way
LMAT selects the ranging waypoints. As before, we execu-
te 35 missions. As one can note, ǭL is always greater than
500m. This is due to the fact that the ground precision be-
comes very large because d(w,P ) can be very very small.
To avoid such extreme cases, we also computed the average
position error among all the experimental localization pre-
cision (not only the worst precision) of each mission. Still,
that value remains above 8m, which is more than 10 times
the precision guaranteed by our technique.
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Figure 12: The error bound ǭL in the LMAT algorithm [10].

5. CONCLUSION
In this paper, we presented a localization technique that

replaces multiple anchors with a flying drone. Our solu-
tion guarantees a provable bound on the position error by
tuning a single parameter: the minimum ground distance
measurement. During the localization mission, the drone
first computes for each sensor a rough estimation of its po-
sition, and then it carefully selects the waypoints so as the
required localization precision is guaranteed. As a future
work, we intend to consider a drone equipped with directio-
nal antennas in order to avoid the rough estimation of each
point and to extend our technique for localizing nodes in 3D.
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