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Abstract. We establish regularity of conformal maps between sub-Riemannian mani-
folds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type
theorem, i.e., 1-quasiconformal maps are smooth in all contact sub-Riemannian manifolds.
Together with the recent results in [CLD17], our work yields a new proof of the smoothness
of boundary extensions of biholomorphims between strictly pseudoconvex smooth domains
[Fef74].

Résumé On étudie la régularité des applications 1−quasiconformes entre variétés sub-
Riemanniennes qui satisfait une hypothèse de régularité pour fonctions Q−harmonique. En
particulier on prouve que toute applications 1−quasiconformes entre variétés sub-Riemanniennes
de contact sont des diffeomorphismés conformes.

1. Introduction

The focus of this paper is on the interplay between analysis and geometry in the study of
conformal maps. Our setting is that of sub-Riemannian manifolds, and our main contribu-
tion is to show that one can deduce smoothness of 1-quasiconformal homeomorphisms (see
below for the definition) out of certain regularity estimates for weak solutions of a class of
quasilinear degenerate elliptic PDE, i.e., the subelliptic p-Laplacian, see (2.15).

Moreover, we also adapt recent results of Zhong [Zho09] to show that such PDE regularity
estimates hold in the important special case of sub-Riemannian contact manifolds, thus fully
establishing a Liouville type theorem in this setting. In doing this we provide an extension
of a result of Ferrand [LF76, Fer77, LF79] (see also Liimatainen and Salo [LS14]) from the
Riemannian to the sub-Riemannian setting.

Theorem 1.1. Every 1-quasiconformal map between sub-Riemannian contact manifolds is
conformal.
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For the proof see Section 6. For some related results in the setting of CR 3-manifolds see
[Tan96].

Prior to the present paper, the connection between regularity of quasiconformal maps
and the p-Laplacian, and the equivalence of different definitions of conformality, were only
well understood in the Euclidean, Riemannian, and Carnot-group settings. The general
sub-Riemannian setting presents genuinely new difficulties, e.g., sub-Riemannian manifolds
are not locally bi-Lipschitz equivalent to their tangent cones, Hausdorff measures are not
smooth, there is a need to construct adequate coordinate charts that are compatible both
with the nonlinear PDE and with the sub-Riemannian structure, although no complete
system of harmonic or p-harmonic coordinates can be constructed. Last but not least, Fer-
rand’s proof of the biLipschitz regularity for 1-quasiconformal maps does not carry through
to the sub-Riemannian setting since we do not have yet a sharp isoperimetric inequality.

Motivations. One of the motivations that drove our work consists in establishing a con-
nection between the problem of classification of open sets in Cn by bi-holomorphisms and
the study of quasiconformal maps in sub-Riemannian geometry, in the spirit of Gromov
hyperbolicity and Mostow’s rigidity: In [BB00], Balogh and Bonk proved that the bound-
ary extension of isometries with respect to the Bergman metric (and so in particular of
bi-holomorphisms) between strongly pseudoconvex smooth domains in Cn are quasiconfor-
mal with respect to the underlying sub-Riemannian metric on the boundaries associated to
their Levi form. In [CLD17], two of the authors of the present paper have refined this result
and established that such boundary extensions of isometries are in fact 1-quasiconformal
with respect to these sub-Riemannian structures. Since the boundaries of smooth strictly
pseudoconvex domains are contact manifolds, our main regularity result Theorem 1.1 yields
immediately the smoothness of the boundary extension of every biholomorphsm between
strictly pseudoconvex domains. This alternative proof of Fefferman celebrated result [Fef74]
was originally suggested by Michael Cowling.

Previous results from the literature. The issue of regularity of 1-quasiconformal home-
omorphisms in the Euclidean case was first studied in 1850 in Liouville’s work, where the
initial regularity of the conformal homeomorphism was assumed to be C3. In 1958, the
regularity assumption was lowered to C1 by Hartman [Har58] and then, in conjunction
with the proof of the De Giorgi-Nash-Moser Regularity Theorem, further decreased to the
Sobolev spaces W 1,n, in the work of Gehring [Geh62] and Rešetnjak [RYGR67]. The role
of the De Giorgi-Nash-Moser Theorem in Gehring’s proof consists in providing adequate
C1,α estimates for solutions of the Euclidean n-Laplacian, that are later bootstrapped to
C∞ estimates by means of elliptic regularity theory.

The regularity of 1-quasiconformal maps in the Riemannian case is considerably more dif-
ficult than the Euclidan case. It was finally settled in 1976 by Ferrand [LF76, Fer77, LF79],
in occasion of her work on Lichnerowitz’s conjecture and was modeled after Rešetnjak’s
original proof. More recently, inspired by Taylor’s regularity proof for isometries via har-
monic coordinates, Liimatainen and Salo [LS14] provided a new proof for the regularity of
biLipschitz 1-quasiconformal maps between Riemannian manifolds. Their argument is based
on the notion of n-harmonic coordinates, on the morphism property for 1-quasiconformal
maps, and on the C1,α regularity estimates for the n-Laplacian on manifolds. The proofs in
the present paper are modeled on the arguments developed by two of us in [CL16] and on
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Taylor’s approach, as developed in [LS14] (see also the earlier [CC06] where that strategy
was used in the Carnot group case).

The introduction of conformal and quasiconformal maps in the sub-Riemannian setting
goes back to the proof of Mostow’s Rigidity Theorem [Mos73], where such maps arise as
boundary limits of quasi-isometries between certain Gromov hyperbolic spaces. Because
the class of spaces that arises as such boundaries in other geometric problems includes sub-
Riemannian manifolds that are not Carnot groups, it becomes relevant to study conformality
and quasiconformality in this more general environment.

In the sub-Riemannian setting the regularity is currently known only in the special case
of 1-quasiconformal maps in Carnot groups, see [Pan89, KR85, Tan96, CC06, CO15, AT17].
Since such groups arise as tangent cones of sub-Riemannian manifolds then the regularity
of 1-quasiconformal maps in Carnot groups setting is an analogue of the Euclidean case as
studied by Gehring and Rešetnjak. As remarked above, the extension non the non-Carnot
setting, even in the special step two case, brings in genuinely new challenges.

From the regularity theory for the subelliptic p-Laplacian to the regularity of 1-
quasiconformal homeomorphisms. Theorem 1.1 follows from a more general theorem.
In fact, we show that in the class of sub-Riemannian manifolds the Liouville theorem follows
from a regularity theory for p-harmonic functions, with p corresponding to the conformal
dimension of the manifold. This class includes every sub-Riemannian manifold that is
locally contactomorphic to a Carnot group of step 2 or, equivalently, every Carnot group
of step 2 with a sub-Riemannian metric that is not necessarily left-invariant. We remark
that there are examples of step-2 sub-Riemannian manifolds that are not contactomorphic
to any Carnot group, see [LOW14]. In order to describe in detail the more general result
we introduce the following definition.

Definition 1.2. Consider an equiregular1 sub-Riemannian manifold M of Hausdorff di-
mension Q, with horizontal bundle of dimension r, endowed with a smooth volume form.
We say that M supports regularity for Q-harmonic functions if the following holds: For
every g = (g1, ..., gr) ∈ C∞(M,Rr), U ⊂⊂ M and for every ` > 0, there exist constants
α ∈ (0, 1), C = C(`, g) > 0 such that for each weak solution u of the equation LQu = X∗i g

i

on M with ||u||
W 1,Q

H (U)
< `, one has

||u||
C1,α

H (U)
≤ C.

In view of the work of Uraltseva [Ura68] (but see also[Uhl77, Tol84, DiB83]) every Rie-
mannian manifold supports regularity for Q-harmonic functions. Things are less clear in
the sub-Riemannian setting. The Hölder regularity of weak solutions of quasilinear PDE∑r
i=1X

∗
IA(x,∇Hu) = 0, modeled on the subelliptic p-Laplacian, for 1 < p < ∞, and for

their parabolic counterpart, is well known, see [CDG93, ACCN14]. However, in this gen-
erality the higher regularity of solutions is still an open problem. The only results in the
literature are for the case of left-invariant sub-Riemannian structures on step two Carnot
groups. Under these assumptions one has that solutions in the range p ≥ 2 have Hölder regu-
lar horizontal gradient. This is a formidable achievement in itself, building on contributions
by several authors [Cap97, Dom04, DFDFM05, MM07, DM09a, MZGZ09, DM09b, Ric15],

1see Definition 2.1
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with the final result being established eventually by Zhong in [Zho09]. Beyond the Heisen-
berg group one has some promising results due to Domokos and Manfredi [Dom08, DM10b,
DM10a] in the range of p near 2. In this paper we build on these previous contributions,
particularly on Zhong’s work [Zho09] to include the dependence on x and prove that con-
tact sub-Riemannian manifolds support regularity for Q-harmonic functions (see Theorem
6.15). The novelty of our approach is that we use a Riemannian approximation scheme
to regularize the Q-Laplacian operator, thus allowing to approximate its solutions with
smooth functions. In carrying out this approximation the main difficulty is to show that
the regularity estimates do not blow up as the approximating parameter approaches the
critical case. Our main result in this context, proved in Section 6, is the following.

Theorem 1.3. sub-Riemannian contact manifolds support regularity for p-harmonic func-
tions for every p ≥ 2.

The regularity hypotheses in Definition 1.2 have two important consequences. First, it al-
lows us to construct horizontal Q-harmonic coordinates. Second, together with the existence
of such coordinates, it eventually leads to an initial C1,α regularity for 1-quasiconformal
maps (see Theorem 1.4.(ii)). When this basic regularity is present, one can use classical
PDE arguments to derive smoothness without the additional hypothesis of Definition 1.2
(see Theorem 1.4.(i)).

Theorem 1.4. Let f : M → N be a 1-quasiconformal map between equiregular sub-
Riemannian manifolds of Hausdorff dimension Q, endowed with smooth volume forms.

(i) If f is bi-Lipschitz and in C1,α
H,loc(M,N) ∩W 2,2

H,loc(M,N), then f is conformal.

(ii) If M and N support regularity for Q-harmonic functions (in the sense of Defini-

tion 1.2), then f is bi-Lipschitz and in C1,α
H,loc(M,N)∩W 2,2

H,loc(M,N), and hence conformal.

The function spaces in Theorem 1.4 are defined componentwise, see Section 5. Theo-
rem 1.4.(i) is proved in Section 5.1. Theorem 1.4.(ii) is proved in Section 5.2.

The above theorem provides the following result.

Corollary 1.5. Let f be a homeomorphism between two equiregular sub-Riemannian man-
ifolds each supporting the regularity estimates in Definition 1.2. The map f is conformal if
and only if it is 1-quasiconformal.

The proof of the first part of Theorem 1.4 rests on the morphism property for 1-quasiconformal
maps (see Theorem 3.17) and on Schauder’s estimates, as developed by Rothschild and Stein
[RS76] and Xu [Xu92]. The second part is based on the construction of ad-hoc systems of
coordinates, the horizontal Q-harmonic coordinates, that play an analogue role to that of
the n-harmonic coordinates in the work of Liimatainen–Salo [LS14]. However, in contrast
to the Riemannian setting, only a subset of the coordinate systems (the horizontal compo-
nents) can be constructed so that they are Q-harmonic, but not the remaining ones. This
yields a potential obstacle, as Q-harmonicity is the key to the smoothness of the map. We
remedy to this potential drawback by producing an argument showing that if an ACC map
has suitably regular horizontal components then such regularity is transferred to all the
other components (see Proposition 4.14). This method was introduced in [CC06] in the
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special setting of Carnot groups, where Q-harmonic horizontal coordinates arise naturally
as the exponential coordinates associated to the first layer of the stratification.

Looking ahead, it seems plausible to conjecture that the Liouville theorem holds in any
equiregular sub-Riemannian manifold. Our work shows in fact that this is implied by
the regularity theory for p-Laplacians and the latter is widely expected to hold for general
systems of Hörmander vector fields. However the latter remains a challenging open problem.

We conclude this introduction with a comparison between our work and the Carnot
group case as studied in [CC06]. In the latter setting one has that all the canonical ex-
ponential horizontal coordinates happen to be also smooth Q-harmonic (in fact they are
also harmonic). Moreover, a simple argument based on the existence of dilations and the
1-quasiconformal invariance of the conformal capacity (see [Pan89]) yields the bi-Lipschitz
regularity for 1-quasiconformal maps immediately, without having to invoke any PDE re-
sult. As a consequence the Liouville theorem in the Carnot group case can be proved relying
on a much weaker regularity theory than the one above, i.e., one has just to use the C1,α

estimates for the Q-Laplacian in the simpler case where the gradient is bounded away from
zero and from infinity (established in [Cap99]) in the Carnot group setting. In our more
general, non-group setting, there are no canonical Q-harmonic coordinates, and so one has
to invoke the PDE regularity to construct them. Similarly, the lack of dilations makes it
necessary to rely on the PDE regularity also to show bi-Lipschitz regularity.

Acknowledgements. We would like to acknowledge Laszlo Lempert and Xiao Zhong for
many interesting remarks.

2. Preliminaries

2.1. Sub-Riemannian geometry. A sub-Riemannian manifold is a connected, smooth
manifold M endowed with a subbundle HM of the tangent bundle TM that bracket gener-
ates TM and a smooth section of positive-definite quadratic forms g on HM , see [Mon02].
The form g is locally completely determined by any orthonormal frame X1, . . . , Xr of HM .
The bundle HM is called horizontal distribution. The section g is called sub-Riemannian
metric.

Analogously to the Riemannian setting, one can endow a sub-Riemannian manifold M
with a metric space structure by defining the Carnot-Carathéodory distance: For any pair
x, y ∈M set

d(x, y) = inf{δ > 0 such that there exists a curve γ ∈ C∞([0, 1];M) with endpoints x, y

such that γ̇ ∈ HγM and |γ̇|g ≤ δ}.

Consider a sub-Riemannian manifold M with horizontal distribution HM and denote by
Γ(HM) the smooth sections of HM , i.e., the vector fields tangent to HM . For all k ∈ N,
consider

HkM :=
⋃
q∈M

span{[Y1, [Y2, [. . . [Yl−1, Yl]]]]q : l ≤ k, Yj ∈ Γ(HM), j = 1, . . . , l}.
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The bracket generating condition (also called Hörmander’s finite rank hypothesis) is ex-
pressed by the existence of s ∈ N such that HsM = TM .

Definition 2.1. A sub-Riemannian manifoldM with horizontal distributionHM is equireg-
ular if, for all k ∈ N, each set HkM defines a subbundle of TM .

Consider the metric space (M,d) whereM with horizontal distribution ∆ is an equiregular
sub-Riemannian manifold and d is the corresponding Carnot-Carathéodory distance. As a
consequence of Chow-Rashevsky Theorem such a distance is always finite and induces on
M the original topology. As a result of Mitchell [Mit85], the Hausdorff dimension of (M,d)
coincides with the Hausdorff dimension of its tangents spaces.

LetX1, . . . , Xr be an orthonormal frame of the horizontal distribution of a sub-Riemannian
manifold M . We define the horizontal gradient of a function u : M → R with respect to
X1, . . . , Xr as

(2.2) ∇Hu := (X1u)X1 + . . .+ (Xru)Xr.

Remark 2.3. Let X ′1, . . . , X
′
r be another frame of the same distribution. Let B be the matrix

such that

X ′j(p) =
r∑
i=1

Bi
j(p)Xi(p).

Then the horizontal gradient ∇′Hu of u with respect to X ′1, . . . , X
′
r is

∇′Hu(p) =
∑
j

(X ′ju(p))X ′j(p)

=
∑
j

(
∑
i

Bi
j(p)Xi(p)u)

∑
k

Bk
j (p)Xk(p)

=
∑
i

∑
j

∑
k

Bi
j(p)B

j
k(p)

TXiu(p)Xk(p)

= (B(p)B(p)T )ikXiu(p)Xk(p).

Remark 2.4. If X1, . . . , Xr and X ′1, . . . , X
′
r are two frames that are orthonormal with respect

to a sub-Riemannian structure on the distribution, then ∇′Hu = ∇Hu. Indeed, in this case
the matrix B(p) would be in O(r) for every p.

2.2. PDE preliminaries. In this section we collect some of the PDE results that will be
used later in the paper. Let X1, . . . , Xr be an orthonormal frame of the horizontal bundle
of a sub-Riemannian manifold M . For each i = 1, . . . , r denote by X∗i the adjoint of Xi

with respect to a smooth volume form vol, i.e.,∫
M
uXiφ d vol =

∫
M
X∗i uφd vol,

for every compactly supported φ for which the integral is finite. In any system of coordinates,
the smooth volume form can be expressed in terms of the Lebesgue measure L through a
smooth density ω, i.e., d vol = ω dL. If in local coordinates we write Xi =

∑n
k=1 b

i
k∂k, then

one has

(2.5) X∗i u = −ω−1(Xi(ωu))− u∂kbik.
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Next we define some of the function spaces that will be used in the paper.

Definition 2.6. Let X1, . . . , Xr be an orthonormal frame of the horizontal bundle of a
sub-Riemannian manifold M and consider an open subset Ω ⊂ M . For any k ∈ N, and

α ∈ (0, 1) we define the Ck,αH norm

‖u‖2
Ck,αH (Ω)

:= sup
Ω

(
∑
|I|≤k−1

|XIu|2) + sup
p,q∈Ω and p 6=q

∑
|I|=k |XIu(p)−XIu(q)|2

d(p, q)2α
,

where, for each m = 0, . . . , k and each m-tuple I = (i1, . . . , im) ∈ {1, . . . , r}m, we have
denoted by XI the m-order operator Xi1 · · ·Xim and we set |I| = m. We write

Ck,αH (Ω) =
{
u : Ω→ R : XIu is continuous in Ω for |I| ≤ k and ‖u‖

Ck,αH (Ω)
<∞

}
.

A function u is in Ck,αH,loc(Ω), if for any K ⊂⊂ Ω one has ‖u‖
Ck,αH (K)

<∞.

Definition 2.7. Let X1, . . . , Xr be an orthonormal frame of the horizontal bundle of a
sub-Riemannian manifold M and consider an open subset Ω ⊂ M . For k ∈ N and for
any multi-index I = (i1, ..., ik) ∈ {1, ..., r}k we define |I| = k and XIu = Xi1 ...Xiku. For

p ∈ [1,∞) we define the horizontal Sobolev space W k,p
H (Ω) to be the space of all u ∈ Lp(Ω)

whose distributional derivatives XIu are also in Lp(Ω) for all multi-indexes |I| ≤ k. This
space can also be defined as the closure of the space of C∞(Ω) functions with respect to
the norm

(2.8) ‖u‖p
Wk,p

H

:= ‖u‖pLp(Ω) +

∫
Ω

[
k∑
|I|=1

(XIu)2]p/2 dvol,

see [GN98], [FSS96] and references therein. A function u ∈ Lp(Ω) is in the local Sobolev

space W k,p
H,loc(Ω) if, for any φ ∈ C∞c (Ω), one has uφ ∈W k,p

H (Ω).

2.3. Schauder estimates. Here we discuss Schauder estimates for second order, non-
divergence form subelliptic linear operators. Given an orthonormal frame X1, . . . , Xr of the
horizontal bundle of M , one defines the subLaplacian on M of a function u as

(2.9) L2u :=
r∑
i=1

X∗iXiu.

One can check that such an operator does not depend on the choice of the orthonormal
frame, but only on the sub-Riemannian structure of M and the choice of the volume form.

Let Ω be an open set of M . A function u : Ω → R is called 2-harmonic (or, more
simply, harmonic) if L2u = 0 in Ω, in the sense of distribution. Hörmander’s celebrated
Hypoellipticity Theorem [Hör67] implies that harmonic functions are smooth.

A well known result of Rothschild and Stein [RS76], yields Schauder estimates for sub-
Laplacians, that is if L2u ∈ CαH(Ω), then for any K ⊂⊂ Ω, there exists a constant C
depending on K,α and the sub-Riemannian structure such that

‖u‖
C2,α

H (K)
≤ C‖L2u‖CαH(Ω).
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In particular we shall use that

(2.10) ‖u‖
C1,α

H (Bε/2)
≤ C‖L2u‖CαH(Bε).

The Schauder estimates have been extended to subelliptic operators with low regularity by
a number of authors. For our purposes we will consider operators of the form

La(x)u(x) :=
r∑

i,j=1

aij(x)XiXju(x),

where aij is a symmetric matrix such that for some constants λ,Λ > 0 one has

(2.11) λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2

for every x ∈M and for all ξ ∈ Rr. We recall a version of the classical Schauder estimates
as established in [Xu92]

Proposition 2.12. Let u ∈ C2,α
H,loc(M) for some α ∈ (0, 1). Let aij ∈ Ck,αH,loc(M). If

Lau ∈ Ck,αH,loc(M), then u ∈ Ck+2,α
H,loc (M) and for every U ⊂⊂ M there exists a positive

constant C = C(U,α, k,X) such that

||u||Ck+2,α(U) ≤ C||Lu||Ck,α(M).

In a similar spirit, the Schauder estimates hold for any operator of the form Lu =∑r
i,j=1 aij(x)X∗iXju where X∗i denotes the adjoint of Xi with respect to some fixed smooth

volume form.

Next, following an argument originally introduced by Agmon, Douglis and Nirenberg
[ADN59, Theorem A.5.1] in the Euclidean setting, we show that one can lift the burden of
the a-priori regularity hypothesis from the Schauder estimates.

Lemma 2.13. Let α ∈ (0, 1) and assume that u ∈ W 2,2
H,loc(M) is a function that satisfies

for a.e. x ∈M

LA(x)u(x) =
r∑

i,j=1

aij(x)XiXju(x) ∈ CαH,loc(M).

If aij ∈ CαH,loc(M), then u is in fact a C2,α
H,loc(M) function.

Proof. The strategy in [ADN59] consists in setting up a bootstrap argument through which
the integrability of the weak second order derivatives XiXju of the solution increases until,
in a finite number of steps, one achieves that they are continuous. At this point ones invokes
a standard extension of a classical result of Hopf [Hop32] or [ADN59, page 723] (for a proof
in the subelliptic setting see for instance Bramanti et al., [BBLU10, Theorem 14.4]) which

yields the last step in regularity, i.e., if XiXju are continuous then u ∈ C2,α
H,loc.

For a fixed p0 ∈M consider the frozen coefficients operator

LA(p0)w =
r∑

i,j=1

aij(p0)XiXjw.
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For sake of simplicity we will write Lp, Lp0 for LA(p), LA(p0). Denote by Γp0(p, q) the fun-
damental solution of Lp0 . For fixed r > 0, consider a smooth function η ∈ C∞0 (B(p0, 2r))
such that η = 1 in B(p0, r). For any p ∈M and any smooth function w one has

η(p)w(p) =

∫
Γp0(p, q)Lp0(ηw)(q) d vol(q).

Differentiating the latter along two horizontal vector fields Xi, Xj i, j = 1, . . . , r one obtains
that for any p ∈ B(p0, r)

Xi,pu(p) =

∫ ñ
Xi,pΓp0(p, q)Lq(uη) +Xi,pΓp0(p, q)(Lp0 − Lq)uη(q)

ô
d vol(q),

and

Xi,pXj,pu(p) =

∫ ñ
Xi,pXj,pΓp0(p, q)Lq(uη)+Xi,pXj,pΓp0(p, q)(Lp0−Lq)uη(q)

ô
d vol(q)+C(p0)Lp(uη),

where Xi,p denotes differentiation in the variable p and C is a Hölder continuous function
arising from the principal value of the integral.

Setting p = p0 one obtains the identity
(2.14)

Xi,pXj,pu(p) =

∫ ñ
Xi,pXj,pΓp(p, q)Lq(uη)+Xi,pXj,pΓp(p, q)(Lp−Lq)uη(q)

ô
d vol(q)+C(p0)Lp(uη),

where the differentiation in the first term in the integrand is intended in the first set of
the argument variables only. The next task is to show that identity (2.14) holds also for

functions in W 2,2
H , in the sense that the difference between the two sides has L2 norm zero.

To see this we consider a sequence of smooth approximations wn → u ∈W 2,2
H in W 2,2

H norm.
To guarantee convergence we observe that in view of the work in [RS76] and [NSW85],
the expression Xi,pXj,pΓp(p, q) is a Calderon-Zygmund kernel. To prove our claim it is
then sufficient to invoke the boundedness between Lebesgue spaces of Calderon-Zygmund
operators in the setting of homogenous spaces (see [CW71]), and [DH95]).

Our next goal is to show an improvement in the integrability of the second derivatives of
the solution u ∈W 2,2

H . We write

Xi,pXj,pu(p) = I1 + I2 + I3 + I4

where

I1(p) =

∫
Xi,pXj,pΓp(p, q)η(q)Lqu(q) d vol(q) + C(p)Lpu(p),

I2(p) =

∫
Xi,pXj,pΓp(p, q)

r∑
i,j=1

aij(q)Xiη(q)Xju(q) + u(q)
r∑

i,j=1

aij(q)XiXjη(q) d vol(q),

I3(p) =

∫
Xi,pXj,pΓp(p, q)

r∑
i,j=1

(aij(p)− aij(q))XiXj(ηu) d vol(q).

Since Lu ∈ Cα and in view of the continuity of singular integral operators in Hölder spaces
(see Rothschild and Stein [RS76]) then I1 ∈ Cα and we can disregard this term in our
argument.
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Next we turn our attention to I2 and I3. Since u ∈W 2,2 then Sobolev embedding theorem

[HK00] yields ∇Hu ∈ L
2Q
Q−2

loc and as a consequence of the continuity of Calderon-Zygmund

operators in homogenous spaces one has I2 ∈ L
2Q
Q−2 .

In view of the estimates on the fundamental solution for sublaplacians by Nagel, Stein
and Wainger [NSW85], one has that

|XiXjΓp(p, q)| sup
i,j
|aij(p)− aij(q)| ≤ C(K)d(p, q)α−Q,

for every q ∈ K ⊂⊂M . One can then bound I3 with fractional integral operators

Iα(ψ)(p) :=

∫
d(p, q)α−Qψ(q)dvol(q).

In the context of homogenous spaces (see for instance [CW71]), these operators are bounded
between the Lebesgue spaces Lβ → Lγ with 1

β −
1
γ = α

Q , whenever 1 < β < α
Q . When

1 + α
Q > β > α

Q one has that Iα maps continuously Lβ into the Holder space C
β− α

Q

H .

In view of such continuity we infer that I3 ∈ L2κ with Q
Q−2 > κ = Q

Q−2α > 1.

In conclusion, so far we have showed that if u ∈ W 2,2
H,loc(M) is a solution of Lpu(p) ∈ CαH

then one has the integrability gain u ∈ W
2,2 Q

Q−2α

H,loc (M). Iterating this process for a finite

number of steps, in the manner described in [ADN59, page 721-722], one can increase
the integrability exponent until it is larger than α/Q and at that point the fractional
integral operators maps into a Hölder space and one finally has that XiXju are continuous.
As described above, to complete the proof one now invokes Bramanti et al., [BBLU10,
Theorem 14.4].

�

2.4. Subelliptic Q-Laplacian and C∞ estimates for non-degeneracy. Denote by Q

the Hausdorff dimension of M . For u ∈ W 1,Q
H,loc(M), define the Q-Laplacian LQu by means

of the following identity

(2.15)

∫
M
LQuφ d vol =

∫
M
|∇Hu|Q−2〈∇Hu,∇Hφ〉d vol, for any φ ∈W 1,Q

H,0 (M).

If |∇Hu|Q−2Xiu ∈W 1,2
H,loc(M) and u ∈W 1,Q

H,loc(M) one can then write almost everywhere in
M

(2.16) LQu = X∗i (|∇Hu|Q−2Xiu).

Definition 2.17 (Q-harmonic function). Let M be an equiregular sub-Riemannian man-

ifold of Hausdorff dimension Q. Fixed a measure vol on M , a function u ∈ W 1,Q
H,loc(M) is

called Q-harmonic if∫
M
|∇Hu|Q−2〈∇Hu,∇Hφ〉 d vol = 0, ∀φ ∈W 1,Q

H,0 (M).
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Proposition 2.18. Let M be an equiregular sub-Riemannian manifold endowed with a

smooth volume form vol. Let u ∈ W 1,Q
H,loc(M) be a weak solution of LQu = h in M , with

h ∈ CαH,loc(M) and |∇Hu| not vanishing in M . If u ∈ C1,α
H,loc(M) ∩W 2,2

H,loc(M), then u ∈
C2,α

H,loc(M).

Proof. In coordinates, let ω ∈ C∞ such that d vol = ωdL, where L is the Lebesgue measure.
Since |∇Hu| is continuous and bounded from above, and since u ∈W 2,2

H,loc(M), then, a.e. in
M , the Q-Laplacian can be expressed in non-divergence form

(2.19) (LQu)(x) = αij(x,∇Hu)XiXju+ g(x,∇Hu) = h(x),

where
αij(x, ξ) = −|ξ|Q−4(δij + (Q− 2))ξiξj

and
g(x, ξ) = −ω(x)−1Xiω(x)|ξ|Q−2ξi + ∂kb

i
k(x)|ξ|Q−2ξi.

Set aij(x) = αij(x,∇Hu). Since u ∈ C1,α
H,loc(M), we have

aij(·) and g( · ,∇Hu) ∈ CαH,loc(M).

In view of the non-vanishing of ∇Hu, one can invoke Lemma 2.13, to obtain u ∈ C2,α
H,loc(M).

�

3. Definitions of 1-quasiconformal maps

In this section we introduce the notions of conformal and quasiconformal maps between
sub-Riemannian manifolds.

Definition 3.1 (Conformal map). A smooth diffeomorphism between two sub-Riemannian
manifolds is conformal if its differential maps horizontal vectors into horizontal vectors, and
its restrictions to the horizontal spaces are similarities2.

The notion of quasiconformality can be formulated with minimal regularity assumptions
in arbitrary metric spaces.

Definition 3.2 (Quasiconformal map). A quasiconformal map between two metric spaces
(X, dX) and (Y, dY ) is a homeomorphism f : X → Y for which there exists a constant
K ≥ 1 such that for all p ∈ X

Hf (p) := lim sup
r→0

sup{dY (f(p), f(q)) : dX(p, q) ≤ r}
inf{dY (f(p), f(q)) : dX(p, q) ≥ r}

≤ K.

We want to address the case K = 1, and clarify which one is the correct definition
of 1-quasiconformality, since in the literature there are several equivalent definitions of
quasiconformality associated to possibly different bounds for different types of distortion
(metric, geometric, or analytic).

2A map F : X → Y between metric spaces is called a similarity if there exists a constant λ > 0 such that
d(F (x), F (x′)) = λd(x, x′), for all x, x′ ∈ X.
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In order to state our results we need to recall a few basic notions and introduce some
notation. We consider the following metric quantities

Lf (p) := lim sup
q→p

d(f(p), f(q))

d(p, q)
and `f (p) := lim inf

q→p
d(f(p), f(q))

d(p, q)
.

The quantity Lf (p) is sometimes denoted by Lipf (p) and is called the pointwise Lipschitz
constant. Given an equiregular sub-Riemannian manifold M , we denote by Q its Hausdorff
dimension with respect to the Carnot-Carathéodory distance, and we write ∇H for the
horizontal gradient, see Section 2.1 for these definitions. We denote by volM the Popp

measure on M and denote by JPopp
f the Jacobian of a map f between equiregular sub-

Riemannian manifolds when these manifolds are equipped with their Popp measures (see

Section 3.4). By W 1,Q
H (M) we indicate the space of functions u ∈ LQ(volM ) such that

|∇Hu| ∈ LQ(volM ). We use the standard notation CapQ and ModQ for capacity and
modulus (see Section 3.7). We also consider the nonlinear pairing

IQ(u, φ;U) :=

∫
U
|∇Hu|Q−2〈∇Hu,∇Hφ〉 d volM ,

with u, φ ∈ W 1,Q
H (U) and U ⊂ M an open subset. For short, we write IQ(u, φ) for

IQ(u, φ;M) and denote by EQ(u) = IQ(u, u;M) the Q-energy of u. The functional IQ(u, · )
defines the weak form of the Q-Laplacian LQ when acting on the appropriate function
space, see Section 2.4. Given a quasiconformal homeomorphism f between two equiregular
sub-Riemannian manifolds, we denote by Np(f) the Margulis-Mostow differential of f and
by (dH f)p its horizontal differential (see Section 3.2).

Our results rest on the following equivalence theorem, which we prove later in the section.

Theorem 3.3. Let f be a quasiconformal map between two equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. The following are equivalent:

(3.4) Hf (p) = 1 for a.e. p;

(3.5) H=
f (p) := lim sup

r→0

sup{d(f(p), f(q)) : d(p, q) = r}
inf{d(f(p), f(q)) : d(p, q) = r}

= 1 for a.e. p;

(3.6) (dH f)p is a similarity for a.e. p;

(3.7) Np(f) is a similarity for a.e. p;

(3.8) `f (p) = Lf (p) for a.e. p, i.e., the limit lim
q→p

d(f(p), f(q))

d(p, q)
exists for a.e. p;

(3.9) `Np(f)(e) = LNp(f)(e) for a.e. p;

(3.10) JPopp
f (p) = Lf (p)Q for a.e. p;

(3.11) The Q-modulus (w.r.t. Popp measure) is preserved:

ModQ(Γ) = ModQ(f(Γ)), ∀Γ family of curves in M ;

(3.12) The operators IQ (w.r.t. Popp measure) are preserved:
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IQ(v, φ;V ) = IQ(v ◦ f, φ ◦ f ; f−1(V )), ∀V ⊂ N open,∀ v, φ ∈W 1,Q
H (V ).

Definition 3.13 (1-quasiconformal map). We say that a quasiconformal map between
two equiregular sub-Riemannian manifolds is 1-quasiconformal if any of the conditions in
Theorem 3.3 holds.

The equivalence of the definitions in Theorem 3.3 have as consequences some invariance
properties that are crucial in the proofs of this paper.

Corollary 3.14. Let f be a 1-quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. Then

(i) the Q-energy (w.r.t. Popp measure) is preserved:

(3.15) EQ(v) = EQ(v ◦ f), ∀ v ∈W 1,Q
H (N);

(ii) the Q-capacity (w.r.t. Popp measure) is preserved:

(3.16) CapQ(E,F ) = CapQ(f(E), f(F )), ∀E,F ⊂M compact.

The proofs of Theorem 3.3 and Corollary 3.14 will be given later in this section.

While the Hausdorff measure may seem to be the natural volume measure to use in this
context, there is a subtle and important reason for choosing the Popp measure rather than
the Hausdorff measure. Indeed, the latter may not be smooth, even in equiregular sub-
Riemannian manifolds, see [ABB12]. However, we show that for 1-quasiconformal maps the
corresponding Jacobians coincide. As a consequence of Theorem 3.3 and Proposition 3.54.
we show that if f is a 1-quasiconformal map between equiregular sub-Riemannian manifolds
of Hausdorff dimension Q. Then for almost every p

`f (p)Q = Lf (p)Q = JPopp
f (p) = JHaus

f (p).

Moreover, the inverse map f−1 is 1-quasiconformal.

Since the Popp measure is smooth, the associated Q-Laplacian operator LQ will involve
smooth coefficients and consequently it is plausible to conjecture the existence of a regularity
theory of Q-harmonic functions (see Section 2.4 for the definitions). In fact such a theory
exists in the important subclass of contact manifolds (see Section 6.2). The following result
is the morphism property for 1-quasiconformal maps, and it is proved in Section 3.8. The
Q-Laplacian operator LQ is defined in (2.15).

Corollary 3.17 (Morphism property). Let f : M → N be a 1-quasiconformal map between
equiregular sub-Riemannian manifolds of Hausdorff dimension Q equipped with their Popp
measures. The following hold:

(i) The Q-Laplacian is preserved:

If v ∈ W 1,Q
H (N), then LQ(v ◦ f) ◦ f∗ = LQv, where f∗ denotes the pull-back

operator on functions.
(ii) The Q-harmonicity is preserved:

If v is a Q-harmonic function on N , then v ◦ f is a Q-harmonic function on M .
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Note that in the Euclidean case the converse is also true: Every map that satisfies the
morphism property is 1−quasiconformal. This is a result a Manfredi and Vespri [MV94].

In the rest of the section we prove Theorem 3.3 and the corollaries thereafter. In particu-
lar, we show the equivalence of the definitions (3.4) - (3.12) of 1-quasiconformal maps, and
show how (3.15) and (3.16) are consequences. To help the reader, we provide the following
road map. The nodes of the graph indicate the definitions in Theorem 3.3, the tags on the
arrows are the labels of Propositions, Corollaries and Remarks in the present section.

(3.4)

3.30
��

oo 3.26 // (3.5)

(3.6)
3.19 //oo // (3.7)

3.43




oo 3.31 // (3.8)

3.32

OO

oo 3.31 // (3.9)

⊕

3.49
��

(3.10)

3.44

JJ

oo 3.46 // (3.11)

(3.12)

3.50
::

3.47 // (3.15)
3.48 // (3.16)

3.1. Ultratangents of 1-quasiconformal maps. We refer the reader who is not familiar
with the notions of nonprincipal ultrafilters and ultralimits to Chapter 9 of Kapovich’s book
[Kap09]. Roughly speaking, taking ultralimits with respect to a nonprincipal ultrafilter is a
consistent way of using the axiom of choice to select an accumulation point of any bounded
sequence of real numbers. Let ω be a nonprincipal ultrafilter. Given a sequence Xj of
metric spaces with base points ?j ∈ Xj , we shall consider the based ultralimit metric space

(Xω, ?ω) := (Xj , ?j)ω := lim
j→ω

(Xj , ?j).

We recall briefly the construction. Let

XN
b := {(pj)j∈N : pj ∈ Xj , sup{d(pj , ?j) : j ∈ N} <∞} .

For all (pj)j , (qj)j ∈ XN
b , set

dω((pj)j , (qj)j) := lim
j→ω

dj(pj , qj),

where limj→ω denotes the ω-limit of a sequence indexed by j. Then Xω is the metric space
obtained by taking the quotient of (XN

b , dω) by the semidistance dω. We denote by [pj ] the
equivalence class of (pj)j . The base point ?ω in Xω is [?j ].

Suppose fj : Xj → Yj are maps between metric spaces, ?j ∈ Xj are base points, and we
have the property that (fj(pj))j ∈ Y N

b , for all (pj)j ∈ XN
b . Then the ultrafilter ω assigns a

limit map fω := limj→ω fj : (Xj , ?j)ω → (Yj , fj(?j))ω as fω([pj ]) := [fj(pj)].

Let X be a metric space with distance dX . We fix a nonprincipal ultrafilter ω, a base
point ? ∈ X, and a sequence of positive numbers λj → ∞ as j → ∞. We define the
ultratangent at ? of X as

Tω(X, ?) := lim
j→ω

(X,λjdX , ?).
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Moreover, given f : (X, dX) → (Y, dY ), we call the ultratangent map of f at ? the limit,
whenever it exists, of the maps f : (X,λjdX , ?)→ (Y, λjdY , f(?)), denoted Tω(f, ?).

Lemma 3.18. Let X and Y be geodesic metric spaces and let f : X → Y be a quasi-
conformal map satisfying Hf (?) = 1 at some point ? ∈ X. Fix a nonprincipal ultrafilter
ω and dilations factors λj → ∞. If the ultratangent map fω = Tω(f, ?) exists, then for
p, q ∈ Tω(X, ?)

d(?ω, p) = d(?ω, q) =⇒ d(fω(?ω), fω(p)) = d(fω(?ω), fω(q)).

Proof. Take p = [pj ], q = [qj ] ∈ Tω(X, ?) with d(?ω, p) = d(?ω, q) =: R. Namely,

lim
j→ω

λjd(?, pj) = lim
j→ω

λjd(?, qj) = R.

Set rj := min{d(?, pj), d(?, qj)}. Fix j and suppose rj = d(?, pj) so rj ≤ d(?, qj). Since Y
is geodesic, there exists q′j ∈ X along a geodesic between ? and qj with

d(?, q′j) = rj and d(qj , q
′
j) = d(?, qj)− rj .

We claim that [q′j ] = [qj ]. Indeed,

dω([q′j ], [qj ]) = lim
j→ω

λjd(q′j , qj)

= lim
j→ω

λj(d(?, qj)− rj)

= lim
j→ω

λjd(?, qj)− λjd(?, pj)

= R−R = 0.

Reasoning similarly with pj ’s, we may conclude that p = [p′j ] and q = [q′j ] with d(?, p′j) =

d(?, q′j) = rj . Hence, by definition of fω we have fω(p) = fω([p′j ]) = [fj(p
′
j)] and fω(q) =

fω([q′j ]) = [fj(q
′
j)]. We then calculate

dω(fω(?ω), fω(p))

dω(fω(?ω), fω(q))
=

limj→ω λjd(f(?), f(p′j))

limj→ω λjd(f(?), f(q′j))

=
limj→ω d(f(?), f(p′j))

limj→ω d(f(?), f(q′j))

≤ lim
j→ω

sup{d(f(?), f(a)) : d(?, a) ≤ rj}
inf{d(f(?), f(b)) : d(?, b) ≥ rj}

= 1.

Arguing along the same lines one obtains dω(fω(?ω), fω(q)) ≤ dω(fω(?ω), fω(p)) and hence
the statement of the lemma follows. �

3.2. Tangents of quasiconformal maps in sub-Riemannian geometry. We recall
now some known results due to Mitchell [Mit85] and Margulis, Mostow [MM95], which
are needed to show that every 1-quasiconformal map induces at almost every point a 1-
quasiconformal isomorphism of the relative ultratangents. For the sake of our argument,
we rephrase their results using the convenient language of ultrafilters.
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Let M be an equiregular sub-Riemannian manifold. From [Mit85], for every p ∈ M the
ultratangent Tω(M,p) is isometric to a Carnot group, denoted Np(M), also called nilpotent
approximation of M at p. Each horizontal vector of M at p has a natural identification with
an horizontal vector ofNp(M) at the identity. Such identification is an isometry between the
horizontal space HpM and the horizontal space of Np(M) at the identity, both equipped
with the scalar products given by respective sub-Riemannian structures. Next, consider
f : M → N a quasiconformal map between equiregular sub-Riemannian manifolds M and
N . By the work of Margulis and Mostow [MM95], there exists at almost every p ∈ M the
ultratangent map Tω(f, p) that is a group isomorphism

Np(f) : Np(M)→ Nf(p)(N)

that commutes with the group dilations, and it is independent on the ultrafilter ω and the
sequence λj . Part of Margulis and Mostow’s result is that the map f is almost everywhere
differenziable along horizontal vectors. Hence, for almost every p ∈M and for all horizontal
vectors v at p, we can consider the push-forwarded vector, which we denote by (dH f)p(v).
We call the map

(dH f)p : HpM → Hf(p)N

the horizontal differential of f at p.

Remark 3.19. With the above identification, we have

(3.20) (dH f)p(v) = Np(f)∗v, ∀v ∈ HpM,

so (dH f)p is a restriction of Np(f)∗. Vice versa, (dH f)p completely determines Np(f),
since Np(f) is a homomorphism and HpM generates the Lie algebra of Np(M). In partic-
ular, (dH f)p is a similarity if and only if Np(f) is a similarity with same factor. Hence,
Conditions (3.7) and (3.6) are equivalent.

Next we introduce some expressions that can be used to quantify the distortion.

Lf (p) := lim inf
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

,

Lf (p) := lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

,

L=
f (p) := lim sup

r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

,

L=
f (p) := lim inf

r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

,

‖Np(f)‖ := max{d(e,Np(f)(y)) : dNp(M)(e, y) ≤ 1}
= max{d(e,Np(f)(y)) : dNp(M)(e, y) = 1}.

Remark 3.21. There exists a horizontal vector at p such that ‖X‖ = 1 and ‖f∗X‖ =
‖Np(f)‖, which in other words means that X is in the first layer of the Carnot group
Np(M), dNp(M)(e, exp(X)) = 1, and dNf(p)(N)(e,Np(f)(exp(X))) = ‖Np(f)‖.

The following holds.
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Lemma 3.22. Let M and N be (equiregular) sub-Riemannian manifolds and let f : M → N
be a quasiconformal map. Let p be a point of differentiability for f . We have

Lf (p) = ‖Np(f)‖ = LNp(f)(e) = Lf (p) = Lf (p) = L=
f (p) = L=

f (p).

Proof. Proof of Lf (p) ≤ ‖Np(f)‖. Let pj ∈M such that pj → p and

Lf (p) = lim
j→∞

d(f(p), f(pj))

d(p, pj)
.

Let λj := 1/d(p, pj), so λj → ∞. We fix now any nonprincipal ultrafilter ω and consider
ultratangents with respect to dilations λj . Hence,

Lf (p) = lim
j→∞

λjd(f(p), f(pj))

= dω([f(p)], [f(pj)])

= dω(Npf([p]),Npf([pj ]))

≤ ‖Npf‖ dω([p], [pj ])

= ‖Npf‖ lim
j→ω

λjd(p, pj)

= ‖Npf‖ .

Proof of Lf (p) ≥ ‖Np(f)‖. Take y ∈ Np(M) with d(e, y) = 1 that realizes the maximum
in ‖Np(f)‖. Choose a sequence qj ∈ M such that [qj ] represents the point y. Let λj → ∞
be the dilations factors for which we calculate the ultratangent. Since

1 = d(e, y) = lim
j→ω

λjd(p, qj),

then, up to passing to a subsequence of indices, d(p, qj)→ 0. Moreover,

Lf (p) ≥ lim sup
j→∞

d(f(p), f(qj))

d(p, qj)

= lim sup
j→∞

λjd(f(p), f(qj))

= dω([f(p)], [f(qj)])

= dω(e,Npf(y))

= ‖Npf‖ .

Proof of Lf (p) ≤ ‖Np(f)‖. There exists rj → 0 and pj ∈ M with dM (p, pj) ≤ rj such
that

Lf (p) = lim
j

dN (f(p), f(pj))

rj
.

Then, using 1/rj as scaling for the ultratangent, we have dω([p], [pj ]) ≤ 1 and Lf (p) =

limj
1
rj
dN (f(p), f(pj)) = dω([f(p)], [f(pj)]) ≤ ‖Np(f)‖.

Proof of ‖Np(f)‖ ≤ Lf (p). Take y ∈ Np(M) with dNp(M)(e, y) ≤ 1 that realizes the
maximum in ‖Np(f)‖. Choose subsequences sj → 0 that realizes the limit in the definition
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of Lf (p), i.e., so that

Lf (p) = lim
j

sup{dN (f(p), f(q)) : dM (p, q) ≤ sj}
sj

.

We use 1/sj as scaling factors for the ultratangent space. For any µ ∈ (0, 1) choose a
sequence qj ∈M such that [qj ] represents the point δµ(y). Therefore, we have that

lim
j

dM (p, qj)

sj
= dNp(M)(e, δµ(y)) ≤ µdNp(M)(e, y) ≤ µ < 1.

For j big enough we then have dM (p, qj) < sj . So

dN (f(p), f(qj)) ≤ sup{dN (f(p), f(q)) : dM (p, q) ≤ sj},

whence, dividing both sides by sj and letting j →∞, we get

dω([f(p)], [f(qj)]) ≤ Lf (p),

which, in view of the homogeneity of Np(f), yields

µ ‖Np(f)‖ = dNp(M)(e,Np(f)(δµy)) ≤ Lf (p).

Since the last inequality holds for all µ ∈ (0, 1), the conclusion follows.

Proof of Lf (p) ≥ L=
f (p). Since

sup{dN (f(p), f(q)) : dM (p, q) ≤ r} ≥ sup{dN (f(p), f(q)) : dM (p, q) = r},

one has

Lf (p) = lim inf
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

≥ lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

= L=
f (p).

Proof of Lf (p) ≤ L=
f (p). Choose a sequence rj → 0 such that

sup{dN (f(p), f(q)) : dM (p, q) ≤ rj}
rj

=
sup{dN (f(p), f(q)) : dM (p, q) = rj}

rj
,

and so in particular

Lf (p) = lim inf
j

sup{dN (f(p), f(q)) : dM (p, q) ≤ rj}
rj

≤ lim sup
j

sup{dN (f(p), f(q)) : dM (p, q) = rj}
rj

≤ L=
f (p).

Proof of ‖Np(f)‖ ≤ L=
f (p). Take y ∈ Np(M) with d(e, y) = 1 that realizes the maximum

in ‖Np(f)‖. Choose subsequences sj → 0 that realizes the limit in the definition of L=
f (p),

i.e., so that

L=
f (p) = lim

j

sup{dN (f(p), f(q)) : dM (p, q) = sj}
sj

.
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We use 1/sj as scaling factors for the ultratangent space. For any ε > 0 choose a sequence
q′j ∈M such that [q′j ] represents the point δ1+ε(y). Therefore, we have that

1 + ε = d(e, δ1+ε(y)) = lim
j→ω

d(p, q′j)

sj
.

For j big enough we then have d(p, q′j) ∈ (sj , (1 + 2ε)sj). Since M is a geodesic space, we

consider a point q′′j ∈ M such that d(p, q′′j ) = sj and lies in the geodesic between p and q′j ,

consequently d(q′j , q
′′
j ) ≤ 2εsj .

Set yε ∈ Np(M) the point being represented by the sequence q′′j . We have d(δ1+εy, yε) <
2ε. From which we get that yε → y, as ε→ 0. We then bound

L=
f (p) ≥ lim

j

d(f(p), f(q′′j ))

sj
= d(Np(f)(yε), e).

Since d(Np(f)(yε), e) is continuous at ε = 0 and converges to ‖Np(f)‖, as ε→ 0, we obtain
the desired estimate.

To conclude the proof of the proposition, one observes that Lf (p) ≤ Lf (p) and L=
f (p) ≤

L=
f (p) are trivial. �

Corollary 3.23. Let M and N be (equiregular) sub-Riemannian manifolds and let f : M →
N be a quasiconformal map. Let p be a point of differentiability for f . We have

(3.24) Lf (p) = LNp(f)(e) and `f (p) = `Np(f)(e).

Proof. The proof follows from Lemma 3.22 applied to f and f−1, and by observing that

(3.25) `f (p) = 1/Lf−1(f(p)), and Np(f)−1 = Nf(p)(f
−1).

�

Corollary 3.26. Let M and N be (equiregular) sub-Riemannian manifolds and let f : M →
N be a quasiconformal map. Then for almost every p ∈M

Hf (p) = H=
f (p).

Proof. Note that in every geodesic metric space

inf{dN (f(p), f(q)) : dM (p, q) ≥ r} = inf{dN (f(p), f(q)) : dM (p, q) = r}.

Hence Hf (p) ≥ H=
f (p) is immediate.
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Regarding the opposite inequality, let p be a point of differentiability for f . Consequently,

Hf (p)
def
= lim sup

r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
inf{dN (f(p), f(q)) : dM (p, q) ≥ r}

= lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
inf{dN (f(p), f(q)) : dM (p, q) = r}

≤ lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r}
lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

= lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r}
Lf (p)

= lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r}
L=
f (p)

= lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r}
lim inf
r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

≤ lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
inf{dN (f(p), f(q)) : dM (p, q) = r}

def
= H=

f (p),

where in the last two steps we have used that Lf (p) = L=
f (p) from Lemma 3.22 and the

fact that lim sup aj lim inf bj ≤ lim sup(ajbj). �

Proposition 3.27. Let f : M → N be a quasiconformal map between sub-Riemannian
manifolds. The function p 7→ ‖Np(f)‖ is the minimal upper-gradient of f .

Proof. The function p 7→ ‖Np(f)‖ is an upper-gradient of f since Lf (·) is such and Lf (p) =
‖Np(f)‖ by Lemma 3.22 . Regarding the minimality, let g be a weak upper-gradient of f .
We need to show that

(3.28) g(p) ≥ ‖Np(f)‖ , for almost all p.

Localizing, we take a unit horizontal vector field X. For p ∈M , let γp be the curve defined
by the flow of X, i.e.,

γp(t) := Φt
X(p),

which is defined for t small enough. We remark that the subfamilies of {γp}p∈M that have
zero Q-modulus are of the form {γp}p∈E with E ⊂ M of zero Q-measure. Then, for every
unit horizontal vector field X, there exists a set ΩX ⊆ M of full measure such that for all
p ∈ ΩX we have ∫

γp|[0,ε]
g ≥ d(f(γp(0)), f(γp(ε))).

Since ‖X‖ ≡ 1, then each γp is parametrized by arc length. Thus

1

ε

∫ ε

0
g(γp(t)) d t ≥ 1

ε
d(f(p), f(Φε

X(p))).
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Assuming that p is a Lebesgue point for g, taking the limit as ε → 0, and considering
ultratangents with dilations 1/ε, we have

g(p) ≥ dω(e,Np(f)[Φε
X(p)]),

= dω(e,Np(f) exp(X̃p)), ∀p ∈ ΩX ,(3.29)

where X̃p is the vector induced on Np(M) by Xp.

Set now X1, . . . Xr an orthonormal frame of ∆ and consider for all θ ∈ Sr−1 ⊂ Rr, the
unit horizontal vector field Xθ :=

∑r
i=1 θiXi. Fix {θj}j∈N a countable dense subset of Sr−1

and define Ω := ∩jΩXθj , which has full measure. Take p ∈ Ω and, recalling Remark 3.21,
take Y ∈ ∆p such that ‖Y ‖ = 1 and

dω(e,Np(f) exp(Ỹ )) = ‖Np(f)‖
By density, there exists a sequence jk of integers such that θjk converges to some θ with the

property that Y = (Xθ)p. Therefore, by (3.29) we conclude (3.28). �

3.3. Equivalence of metric definitions.

Proposition 3.30 (Tangents of 1-QC maps). Let f : M → N be a quasiconformal map
between equiregular sub-Riemannian manifolds. Condition (3.4) implies Condition (3.7).

Proof. For almost every p ∈ M , the map Np(f) exists and coincides with the ultratangent
fω with respect to any nonprincipal ultrafilter and any sequence of dilations. Hence, we can
apply Lemma 3.18 and deduce that spheres about the origin are sent to spheres about the
origin. Therefore, the distortion HNp(f)(e) at the origin is 1. Being Np(f) an isomorphism,
the distortion is 1 at every point, and in fact Np(f) is a similarity.

�

Corollary 3.31. Let f : M → N be a quasiconformal map between equiregular sub-
Riemannian manifolds. Conditions (3.7), (3.8), and (3.9) are equivalent.

Proof. For every point p of differentiability for f , we have that Np(f) is a similarity if and
only if LNp(f)(e) = `Np(f)(e), which by Corollary 3.23 is equivalent to `f (p) = Lf (p). �

Proposition 3.32. Let f : M → N be a quasiconformal map between sub-Riemannian
manifolds. At every point p ∈M such that Lf (p) = `f (p) one has that H=

f (p) = 1. Hence,

Condition (3.8) implies Conditions (3.5).

Proof. Notice that at every point in which Lf (p) = `f (p) one has the existence of the limit

lim
d(p,q)=r→0

d(f(p), f(q))

r
.

Consequently, at those points one has

H=
f (p) = lim

r→0

sup{dY (f(p),f(q)):dX(p,q)=r}
r

inf{dY (f(p),f(q)):dX(p,q)=r}
r

=
Lf (p)

`f (p)
= 1. �

Therefore, we proved the equivalence of the metric definitions, i.e., Conditions (3.4), (3.5),
(3.7), (3.8), and (3.9).
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3.4. Jacobians and Popp measure. Let (M,µM ) and (N,µN ) be metric measure spaces
and let f : M → N be a homeomorphism. We say that Jf : M → R is a Jacobian for f with
respect to the measures µM and µN , if f∗µN = Jf µM , which is equivalent to the change of
variable formula:

(3.33)

∫
f(A)

hdµN =

∫
A

(h ◦ f) Jf dµM ,

for every A ⊂M measurable and every continuous function h : N → R.

If M and N are equiregular sub-Riemannian manifolds of Hausdorff dimension Q, we
consider µM and µN to be both either the Q-dimensional spherical Hausdorff measures
or the Popp measures. See [Mon02, BR13] for the definition of the Popp measure and
Example 3.37 for the case of step-2 Carnot groups. In these cases, we denote the corre-

sponding Jacobians as JHaus
f and JPopp

f , respectively. If f is a quasiconformal map, such

Jacobians are uniquely determined up to sets of measure zero. In fact, by Theorem [HK98,
Theorem 4.9, Theorem 7.11] and [MM95, Theorem 7.1], they can be espressed as volume
derivatives. Moreover, by an elementary calculation using just the definition one checks
that the Jacobian satisfies the formula

(3.34) Jf (p) = 1/ Jf−1(f(p)).

Remark 3.35. We have that if f : M → N is quasiconformal and at almost every point p its
differential Np(f) is a similarity, then for almost every p ∈M the Carnot groups Np(M) and
Nf(p)(N) are isometric. Indeed, if λp is the dilation factor of Np(f), then the composition

of Np(f) and the group dilation by λ−1
p gives an isometry. As a consequence, Np(M) and

Nf(p)(N) are isomorphic as metric measure spaces when equipped with their Popp measures
volNp(M) and volNf(p)(N), respectively. In particular, for almost every p ∈M , we have

(3.36) volNp(M)(BNp(M)(e, 1)) = volNf(p)(N)(BNf(p)(N)(e, 1)).

Example 3.37. We recall in a simple case the construction of the Popp measure. Namely,
we consider a Carnot group of step 2, that is, the Lie algebra is stratified as V1 ⊕ V2. Let
B ⊆ V1 ⊆ TeG be the (horizontal) unit ball with respect to a sub-Riemannian metric tensor
g1 at the identity, which is the intersection of the metric unit ball at the identity with V1, in
exponential coordinates. The set [B,B] := {[X,Y ] : X,Y ∈ B} is the unit ball of a unique

scalar product g2 on V2. The formula g :=
»
g2

1 + g2
2 defines the unique scalar product on

V1⊕V2 that make V1 and V2 orthogonal and extend g1 and g2. Extending the scalar product
on TeG by left translation, one obtains a Riemannian metric tensor g̃ on the Lie group G.
For such a Carnot group the Popp measure is by definition the Riemannian volume measure
of g̃.

Remark 3.38. In Carnot groups the Popp measure is strictly monotone as a function of the
distance, in the sense that if d and d′ are two distances on the same Carnot group such that
d′ ≤ d and d′ 6= d, then Poppd′ ≤ Poppd and Poppd′ 6= Poppd. Indeed, this claim follows
easily from the construction of the measure. For simplicity of notation, we illustrate the
proof for Popp measures in Carnot groups of step 2 as we recalled in Example 3.37. If B′ is
a set that strictly contains B then clearly [B,B] ⊆ [B′, B′] and hence the unit ball for g is
strictly contained in the unit ball for g′. In other words, the vector space TeG is equipped
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with two different (Euclidean) distances, say ρ and ρ′, and by assumption, the identity
id : (TeG, ρ) → (TeG, ρ

′) is 1-Lipschitz. Therefore, the Hausdorff measure with respect to
ρ is greater than the one with respect to ρ′. At this point we recall that the Hausdorff
measure of a Eulidean space equals the Lebesque measure with respect to orthonormal
coordinates. In other words, the Hausdorff measure is equal to the measure induced by the
top-dimensional form that takes value 1 on any orthonormal basis, which is by definition
the Riemannian volume form. We therefore deduce that the Riemannian volume measure
of g̃ is less than the Riemannian volume measure of g̃′. Hence, Poppd′ ≤ Poppd. Moreover,
the equality holds only if g̃ = g̃′, which holds if and only if B′ = B.

Lemma 3.39. Let A : G→ G′ be an isomophism of Carnot groups of Hausdorff dimension
Q. If either JA(e) = (LA(e))Q or JA(e) = (`A(e))Q, then A is a similarity.

Proof. Up to composing A with a dilation, we assume that LA(e) = 1, i.e., A is 1-Lipschitz.
Then if JA(e) = (LA(e))Q we have that JA = 1, which means that the push forward
via A of the Popp measure on G is the Popp measure on G′. Moreover, identifying the
group structures via A, we assume that we are in the same group G (algebraically) that is
equipped with two different Carnot distances d and d′ such that d′ ≤ d, since the identity
A = id : (G, d) → (G, d′) is 1-Lipschitz. If d′ 6= d, then by Remark 3.38 Poppd′ 6= Poppd,
which contradicts the assumption. We conclude that d′ = d, i.e., A = id is an isometry.
The case when JA(e) = (`A(e))Q is similar. �

3.5. A remark on tangent volumes. We prove that the Jacobian of a quasiconformal
map coincides with the Jacobian of its tangent map almost everywhere. We begin by re-
calling the Margulis and Mostow’s convergence [MM95]. Fix a point p in a sub-Riemannian
manifold M and consider privileged coordinates centered at p, see [MM95, page 418]. Let g
be the sub-Riemannian metric tensor of M . Let δε be the dilations associated to the privi-
leged coordinates. Notice that (δε)∗g is isometric via δε to g and gε := 1

ε (δε)∗g is isometric

via δε to 1
ε g. A key fact is that gε converge to g0, as ε → 0, which is a sub-Riemannian

metric. (This convergence is the convergence of some orthonormal frames uniformly on
compact sets).

Mitchell’s theorem [Mit85] can be restated as the fact that (Rn, g0) is the tangent Carnot
group Np(M). Margulis and Mostow actually proved that the maps δ−1

ε ◦ f ◦ δε converge
uniformly, as ε → 0, on compact sets to the map Np(f). Moreover, by functoriality of the
construction of the Popp measure, we have that volgε → volg0 , in the sense that if ωε is the
smooth function such that volgε = ωεL, then ωε → ω0 uniformly on compact sets.

Proposition 3.40. Let f : M → N be a quasiconformal map between equiregular sub-
Riemannian manifolds of Hausdorff dimension Q. For almost every p ∈M

JNp(f)(e) = Jf (p).
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Proof. Denote by Bgε
r the ball at 0 of radius r with respect to the metric gε. We have

ε−Q volg(f(Bg
ε )) = vol

1
ε
g(f(B

1
ε
g

1 ))(3.41)

= vol
1
ε
g(δε ◦ δ−1

ε ◦ f ◦ δε(B
gε
1 )

= volgε(δ−1
ε ◦ f ◦ δε(B

gε
1 ))

→ volg∞(Np(f)(Bg0
1 )).

By [GJ14, Lemma 1 (iii)], for all q ∈M we have the expantion

(3.42) volM (B(q, ε)) = εQvolNq(M)(BNq(M)(e, 1)) + o(εQ).

Using (3.41) and the latter, we conclude

JNp(f)(e) =
volNq(M)(Nq(f)(BNq(M)(e, 1)))

volNq(M)(BNq(M)(e, 1))

= lim
ε→0

volN (f(B(p, ε)))

εQvolNp(M)(BNp(M)(e, 1))

= lim
ε→0

volN (f(B(p, ε)))

volM (B(p, ε))

= Jf (p).

�

3.6. Equivalence of the analytic definition.

Lemma 3.43. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. If the differential Np(f) of f is a similarity for almost
every p ∈M , then

`f (p)Q = JPopp
f (p) = Lf (p)Q, for almost every p ∈M.

Proof. Let p be a point where JPopp
f (p) is expressed as volume derivative. By definition, for

all ε > 0, there exists r̄ > 0 such that, if q ∈M is such that d(q, p) ∈ (0, r̄), then

d(f(q), f(p))

d(p, q)
≤ Lf (p) + ε.

Hence for every r ∈ (0, r̄),

f(B(p, r)) ⊂ B(f(p), r(Lf (p) + ε)).

So one has
volN (f(B(p, r)))

volM (B(p, r))
≤ volN (B(f(p), r(Lf (p) + ε)))

volM (B(p, r))
.

Letting r → 0, using (3.42) with q = p and q = f(p), and using (3.36), we have

JPopp
f (p) ≤ (Lf (p) + ε)Q.

Notice that equation (3.36) requires the assumption of the differential being a similarity.

Since ε is arbitrary, JPopp
f (p) ≤ Lf (p)Q. Once we recall that JPopp

f (p) · JPopp
f−1 (f(p)) = 1 and
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`f (p) · Lf−1(f(p)) = 1, the same argument applied to f−1 yields `f (p)Q ≤ JPopp
f (p). With

Corollary 3.31 we conclude. �

For an arbitrary quasiconformal map we expect the relation

`f (p)Q ≤ JPopp
f (p) ≤ Lf (p)Q

to hold. However, our proof of Lemma 3.43 makes a crucial use of equation (3.36), which
is not true in general.

Lemma 3.44. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. If for almost every p ∈M either

`f (p)Q = JPopp
f (p)

or

JPopp
f (p) = Lf (p)Q,

then Np(f) is a similarity, for almost every p.

Proof. In view of Proposition 3.40 and Corollary 3.23, we have either `Np(f)(e)
Q = JNp(f)(e)

or JNp(f)(e) = LNp(f)(e). Therefore, by Lemma 3.39 we get that Np(f) is a similarity. �

3.7. Equivalence of geometric definitions. We recall the definition of the modulus of
a family Γ of curves in a metric measure space (M, vol). A Borel function ρ : M → [0,∞]
is said to be admissible for Γ if for every rectifiable γ ∈ Γ,

(3.45)

∫
γ
ρ ds ≥ 1.

The Q-modulus of Γ is

ModQ(Γ) = inf

ß∫
M
ρQ d vol : ρ is admissible for Γ

™
.

Proposition 3.46. Let f : M → N be a quasiconformal map between equiregular sub-
Riemannian manifolds of Hausdorff dimension Q. Then ModQ(Γ) = ModQ(f(Γ)) for every

family Γ of curves in M if and only if LQf (p) = Jf (p) for a.e. p.

Proof. This equivalence is actually a very general fact after the work of Cheeger [Che99]
and Williams [Wil12]. Since locally sub-Riemannian manifolds are doubling metric spaces
that satisfy a Poincaré inequality, we have that the pointwise Lipschitz constant Lf (·) is
the minimal upper gradient of the map f , see Proposition 3.27 and Lemma 3.22. We also

remark that any quasiconformal map is in W 1,Q
loc and hence in the Newtonian space N1,Q

loc ,

see [BKR07]. By a result of Williams [Wil12, Theorem 1.1], Lf (p)Q ≤ Jf (p), for almost
every p, if and only if ModQ(Γ) ≤ ModQ(f(Γ)), for every family Γ of curves in M . Hence,

we get the inequality Lf (p)Q ≤ Jf (p).

Now consider the inverse map f−1. Such a map satisfies the same assumptions of f .
In particular, applying to f−1 William’s result, we have that ModQ(Γ) ≤ ModQ(f−1(Γ))

for every family Γ of curves in N if and only if Lf−1(q)Q ≤ Jf−1(q), for almost every

q ∈ N . Writing f−1(Γ) = Γ′ and q = f(p) and using (3.25) and (3.34), we conclude that
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ModQ(f(Γ′)) ≤ ModQ(Γ′) for every family Γ′ of curves in M if and only if Jf (p) ≤ `Qf (p) ≤
LQf (p), for almost every p ∈M

�

Let M be an equiregular sub-Riemannian manifold of Hausdorff dimension Q. Let volM
be the Popp measure of M . For all u ∈W 1,Q

H (M, volM ), the Q-energy of u is

EQ(u) :=

∫
M
|∇Hu|Q d volM .

Remark 3.47. Since EQ(u) = IQ(u, u), if the operator IQ is preserved, then the Q-energy is
preserved. Namely, Condition (3.12) implies Condition (3.15).

Proposition 3.48. For a quasiconformal map f : M → N between equiregular sub-
Riemannian manifolds of Hausdorff dimension Q, Condition (3.15) implies Condition (3.16).

Proof. Let E,F ⊂ M compact sets in M . We set S(E,F ) to denote the family of all

u ∈ W 1,Q
H (M) such that u|E = 1, u|F = 0 and 0 ≤ u ≤ 1. Recall that the Q-capacity

CapQ(E,F ) is then defined as the infimum of the Q-energy EQ(u) among all competitors
u ∈ S(E,F ):

CapQ(E,F ) = inf

∫
M
|∇Hu|Q d vol .

Since f satisfies (3.15), the map v 7→ v◦f is a bijection between S(f(E), f(F )) and S(E,F )
that preserves the Q-energy. Correspondingly, one has that

CapQ(f(E), f(F )) = inf{EQ(v) : v ∈ S(f(E), f(F ))}
= inf{EQ(v ◦ f) : v ∈ S(f(E), f(F ))}
= inf{EQ(u) : u ∈ S(E,F )}
= CapQ(E,F ),

completing the proof. �

Proposition 3.49. Let f : M → N be a quasiconformal map between equiregular sub-
Riemannian manifolds of Hausdorff dimension Q. Either of Condition (3.6) and Condi-
tion (3.10) implies Condition (3.12).

Proof. Let p be a point of differentiability of f . Given an orthonormal basis {Xj} of HpM ,
from (3.6) we have that vectors

Yj := Lf (p)−1(dH f)pXj

form an orthonormal basis of HqN , with q = f(p). Then, for every open subset V ⊂ N and

for every v ∈W 1,Q
H (N),

Xj(v ◦ f)p = dH(v ◦ f)p(Xj)

= (dH v)q(dH f)p(Xj)

= (dH v)q(Lf (p)Yj) = Lf (p)(Yju)q.
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Therefore, for any v, φ ∈W 1,Q
H (V ),

〈∇H(v ◦ f),∇H(φ ◦ f)〉p =
∑
j

Xj(v ◦ f)pXj(φ ◦ f)p

= L2
f (p)

∑
j

Yj(v)qYj(φ)q

= L2
f (p)〈∇Hv,∇Hφ〉q.

In particular

|∇H(v ◦ f)| = Lf (p)|(∇Hv)f(·)|.

So, using Condition (3.10) and writing U = f−1(V ),

IQ(v ◦ f, φ ◦ f ;U) =

∫
U
|∇H(v ◦ f)|Q−2〈∇H(v ◦ f),∇H(φ ◦ f)〉d volM

=

∫
U
LQ−2
f |(∇Hv)f(·)|Q−2L2

f 〈∇Hv,∇Hφ〉f(·) d volM

=

∫
U

Jf |(∇Hv)f(·)|Q−2〈∇Hv,∇Hφ〉f(·) d volM

=

∫
V
|∇Hv|Q−2〈∇Hv,∇Hφ〉 d volN

= IQ(v, φ;V ),

where we used (3.33). �

Proposition 3.50. Let f : M → N be a quasiconformal map between equiregular sub-
Riemannian manifolds of Hausdorff dimension Q. Then Condition (3.12) implies Condi-
tion (3.10).

Proof. We start with the following chain of equalities, where we use (3.12), the chain rule and
the change of variable formula (3.33). For every open subset U ⊂M , denote V = f(U) ⊂ N .

For every v, φ ∈W 1,Q
H (V ),∫

V
|∇Hv|Q−2〈∇Hv,∇Hφ〉 d volN =

∫
U
|∇H(v ◦ f)|Q−2〈∇H(v ◦ f),∇H(φ ◦ f)〉 d volM

=

∫
U
|(dH f)T

f(·)(∇Hv)f(·)|Q−2〈(dH f)T
f(·)(∇Hv)f(·), (dH f)T

f(·)(∇Hφ)f(·)〉 d volM

=

∫
V

Jf−1(·)|(dH f)T
· (∇Hv)·|Q−2〈(dH f)T

· (∇Hv)·, (dH f)T
· (∇Hφ)·〉 d volN

=

∫
V

Jf−1(·)|(dH f)T
· (∇Hv)·|Q−2〈(dH f)f−1(·)(dH f)T

· (∇Hv)·, (∇Hφ)·〉 d volN ,

where (dH f)T
q denotes the adjoint of (dH f)f−1(q) with respect to the metrics on N and M

at q and f−1(q) respectively. We then proved that
(3.51)∫
V
〈|(∇Hv)·|Q−2(∇Hv)·−Jf−1(·)|(dH f)T

· (∇Hv)·|Q−2(dH f)f−1(·)(dH f)T
· (∇Hv)·, (∇Hφ)·〉 d volN = 0
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for every v, φ ∈W 1,Q
H (V ) and for every open subset V ⊂ N . Note that (3.51) holds true for

every measurable subset V ⊂ N . We claim that, for almost every q ∈ N ,

(3.52) |(∇Hv)q|Q−2(∇Hv)q − Jf−1(q)|(dH f)T
q (∇Hv)q|Q−2(dH f)f−1(q)(dH f)T

q (∇Hv)q = 0

for every v ∈ W 1,Q
H (N). Arguing by contradiction, assume that there is a set V ⊂ N

of positive measure where (3.52) fails for some v ∈ W 1,Q
H (N). Choose any smooth frame

X1, . . . , Xr of HN , and write the left hand side of (3.52) as
∑r
i=1 ψiXi, with ψi ∈ LQ(N)

for every i = 1, . . . , r. Then at least one of the ψi must be different from zero in V . Without
loosing generality, say ψ1 6= 0 on V . By possibly taking V smaller, we may assume that∫
V ψ1 d volN 6= 0. Let φ be the coordinate function x1, that is Xjφ = δj1. Substituting in

the left hand side of (3.51), we conclude∫
V
〈(ψ1, . . . , ψr),∇Hφ〉 d volN =

∫
V
ψ1 d volN 6= 0,

which contradicts (3.51). This completes the proof of (3.52).

Next, fix q ∈ N a point of differentiability where (3.52) holds. For every vector ξ ∈ HqN ,
consider vξ such that (∇Hvξ)q = ξ. For every ξ ∈ HqN such that |ξ| = 1, the following
holds

Jf−1(q)|(dH f)T
q ξ|Q−2〈(dH f)f−1(q)(dH f)T

q ξ, ξ〉 = 1.

Using (3.34), the equality above becomes

|(dH f)T
q ξ|Q−2〈(dH f)T

q ξ, (dH f)T
q ξ〉 = Jf (f−1(q))

which is equivalent to
|(dH f)T

q ξ|Q = Jf (f−1(q))

for every ξ onHqN of norm equal to one. From (3.20) we have |(dH f)T
q ξ(q)|Q = |Nq(f)T

∗ ξ(q)|Q.
Therefore, at every point q ∈ N of differentiability,

‖Nf−1(q)(f)∗‖Q = max{|Nq(f)T
∗ ξ|Q : ξ ∈ HqN, |ξ| = 1} = Jf (f−1(q)).

By Lemma 3.22 and writing p = f−1(q), we conclude Lf (p)Q = Jf (p) for almost every
p ∈M , establishing (3.10). �

3.8. The morphism property.

Proof of Corollary 3.17. Let v ∈W 1,Q
H (N) and φ ∈W 1,Q

H,0 (N) ⊂W 1,Q
H (N), then from (3.12)

it follows
LQ(v)(φ) = IQ(v, φ) = IQ(v ◦ f, φ ◦ f) = LQ(v ◦ f) ◦ f∗(φ). �

3.9. Equivalence of the two Jacobians. Given M an equiregular sub-Riemannian man-
ifold of Hausdorff dimension Q, we prefer to work with the Popp measure volM rather than

the spherical Hausdorff measure SQM since volM is always smooth whereas there are cases

in which SQM is not (see [ABB12]). However, one has the following formula (see [ABB12,
pages 358-359], [GJ14, Section 3.2]).

(3.53) d volM = 2−Q volNp(M)(BNp(M)(e, 1))dSQM ,
where we used the fact that the measure induced on Np(M) by volM is volNp(M).
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Proposition 3.54. If f : M → N is a 1-quasiconformal map between equiregular sub-
Riemannian manifolds, then for almost every p ∈M ,

JPopp
f (p) = JHaus

f (p).

Proof. Let A ⊆M be a measurable set. Since f−1 is 3 also 1-quasiconformal, then we have
(3.36) with p = f−1(q) for almost all q ∈M , Then, using twice (3.53), we have

2Q(f∗ volN )(A) = 2Q volN (f(A))

=

∫
f(A)

volNq(N)(BNq(N)(e, 1)) dSQN (q)

=

∫
f(A)

volNf−1(q)(M)(BNf−1(q)(M)(e, 1)) dSQN (q)

=

∫
A

volNp(M)(BNp(M)(e, 1)) JHaus
f (p) dSQM (p)

= 2Q(JHaus
f volM )(A).

Thus, we conclude that JPopp
f volM = f∗ volN = JHaus

f volM . �

4. Coordinates in sub-Riemannian manifolds

Given any system of coordinates near a point of a sub-Riemannian manifolds, we will
identify special subsets of these coordinates, that we call horizontal. By adapting a method
of Liimatainen and Salo [LS14], we show that they can be constructed so that in addition
they are also either harmonic or Q-harmonic (the more general construction of p-harmonic
coordinates follows along the same lines, modifying appropriately the hypothesis). The
construction of Q-harmonic coordinates is based upon a very strong hypothesis, namely that
the sub-Riemannian structure supports regularity for Q-harmonic functions. In contrast,
the construction of horizontal harmonic coordinates rests on well known Schauder estimates.
The key point of this section, and one of the main contributions of this paper, is that we
can prove that the smoothness of maps that preserve in a weak sense the horizontal bundles
can be derived by the smoothness of the horizontal components alone.

4.1. Horizontal coordinates.

Definition 4.1. Let M be a sub-Riemannian manifold. Let x1, . . . , xn be a system of coor-
dinates on an open set U of M and let X1, . . . , Xr be a frame of the horizontal distribution
on U . We say that x1, . . . , xr are horizontal coordinates with respect to X1, . . . , Xr if the
matrix (Xix

j)(p), with i, j = 1, . . . , r, is invertible, for every p ∈ U .

Remark 4.2. It is clear that any system of coordinates x1, . . . ., xn around a point p ∈ M
can be reordered so that the first r components become a system of horizontal coordinates.

The next result states that the notion of horizontal coordinate does not depend on the
choice of frame.

3Here we need to invoke [MM95, Corollary 6.5] or [HK98]
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Proposition 4.3. Assume that x1, . . . , xn are coordinates such that x1, . . . , xr are horizontal
with respect to the frame X1, . . . , Xr. Then

(i) ∇Hx
1, . . . ,∇Hx

r are linearly independent and form a frame of ∆.
(ii) If X ′1, . . . , X

′
r is another frame of ∆, then x1, . . . , xr are horizontal coordinates with

respect to X ′1, . . . , X
′
r.

Proof. Since O := (Xix
j)ij is invertible and X1, . . . , Xr is a frame, then

∇Hx
i =

r∑
i=1

(Xkx
i)Xk =

∑
k

OkiXk

and (i) follows. Regarding (ii), let B be the matrix such that X ′ix
j =

∑r
k=1B

k
i Xkx

j =
(BO)ij . The conclusion follows from the invertibility of BO. �

4.2. Horizontal harmonic coordinates. Let M be a sub-Riemannian manifold endowed
with a volume form vol. Our goal is to construct horizontal coordinates in the neighborhood
of any point p ∈ M , that are also in the kernel of the subLaplacian L2, defined in (2.9),
associated to the sub-Riemannian structure and a volume form.

Theorem 4.4. Let M be an equiregular sub-Riemannian structure endowed with a smooth
volume form vol. For any point p ∈M there exists a set of horizontal harmonic coordinates
defined in a neighborhood of p.

To prove this result we start by considering any system of coordinates x1, . . . , xn in
a neighborhood of p ∈ M . Without loss of generality we can assume that the vectors
∇Hx

1, . . . ,∇Hx
r are linearly independent in a neighborhood of p, i.e., x1, .., xr are horizontal

coordinates. Set Bε := Bε(p) = {q ∈ M | d(p, q) < ε}. For ε > 0, let u1
ε , . . . , u

n
ε be the

unique weak solution of the Dirichlet problem{
L2u

i
ε = 0 in Bε, i = 1, . . . , n

uiε = xi in ∂Bε, i = 1, . . . , n.

We will show that for ε > 0 sufficiently small, the n-tuple u1
ε , . . . , u

r
ε , x

r+1, . . . , xn is a system
of coordinates. Note that u1

ε , . . . , u
n
ε may fail to be a system of coordinates.

Hörmander’s hypoellipticity result [Hör67] yields uiε ∈ C∞(Bε)∩W 1,2
H (Bε). Consider now

wiε := uiε − xi ∈ C∞(Bε) ∩W 1,2
H,0(Bε).

Lemma 4.5. For p ∈ K ⊂⊂M , the following estimate holds

(4.6) −
∫
Bε

|∇Hw
i
ε|2 d vol ≤ C ′ε2.

for a constant C ′ > 0 depending only on K, on the coordinates x1, .., xn, the Riemannian
structure of M and the volume form.

Proof. For every i = 1, . . . , n, the function wiε solves{
L2w

i
ε = −L2x

i =: gi

wiε = 0 in ∂Bε
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The equation can be interpreted in a weak sense as∫
Bε

∇Hw
i
ε∇Hφ d vol =

∫
Bε

giφ d vol

for every φ ∈W 1,2
H,0(Bε). Choosing φ = wiε gives∫

Bε

|∇Hw
i
ε|2 d vol =

∫
Bε

giw
i
ε d vol ≤

Ç∫
Bε

g2
i d vol

å1/2Ç∫
Bε

(wiε)
2 d vol

å1/2

.

Poincaré inequality for functions with compact support gives∫
Bε

(wiε)
2 d vol ≤ Cε2

∫
Bε

|∇Hw
i
ε|2 d vol,

whence ∫
Bε

|∇Hw
i
ε|2 d vol ≤

Ç∫
Bε

g2
i d vol

å1/2Ç
Cε2

∫
Bε

|∇Hw
i
ε|2 d vol

å1/2

.

We haveÇ∫
Bε

|∇Hw
i
ε|2 d vol

å1/2

≤ εC1/2

Ç∫
Bε

g2
i d vol

å1/2

≤ εC1/2vol(Bε)
1/2

Ç
sup
Bε

g2
i

å1/2

.

This completes the proof of (4.6). �

Next we need an interpolation inequality that allows us to bridge the L2 estimates (4.6)

and the C1,α
H estimates from (2.10) to produce L∞ bounds. The following is very similar to

the analogue interpolation lemma in [LS14].

Lemma 4.7. Let p ∈ K ⊂⊂M and let h be a function defined on Bε. If there are constants
A,B > 0 such that for ε > 0 sufficiently small one has

(i) ‖h‖2L2(Bε)
≤ Aε2|Bε|2,

(ii) ‖h‖CαH(Bε/2) ≤ B,

then ‖h‖L∞(Bε/4) ≤ o(1) as ε→ 0, uniformly in p ∈ K.

Proof. Set q ∈ B ε
4
(p) so that B ε

4
(q) ⊂ B 3ε

4
(p). One has

‖h‖L2(B ε
4

(q)) ≥ ‖h(q)‖L2(B ε
4

(q)) − ‖h− h(q)‖L2(B ε
4

(q))

= |h(q)| · |B ε
4
(q))|

1
2 −

Ñ∫
B ε

4
(q)
|h(·)− h(q)|2 d vol

é 1
2

≥ |h(q)| · |B ε
4
(q))|

1
2 − sup

B ε
4

(q)

|h(·)− h(q)|
d(·, q)α

Ñ∫
B ε

4
(q)
d(·, q)2α d vol

é 1
2

.

We then obtain that there exists constants C1 and C2, depending only on the sub-Riemannian
structure, the exponent α, and the compact set K, such that

‖h‖L2(B ε
4

(q)) ≥ C1ε
Q
2 |h(q)| − C2ε

α+Q
2 ‖h‖CαH(B ε

4
(q)).
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Using the hypotheses (i) and (ii), we conclude for all q ∈ B ε
2

(p)

|h(q)| ≤ C−1
1 ε−

Q
2

Å
‖h‖L2(B ε

4 (q))
+ C2ε

α+Q
2 ‖h‖CαH(B ε

4
(q))

ã
≤ C−1

1

¶
A1/2ε+ BC2ε

α
©

= o(1)

as ε→ 0. �

In view of (4.6) and (2.10) we can apply the previous lemma to h = ∇Hw
i
ε and infer

sup
B ε

4

|∇Hu
i
ε −∇Hx

i| ≤ o(1)

as ε → 0. Since the matrix (Xix
j)ij for i, j = 1, . . . , r is invertible in a neighborhood of

p, then for ε > 0 sufficiently small the same holds for the matrix (Xiu
j
ε)ij . Consequently,

the n-tuple (u1
ε , . . . , u

r
ε , x

r+1, . . . , xn) yields a system of coordinates in a neighborhood of p
and its first r components are both horizontal and harmonic. This concludes the proof of
Theorem 4.4. �

4.3. Horizontal Q-harmonic coordinates. Throughout this section we will assume that
M is an equivariant sub-Riemannian structure, endowed with a smooth volume form vol,
that supports regularity for Q-harmonic functions, in the sense of Definition 1.2.

We will need an interpolation lemma analogue to Lemma 4.7.

Lemma 4.8. Let p ∈ K ⊂⊂M and let f be a function defined on Bε. If there are constants
β,A,B > 0 and α ∈ (0, 1) such that for ε > 0 sufficiently small one has

(i) ‖h‖LQ(Bε) ≤ Aε
1+β

(ii) ‖h‖CαH(B ε
2

) ≤ B,

then ‖h‖L∞(Bε/4) ≤ o(1) as ε→ 0, uniformly in p ∈ K.

Proof. Using the notation and the argument in the proof of Lemma 4.7, one concludes that
for any q ∈ B ε

4
(p) one has

‖h‖LQ(B ε
4

(q)) ≥ |h(q)| · |B ε
4
(q)|

1
Q − ‖h‖CαH(B ε

4
(q))ε

α+Q
p .

The proof follows immediately from the latter and from the hypothesis. �

Theorem 4.9. Let M be an equiregular sub-Riemannian structure endowed with a smooth
volume form vol that supports regularity for Q-harmonic functions. For any point p ∈
M there exists a set of horizontal coordinates defined in a neighborhood of p that are Q-
harmonic.

Proof. We follow the argument outlined in the special case of Theorem 4.4. For p ∈ K ⊂⊂
M and ε > 0 to be determined later, we consider weak solutions uiε ∈ W 1,Q

H (Bε) to the
Dirichlet problems {

LQu
i
ε = 0 in Bε, i = 1, . . . , n

uiε = xi in ∂Bε, i = 1, . . . , n,
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where x1, . . . , xn is an arbitrary set of coordinates near p. These solutions exist and are
unique in view of the convexity of the Q-energy. The C1,α

H estimates assumptions guarantee

that uiε ∈ C
1,α
H,loc(Bε) ∩W

1,Q
H,loc(Bε). Arguing as in Lemma 4.5, we set

wiε := uiε − xi ∈ C
1,α
H,loc(Bε) ∩W

1,Q
H,0 (Bε)

and observe that ∫
Bε

|∇Hu
i
ε|Q−2Xku

i
εXkw

i
ε d vol = 0.

As a consequence one has∫
Bε

|∇Hw
i
ε|Q d vol ≤

∫
Bε

(|∇Hu
i
ε|+ |∇εxi|)Q−2|∇Hw

i
ε|2 d vol

≤
∫
Bε

(|∇Hu
i
ε|Q−2Xku

i
ε − |∇Hx

i|Q−2Xkx
i)Xkw

i
ε d vol

=

∫
Bε

−X∗k(|∇Hx
i|Q−2Xkx

i)wiε d vol

≤
Ç ∫

Bε

|LQxi|Q d vol

åQ−1
Q
Ç ∫

Bε

|wiε|Q d vol

å 1
Q

(applying Poincaré inequality) ≤ Cε

Ç ∫
Bε

|LQxi|Q d vol

åQ−1
Q
Ç ∫

Bε

|∇Hw
i
ε|Q d vol

å 1
Q

≤ C ′εQ||∇Hw
i||LQ(Bε),(4.10)

for constants C,C ′ > 0 depending only on Q,K, on the coordinates x1, . . . , xn, the sub-
Riemannian structure, and the volume form. From the latter it immediately follows that

(4.11) ‖∇Hw
i
ε‖LQ(Bε) ≤ C

′′
ε
1+ 1

Q−1

Arguing as in Theorem 4.4, and applying the C1,α
H estimates from the hypothesis that M

supports regularity for Q-harmonic functions, (4.11) and the interpolation Lemma 4.8, one
has that for ε > 0 sufficiently small the matrix (Xiu

j
ε)ij , for i, j = 1, . . . , r is invertible in

a neighborhood of q. On the other hand, this implies that for each i = 1, . . . , r one has
that |∇Hu

i
ε| is a CαH function bounded away from zero in a neighborhood of p, and hence

by part (2) of Definition 1.2 and by Proposition 2.18 one has that u1
ε , . . . , u

r
ε , x

r+1, . . . , xn

is a smooth system of coordinates in a neighborhood of p, with u1
ε , . . . , u

r
ε both horizontal

and Q-harmonic. �

4.4. Regularity from horizontal regularity. Let γ be an horizontal curve in M . Let
x1, . . . , xn be coordinates on M such that x1, . . . , xr are horizontal coordinates with respect
to an horizontal frame X1, . . . , Xr. We write

γH = (x1 ◦ γ, . . . , xr ◦ γ) and γV = (xr+1 ◦ γ, . . . , xn ◦ γ).

Hence γ = (γH, γV ) and γ̇ = (γ̇H, γ̇V ). There are functions β1, . . . , βr so that

γ̇ =
r∑
j=1

βj(Xj ◦ γ).
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In coordinates we write Xj =
∑n
k=1X

k
j

∂
∂xk

. So

(γ̇H, γ̇V ) =
r∑
j=1

βj(Xj ◦ γ)

=
r∑
j=1

βj

n∑
k=1

(Xk
j ◦ γ)

∂

∂xk

=
r∑

k=1

r∑
j=1

βj(X
k
j ◦ γ)

∂

∂xk
+

n∑
k=r+1

r∑
j=1

βj(X
k
j ◦ γ)

∂

∂xk
.

Set O = (Xjx
i)ij = Xi

j . We have γ̇H =
∑r
k=1

∑r
j=1 βj(O

k
j ◦ γ) ∂

∂xk
= Oβ, where we denoted

β = (β1, . . . , βr). Since O is invertible, (β1, . . . , βr) = (O−1 ◦ γ)γ̇H. Thus

(4.12) γ̇V =
n∑

k=r+1

r∑
j=1

ñ
(O−1 ◦ γ)γ̇H

ô
j

(Xk
j ◦ γ)

∂

∂xk
.

In particular, the following holds.

Proposition 4.13. Let γ be an absolute continuous curve. If γH is smooth, then γ is
smooth.

Proof. By hypothesis γ and γ̇H are absolute continuous. Then by (4.12) also γ̇V is absolute
continuous. Thus γ̇ is continuous. A bootstrap argument shows that γ is smooth. �

In the following, we will consider maps that are absolutely continuous on curves (ACCQ).
We recall that such maps send almost every (with respect to the Q-modulus measure)
rectifiable curve into a rectifiable curve (see [Sha00] for more details). In the case of a
sub-Riemannian manifold M , ACC maps defined on M have the following property. Let
X be any horizontal vector field in M and denote by φtX the corresponding flow. Then for
almost every p ∈ M (with respect to Lebesgue measure), one has that t → f(φtX(p)) is a
rectifiable curve.

Proposition 4.14. Let M and N two sub-Riemannian manifolds. Let f : M → N be an

ACC map. Let k ≥ 1, α ∈ (0, 1), and p ≥ 1. If f1, . . . , f r are in Ck,αH,loc(M) (resp. in

W k,p
H,loc(M)), then f1, . . . , fn is Ck,αH,loc(M) (resp. in W k,p

H,loc(M)).

Proof. Let X be any horizontal vector field in M . Notice that if f1, . . . , f r are in Ck,αH,loc(M)

(resp. in W k,p
H,loc(M)), then Xf1, . . . , Xf r are in Ck−1,α

H,loc (M) (resp. in W k−1,p
H,loc (M)). For

almost every p ∈M , the curve

f(φtX(p)) =: γ(p, t) = (γH(p, t), γV (p, t)),
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is an horizontal curve and hence (4.12) holds. Therefore, for almost every p, we have

(Xfm+1(p), . . . , Xfn(p)) =
d

dt
γV (p, t)|t=0

=
m∑
j=1

n∑
k=m+1

ñ
(O−1 ◦ γ(p, 0))γ̇H(p, 0)

ô
j

Xk
j (γ(p, 0))

∂

∂xk

=
m∑
j=1

n∑
k=m+1

ñ
O−1(f(p))(Xf1(p), . . . , Xf r(p))T

ô
j

(Xk
j ◦ f)(p)

∂

∂xk
.

Since the functions Xk
j ◦f and Xf1, . . . , Xf r are continuous (resp. in Lp), then the functions

Xfm+1, . . . , Xfn are continuous (resp. in Lp), for all horizontal X. Hence, f1, . . . , fn ∈
C1

H,loc(M) (resp. in W 1,p
H,loc(M)) and then Xk

j ◦ f ∈ C1
H,loc(M) (resp. in W 1,p

H,loc(M)). Notice

that, if f1, . . . , fn ∈ C1
H,loc(M) then on any compact K the functions ∇Hf

1, . . . ,∇Hf
n are

bounded, say by a constant C, therefore, for all horizontal curve σ : [0, 1]→ K,

Length(f(σ)) =

∫ 1

0
‖f∗σ′‖ds ≤ C

∫ 1

0
‖σ′‖ds = CLength(σ).

Hence, f1, . . . , fn ∈ C1
H,loc(M) implies that f is Lipschitz and therefore its components are

in Cα. Bootstrapping, we conclude that f1, . . . , fn is Ck,αH,loc(M) (resp. in W k,p
H,loc(M)). �

5. Regularity of 1-quasiconformal maps

In this section we prove Theorem 1.4. Let us first clarify the definition of the function
spaces involved. Given two equiregular sub-Riemannian manifolds M,N , we say that a
homeomorphism f is in C1,α

H,loc(M,N)∩W 2,2
H,loc(M,N) if, in any (smooth) coordinate system

of N , the components of f belong to C1,α
H,loc(M) ∩W 2,2

H,loc(M).

5.1. Every 1-quasiconformal map in C1,α
H,loc(M,N) ∩W 2,2

H,loc(M,N) is conformal. We
now show that, assuming that a 1-quasiconformal map has the basic regularity, then the
map is smooth. The proof is independent from the results in Section 4. Namely, we do not
need to assume any regularity theory for Q-Laplacian.

Proof of Theorem 1.4.(i). Denote by volM and volN the Popp measures of M and N . For
p ∈M , consider any system of smooth coordinates y1, ..., yn in a neighborhood of f(p) ∈ N .
Set f i := yi ◦ f and hi := LQ(yi) ∈ C∞(N). From Corollary 3.17.(i), it follows that for all
u ∈ C∞0 (M) ∫

M
LQ(f i)u d volM =

∫
M
hi ◦ f JPopp

f u d volM .

For i = 1, ..., n, set H i := hi ◦ f JPopp
f . Since the Popp measures are smooth and f ∈

C1,α
H,loc(M,N), we have that JPopp

f ∈ CαH,loc(M) and therefore H i ∈ CαH,loc(M). At this point

we have that LQf
i ∈ CαH,loc(M) and that f i ∈ C1,α

H,loc(M)∩W 2,2
H,loc(M). Notice that |∇Hf

i| is
bounded away from 0, since f is bi-Lipschitz. Therefore, Proposition 2.18 applies, yielding
that f ∈ C2,α

H,loc(M,N). The proof follows by bootstrap using the Schauder estimates in
Proposition 2.12. �
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5.2. Regularity of Q-harmonic functions implies conformality. We now reduce the
smoothness assumption by using horizontal Q-harmonic coordinates, see Section 4. To
ensure their existence and to use them we need to assume that the manifolds support the
regularity theory for Q-Laplacian as defined in Definition 1.2.

Note that a standard argument, see for instance [Cap97], shows that for every g =
(g1, ..., gr) ∈ C∞(M,Rr), U ⊂⊂ M and for every `, `′ > 0, there exists a constant C > 0
such that for each weak solution u of the equation LQu = X∗i g

i on M with ||u||
W 1,Q

H (U)
< `

and 1
`′ < |∇Hu| < `′ on U , one has

||u||
W 2,2

H (U)
≤ C.

Proof of Theorem 1.4.(ii). We shall use Proposition 4.14. Since sub-Riemannian manifolds
are Q-regular, by [HK98] any quasiconformal map is ACCQ (see also [MM95, Corollary
6.5]) In view of Theorem 4.9, consider u1, . . . , un a system of local coordinates around a
point f(p) ∈M for which the horizontal coordinates u1, . . . , ur are Q-harmonic.

In view of the morphism property (Corollary 3.17) the pull-backs fi = ui ◦ f , for
i = 1, . . . , r are Q-harmonic functions in a neighborhood of p ∈M . By the Q-harmonic reg-
ularity assumption, both ui and f i = ui◦f are in C1,α

H,loc(M), for i = 1, . . . , r. Apply Proposi-

tion 4.14 to f with k = 1 and get f ∈ C1,α
H,loc(M,N). Since also f−1 is 1-quasiconformal, the

same argument shows that f−1 ∈ C1,α
H,loc(N,M). In particular, the map f is bi-Lipschitz and

f1, . . . , fn is a local system of bi-Lipschitz coordinates. In particular, |∇Hf
1|, . . . , |∇Hf

n|
are bounded away from zero. Because of the observation above, we have that f1, . . . , f r

are in W 2,2
H,loc(M). Invoking Proposition 4.14 once more, we have that f1, . . . , fn are in

W 2,2
H,loc(M). �

We remark that in the setting of Carnot groups both the existence of horizontal Q-
harmonic coordinates and the Lipschitz regularity of 1-quasiconformal can be proven di-
rectly without using any PDE argument, see [Pan89].

6. Liouville Theorem for contact sub-Riemannian manifolds

6.1. Q-Laplacian with respect to a divergence-free frame. In this section we intend
to write the Q-Laplacian in a sub-Riemannian manifold using a horizontal frame that is
not necessarily orthonormal, but is divergence-free with respect to some other volume form.
Recall that a vector field X is divergence-free with respect to a volume form µ if its adjoint
with respect to µ equals −X.

Let M be a sub-Riemannian manifold equipped with a smooth volume form vol. Let
Y1, . . . , Yr be an orthonormal frame for the horizontal distribution HM of M . Recall from
(2.16) that the Q-Laplacian of a twice differentiable function is

LQu =
∑
i

Y ∗i

Ñ(∑
k

(Yku)2

)Q−2
2

Yiu

é
(6.1)
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Assume that there exists another frame X1, . . . , Xr of HM and another smooth volume
form µ such that each Xi is divergence-free with respect to µ. If g is the sub-Riemannian
metric of M , let

gij := g(Xi, Xj) ∈ C∞(M).

For all x ∈ M , let gij(x) be the inverse matrix of gij(x) and define the family of scalar
products on Rr as

g̃x(v, w) := vig
ij(x)wj , x ∈M, v,w ∈ Rr.

Then there exists aji ∈ C∞(M) such that

(6.2) Yi = ajiXj .

So δij = aki a
l
jgkl and gij = aika

j
k.

Let ω be the smooth function such that vol = ωµ. Since Xi are divergence-free with
respect to µ, the adjoint vector fields with respect to vol of Yi are such that

Y ∗i u = X∗j (ajiu) = −ω−1Xj(ωa
j
iu).

We use the notation

∇0u := (X1u, . . . ,Xru).

Noticing that
∑
k(Yku)2 = g̃(∇0u,∇0u), the expression (6.1) becomes

(LQu)(x) = −ω(x)−1XiAi(x,∇0u),

where

(6.3) Ai(x, ξ) := ω(x) g̃x(ξ, ξ)
Q−2
2 gik(x)ξk, for ξ ∈ Rr, x ∈M.

The derivatives of such functions are

∂xjAi(x, ξ) = ∂xjωg̃(ξ, ξ)
Q−2
2 gikξk+ωQ−2

2 g̃(ξ, ξ)
Q−2
2
−1∂xjg

l,l′ξlξl′g
ikξk+ωg̃(ξ, ξ)

Q−2
2 ∂xjg

ikξk

and

∂ξjAi(x, ξ) = ω
(
(Q− 2)g̃(ξ, ξ)

Q−4
2 gljgikξlξk + g̃(ξ, ξ)

Q−2
2 gij

)
.

Hence,

∂ξjAi(x, ξ)ηiηj = ω
(
(Q− 2)g̃(ξ, ξ)

Q−4
2 g̃(ξ, η)2 + g̃(ξ, ξ)

Q−2
2 g̃(η, η)

)
.

Using Cauchy-Schwarz inequality, the equivalence of norms in Rr, and the smoothness of
the functions ω and gij ’s, the functions Ai in (6.3) satisfy the following estimates: on each
compact set of M , for some λ,Λ > 0 depending only on Q, and for every χ ∈ Rr,

(6.4) λ|ξ|Q−2|χ|2 ≤ ∂ξjAi(x, ξ)χiχj ≤ Λ|ξ|Q−2|χ|2

and

(6.5) |∂xjAi(x, ξ)| ≤ Λ|ξ|Q−1.

Summarizing, we have the following.
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Proposition 6.6. Let M be a sub-Riemannian manifold and consider vol and µ two smooth
volume forms on M . Assume there is a horizontal frame X1, . . . , Xr on M of vector fields
that are divergence-free with respect to µ. If u is a function on M that is Q-harmonic with
respect to vol, then u satisfies

r∑
i=1

XiAi(x,∇0u) = 0,

for some Ai for which (6.4) and (6.5) hold.

Remark 6.7. In the above we used two different structures of metric measure space on
the same manifold M . These are (M, g, vol) and (M, g0, µ), where g0 is the metric for
which X1, . . . , Xm form an orthonormal frame. For each of these structures we may define
corresponding Sobolev spaces W p,q

H (M, g, vol) and W p,q
H (M, g0, µ). Similarly, we consider

spaces C1,α
H (M, g) and C1,α

H (M, g0). Since the the matrix (aji ) in (6.2) and its inverse have

locally Lipschitz coefficients, it follows that on compact sets Ω ⊂M the space W p,2
H (Ω, g, vol)

is biLipschitz to W p,2
H (Ω, g0, µ) for p = 1, 2, and C1,α

H (Ω, g) is biLipschitz to C1,α
H (Ω, g0).

6.2. Darboux coordinates on contact manifolds. On every contact manifold, the exis-
tence of a frame of divergence-free vector fields with respect to some measure is ensured by
Darboux Theorem. More generally, every sub-Riemannian manifold that is contactomorphic
to a unimodular (e.g., nilpotent) Lie group equipped with a horizontal left-invariant distri-
bution admits such a frame. The reason is that left-invariant vector fields are divergence-free
with respect to the Haar measure of the group. We shall recall now Darboux Theorem and
we recall the standard contact structures, which are those of the Heisenberg groups.

Darboux Theorem states, see [Etn03], that every two contact manifolds of the same
dimension are locally contactomorphic. In particular, any contact 2n+1-manifold is locally
contactomorphic to the standard contact structure on R2n+1, a frame of which is given by

(6.8) Xi := ∂xi −
xn+i

2
∂x2n+1 , Xn+i := ∂xn+i +

xi
2
∂x2n+1 ,

where i = 1, . . . , n. For future reference we will also set X2n+1 = ∂x2n+1 . This frame is
left-invariant for a specific Lie group structure, which we denote by Hn: the Heisenberg
group.

Corollary 6.9. (of Darboux Theorem) Let M be a contact sub-Riemannian 2n+1-manifold
equipped with a volume form vol. There are local coordinates x1, . . . , x2n+1 in which the
horizontal distribution is given by the vector fields in (6.8), which are divergence-free with
respect to the Lebesgue measure L, and there exists ω ∈ C∞ such that ω−1 ∈ C∞ and
d vol = ω dL.

6.3. Riemannian approximations. Let us consider a contact 2n + 1 manifold M , with
sub-Riemannian metric g0 and volume form vol. Let Y1, ..., Y2n denote a g0-orthonormal
horizontal frame in a neighborhood Ω ⊂M , and denote by Y2n+1 the Reeb vector field. For
every ε ∈ (0, 1) we may define a 1-parameter family of Riemannian metrics gε on M so that
the frame Y1, ..., Y2n, εY2n+1 is orthonormal. Denote by Y ε

1 , ..., Y
ε

2n+1 such gε-orthonormal
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frame. For ε ≥ 0 and δ ≥ 0 we will consider the family of regularized Q-Laplacian operators

Lε,δQ u :=
2n+1∑
i=1

Y ε∗
i

Ñ(
δ +

∑
k

(Y ε
k u)2

)Q−2
2

Y ε
i u

é
(6.10)

Invoking Corollary 6.9, and applying the same arguments as in Proposition 6.6, one can see

that such Q-Laplacian operators Lε,δQ , can be written in the form

(6.11) Lε,δQ u =
2n+1∑
i=1

Xε
iA

ε,δ
i (x,∇εu) = 0,

where Xε
i = Xi for i = 1, ..., 2n and Xε

2n+1 = εX2n+1, with X1, ..., X2n+1 as in (6.8). Here
we have set ∇εf = (Xε

1f, ...,X
ε
2n+1f). The case ε = δ = 0 in (6.11) reduces to the subelliptic

Q-Laplacian. The components Aε,δi in (6.11) are defined as in (6.3), starting with the gε
metric, i.e., for every ξ ∈ R2n+1 and x ∈ Ω,

(6.12) Aε,δi (x, ξ) := ω(x) (δ + g̃ε,x(ξ, ξ))
Q−2
2 gikε (x)ξk.

By the same token as in (6.4), one has that there exists λ,Λ > 0 depending only on Q, such
that the estimates

λ(δ + |ξ|2)
Q−2
2 |χ|2 ≤∑2n+1

i,j=1 ∂ξjA
ε,δ
i (x, ξ)χiχj ≤ Λ(δ + |ξ|2)

Q−2
2 |χ|2.(6.13)

|∂xjA
ε,δ
i (x, ξ)| ≤ Λ(δ + |ξ|2)

Q−1
2 .(6.14)

hold for all ε ≥ 0 and δ ≥ 0 and for all ξ ∈ R2n+1 and χ ∈ R2n+1.

In the next section we prove that contact sub-Riemannian manifolds support regularity for
Q-harmonic functions. The same arguments also imply regularity for p-harmonic functions
for every p ≥ 2. Hence, together with Theorem 1.4, this result will yield Theorem 1.1.

6.4. C1,α estimates after Zhong. In this section we consider weak solutions u ∈W 1,Q
H,loc(Ω)

of L0
Qu = 0, where L0

Q denotes the Q-Laplacian operator corresponding to a sub-Riemannian

metric g0 (not necessarily left-invariant) in an open set Ω ⊂ Hn, endowed with its Haar mea-
sure, which coincides with the Lebesgue measure in R2n+1. We prove the following theorem

Theorem 6.15. For every open U ⊂⊂ Ω and for every ` > 0, there exist constants α ∈
(0, 1), C > 0 such that for each u ∈W 1,Q

H,loc(Ω) weak solution of L0
Qu = 0 with ||u||

W 1,Q
H (U)

<

`, one has
||u||

C1,α
H (U)

≤ C.

This result is due to Zhong [Zho09], in the case when g0 is a left invariant sub-Riemannian
metric in Hn. A simpler proof, in the case p > 4, was recently given by Ricciotti in [Ric17].

The proof in [Zho09] breaks down with the additional dependence on x, in the coefficients
of the equation as expressed in Proposition 6.6. In fact, in one of the approximations used
in [Zho09], the argument relies on the existence of explicit barrier functions, which one does
not have in our setting. To deal with this issue we use a Riemannian approximation scheme
to carry out the regularization. Apart from this aspect, the arguments in [Zho09] apply to
the present setting as well. Note that the Hölder regularity of the solution u is considerably
simpler (see for instance [CDG93]).
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Remark 6.16. The proof in [Zho09] applies to any Carnot group of step two, and likewise
the conclusion of Theorem 6.15 continues to hold in this more general setting.

Riemannian approximation. Throughout the rest of the section we will assume δ > 0 and

let u denote a solution of L0
Qu = 0 in Ω ⊂ Hn. For ε > 0 we consider W k,p

ε,loc and Ck,αε to be
the Sobolev and Hölder spaces corresponding to the frame Xε

1, ..., X
ε
2n+1. Observe that by

virtue of classical elliptic theory (see for instance [LU68] ) for δ > 0 one has that the weak

solutions uε ∈ W 1,Q
ε,loc(Ω) of (6.11) are in fact smooth in Ω. For a fixed ball D ⊂⊂ Ω and

for any ε ≥ 0, standard PDE arguments (see for instance [HKM06]) yield the existence and
unicity of the solution to the Dirichlet problem

(6.17)

{
Lε,δQ uε = 0 in D

uε − u ∈W 1,Q
ε,0 (D).

Although the smoothness of uε may degenerate as ε → 0 and δ → 0, we will show that
the estimates on the Hölder norm of the gradient do not depend on these parameters and
hence will hold uniformly in the limit. Note that in view of the Caccioppoli inequality and
of the uniform bounds on the Hölder norm of uε as ε → 0 (such bounds depend only on
the stability of the Poincaré inequality and on the doubling constants of the Riemannian
Heisenberg groups (Hn, gε) which are stable in view of [CCR13]), one has that for any
K ⊂⊂ D there exists a constant MK,Q > 0 depending only on Q,K such that

||∇εuε||LQ(K) ≤MK,Q.

The next proposition addresses the non trivial uniform bounds.

Proposition 6.18. For every open U ⊂⊂ D and for every ` > 0, there exist constants

α ∈ (0, 1), C > 0 such that if uε ∈W 1,Q
ε,loc(D) ∩ C∞(D) is the unique solution of (6.17) with

||u||
W 1,Q

H (D)
< `, then one has

||uε||
C1,α
ε (U)

≤ C, ∀ε > 0.

The main regularity result Theorem 6.15 then follows from Proposition 6.18, by means
of Ascoli-Arzela theorem and the uniqueness of the Dirichlet problem (6.17) when ε = 0.

The proof of Proposition 6.18 follows very closely the arguments in [Zho09]. For the
reader’s convenience we reproduce them in the two sections below. For the sake of notation’s
simplicity, and without any loss of generality, we will just present the proof in the case n = 1.

Uniform Lipschitz regularity. The aim of this section is to establish Lipschitz estimates that
are uniform as ε→ 0, on a open ball B ⊂⊂ D.

Theorem 6.19. Let uε ∈ W 1,Q
ε,loc(D) ∩ C∞(D) be the unique solution of (6.17). If B ⊂

2B ⊂⊂ D then there exists C > 0, depending only on Q,Λ, λ of (6.13) and (6.14), such
that

sup
B
|∇εuε| ≤ C

Ç
1

L(2B)

∫
2B

(δ + |∇εuε|2)
Q
2

å 1
Q

,

where 2B denotes the ball with the same center of B and twice the radius.



CONFORMALITY IN SUB-RIEMANNIAN MANIFOLDS 41

The proof of this theorem is developed across several lemmata in this section.

For ε, δ > 0 and i = 1, 2, 3 set vi = Xε
i u
ε and observe that by differentiating (6.11) along

Xε
i , i = 1, 2, 3 one has

(6.20)
3∑

i,j=1

Xε
i

Ç
Aε,δi,ξj (x,∇εu

ε)Xε
jv1

å
+

3∑
i=1

Xε
i

Ç
Aε,δi,ξ2(x,∇εuε)X3u

ε

å
+X3

Ç
Aε,δ2 (x,∇εuε)

å
+

3∑
i=1

Xε
i

Ç
Aε,δi,x1(x,∇εuε)−

x2

2
Aε,δi,x3(x,∇εuε)

å
= 0;

(6.21)
3∑

i,j=1

Xε
i

Ç
Aε,δi,ξj (x,∇εu

ε)Xε
jv2

å
−

3∑
i=1

Xε
i

Ç
Aε,δi,ξ1(x,∇εuε)X3u

ε

å
−X3

Ç
Aε,δ1 (x,∇εuε)

å
+

3∑
i=1

Xε
i

Ç
Aε,δi,x2(x,∇εuε) +

x1

2
Aε,δi,x3(x,∇εuε)

å
= 0;

and

(6.22)
3∑

i,j=1

Xε
i

Ç
Aε,δi,ξj (x,∇εu

ε)Xε
jv3

å
+ ε

3∑
i=1

Xε
i

Ç
Aε,δi,x3(x,∇εuε)

å
= 0.

Remark 6.23. Note that the terms containing X3 in the equations above are not bounded
as ε → 0 in the gε metric. In the following it will be crucial to obtain estimates that are
stable as ε→ 0.

The following results were originally proved for the case with no dependence of x, in
[MM07, Theorem 7], [MZGZ09, Lemma 5.1] and then again in [Zho09] with a more direct
argument bypassing the difference quotients method. The proofs in our setting are very
similar and we omit most of the details.

Lemma 6.24. For every β ≥ 0 and η ∈ C∞0 (B) one has∫
B

(δ+|∇εuε|2)
Q−2
2 |∇εv3|2|v3|βη2 dL ≤

Ç
2Λ

λ(β + 1)
+2Λ

å ∫
B

(δ+|∇εuε|2)
Q−2
2 |∇εη|2|v3|β+2 dL

+ 2ε2Λ

Ç
1 +

1

λ(β + 1)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |v3|βη2 dL.

Proof. Multiply both sides of (6.22) by φ = η2|Xε
3u
ε|βXε

3u
ε and integrate over B. The

result follows in a standard way from Young’s inequality and from the structure conditions
(6.13). �

Note that dividing both sides of the inequality above by εβ+2 and letting β → 0 one
recovers the Manfredi-Mingione original lemma (see for instance [Zho09, Lemma 3.3]).
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Lemma 6.25. For every β ≥ 0 and η ∈ C∞0 (B) one has

∫
B

(δ+|∇εuε|2)
Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2η2 dL ≤ C(β+1)4

∫
B

(δ+|∇εuε|2)
Q−2+β

2 |X3u
ε|2η2 dL

+ C

∫
B

(η2 + |∇εη|2)(δ + |∇εuε|2)
Q+β

2 dL+ C

∫
B
η2(δ + |∇εuε|2)

Q+β+1
2 dL,

for some constant C = C(λ,Λ) > 0.

Proof. The proof follows the arguments in [Zho09] and [MZGZ09], multiplying both sides

of (6.20), (6.21) and (6.22) by φ = η2(δ+ |∇εuε|2)
β
2 vi for i = 1, 2, 3, integrating over B and

then using Young inequality and the structure conditions (6.13). �

The next step provides a crucial reverse Hölder-type inequality.

Lemma 6.26. For every β ≥ 2 and η ∈ C∞0 (B) one has

∫
B

(δ + |∇εuε|2)
Q−2
2 |Xε

3u
ε|β

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ+2 dL

≤ C (β + 1)2||∇εη||2L∞(B)

Ç
ε2
∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|β−2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2(ηβ+2 + ηβ) dL

+ εβ
∫
B

(δ + |∇εuε|2)
Q+β

2 ηβdL
å
.

Note that dividing by εβ and letting ε→ 0 one recovers Zhong’s estimate.

Proof. Differentiating (6.11) along Xε
1, recalling that [Xε

1, X
ε
2] = X3, and multiplying by a

test function φ ∈ C∞0 (B) yields

(6.27)

∫
B
Xε

1A
ε,δ
i (x,∇εuε)Xε

iφ dL =

∫
B
X3A

ε,δ
2 (x,∇εuε)φ dL.

Next set φ = ηβ+2|Xε
3u
ε|βXε

1u
ε in the previous identity to obtain in the left-hand side∫

B
Xε

1A
ε,δ
i (x,∇εuε)Xε

iφ dL =

∫
B
Aε,δi,ξj (x,∇εu

ε)Xε
1X

ε
ju
εXε

1X
ε
i u
εηβ+2|Xε

3u
ε|β dL

−
∫
B
Xε

1A
ε,δ
2 (x,∇εuε)X3u

εηβ+2|Xε
3u
ε|β dL

+ β

∫
B
Xε

1A
ε,δ
i (x,∇εuε)Xε

iX
ε
3u
ε|Xε

3u
ε|β−2Xε

3u
εXε

1u
εηβ+2 dL

+ (β + 2)

∫
B
Xε

1A
ε,δ
i (x,∇εuε)Xε

i η|Xε
3u
ε|βXε

1u
εηβ+1 dL.
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Substituting in (6.27) and using the structure conditions (6.13) one obtains

(6.28)

∫
B

(δ + |∇εuε|2)
Q−2
2 |Xε

3u
ε|β

3∑
j=1

|Xε
1X

ε
ju
ε|2ηβ+2 dL

≤
∫
B
Xε

1A
ε,δ
2 (x,∇εuε)X3u

εηβ+2|Xε
3u
ε|β dL

+ β

∫
B
|Xε

1A
ε,δ
i (x,∇εuε)Xε

iX
ε
3u
ε|Xε

3u
ε|β−1Xε

1u
εηβ+2| dL

+ (β + 2)

∫
B
|Xε

1A
ε,δ
i (x,∇εuε)Xε

i η|Xε
3u
ε|βXε

1u
εηβ+1| dL

+

∫
B
|X3A

ε,δ
2 (x,∇εuε)ηβ+2|Xε

3u
ε|βXε

1u
ε| dL

≤
3∑

h,k=1

∣∣∣∣∣
∫
B
Xε
hA

ε
k(x,∇εuε)X3u

εηβ+2|Xε
3u
ε|β dL

∣∣∣∣∣
+ β

∫
B
|∇εAε,δi (x,∇εuε)||∇εXε

3u
ε||Xε

3u
ε|β−1|∇εuε|ηβ+2 dL

+ (β + 2)

∫
B
|∇εAε,δi (x,∇εuε)||∇εη|Xε

3u
ε|β|∇εuε|ηβ+1 dL

+

∫
B

2∑
j=1

|X3A
ε,δ
j (x,∇εuε)|ηβ+2|Xε

3u
ε|β|∇εuε|dL = I1 + I2 + I3 + I4.

In a similar fashion, differentiating (6.11) along Xε
2 and Xε

3, and using the test function
φ = ηβ+2|Xε

3u
ε|βXε

hu
ε with h = 2, 3, one arrives at a similar estimate for Xε

hX
ε
ju
ε in the

left-hand side. The combination of such estimate and (6.28) yields

∫
B

(δ + |∇εuε|2)
Q−2
2 |Xε

3u
ε|β

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ+2 dL ≤ I1 + I2 + I3 + I4.

Next, for any τ > 0, we estimate each single component |Ik| in the following way

(6.29) |Ih| ≤ τ
∫
B

(δ + |∇εuε|2)
Q−2
2 |Xε

3u
ε|β

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ+2 dL

+ ε2
C(β + 1)2||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|β−2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2(ηβ+2 + ηβ) dL

+ τ−1ε2
∫
B

(δ + |∇εuε|2)
Q+β

2 ηβdL,

from which the conclusion will follow immediately. We begin by looking at I1.
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• Estimate of I1. Proceeding as in [Zho09] we integrate by parts to obtain

(6.30)∫
B
Xε
hA

ε,δ
k (x,∇εuε)X3u

εηβ+2|Xε
3u
ε|β dL = −

∫
B
Aε,δk (x,∇εuε)Xε

h

Ç
X3u

εηβ+2|Xε
3u
ε|β
å

dL

= −ε−1(β + 1)

∫
B
Aε,δk (x,∇εuε)ηβ+2|Xε

3u
ε|βXε

3X
ε
hu

ε dL

− (β + 2)

∫
B
Aε,δk (x,∇εuε)ηβ+1Xε

hη|Xε
3u
ε|βX3u

ε dL = I + II

– Estimate of I. Using Young inequality one has∣∣∣∣ε−1(β + 1)

∫
B
Aε,δk (x,∇εuε)ηβ+2|Xε

3u
ε|βXε

3X
ε
hu

ε dL
∣∣∣∣

≤ ε−1(β + 1)

∫
B

(δ + |∇εuε|2)
Q−1
2 |Xε

3u
ε|β|∇εXε

3u
ε|ηβ+2 dL

≤ τ ||∇εη||−2
L∞(B)ε

−2(β + 1)

∫
B

(δ + |∇εuε|2)
Q−2
2 |Xε

3u
ε|β|∇εXε

3u
ε|2ηβ+4 dL

+
(β + 1)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|βηβ dL = A+ B

Next, we invoke Lemma 6.24 to estimate the first integral A as∫
B

(δ + |∇εuε|2)
Q−2
2 |Xε

3u
ε|β|∇εXε

3u
ε|2ηβ+4 dL

≤
Ç

4Λ

λ(β + 6)
+ 2Λ

å ∫
B

(δ + |∇εuε|2)
Q−2
2 ηβ+2|∇εη|2|Xε

3u
ε|β+2 dL

+ 2ε2Λ

Ç
1 +

2

λ(β + 3)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|βηβ dL

≤ ||∇εη||2L∞(B)

Ç
4Λ

λ(β + 6)
+ 2Λ

å ∫
B

(δ + |∇εuε|2)
Q−2
2 ηβ+2|Xε

3u
ε|β|Xε

3u
ε|2 dL

+ 2ε2Λ

Ç
1 +

2

λ(β + 3)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|β−2|Xε

3u
ε|2ηβ dL

(using the fact that |Xε
3u
ε| ≤ ε∑3

i,j=1 |Xε
iX

ε
ju
ε| one concludes)

≤ ε2||∇εη||2L∞(B)

Ç
4Λ

λ(β + 6)
+ 2Λ

å ∫
B

(δ + |∇εuε|2)
Q−2
2 ηβ+2|Xε

3u
ε|β

3∑
i,j=1

|Xε
iX

ε
ju
ε|2 dL

+ 2ε4Λ

Ç
1 +

2

λ(β + 3)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|β−2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ dL
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To estimate B we simply observe that

|B| ≤
ε2(β + 1)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|β−2ηβ

3∑
i,j=1

|Xε
iX

ε
ju
ε|2 dL

In conclusion we have proved

|I| ≤ τ(β + 1)

[Ç
4Λ

λ(β + 6)
+ 2Λ

å ∫
B

(δ + |∇εuε|2)
Q−2
2 ηβ+2|Xε

3u
ε|β

3∑
i,j=1

|Xε
iX

ε
ju
ε|2 dL

+ 2||∇εη||−2
L∞(B)ε

2Λ

Ç
1 +

2

λ(β + 3)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|β−2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2η2 dL

]

+
ε2(β + 1)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|β−2ηβ

3∑
i,j=1

|Xε
iX

ε
ju
ε|2 dL

– Estimate of II. Observe that, in view of Young’s inequality, one has

|II| ≤ τ
∫
B

(δ + |∇εuε|2)
Q−2
2 ηβ+2|∇εη||Xε

3u
ε|β|X3u

ε|2 dL

+
(β + 2)2

τ

∫
B

(δ + |∇εuε|2)
Q
2 ηβ|∇εη|2|Xε

3u
ε|βdL

≤ τ
∫
B

(δ + |∇εuε|2)
Q−2
2 ηβ+2|∇εη||Xε

3u
ε|β

3∑
i,j=1

|Xε
iX

ε
ju
ε|2 dL

+ ε2
(β + 2)2)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εuε|2)
Q
2 ηβ|Xε

3u
ε|β−2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2dL

This concludes the estimate of I1, as in (6.29).
• Estimate of I2. To estimate I2 we will note that in view of the structure conditions

(6.13) there exists a constant C depending on B (essentially maxB |xi|) such that

|
∫
B
|∇εAε,δi (x,∇εuε)||∇εXε

3u
ε||Xε

3u
ε|β−1|∇εuε|ηβ+2 dL|

≤
∫
B

(δ + |∇εuε|2)
Q−2
2

3∑
i,j=1

|Xε
iX

ε
ju
ε||∇εuε|||∇εXε

3u
ε||Xε

3u
ε|β−1ηβ+2dL

+ C

∫
B

(δ + |∇εuε|2)
Q−1
2 |∇εuε||∇εXε

3u
ε||Xε

3u
ε|β−1ηβ+2dL

≤
∫
B

(δ + |∇εuε|2)
Q−1
2

3∑
i,j=1

|Xε
iX

ε
ju
ε|||∇εXε

3u
ε||Xε

3u
ε|β−1ηβ+2dL

+ C

∫
B

(δ + |∇εuε|2)
Q
2 |∇εXε

3u
ε||Xε

3u
ε|β−1ηβ+2dL.

Note that the second integral occurs only because of the dependence of Ai on the
space variable x. The first integral is estimated exactly as in [Zho09], by means of
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Young’s inequality and Lemma 6.24. In fact one has

∫
B

(δ + |∇εuε|2)
Q−1
2

3∑
i,j=1

|Xε
iX

ε
ju
ε|||∇εXε

3u
ε||Xε

3u
ε|β−1ηβ+2dL

≤ ε−2||∇εη||−2
L∞τ

∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εXε

3u
ε|2|Xε

3u
ε|βηβ+4dL

+ Cε2β2||∇εη||2L∞τ−1
∫
B

(δ + |∇εuε|2)
Q
2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2|Xε

3u
ε|β−2ηβdL

≤ Cε−2||∇εη||−2
L∞τ(β + 2)4

Ç
2Λ

λ(β + 1)
+ 2Λ

å ∫
B

(δ + |∇εuε|2)
Q−2
2 ηβ+2|∇εη|2|Xε

3u
ε|β+2 dL

+ 2Cβ2||∇εη||−2
L∞τΛ

Ç
1 +

1

λ(β + 1)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|βηβ+4 dL

+ Cε2β2||∇εη||2L∞τ−1
∫
B

(δ + |∇εuε|2)
Q
2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2|Xε

3u
ε|β−2ηβdL.

Estimate (6.29) then follows once one assumes (without loss of generalization) that
||∇εη||L∞ ≥ 1 and using the fact that |Xε

3u
ε| ≤ ε∑3

i,j=1 |Xε
iX

ε
ju
ε|.

For the second integral we first use Young inequality and obtain

∫
B

(δ + |∇εuε|2)
Q
2 |∇εXε

3u
ε||Xε

3u
ε|β−1ηβ+2dL

≤ τε−2
∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εXε

3u
ε|2|Xε

3u
ε|βηβ+4dL

+ ε2τ−1
∫
B

(δ + |∇εuε|2)
Q+2
2 |Xε

3u
ε|β−2ηβdL.

Invoking Lemma 6.24 and Young inequality one then has

(6.31)

∫
B

(δ + |∇εuε|2)
Q
2 |∇εXε

3u
ε||Xε

3u
ε|β−1ηβ+2dL

≤ τε−2

ñÇ
2Λ

λ(β + 1)
+ 2Λ

å ∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εη|2|v3|β+2 dL

+ 2ε2Λ

Ç
1 +

1

λ(β + 1)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |v3|βη2 dL

ô
+ τ−1ε2

∫
B

(δ + |∇εuε|2)
Q+2
2 |Xε

3u
ε|β−2ηβdL
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≤ τε−2

ñÇ
2Λ

λ(β + 1)
+ 2Λ

å ∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εη|2|v3|β+2 dL

+ 2ε2Λ

Ç
1 +

1

λ(β + 1)2

å ∫
B

(δ + |∇εuε|2)
Q
2 |v3|βη2 dL

ô
+ τ−1β − 2

β

∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|βηβdL

+ τ−1 2

β
εβ
∫
B

(δ + |∇εuε|2)
Q+β

2 ηβdL.

From the latter, estimate (6.29) follows once one recalls that |Xε
3u
ε| ≤ ε∑3

i,j=1 |Xε
iX

ε
ju
ε|.

• Estimate of I3. Using the structure conditions (6.13) one has

(β + 2)

∫
B
|∇εAε,δi (x,∇εuε)||∇εη|Xε

3u
ε|β|∇εuε|ηβ+1 dL

≤ (β + 2)

∫
B

(δ + |∇εuε|2)
Q−2
2

3∑
i,j=1

|Xε
iX

ε
ju
ε||Xε

3u
ε|β|∇εuε|ηβ+1|∇εη| dL

+ C(β + 2)

∫
B

(δ + |∇εuε|2)
Q−1
2 |Xε

3u
ε|β|∇εuε|ηβ+1|∇εη| dL

The second integrand in the right hand side is estimated as in (6.31). To estimate
the first integral we use Young inequality to obtain

∫
B

(δ + |∇εuε|2)
Q−2
2

3∑
i,j=1

|Xε
iX

ε
ju
ε||Xε

3u
ε|β|∇εuε|ηβ+1|∇εη|dL

≤ τ
∫
B

(δ + |∇εuε|2)
Q−2
2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2|Xε

3u
ε|βηβ+2 dL

+ Cτ−1
∫
B

(δ + |∇εuε|2)
Q
2 |Xε

3u
ε|βηβ|∇εη|2 dL

and consequently invoke |Xε
3u
ε| ≤ ε∑3

i,j=1 |Xε
iX

ε
ju
ε| to conclude that (6.29) holds.

• Estimate of I4. The structure conditions (6.13) yield

∫
B

2∑
j=1

|X3A
ε
j(x,∇εuε)|ηβ+2|Xε

3u
ε|β|∇εuε| dL

≤ (β + 2)

∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εXε

3u
ε||Xε

3u
ε|β|∇εuε|ηβ+2 dL

+ C

∫
B

(δ + |∇εuε|2)
Q−1
2 |Xε

3u
ε|β|∇εuε|ηβ+2 dL,

which are estimated as for (6.30) and using |Xε
3u
ε| ≤ ε∑3

i,j=1 |Xε
iX

ε
ju
ε|. �

The argument in the previous proof can be adapted to the case β = 0 to obtain
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Corollary 6.32. There exists a constant C > 0 depending only on λ,Λ, Q such that for
every η ∈ C∞0 (B) with 0 ≤ η ≤ 1 one has

∫
B

(δ + |∇εuε|2)
Q−2
2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2η2 dL

≤ C (1 + ||∇εη||2L∞(B) + ||X3η||L∞(B))

∫
Supp(η)

(δ + |∇εuε|2)
Q
2 dL
å
.

Note that the previous result immediately implies part (2) of Proposition 6.18.

The following corollary is a straightforward consequence of Lemma 6.26 and the Young
inequality applyed to the right hand side of inequality of the lemma.

Corollary 6.33. For every β ≥ 2 and η ∈ C∞0 (B) with 0 ≤ η ≤ 1, one has

∫
B

(δ + |∇εuε|2)
Q−2
2 |Xε

3u
ε|β

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ+2 dL

≤ εβCβ(β + 1)4||∇εη||βL∞(B)

Ç ∫
B

(δ + |∇εuε|2)
Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ dL

+

∫
B

(δ + |∇εuε|2)
Q+β

2 ηβdL
å
.

Theorem 6.34 (Caccioppoli Inequality, [Zho09]). For every β ≥ 2 and η ∈ C∞0 (B) with
0 ≤ η ≤ 1, one has

∫
B

(δ + |∇εuε|2)
Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2η2 dL

≤ C(β + 1)8(||∇εη||L∞(B) + ||ηX3η||L∞(B))

∫
Supp(η)

(δ + |∇εuε|2)
Q+β

2 dL

+ C

∫
B
η2(δ + |∇εuε|2)

Q+β+1
2 dL.
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Proof. We use Hölder inequality and Corollary 6.33 to obtain∫
B

(δ + |∇εuε|2)
Q−2+β

2 |X3u
ε|2η2 dL

≤
Ç ∫

B
(δ + |∇εuε|2)

Q−2
2 |X3u|β+2ηβ+2 dL

å 2
β+2
Ç ∫

Supp(η)
(δ + |∇εuε|2)

Q+β
2 dL

å β
β+2

≤
Ç
ε−β

∫
B

(δ+|∇εuε|2)
Q−2
2 |Xε

3u|β
3∑

i,j=1

|Xε
iX

ε
ju
ε|2ηβ+2 dL

å 2
β+2
Ç ∫

Supp(η)
(δ+|∇εuε|2)

Q+β
2 dL

å β
β+2

≤
[
Cβ(β + 1)4||∇εη||βL∞(B)

Ç ∫
B

(δ + |∇εuε|2)
Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ dL

+

∫
B

(δ + |∇εuε|2)
Q+β

2 ηβdL
å] 2

β+2Ç ∫
Supp(η)

(δ + |∇εuε|2)
Q+β

2 dL
å β
β+2

.

Recalling Lemma 6.25 the previous estimate then yields∫
B

(δ+|∇εuε|2)
Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2η2 dL ≤ C(β+1)4

∫
B

(δ+|∇εuε|2)
Q−2+β

2 |X3u
ε|2η2 dL

+ C

∫
B

(η2 + |∇εη|2)(δ + |∇εuε|2)
Q+β

2 dL+ C

∫
B
η2(δ + |∇εuε|2)

Q+β+1
2 dL

≤ C(β + 1)4

[
Cβ(β + 1)4||∇εη||βL∞(B)

Ç ∫
B

(δ + |∇εuε|2)
Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2ηβ dL

+

∫
B

(δ+|∇εuε|2)
Q+β

2 ηβdL
å] 2

β+2Ç ∫
Supp(η)

(δ+|∇εuε|2)
Q+β

2 dL
å β
β+2

+C

∫
B
η2(δ+|∇εuε|2)

Q+β+1
2 dL.

The conclusion follows immediately from the latter and from Young inequality. �

Lemma 6.35. Let uε ∈ W 1,Q
ε,loc(B) ∩ C∞(B) be the unique solution of (6.17). For every

β ≥ 2 set w = (δ + |∇εuε|2)
Q+β

4 . If η ∈ C∞0 (B) with 0 ≤ η ≤ 1, and κ = Q/(Q − 2), then
one hasÇ ∫

B
w2κη2 dL

å 1
κ

≤ C(β + 1)8(||∇εη||L∞(B) + ||ηX3η||L∞(B))

∫
Supp(η)

w2 dL,

where C > 0 is a constant depending only on Q.

Proof. Recall that the Sobolev constant depends only on the constants in the Poincare’
inequality and in the doubling inequality [HK00], both of which are stable in this Riemann-
ian approximation scheme (see [CCR13]). The result follows immediately applying Sobolev
inequality and invoking Theorem 6.34. �
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The proof of Theorem 6.19 now follows in a standard fashion, as described in [Zho09],
from the Moser iteration scheme (see for instance [GT01, Theorem 8.18]) and from [HKM06,
Lemma 3.38]. Note that the constant involved in such iteration are stable as ε → 0 (see
[CCR13]).

Uniform C1,α
ε regularity. Throughout this section we will implicitly use the uniform (in ε)

local Lipschitz regularity of solutions of (6.17) and set for every B(x0, 2r0) ⊂ B, k ∈ R,
l = 1, 2, 3, and 0 < r < r0/4 < 1,

µε(r) = oscB(x0,r)|∇εu
ε|;A−l,k,r = {x ∈ B(x0, r) such that Xε

l u
ε < k}

and A+
l,k,r = {x ∈ B(x0, r) such that Xε

l u
ε > k}.

The proof of Proposition 6.18 and in particular of the C1,α estimate in part (1) follows
immediately from the following theorem, which is the main result of the section:

Theorem 6.36. Let uε ∈W 1,Q
ε,loc(B)∩C∞(B) be the unique solution of (6.17). There exists

a constant s > 0 depending only on Q,λ,Λ, r0 such that

µ(r) ≤ (1− 2−s)µ(4r) + 2s(δ + µ(r0)2)
Q
2

Ç
r

r0

å 1
Q

,

for all 0 < r < r0/8.

Our first step in the proof of this theorem consists in establishing a Caccioppoli inequality,
in Proposition 6.57 for second order derivatives on super level sets A+

l,k,r. This result will
imply that the gradient ∇εuε is in a De Giorgi-type class and then Theorem 6.36 will follow
from well known results in the literature.

We begin with some preliminary lemmata. We indicate by |A| the Lebesque measure
L(A) of a set A.

Lemma 6.37. Let uε ∈W 1,Q
ε,loc(B)∩C∞(B) be the unique solution of (6.17). For any q ≥ 4

there exists a positive constant C depending only on q, λ,Λ such that for all k ∈ R, l = 1, 2, 3
and 0 < r′ < r < r0/2, η ∈ C∞0 (B(x0, r)) such that η = 1 on B(x0, r

′) one has

(6.38)

∫
A+
l,k,r′

(δ + |∇εuε|2)
Q−2
2 |∇εωl|2η2 dL

≤
∫
A+
l,k,r

(δ + |∇εuε|2)
Q−2
2 |ωl|2|∇εη|2 dL+ C(δ + µ(r0)2)

Q
2 |A+

l,k,r|
1− 2

q + I3

where we have set ωl = (Xε
l u
ε − k)+ and

(6.39) I3 =

∫
B(x0,r)

(δ + |∇εuε|2)
Q−2
2 |∇εX3u

ε||ω1|η2 dL.
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Proof. We study the case l = 1, since l = 2, 3 is similar. Select a cut-off function η ∈
C∞0 (B(x0, r)) such that η = 1 on B(x0, r

′) and |∇εη| ≤ M(r − r′)−1, for some M > 0
independent of ε. Substitute φ = η2ω1 in the weak form of (6.20) to obtain

∫
B
Aε,δi,ξj (x,∇εu

ε)Xε
jX

ε
1u
εXε

iω1η
2 dL = −2

∫
B
Aε,δi,ξj (x,∇εu

ε)Xε
jX

ε
1u
εXε

i ηηω1 dL

−
∫
B
Aε,δi,ξ2(x,∇εuε)X3u

εXε
i (ω1η

2) dL

+

∫
B
X3A

ε,δ
i (x,∇εuε)η2ω1dL

−
∫
B

Ç
Aε,δi,x1(x,∇εuε)−

x2

2
Aε,δi,x3(x,∇εuε)

å
Xε
i (η

2ω1)dL.

Using Young inequality and the structure conditions (6.13) one easily obtains the estimate

∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εω1|2η2 dL ≤ C

∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εη|2ω2

1 dL

+ C

∫
B

(δ + |∇εuε|2)
Q−2
2 |X3u

ε|2η2 dL+ C

∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εX3u

ε||ω1|η2 dL

+ C

∫
B

(δ + |∇εuε|2)
Q−1
2

Ç
ω1η

2 + 2ω1η|∇εη|+ η2|∇εω1|
å

dL ≤ I1 + I2 + I3 + I4.

The terms I1 and I3 are already in the form needed for (6.58). To estimate I4 we observe
that for every τ > 0 one can estimate

I4 ≤ τ
∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εω1|2η2 dL+

Cτ−1
∫
A+

1,k,r

(δ + |∇εuε|2)
Q
2 dL+ C

∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εη|2ω2

1 dL,
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thus leading to the correct left hand side for (6.58). To estimate I2 we argue as in [Zho09]
and invoke Theorem 6.34 and Corollary 6.33 to show

I2 ≤
Ç ∫

A+
1,k,r

(δ + |∇εuε|2)
Q−2
2 dL

å1− 2
q
Ç ∫

B
(δ + |∇εuε|2)

Q−2
2 |X3u

ε|qη2 dL
å 2
q

≤ (δ + µ(r0)2)
Q−2
2

q−2
q |A+

1,k,r|
1− 2

q

Ç ∫
B(x0,r0/2)

(δ + |∇εuε|2)
Q−2
2 |X3u

ε|q−2|Xε
iX

ε
ju
ε|2 dL

å 2
q

≤ (δ+µ(r0)2)
Q−2
2

q−2
q |A+

1,k,r|
1− 2

q

[
Cq−2(q−1)4r2−q

0

Ç ∫
B(x0,

2
3
r0)

(δ+|∇εuε|2)
Q−4+q

2

3∑
i,j=1

|Xε
iX

ε
ju
ε|2dL

+

∫
B(x0,

2
3
r0)

(δ + |∇εuε|2)
Q+q−2

2 dL
å] 2

q

≤ Cq(q − 1)12r−q0 (δ + µ(r0)2)
Q−2
2

q−2
q |A+

1,k,r|
1− 2

q

[ ∫
B(x0,r0)

(δ + |∇εuε|2)
Q+q−2

2 dL

+

∫
B(x0,r0)

η2(δ + |∇εuε|2)
Q+q−3

2 dL+

∫
B(x0,r0)

(δ + |∇εuε|2)
Q+q−2

2 dL
] 2
q

≤ Cq(q − 1)12r−q0 (δ + µ(r0)2)
Q
2 |A+

1,k,r|
1− 2

q .

�

In order to obtain from the previous lemma a Cacciopoli inequality we only need to obtain
an estimate of I3. The proof of the previous lemma yields the following

Corollary 6.40. In the hypothesis and notation of the previous lemma, one has that for
any q ≥ 4 there exists a positive constant C depending only on q, λ,Λ such that for all
k ∈ R, l = 1, 2, 3 and η ∈ C∞0 (B(x0, r)),

(6.41) I3 ≤ C(δ + µ(r0)2)
Q−2
4 |A+

l,k,r|
1
2G

1
2
0

where

G0 =

∫
(δ + |∇εuε|2)

Q−2
2 ω2

l |∇εv3|2η2 dL.

Proof. From Hölder inequality one has,

(6.42)

∫
B(x0,r)

(δ + |∇εuε|2)
Q−2
2 |∇εX3u

ε||ω1|η2 dL

≤ C(δ + µ(r0)2)
Q−2
4 |A+

l,k,r|
1
2

Ç ∫
B(x0,r)

(δ + |∇εuε|2)
Q−2
2 ω2

1|∇εX3u
ε|2η2 dL

å 1
2

�



CONFORMALITY IN SUB-RIEMANNIAN MANIFOLDS 53

Lemma 6.43. In the hypothesis and notations of Lemma 6.40, for every m ∈ N, m ≥ 1
one has that there exists a constant C depending on m,Q, λ,Λ, such that

(6.44) G0 ≤ C
m∑
h=0

K
2− 1

2m+h (δ + µ2(r0))
1+ Q

2m+h+2

where

K =

Ç ∫
B(x0,r)

(δ+|∇εuε|2)
Q−2
2 ω2

l (η
2+|∇εη|2) dL+

∫
B(x0,r)

(δ+|∇εuε|2)
Q−2
2 |∇εωl|2η2 dL

å 1
2

.

Proof. In the following we will denote by C a series of positive constants depending only
on m,Q, λ,Λ. We study the case l = 1, since l = 2 is similar and l = 3 is slightly easier.

The bound (6.44) follows from a bootstrap argument, whose main step is the subject of
the following estimates.

For β ≥ 0 and for any cut-off function η ∈ C∞0 (B(x0, r)), let

Gβ =

∫
B(x0,r)

(δ + |∇εuε|2)
Q−2
2 ω2

l |∇εv3|2|v3|βη2 dL,

Fβ =

∫
B(x0,r)

(δ + |∇εuε|2)
Q
2 |v3|β|ωl|2η2 dL,

where we recall that ωl = (Xε
l u
ε − k)+, for l = 1, 2, 3.

We claim that there exists a constant C > 0, depending only on Q,λ,Λ such that
(6.45)

Gβ ≤
{ CK

Ç
G

1
2
2β+2 + F

1
2

2β+2 + (δ + µ(r0)2)
1
2F

1
2

2β

å
, if β > 0

CK

Ç
G

1
2
2 + F

1
2

2 + (δ + µ(r0)2)1+Qσ
4 K1−σ

å
, if β = 0 and for any σ ∈ [0, 2),

and

(6.46) Fβ ≤
{
CK(δ + µ(r0)2)

1
2F

1
2

2β if β > 0,

C(δ + µ(r0)2)K2 if β = 0,

In particular, for every β > 0 and m ≥ 2, it will follow that one has

(6.47) Fβ ≤ (CK)2(1− 1
2m

)(δ + µ(r0)2)1− 1
2m F

1
2m

2mβ.

Estimate (6.46) follows directly from Hölder inequality and from the gradient bounds in
Theorem 6.19,

(6.48) Fβ =

∫
B(x0,r)

(δ + |∇εuε|2)
Q
2 |v3|β|ωl|2η2 dL

≤
Ç ∫

B(x0,r)
(δ + |∇εuε|2)

Q−2
2 |ωl|2η2 dL

å 1
2
Ç ∫

B(x0,r)
(δ + |∇εuε|2)

Q+2
2 |v3|2β|ωl|2η2 dL

å 1
2

≤ CK(δ + µ(r0)2)
1
2F

1
2

2β
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To prove (6.45) substitute φ = η2ω2
l |v3|βv3 in the weak form of (6.22) to obtain

(6.49)

(β+1)

∫
B
Aε,δiξj (x,∇εu

ε)Xε
jv3X

ε
i v3ω

2
l |v3|βη2 dL ≤

∫
B
|Aε,δiξj (x,∇εu

ε)||Xε
jv3||Xε

i [η
2ω2

l ]||v3|β+1 dL

+ ε

∫
B
|Aε,δi,x3(x,∇εuε)Xε

i

ñ
η2ω2

l |v3|βv3

ô
|dL = A+B.

The first term on the left hand side is estimated via Young’s inequality

A ≤ CK
Ç ∫

B
(δ + |∇εuε|2)

Q−2
2 |v3|2β+2|∇εv3|2|ω1|2η2 dL

å 1
2

For the second term we note that

(6.50) B ≤ Cε
∫
B

(δ + |∇εuε|2)
Q−1
2

∣∣∣∣∣∇ε
ñ
η2ω2

l |v3|βv3

ô∣∣∣∣∣| dL
≤ Cε

∫
B

(δ + |∇εuε|2)
Q−1
2 |v3|β+1|ω1|2η|∇εη|dL

+ Cε

∫
B

(δ + |∇εuε|2)
Q−1
2 |v3|β|∇εv3||ω1|2η2 dL

+ Cε

∫
B

(δ + |∇εuε|2)
Q−1
2 |v3|β+1|∇εω1||ω1|η2 dL = T1 + T2 + T3.

For any ε̄ > 0, Young inequality and (6.46) yield the estimate

(6.51) T2 ≤ ε̄
∫
B

(δ + |∇εuε|2)
Q−2
2 |v3|β|∇εv3|2|ω1|2η2 dL

+ Cε̄

∫
B

(δ + |∇εuε|2)
Q
2 |v3|β|ω1|2η2 dL

≤ ε̄
∫
B

(δ + |∇εuε|2)
Q−2
2 |v3|β|∇εv3|2|ω1|2η2 dL

+ Cε̄K(δ + µ(r0)2)
1
2F

1
2

2β.

The other two terms are estimated through Hölder inequality as

T1 + T3 ≤ K
(∫

B
(δ + |∇εuε|2)

Q
2 |v3|2β+2|ω1|2η2 dL

) 1
2

.
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In view of the structure conditions (6.13), of (6.49), and of the estimates above for A and
B one has∫

B
(δ+|∇εuε|2)

Q−2
2 ω2

1|∇εv3|2|v3|βη2 dL ≤ K
Ç ∫

B
(δ+|∇εuε|2)

Q−2
2 |v3|2β+2|∇εv3|2|ω1|2η2 dL

å 1
2

+K

(∫
B

(δ + |∇εuε|2)
Q
2 |v3|2β+2|ω1|2η2 dL

) 1
2

+ Cε̄K(δ + µ(r0)2)
1
2F

1
2

2β + ε̄

∫
B

(δ + |∇εuε|2)
Q−2
2 |v3|β|∇εv3|2|ω1|2η2 dL.

Bringing the last term on the right hand side over to the left hand side one obtains (6.45)
in the case β > 0. For the case β = 0, the estimate on T2 above can be improved. We let
σ ∈ [0, 2) and observe that

(6.52) T2 ≤ ε̄
∫
B

(δ + |∇εuε|2)
Q−2
2 |∇εv3|2|ω1|2η2 dL

+ Cε̄

∫
B

(δ + |∇εuε|2)
Q
2 |ω1|2η2 dL

≤ ε̄G0 + Cε̄(δ + µ(r0)2)

∫
B

(δ + |∇εuε|2)
Q−2
2 |ω1|2η2 dL

≤ ε̄G0 + Cε̄K
2(1−σ

2
)(δ + µ(r0)2)

Ç ∫
B

(δ + |∇εuε|2)
Q−2
2 |ω1|2η2 dL

åσ
2

≤ ε̄G0 + Cε̄K
2(1−σ

2
)(δ + µ(r0)2)1+Qσ

4 .

The latter concludes the proof of the estimates (6.45) and (6.46). At this point we can
proceed with the description of the bootstrap argument needed to prove the bound on G0.

In view of Lemma 6.24, Corollary 6.32, Corollary 6.33 and Theorem 6.34 one has the
following

(6.53) Gβ ≤ C(δ+µ(r0)2)
Q+β+2

2 |B(x0, r0)| and Fβ ≤ C(δ+µ(r0)2)
Q+β+2

2 |B(x0, r0)|.

Combining (6.53) with (6.45) and (6.46) yields for all β > 0 and m ≥ 1,

(6.54) Gβ ≤ CKG
1
2
2β+2 + (CK)2− 1

2m (δ + µ2(r0))
1
2

(1− 1
2m

)F
1

2m+1

2m(2β+2)

+ (CK)2− 1
2m (δ + µ2(r0))

1
2

+ 1
2

(1− 1
2m

)F
1

2m+1

2m(2β)

≤ CKG
1
2
2β+2 + (CK)2− 1

2m (δ + µ2(r0))
β+2
2

+ 1
2m+1

Q
2 |B(x0, r0)|

1
2m+1

Iterating the latter m times and setting βm = 2m − 2 one obtains

Gβ2 ≤ C
ñ
K2(1− 1

2m
)G

1
2m

βm+2
+

m∑
h=1

K
2(1− 1

2m+h )
(δ + µ2(r0))

2(1+ Q

2m+h+2 )

ô
.
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From the latter, (6.47), and keeping in mind the starting point (6.45) corresponding to
β = 0, one concludes that for any σ ∈ [0, 2),

(6.55)

G0 ≤ C
ñ
K2(1− 1

2m+1 )G
1

2m+1

βm+2
+

m∑
h=1

K
1− 1

2m+h (δ + µ2(r0))
1+ Q

2m+h+2 + F
1
2

2 +K2(δ + µ2(r0))

ô
.

≤ C
ñ
K2(1− 1

2m+1 )G
1

2m+1

βm+2
+

m∑
h=1

K
2− 1

2m+h (δ + µ2(r0))
1+ Q

2m+h+2

+K1− 1
2m (δ + µ2(r0))

1
2
− 1

2m+1 F
1

2m+1

2m+1 +K2−σ(δ + µ2(r0))1+Qσ
4

ô
.

Applying (6.53) to the latter and letting σ = 1
2m , yields the estimate

(6.56) G0 ≤ C
ñ
K2− 1

2m (δ + µ2(r0))1+ Q+2

2m+2 +
m∑
h=1

K
2− 1

2m+h (δ + µ2(r0))
1+ Q

2m+h+1

+K2− 1
2m (δ + µ2(r0))

1
2
− 1

2m+1 +Q+2m+1+2

2m+2 +K2− 1
2m (δ + µ2(r0))1+ Q

2m+2 .

ô
,

concluding the proof. �

Proposition 6.57 (Caccioppoli inequality on super-level sets). Let uε ∈W 1,Q
ε,loc(B)∩C∞(B)

be the unique solution of (6.17). For any q ≥ 4 there exists a positive constant C depending
only on q, λ,Λ such that for all k ∈ R, l = 1, 2, 3 and 0 < r′ < r < r0/2 one has

(6.58)

∫
A+
l,k,r′

(δ + |∇εuε|2)
Q−2
2 |∇εωl|2η2 dL ≤ C

∫
A+
l,k,r

(δ + |∇εuε|2)
Q−2
2 |ωl|2|∇εη|2 dL

+ C(δ + µ(r0)2)
Q
2 |A+

l,k,r|
1− 2

q ,

where we have set ωl = (Xε
l u
ε − k)+.

Proof. As above, we study the case l = 1, since l = 2, 3 is similar. Denote by A the right
hand side of (6.58), then in view of (6.38) one only needs to show I3 ≤ A. From Lemma
6.37 one has

K ≤ (A+ I3)
1
2 .

In view of (6.44) and Corollary 6.40 one obtains

(6.59) I3 ≤ C(δ + µ(r0)2)
Q−2
4 |A+

l,k,r|
1
2

Ç m∑
h=0

K
2− 1

2m+h (δ + µ2(r0))
1+ Q

2m+h+2

å 1
2

≤ C(δ + µ(r0)2)
Q
4 |A+

l,k,r|
1
2

m∑
h=0

Ç
A

1
2 + I

1
2
3

)1− 1

2m+h+1

(δ + µ2(r0))
Q

2m+h+3 ,
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Next we observe that in view of Young inequality, for every h = 1, ...,m

(6.60) C(δ + µ(r0)2)
Q
4 |A+

l,k,r|
1
2 (A

1
2
− 1

2m+h+2 + I
1
2
− 1

2m+h+2

3 )(δ + µ2(r0))
Q

2m+h+3

≤ 1

2
I3 +

1

2
A+ C

Ç
(δ + µ(r0)2)

Q
4 |A+

l,k,r|
1
2 (δ + µ2(r0))

Q

2m+h+3

å 2m+h+2

1+2m+h+1

≤ 1

2
I3 +

1

2
A+ C(δ + |∇εuε|2)

Q
2 |A+

l,k,r|
1
2

( 2m+h+2

1+2m+h+1 )

To complete the proof of (6.58) we choose m sufficiently large so that

1− 2

q
≤ 1

2
(

2m+h+2

1 + 2m+h+1
).

�

A similar argument yields the corresponding result for sub-level sets:

Corollary 6.61. Let uε ∈ W 1,Q
ε,loc(B) ∩ C∞(B) be the unique solution of (6.17). For any

q ≥ 4 there exists a positive constant C depending only on q, λ,Λ such that for all k ∈ R,
l = 1, 2, 3 and 0 < r′ < r < r0/2 one has

(6.62)

∫
A−
l,k,r′

(δ + |∇εuε|2)
Q−2
2 |∇εωl|2 dL ≤ C(r − r′)−2

∫
A−
l,k,r

(δ + |∇εuε|2)
Q−2
2 |ωl|2 dL

+ C(δ + µ(r0)2)
Q
2 |A−l,k,r|

1− 2
q ,

where we have set ωl = (Xε
l u
ε − k)−.

From this point on, the rest of the argument does not rely on the function uε being
a solution of the equation anymore but only on the Caccioppoli inequality above. The
proof of Theorem 6.36 is very similar to the Euclidean case as developed in [LU68], and
[DiB83]. It ultimately relies on the properties of De Giorgi classes in the general setting
of metric spaces, as developed in [KS01] and [KMMP12]. We recall that a function f ∈
W 1,2

H (B(x0, r0)∩L∞(B(x0, r0) is in the De Giorgi class DG+(χ, q, γ) if there exists constants
χ, q, γ > 0 such that for every 0 < r′ < r < r0/4 < 1/2 and k ∈ R one has
(6.63)∫

B(x0,r′)
|∇εw|2 dL ≤ γ(r − r′)−2

∫
B(x0,r)

w2 dL+ χ|{x ∈ B(x0, r) such that w > 0}|1−
2
q ,

where ω = (f − k)+. A function f ∈ W 1,2
H (B(x0, r0) ∩ L∞(B(x0, r0) is in the De Giorgi

class DG−(χ, q, γ) if (6.63) holds for ω = (f − k)−. We set DG(χ, q, γ) = DG+(χ, q, γ) ∩
DG−(χ, q, γ). It is well known, see for instance [KMMP12] and references therein, that
functions in DG satisfy a scale invariant Harnack inequality and the following oscillation
bounds: If f ∈ DG(χ, q, γ) then there exists s = s(q, γ,Q, r0) > 0 such that

oscB(x0,r/2)f ≤ (1− 2−s)oscB(x0,r)f + χr
1−Q

q .
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From the latter, the Hölder continuity follows immediately assuming q is large enough. We
need to show that (6.58) and (6.62) imply Xε

l u
ε ∈ DG(χ, q, γ). To do this we need to prove

a result analogue to [DiB83, Proposition 4.1]:

Lemma 6.64. In the notation established above, there exists τ > 0 depending on Q,λ,Λ, r0

such that if for at least one k = 1, 2, 3,

|
®
x ∈ B(x, r) such that Xε

ku
ε < 1

8oscB(x,2r)|∇εuε|
´
| ≤ τrQ,

then

sup
B(x, r

2
)
Xε
ku

ε ≥
oscB(x,2r)|∇εuε|

100
.

Analogously, if for at least one k = 1, 2, 3,

|
®
x ∈ B(x, r) such that Xε

ku
ε > −1

8
oscB(x,2r)|∇εuε|

´
| ≤ τrQ,

then

sup
B(x, r

2
)
Xε
ku

ε ≤ −
oscB(x,2r)|∇εuε|

100
.

This result is proved exactly as in [DiB83, Proposition 4.1] (see also [Zho09, Lemma 4.4])
and it yields essentially the equivalence

(δ + µ(2r)2)
Q−2
2 ≈ (δ + |∇εuε|2)

Q−2
2 ,

for all x ∈ B(x0, r), when |∇εuε| is small with respect to oscB(x,2r)|∇εuε|. This equivalence,
together with (6.58) and (6.62) implies Xε

l u
ε ∈ DG(χ, q, γ), thus concluding the proof of

the Hölder regularity of the gradient in Theorem 6.36. �
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mations, Michigan Math. J. 41 (1994), no. 1, 135–142.

[MZGZ09] Giuseppe Mingione, Anna Zatorska-Goldstein, and Xiao Zhong, Gradient regularity for elliptic
equations in the Heisenberg group, Adv. Math. 222 (2009), no. 1, 62–129.

[NSW85] Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector
fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147.
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