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Abstract—The number of studies about ultra-short cardiovas-
cular time series is increasing because of the demand for mobile
applications in telemedicine and e-health monitoring. However,
the current literature still needs a proper validation of heartbeat
nonlinear dynamics assessment from ultra-short time series. This
paper reports on the reliability of the Lagged Poincaré Plot
(LPP) parameters - calculated from ultra-short cardiovascular
time series. Reliability is studied on simulated as well as on
real RR series. Simulated RR series are generated and LPP
parameters estimated for ultra-short time series (from 15 to
60 s) are compared to those estimated from 1 hour. All LPP
parameters estimated from time series longer than 35 s presented
a Spearman’s correlation coefficient higher than 0.99. RR series
acquired from 32 healthy subjects during 5-minutes resting state
sessions are used to test the LPP approach in experimental
data. The usefulness of ultra short term parameters in real
data is accomplished also studying their ability to discriminate
positive and negative valence of auditory stimuli taken from the
International Affective Digitized Sound System (IADS) dataset.
The achieved accuracies in the recognition of elicitation along
the valence dimension, using only the LPP parameters, were of
77.78% for 1 minute 28 second series, and of 79.17% for 35
second series.

I. INTRODUCTION

It is known that Heart Rate Variability (HRV), extracted
from the electrocardiographic (ECG) signals, is a promising
clinical tool to investigate, in a noninvasive way, sympathetic
and parasympathetic dynamics of the autonomic nervous sys-
tem (ANS) [1], [2].
Although long-term HRV analysis (24 hours) has been proven
to be useful for prediction of several physical and psycho-
logical diseases, e.g. myocardial infarction [3] and depression
[4], it is also associated to low reproducibility and high non-
stationarities [5]–[7]. Short-time analysis of HRV (5 minutes)
has been proposed to overcome the non-stationarities, to be
less influenced by recording conditions and suitable for the
study of short time ANS response to stimuli in and outside
clinical settings [1], [8], [8]–[10].
Due to the diffusion of telemedicine and e-health, the demands
of ultra-short term monitoring (less than 5 minutes) of HRV is
significantly increasing, especially for its usefulness in mobile
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applications [11], [12]. In e-health monitoring, in fact, the
conventional 5 minutes recordings might be unsuitable, due to
real time requirements. A relevant and increasingly studied use
of ultra-short HRV series is the analysis of psychological state
conditions, such as mental stress [11], [13], [14] or emotional
arousal [15], [16].
Several previous studies investigated the reliability of the HRV
parameters extracted from ultra-short term series in order to
test their prognostic significance in patients with cardiac risk
factors [17], or to check the post-exercise heart rate recovery
in athletes [18], [19].
Studies reporting the reliability of HRV parameters calculated
from ultra-short time series were promising, especially for
time-domain parameters, such as RMSSD [20], [21] and
SDNN [17]. However the extrapolation of these results face
some limitations. For instance, the differences in studied
populations, including healthy subjects as well as patients, and
the aim of the study, which includes identification of cardiac
diseases as well as assessment of physiological response to
physical/mental stress, or to several arousal stimulations.
There are few studies in the literature that explore the be-
haviour of features belonging to nonlinear analysis methods in
ultra-short time windows. For example, it has been suggested
that record lengths of 10m - 20m (where m is the embed-
ding dimension) are needed to estimate Approximate Entropy
(ApEn) and Sample Entropy (SampEn) [22]. McNames et al.
studied the reliability of 11 HRV parameters as a function
of the duration of the windows extracted from 54 long-term
ambulatory ECG recordings [23]. They found that ApEn, the
only nonlinear parameter analyzed, was the most unreliable
metric of the HRV measures tested in this study.
Here we present a study about the reliability of the parameters
extracted from the Lagged Poincaré Plot (LPP) [24], [25], a ge-
ometric method taken from chaos theory, which allows a beat-
to-beat analysis of HRV, in order to observe patterns belonging
to nonlinear processes, not detectable with techniques in the
time and frequency domains. Some previous works showed
that this approach allows to distinguish, better than linear
methods, the changes in ANS dynamics in conditions such
as congestive heart failure [26] and in patients with chronic
renal failure [27].
One novelty of this work is that reliability of ultra short term
HRV parameters is done on simulated as well as on real RR
series. Simulated RR series allow to test the reliability of the
method under the same conditions for all time intervals, which
can not be guaranteed in real data. The reliability of ultra short
term parameters in real data is accomplished through statistical
analysis methods using sessions of five-minute resting state,
but also studying their ability to discriminate positive and neg-



ative valence of auditory stimuli taken from the International
Affective Digitized Sound System (IADS) dataset [28]–[30].

II. MATERIALS AND METHODS

A. Lagged Poincaré Plot

The Poincaré Plot (PP) technique consists of a scatterplot
generated by each RR interval against the immediately previ-
ous RR interval (RRn+1 and RRn). In the LPP method, the
points with coordinates RRn and RRn+M are represented in
the scatterplot, where M is the lag. [24], [25], [31]. From each
series we extracted the normally used PP indexes:
• SD1: the standard deviation of the points related to the

direction perpendicular to the line-of-identity RRn+M =
RRn [32]. It describes the short-term dynamics of HRV
in the analyzed time interval.

• SD2: the standard deviation that describes the long-term
dynamics and measures the dispersion of the points along
the identity line.

• SD12 (SD12 = SD1/SD2): the ratio between SD1 and
SD2 [33].

• S (S = π×SD1×SD2): the area of an imaginary ellipse
with axes SD1 and SD2 [33], [34].

• SDRR (SDRR = 1√
2

√
SD12 + SD22): an approximate

relation indicating the variance of the whole HRV series
[34].

For each parameters we considered values calculated from the
LPP with a lag range from 1 to 10 [35].

B. Data used in the study

1) Synthetic data: Synthetic RR series were generated
through the IPFM model [36]. This model reproduces the
heartbeat occurrence times from a modulating signal m(t),
which represents the behavior of the ANS, and it is assumed
to be band-limited and less than one. The beat trigger impulse
is generated when the integral of this function reaches a
threshold, according to the following equation:

k =

∫ tk

0

1 +m(t)

T
dt (1)

where k is an integer that represents the number of the k− th
beat and tk is the occurrence time of the k − th beat, T is
the mean of the RR intervals series. Modulating signal m(t)
is generated using an autoregressive moving average model,
whose input parameters are the frequency and the power of the
dominant peak in the LF (low frequency, 0.04-0.15 Hz) and
HF (high frequency, 0.15-0.4 Hz) bands, respectively [37]. In
this study the frequency of the peaks were chosen in random
way in the range of the two main bands (LF and HF) and
their power values were within the normal range reported
in literature for healthy people (a median value of 81 ms2

and an interquartile range of 116 ms2) [38], [39]. A total
number of 1.200 realizations of the modulating signal m(t)
were generated. The parameter T was set to 1 second for all
the realizations. In this way we generated 1200 simulated RR
series of 3595 samples each (in order to have the same values
of samples referred to signals of 1 hour).

These simulated RR series are analyzed in 50% overlapped
windows considering different window lengths, ranging from
15 samples to the total length in steps of 5 samples. For each
window length, the LPP parameters value was estimated as
the mean in all the windows of the same length.

2) Experimental data: To verify the validity of LPP pa-
rameters extracted from ultra-short windows in experimental
data, we analyzed the RR series recorded into two conditions:
during a 5-minutes resting state protocol and during an ex-
periment of emotional acoustic stimulation. During both the
experimental protocols, the ECG was continuously acquired,
following the Einthoven triangle configuration, by means of a
dedicate hardware module, i.e., the ECG100C Electrocardio-
gram Amplifier from BIOPAC inc. with a sampling rate of
500 Hz. To obtain the RR series from the ECG, we used
the automatic algorithm developed by Pan-Tompkins [40].
Artifacts and ectopic beats were corrected through the use of
Kubios HRV software [41].
Thirty-two healthy subjects, aged from 21 to 35, participated
as volunteers in the resting-state experiment. According to
the self-report questionnaires, none of them suffered from any
cardiovascular, mental or chronic disease. Participants were in-
formed about the protocol and about the purpose of the study.
During the experiment, subjects were seating in a comfortable
chair, in a controlled environment. The participants were asked
to be in resting state for five minutes while their eyes were
closed. The RR series have been analyzed in 50% overlapped
windows considering different window lengths, ranging from
15 to 180 samples (the first three minutes) in steps of 5
samples. For each window length, the LPP parameters value
was estimated as the mean in all the windows of the same
length.
Concerning the emotional acoustic stimulation we used the
same stimulation protocol which we proposed in a previous
work [42], which was approved by the local ethical com-
mittee. Twenty-seven healthy subjects, aged from 25 to 35,
participated as volunteers. Through self-report questionnaires,
we realized that none of them was affected by partial or full
incapability of hearing and none of them suffered from any
cardiovascular, mental or chronic disease.
During all the duration of the protocol, participants were
seated alone in a controlled environment while listening to
the IADS sounds, by using headphones, with closed eyes.
The IADS sounds are standardized in the values of arousal,
i.e. the intensity of the evoked emotion, and valence, i.e. the
pleasantness-unpleasantness of the sensation, following the bi-
dimensional model of emotions proposed by Russell [43],
[44] and called Circumplex Model of Affect (CMA). Within
each arousing session in the protocol, the acoustic stimuli
were selected to have Low-Medium (L-M) ratings for negative
valence and Medium-High (M-H) ratings for positive valence.
These levels were set according to the IADS valence and
arousal scores reported in Table I. The affective elicitation
was comprised of 10 sessions: an initial resting session of
5 minutes and four arousal sessions alternated with neutral
sessions. Within each arousing session, the acoustic stimuli
were selected to have negative valence for the first part of
the session and positive valence for the last half. The neutral



Table I
RATING OF IADS SOUNDS USED IN THIS WORK

Session Valence Rating Valence Range Arousal Rating Arousal Range
Neutral 5.915±0.68 4.34÷6.44 3.47±0.175 2.88÷3.93

Arousal 1 / 3.54÷7.51 4.60±0.21 4.03÷4.97
Arousal 2 / 2.46÷7.78 5.42±0.22 5.00÷5.89
Arousal 3 / 2.04÷7.90 6.48±0.25 6.00÷6.99
Arousal 4 / 1.57÷7.67 7.32±0.22 7.03 ÷8.16

Ratings are expressed as median and its absolute deviation.

session had a duration of 1 minute and 28 seconds, while the
four arousal sessions had durations of more than 3 minutes
with a difference which was due to the different length of
acoustic stimuli having the same range of positive and negative
valence.
In this work we considered two ultra-short time windows to
extract HRV parameters, in the first time with the duration of
1 minute and 28 seconds and in the second time with a length
of 35 seconds. The first time duration, i.e. 1 minute and 28
seconds was chosen due to the length of the neutral session of
the protocol [42]. The windows of 1 minute and 28 seconds
were selected at the beginning and at the end of each arousal
session. Then we selected the second length, i.e. 35 seconds,
which is a duration of resting state tested in our previous work,
where we studied the autonomic response to haptic stimulation
[16]. Four windows of 35 seconds were obtained by each
window of 1 minute and 28 seconds considering an overlap
of 17.5 seconds. Then, the mean of the parameter values in
the four 35 second windows was computed so each arousal
session was characterized by two values, one for the negative
and the other for the positive valence.
From the RR series of both window lenghts the five parameters
of LPP described in Section II-B1 were computed for ten
values of lag, as well as the main HRV parameters in the time-
domain: the mean of RR intervals (mean RR), the standard
deviation (std RR), the square root of the mean of the sum
of the squares of differences between subsequent RR intervals
(RMSSD), the integral of the probability density distribution
(that is, the number of all RR intervals) divided by the max-
imum of the probability density distribution (HRV tiangular
index), the triangular interpolation of RR interval histogram
(TIRR). Frequency parameters of HRV were obtained from the
power spectral density (PSD) of the modulating signal m̂(t),
obtained from the beat occurrence times, tk, using the IPFM
model [45]. PSD was estimated using Welch’s periodogram
and the power in the LF and HF bands (see Section II-B1)
were computed, together with their percentage of the total
power (LF power% and HF power%), the power in the LF
band normalized to the sum of the LF and HF power (LF
power nu) and the values of the frequencies having maximum
magnitude (LF peak and HF peak).

C. Statistical analysis and classification

To analyze the reliability of LPP in synthetic and experi-
mental series we used the nonparametric Spearman correlation
analysis to compare the values of the LPP features calculated
in the ultra-short duration of windows with the parameters
extracted from the total length of the series [46]. The use of

such a non-parametric test is justified by having non-gaussian
distribution of the samples (p < 0.05 of the null hypothesis
of having gaussian samples of the Kolmogorov-Smirnov test)
[47].
For each parameter and window size, we calculated the
percentage absolute error (ε%(i, τ)) [48] between the mean
value of the parameter among all the equal length windows
and the value of the parameter estimated in five-minutes series,
which is taken as the reference, according to equation 2:

ε%(i, τ) = 100×
∣∣∣∣m(i, τ)−mBL(i)

mBL(i)

∣∣∣∣ (2)

where i was an integer in the range [1-N], where N was the
total number of the series, τ was the duration of the selected
window, m(i, τ) was the average metrics (e.g. SD1) calculated
from all the windows of the same length, mBL(i) was the
reference metrics calculated from the 1-hour synthetic series
and from 5-minutes experimental series.
The Bland-Altman plot was analyzed in order to check in-
terchangeability of ultra-short windows and the whole signal
in terms of LPP parameters [49], [50]. In the analysis of the
values of LPP estimated in the ultra-short time series, we found
that there was a raise in the variability of the differences as
the magnitude of measurements increased. For this reason, we
applied the traditional Bland-Altman plot method to the log-
arithmic transformations of both measurements, as suggested
by the literature [50].
We used the features extracted from the experimental data

Figure 1. Overall block scheme of the proposed emotion recognition system.

to distinguish the sessions related to negative sounds from
the sessions corresponding to the positive stimulation. We
implemented a Leave-One-Subject-Out (LOSO) procedure,
following the block diagram summarized in Fig.1, where each
iteration implied a feature selection and a normalization of the



Table II
SPEARMAN’S CORRELATION COEFFICIENTS (CALCULATED BETWEEN THE VALUES OF LPP PARAMETERS CALCULATED IN THE TOTAL LENGTH OF THE
SERIES AND WITH A WINDOWING OF 15, 35 AND 60 SAMPLES, RESPECTIVELY) AND THE MEDIAN OF PERCENTAGE ABSOLUTE ERRORS. THE VALUES

ARE REPORTED FOR ALL THE LAG M OF THE LPP AND FOR THE CORRELATION TESTS THERE WAS A p− value < 0.00001.

SD1 SD2 SD12 S SDRR
M 15 sam 35 sam 60 sam 15 sam 35 sam 60 sam 15 sam 35 sam 60 sam 15 sam 35 sam 60 sam 15 sam 35 sam 60 sam

1 ρ 0,9979 0,9983 0,9983 0,9965 0,9987 0,9994 0,9710 0,9905 0,9944 0,9983 0,9992 0,9995 0,9978 0,9992 0,9996
ε% 3,27 3,27 2,97 5,66 3,65 2,69 6,92 4,16 3,13 3,28 2,07 1,30 4,68 3,36 2,57

2 ρ 0,9988 0,9993 0,9993 0,9879 0,9974 0,9991 0,9878 0,9960 0,9974 0,9980 0,9992 0,9996 0,9974 0,9992 0,9996
ε% 3,22 2,88 2,41 7,11 4,13 2,92 11,86 4,67 2,94 2,99 1,90 1,26 4,65 3,39 2,59

3 ρ 0,9987 0,9995 0,9997 0,9938 0,9991 0,9996 0,9736 0,9919 0,9944 0,9961 0,9993 0,9996 0,9964 0,9992 0,9996
ε% 4,60 3,44 2,67 7,27 4,37 3,15 8,83 3,36 2,29 3,03 1,52 0,99 4,62 3,41 2,62

4 ρ 0,9973 0,9992 0,9996 0,9923 0,9991 0,9994 0,9787 0,9841 0,9862 0,9962 0,9995 0,9997 0,9945 0,9992 0,9996
ε% 4,63 3,34 2,59 7,99 4,72 3,23 12,63 3,57 2,01 5,36 2,05 1,28 4,46 3,43 2,65

5 ρ 0,9924 0,9983 0,9991 0,9690 0,9979 0,9988 0,9856 0,9931 0,9943 0,9893 0,9987 0,9992 0,9911 0,9992 0,9996
ε% 6,33 4,12 3,01 7,98 4,96 3,49 16,00 5,33 2,92 11,26 4,41 2,95 4,40 3,44 2,66

6 ρ 0,9796 0,9987 0,9994 0,9808 0,9982 0,9989 0,9910 0,9904 0,9910 0,9774 0,9985 0,9993 0,9854 0,9991 0,9996
ε% 6,85 4.31 3,18 6,88 4,60 3,50 10,90 3,92 2,67 8,30 3,92 2,75 4,85 3,49 2,66

7 ρ 0,9651 0,9985 0,9993 0,9828 0,9982 0,9991 0,9844 0,9939 0,9954 0,9716 0,9977 0,9991 0,9765 0,9991 0,9996
ε% 7,75 3,90 2,95 7,45 4,95 3,36 15,91 5,25 2,77 7,47 3,39 2,10 5,98 3,51 2,65

8 ρ 0,9755 0,9990 0,9993 0,9846 0,9986 0,9995 0,9789 0,9954 0,9969 0,9717 0,9983 0,9993 0,9659 0,9991 0,9996
ε% 11,67 3,70 2,81 9,47 5,07 3,52 15,86 6,30 3,33 14,35 3,99 2,50 7,90 3,49 2,68

9 ρ 0,9481 0,9988 0,9994 0,9782 0,9988 0,9994 0,9398 0,9916 0,9947 0,9623 0,9986 0,9994 0,9547 0,9990 0,9996
ε% 16,19 3,36 2,52 11,61 5,04 3,71 15,84 7,32 4,86 23,96 3,29 1,83 10,40 3,46 2,69

10 ρ 0,8860 0,9989 0,9994 0,9677 0,9987 0,9993 0,9290 0,9947 0,9966 0,9274 0,9984 0,9992 0,9417 0,9990 0,9996
ε% 20,97 3,44 2,44 18,75 5,11 3,75 25,50 8,67 5,51 32,71 3,59 2,01 14,82 3,47 2,70

training set on N-1 subjects. The feature selection was made
taking into consideration the ten parameters which presented
the lowest p-values obtained by Wilcoxon non-parametric
statistical test between the two valence levels [51]. Before
performing the statistical analysis, Kolmogorov-Smirnov tests
were applied in order to check that the data were not normally
distributed. For each of the LOSO steps, the training set was
normalized by means of the non-parametric version of z-
score approach. The median and median absolute deviation
(MAD) values of the training set (all the arousal sessions
over N-1 subjects) were used to normalize the test sample
according to the z-score definition. In the normalization of the
dataset we implemented two steps: each feature value extracted
from each subject during the neutral session was subtracted
from the corresponding value estimated during the successive
negative or positive valence session; the value obtained from
the previous step was divided by the MAD evaluated over all
the values of that parameter of all the subjects involved in the
training set for the considered valence session.
In the LOSO procedure only features extracted from positive
and negative valence sessions were taken in consideration, so
we considered a total of 208 samples in the training set (four
values for the negative valence and four values for the positive
valence for each of 26 subjects), and 8 samples for the test
set. The classifier employed in this study was a Quadratic
Discriminant Classifier (QDC), which is based on the Bayesan
decision theory [52], [53].

III. EXPERIMENTAL RESULTS

A. Reliability of LPP parameters from synthetic data

The results of the Spearman’s rank correlation tests high-
lighted a very good correlation between the parameters calcu-
lated in the ultra-short windows and the features belonging to
the baseline.
The results of the correlation coefficients ρ are reported in
Table II, for the durations of the windows of 15 (i.e. the
shortest window considered in the study), 35 and 60 samples

(i.e. two examples of ultra-short lengths, including the length
selected to study the experimental data). The p − values of
the test correlations were less than 10−5 in all cases of study.
We applied this test for all values of LPP parameters in all
M lags, from 1 to 10 and for all considered lengths. As we
can see in Table II the condition ρ > 0.90 is always fulfilled,
except for the comparison between the SD1 value obtained
for the windows of 15 samples at 10th lag, i.e. taking in
consideration only five samples in the scatterplot. Specifically
for the durations of 35 samples and 60 samples the correlation
coefficients are always above 0.99, indicating a very good
agreement between the two measurements and the real values.
Concerning the evaluation of the percentage absolute error ε%,
the LPP parameter which showed the lowest divergence when
it was calculated in ultra-short widows was S, the area of
the imaginary ellipse drawn on the points of the PP. Figure
2 illustrates the trend of the median of the ε%S for all of
the window sizes from 15 samples to 300 samples (about
5 minutes, i.e. the standard duration for short term HRV
analysis), considering the first lag. For this LPP parameter the
median of the values of ε% resulted to be in the range between
1.01% (with 130 samples) and 3.28% (with 15 samples).
This error of 3.28% went up to 32.71% when we considered

15 35 60 85 110 135 160 185 210 235 260 285 300

Window duration (samples)

0
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Figure 2. Percent difference calculated from the values of S parameter in
ultra-short series in comparison with the values in the total series. The errors
are shown as median and MAD of ε%S .

the tenth lag for the parameter S in series of 15 samples.
This condition indicated that even if this length allowed to



calculate LPP features highly correlated with those extracted
from the total duration of the signals, these parameters had a
strong systematic error when the lag increased. This error was
reduced when the number of samples raised. In Figure 3 the
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Figure 3. LPP parameters as function of M lag. The value of the parameters
are presented as median and MAD calculated on the 1200 synthetic series,
for three window size: 35 samples (blue), 60 samples (red) and 3595 samples,
the total length of series (green).

median values of the five LPP parameters and related MAD
are shown as a function of the lag M. It is easily observable
that when we compared the values in two different ultra-short
windows (35 samples and 60 samples) with the same features
extracted in the total signals, the trends of the parameters are
nearly overlapped.
In Figures 4, 5 we show the Bland-Altman plots for the log-
transformed data of the parameters SD1 and S, comparing the
values in three ultra-short lengths of the series (15 samples, 35
samples and 60 samples) and the values for the total duration
of the synthetic signals. In each Bland-Altman plot the median
values of the differences between LPP parameters in the two
considered lengths of the windows are reported, joined to the
limits of agreement. The limits of agreement used in these
graphs are calculated as the 1.96 × 1.4826 ×MAD, which
indicates the 95% interval of confidence for non-gaussian
variables. As we can see in these plots, most of the differences
lie between the limits of agreement, especially when we look
at the graphs constructed with the LPP values of 35 and 60
samples.
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Figure 4. Bland-Altman plots of agreement for SD1 derived by the 15 samples
(gray, on the top), 35 samples (blue, in the middle) and 60 samples (red, on
the bottom) windows and SD1 extracted from the total length of synthetic
series. The plots on the left are referred to the first lag of LPP and the plots
on the right regard the last lag.

B. Application to experimental data

Table III shows the statistical results obtained from the
application of Spearman correlation test to real data acquired
during resting state, comparing the LPP parameters extracted
from 15, 35 and 60 seconds windows and from the whole
segments of 5-minutes. The Spearman correlation coefficient
was always higher than 0.9 for the parameters SD1 and S,
also considering 15 seconds windows. For SDRR ρ went
below 0.9 when it was computed in 15 seconds windows
with a lag above six. SD2 presented a correlation coefficient
always higher than 0.7, whereas for SD12 the values of ρ
decreased especially in higher lags when 15 seconds were
examined.
With reference to the computation of the percentage absolute
error, the lowest divergence was found in the values of SD1.
Considering the first lag, the values of ε%(SD1) reached a
minimum of 0.62% with 35 seconds windows and a maximum
of 4.14% with 150 seconds.
The LPP parameters were extracted from ultra-short time
windows, along with standard HRV features, from RR series
recorded during an emotional stimulation conducted on 27
subjects through IADS database. The purpose of the study
was to verify the reliability of the parameters derived from
ultra-short series, to discern the valence dimension of the
stimuli.
We applied the algorithm described in Section II-B2 and in



Table III
SPEARMAN’S CORRELATION COEFFICIENTS (CALCULATED BETWEEN THE VALUES OF LPP PARAMETERS CALCULATED IN 5-MINUTES EXPERIMENTAL
SERIES AND WITH A WINDOWING OF 15, 35 AND 60 SECONDS, RESPECTIVELY) AND THE MEDIAN OF PERCENTAGE ABSOLUTE ERRORS. THE VALUES
ARE REPORTED FOR ALL THE LAG M OF THE LPP AND THERE WAS A p− value < 0.00001 FOR THE CORRELATION TESTS APPLIED TO SD1, SD2, S

AND SDRR, WHEREAS p < 0.05 FOR SD12.

SD1 SD2 SD12 S SDRR
M 15 sec 35 sec 60 sec 15 sec 35 sec 60 sec 15 sec 35 sec 60 sec 15 sec 35 sec 60 sec 15 sec 35 sec 60 sec

1 ρ 0,9993 0,9993 0,9967 0,8486 0,9036 0,9079 0,8812 0,9373 0,9608 0,9758 0,9879 0,9894 0,9018 0,9267 0,9436
ε% 1,47 0,62 2,02 24,43 15,82 10,18 39,59 21,84 14,47 20,86 14,04 9,97 20,05 12,97 8,60

2 ρ 0,9974 0,9989 0,9945 0,8061 0,8471 0,8812 0,7313 0,8622 0,9201 0,9670 0,9765 0,9806 0,9065 0,9150 0,9414
ε% 1,31 1,04 1,88 31,72 18,52 13,38 57,59 28,54 18,03 27,66 16,97 12,79 20,15 13,23 9,15

3 ρ 0,9912 0,9974 0,9978 0,7518 0,8288 0,8735 0,7768 0,9032 0,9120 0,9637 0,9762 0,9806 0,9091 0,9194 0,9391
ε% 3,07 1,76 2,15 30,87 19,80 13,32 54,00 28,03 18,32 28,06 19,25 13,53 20,18 13,34 9,20

4 ρ 0,9857 0,9831 0,9736 0,7108 0,7870 0,8875 0,7812 0,8684 0,9109 0,9436 0,9685 0,9824 0,8988 0,9076 0,9384
ε% 5,02 2,20 2,72 31,90 20,14 14,43 45,54 24,91 14,89 29,87 20,19 13,60 20,60 13,66 9,08

5 ρ 0,9879 0,9930 0,9934 0,7089 0,7764 0,8090 0,4333 0,5971 0,7595 0,9300 0,9626 0,9758 0,9003 0,9098 0,9373
ε% 5,95 1,30 3,06 37,91 23,25 16,19 61,84 30,88 20,77 36,40 21,07 14,92 21,21 13,71 9,13

6 ρ 0,9890 0,9949 0,9864 0,7955 0,8365 0,8827 0,2621 0,4648 0,6133 0,9384 0,9611 0,9718 0,9058 0,9164 0,9410
ε% 6,39 1,89 3,07 39,04 26,36 17,86 66,67 40,93 24,99 39,98 24,41 17,11 21,40 14,19 9,41

7 ρ 0,9853 0,9960 0,9923 0,7969 0,8537 0,8845 0,5854 0,6947 0,7500 0,9443 0,9630 0,9813 0,8919 0,9142 0,9402
ε% 8,95 2,53 2,92 35,98 24,88 17,67 50,12 33,54 20,61 39,77 23,98 17,51 21,40 14,57 9,30

8 ρ 0,9861 0,9938 0,9894 0,8402 0,8944 0,9311 0,5931 0,6829 0,7471 0,9351 0,9630 0,9773 0,8886 0,9135 0,9413
ε% 11,24 2,23 3,08 36,38 25,20 16,66 48,53 31,68 17,65 41,26 23,93 15,73 21,80 14,72 9,17

9 ρ 0,9707 0,9897 0,9886 0,8354 0,8930 0,9117 0,3296 0,6096 0,7922 0,9403 0,9648 0,9765 0,8889 0,9139 0,9413
ε% 12,26 2,64 3,16 32,94 25,08 15,97 41,42 31,07 19,69 42,17 23,91 15,52 23,22 14,79 9,27

10 ρ 0,9516 0,9883 0,9798 0,8310 0,8827 0,9109 0,3240 0,6056 0,7214 0,9443 0,9688 0,9802 0,9003 0,9244 0,9421
ε% 16,62 3,57 2,89 32,20 22,55 15,53 36,09 29,33 19,12 43,04 23,70 14,24 25,21 15,06 9,58
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Figure 5. Bland-Altman plots of agreement for S derived by the 15 samples
(gray, on the top), 35 samples (blue, in the middle) and 60 samples (red, on
the bottom) windows and S extracted from the total length of synthetic series.
The plots on the left are referred to the first lag of LPP and the plots on the
right regard the last lag.

Fig.1 in the two cases of study, with time windows of 1
minute and 28 seconds and time windows of 35 seconds.
In Table IV the ten most selected features through the
statistical analysis tests between the two levels of valence are

shown, in the case of 35 seconds windowing. In the case of
LPP parameters the increase or decrease of the median values
are presented, going from the session of negative valence to
the session of positive sounds.

Table IV
THE TEN MOST SELECTED FEATURES IN THE LOSO PROCEDURE

THROUGH WILCOXON TEST, APPLIED TO THE PARAMETERS EXTRACTED
FROM 35 SECONDS SEGMENTS. THE SYMBOL (-) HIGHLIGHTS A

DECREASE OF THE RELATED LPP PARAMETER IN ACCORDANCE WITH THE
INCREASE OF THE VALENCE, WHEREAS THE SYMBOL (+) INDICATES AN
INCREASE (CONSIDERING THE MEDIAN VALUES ON THE 27 SUBJECTS).
CONCERNING THE NOTATION USED IN THIS TABLE, THE SUBSCRIPTS

INDICATE THE LAG VALUE (E.G. SD17 SYMBOLIZES SD1 PARAMETER
COMPUTED AT M=7).

Standard Features Nonlinear features All features
LF/HF SD1210 (-) RR std

LF power nu SD16 (-) SD1210 (-)
LF power % SD15 (-) SD16 (-)

LF power SD17 (+) SD15 (-)
TIRR SDRR7 (-) TIRR

RR std SD14 (+) SD17 (+)
HF peak SD110 (-) SD14 (+)
RMSSD SDRR5 (-) LF power %

HF power % SDRR8 (-) LF/HF
RR mean SD125 (-) SD125 (-)

Table V shows the confusion matrices related to the results of
recognition algorithm applied using three different datasets:
only standard HRV features, only nonlinear LPP parameters
and all the features together. For each dataset both window
durations were considered. Concerning the classification made
with only the standard HRV features (time and frequency
domain), the accuracies of the classification were 65.74%
and 68.06% respectively. The best outcomes in valence
recognition were reached using the LPP parameters and
the values of accuracy went up to 77.78% and 79.17%
respectively.
Table V also reports the confusion matrices obtained while
discerning the valence dimension of the acoustic emotional
stimulation, using all the features as input of the algorithm.
In that case, the accuracies of the algorithm for valence level



Table V
CONFUSION MATRICES OF QDC CLASSIFIER FOR VALENCE LEVEL

RECOGNITION, USING THREE DIFFERENT DATASETS (ONLY STANDARD
FEATURES, ONLY NONLINEAR AND ALL THE FEATURES TOGETHER) AND

TWO DIFFERENT WINDOW LENGTHS (1 MINUTE AND 28 SECONDS AND 35
SECONDS).

Dataset Window duration Confusion Matrix

Standard

1’ 28”
NEG POS

NEG 74.0741 42.5926
POS 25.9259 57.4074

35”
NEG POS

NEG 66.6667 30.5556
POS 33.3333 69.4444

Non-linear

1’ 28”
NEG POS

NEG 68.5185 12.9630
POS 31.4815 87.0370

35”
NEG POS

NEG 69.4444 11.1111
POS 30.5556 88.8889

Standard
+

Non-linear

1’ 28”
NEG POS

NEG 65.7407 12.0370
POS 34.2593 87.9630

35”
NEG POS

NEG 68.5185 17.5926
POS 31.4815 82.4074

recognition were 76.85% (using 1 minute and 28 seconds)
and 75.46% (for 35 seconds windows).

IV. DISCUSSION

In this work we presented a study on the reliability of
LPP parameters in ultra-short term analysis. We analyzed the
behavior of these features using synthetic series, in order
to have results which were not biased by the experimental
condition and then, we tested the parameters on experimental
ECG data recorded on 32 healthy subjects, during 5-minutes
resting state. LPP practice is a complete description of the
autocovariance function and of power spectrum of the inter-
vals [54]. However, the properties of LPP had not yet been
investigated in relation with the duration of the time window.
The use of two different datasets (synthetic and real series)
allowed a complete overview of the validation of the method.
In this paper we showed a very good reliability of the
LPP parameters for ultra-short series in 1200 synthetic series
generated with the IPFM model, through the analysis of
Spearman’s rank correlation, relative errors values and Bland-
Altman plot. The correlation coefficients, calculated between
the LPP parameters extracted in ultra-short series and in the
total length of the signals (1 hour), were in almost all the cases
higher than 0.9 for all of the lags.
Nonlinear parameters have been not recommended by the
literature, given the low reliability demonstrated in some
previous studies. McNames et al. for example found a relative
error of about 100% for the calculation of ApEn in series
with a duration less than 40 seconds [23]. We demonstrated
through the use of synthetic data, which allows to guarantee
that the signal characteristics do not change within the whole
time interval, that LPP parameters conserve their effectiveness
also in series which last less than one minute.
Considering that in the literature about reliability of HRV

parameters, the features supposed to be the most useful for
series shorter than 5 minutes were those belonging to the time
domain [17], [20], [21], we expected that the PP technique
outperformed the methods obtained by means of nonlinear
theory, given its acknowledged relation for example with the
standard deviation of the RR intervals [54].
The reliability of LPP approach in ultra-short RR series was
confirmed in the analysis of real data. In this case SD1
was found to be the parameter with the lowest percentage
absolute error, whereas SD2 presented an higher divergence
in comparison with the synthetic series results. Real-data can
be affected by slow non-stationatities and trends that can
increase the error of SD2, which is more correlated with low-
frequency oscillations in HRV, as suggested in the literature
[54]. Studying the usefulness of LPP method in real data we
also experimented its application to 10 seconds series, which
is the classical resting ECG test duration. We analyzed five
values of lag and the results were very promising especially for
SD1 parameters, with a percentage error below 5% in the first
three lags. The Spearman correlation coefficient was higher
than 0.89 for SD1, SDRR and S parameters, considering lags
from 1 to 5.
Previous studies suggested that LPP method has a relevant
impact in the study of acoustic stimulation protocols [42],
[55]–[57], so we tested its reliability also using experimental
RR series collected from 27 healthy subjects, during acoustic
stimulation. We applied an ad-hoc algorithm studied to com-
pute a LOSO procedure and we reached a significant accuracy
of recognition of the pleasantness/unpleasantness sessions of
the experimental protocol, using two lengths of time windows:
1 minute and 28 seconds and 35 seconds. The first length
was the length of the neutral session in the protocol (used to
normalize the dataset) and the second was chosen because
we considered that a frequency resolution of δf = 1/35s
= 0, 029Hz, can be sufficient to reliably estimate all HRV
measures. Indeed, we were interested not only in studying
the performance of LPP parameters in discriminating positive
and negative valence auditory stimuli, but also in compare
their performance with linear indexes, so we needed a time
window long enough to estimate reliably these parameters.
In spite of one of our previous studies [42], where only
windows of 1 minute and 28 seconds were analyzed, in this
study we also included the analysis of 35 seconds series.
Moreover here we disregarded the features needing a higher
number of samples, such as Very Low Frequency (VLF)
parameters, Detrended Fluctuation Analysis (DFA) and ApEn,
restricting the non-linear analysis to the LPP parameters. We
calculate the accuracy of the recognition algorithm in three
cases: using standard and nonlinear features, with only the
standard parameters and with only the LPP parameters. The
highest accuracy was obtained considering only the nonlinear
features as input of the LOSO procedure, reaching the values
of 77.78% and 79.17% for the two lengths of window. Further,
in the LOSO procedure, most of the features selected using
statistical between the levels of the valence, were the LPP
features (see Table IV), when all the dataset was considered.
This findings also confirm the efficiency of LPP method
in studies involving emotion recognition [16] and particular



psico-behavioral state, i.e.meditation [25]. The decrease in
the median values of the LPP parameters in accordance with
the increase of the valence from negative to positive sounds,
implies significant changes in the ANS dynamical response
to standardized sounds. SD1 and SD12 parameters have been
described in previous works as indexes of parasympathetic
activity [58], [59] and these findings show its progressive
decline during the arousing stimulation.
In this work we have studied the reliability of LPP parameters
extracted from ultra-short time RR series both in simulated
and real data. Results on simulation data showed that LPP
parameters derived from RR series longer than 35 s can be
interchanged with those derived from 1 h with high Spearman
correlation and low error. Results on real data show that
LPP parameters can discriminate positive and negative valence
acoustic stimuli with an accuracy of 79.17%, outperforming
standard time and frequency HRV parameters. These results
support the use of LPP parameters in ultra-short HRV analysis
for emotion recognition.
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