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Abstract

The aim of this work is to investigate heliocentric phasing maneuvers performed by a spacecraft propelled by an
Electric Solar Wind Sail, that is, an innovative propellantless propulsion system that consists of a spinning grid of
charged tethers that uses solar wind momentum to produce thrust. It is assumed that the Electric Solar Wind Sail
may be controlled by varying its attitude with respect to a classical orbital reference frame, and by switching the
tether grid off to obtain Keplerian arcs along its phasing trajectory. The analysis is conducted within an optimal
framework, the aim of which is to find both the optimal control law and the minimum-time phasing trajectory for
a given angular drift along the (assigned) working orbit. A typical phasing scenario is analyzed, by considering
either a drift ahead or a drift behind maneuver on a circular, heliocentric orbit of given radius. The paper also
investigates the possibility of using an Electric Solar Wind Sail-based deployer to place a constellation of satellites
on the same working orbit. In that case, the optimal flight time is obtained in a compact, semianalytical form as
a function of both the propulsion system performance and the number of the sail-deployed satellites.
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Nomenclature

a = propulsive acceleration vector, [mm/s2]
ac = characteristic acceleration, [mm/s2]
{ar, aθ} = propulsive acceleration components, [mm/s2]

{̂ir, îθ} = polar reference frame unit vectors
H = Hamiltonian function
J = performance index, [days]
mpay = payload mass, [kg]
mtot = total mass, [kg]
N = number of satellites
n̂ = normal unit vector
r̂ = radial unit vector
r = Sun-spacecraft distance, [au]
r⊕ = reference distance equal to 1 au
t = time, [days]
{u, v} = spacecraft velocity components, [km/s]
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v = spacecraft velocity vector, [km/s]
αn = pitch angle, [deg]
αp = primer vector angle, [deg]
∆φ = angular drift, [deg]
θ = angular coordinate, [deg]
{λr, λθ, λu, λv} = adjoint variables
µ� = Sun’s gravitational parameter, [km3/s2]
τ = switching parameter
ω = angular velocity, [rad/day]

Subscripts

0 = initial
A = drift ahead
B = drift behind
f = final
i = i-th arc
max = maximum
tr = threshold value

Superscripts

− = design value
? = optimal
· = time derivative

1. Introduction

Since the dawn of space exploration, the study of the Sun and the main properties of the heliosphere
have greatly attracted the interest of the scientific community [1, 2]. A first and obvious reason is that
some catastrophic solar events, such as coronal mass ejections, could cause damages on orbiting spacecraft
and even induce communication problems on Earth’s surface. It is therefore important to implement ways
of obtaining an early warning of such unpredictable events. A thorough understanding of solar behaviour
could also increase our knowledge of other Sun-related phenomena, such as solar irradiance cycles and solar
wind properties, which have a substantial impact on Earth’s climate and on communication satellites. In
this context, NASA’s Parker Solar Probe [3] launched in August 2018, which will perform three (very)
close passages by the star, is only the most recent example of a Sun-focused scientific mission. In fact,
the first mission totally dedicated to the scientific investigation of the Sun’s characteristics was Helios 1 [4],
which provided relevant data on the solar wind and the corona. In 1980, NASA launched the Solar Maximum
Mission [5], aimed at studying solar flares and high-energy components of the Sun’s spectrum during its solar
maximum, and a similar investigation was later conducted by the Japanese mission Yohkoh [6], launched in
1991. The lack of information about high-latitude solar zones was an important motivation for the successful
Ulysses deep-space mission [7], which collected important data on the polar regions of the Sun [8].

More recently, three satellites have been placed in the vicinity of the L1 collinear Lagrangian point of
the Sun-Earth gravitational field [9]. In particular, NASA’s Advanced Composition Explorer [10] is orbiting
on a small-amplitude Lissajous orbit and is devoted to the study of solar wind and cosmic rays, whereas
the Wind spacecraft mission [11] is mainly dedicated to analyzing the properties of the solar wind through
in-situ measurements. Finally, the Solar and Heliospheric Observatory (SoHO) [12], a joint mission between
ESA and NASA, is tracking a Halo orbit around L1. SoHO is equipped with several scientific instruments
that analyze the solar surface, its atmosphere, the corona, and solar wind as a part of the International
Solar Terrestrial Physics Program, the aim of which is to improve the understanding of the physics of solar
terrestrial relations. On a different but related point, propellantless propulsion systems have been also
proposed for this kind of mission, in order to generate artificial orbits around stationary points closer to the
Sun [13, 14, 15] than the natural Lagrange point.
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A different approach for solar scientific investigations has been tested by the Solar Terrestrial Relations
Observatory (STEREO) mission [16], launched in 2006 and operative until late 2014, although the periodic
recovery operations ceased on October 2018. STEREO was made of two twin spacecraft, one (STEREO-A)
drifting ahead of the Earth and one (STEREO-B) behind it, thus providing three-dimensional stereoscopic
images of the Sun. The angular drift of the two satellites was obtained using a slightly different semimajor
axis of their orbits, but a similar result could likewise be obtained by means of a heliocentric phasing
maneuver, which could be performed by a spacecraft equipped with a propellantless propulsion system [17,
18].

This paper discusses in this respect the performance of an Electric Solar Wind Sail (or E-sail) [19],
a recently-developed propellantless propulsion system, in a heliocentric mission scenario that requires a
phasing maneuver. In its original configuration, an E-sail is constituted of a charged grid of spinning
tethers, stretched out by the centrifugal force, and kept at a high positive potential; see Fig. 1(a). The
E-sail generates a thrust by exploiting the electrostatic iteration between its charged grid of tethers and the
incoming ions in the solar wind; see Fig. 1(b). The grid voltage is maintained by means of an electron gun,
which expels the electrons attracted by the positively biased tethers. The required power consumption is on
the order of some hundreds of watts [19], even for very large tether grids, and is therefore compatible with
most spacecraft available power levels. However, due to the high complexity of the deployment mechanism
of such large structures [20], other less complex configurations have been proposed, in which the propulsive
acceleration is generated by a single or only a few tethers [21], although the working principle is essentially
the same. Even though the original E-sail concept involves a positively-charged grid, the possibility of using
a negatively-charged E-sail has been proposed by Janhunen [22]. The preliminary results obtained suggest
its applicability even in a deep space mission, despite the existence of some technical complexities. In the
case of negative polarity, the outwards thrust would be generated by the electrostatic interaction between
the grid and the electrons in the solar wind. The recently proposed plasma-brake [23, 24, 25] is basically an
application of this concept to a geocentric mission, in which a negatively-charged tether is used to deorbit
a spacecraft from a low Earth orbit. Anyway, the analysis performed in this work would not be affected
by a different polarity of the grid, since its main effect would be a modification of the E-sail performance
parameter only.

The aim of this paper is to extend previous preliminary results [18] by means of the thrust model
recently suggested by Huo et al. [27]. The analysis of a phasing maneuver can be addressed with two
different strategies. The first one uses the Hill-Clohessy-Wiltshire equations [28], which model the relative
motion between a spacecraft and its working heliocentric (circular) orbit. If the E-sail attitude is fixed
with respect to an orbital reference frame, the integration of these equations provides a set of analytical
expressions that give the spacecraft position as a function of time [29], in such a way that the flight time
and the angular displacement can be calculated depending on the E-sail characteristics. However, such an
approach has two important intrinsic limitations. First, its accuracy is limited by the assumption that the
spacecraft remains close to the working orbit during the phasing maneuver. Moreover, it does not permit
a variation of the E-sail attitude to be considered, and, for that reason, the phasing trajectories could be
quite different from a truly optimal solution.

In this work, the heliocentric phasing maneuvers are therefore analyzed within an optimal framework, by
minimizing the required flight time [30] and considering the nonlinear equations of motion of the E-sail-based
spacecraft. In particular, the optimal control law of the E-sail attitude and the corresponding minimum
maneuver time are obtained by means of an indirect approach. The system performance is analyzed in two
different mission cases, that is, either a conventional phasing maneuver, or the deployment of a constellation
of equally-spaced spacecraft on the same (circular) heliocentric orbit. Both scenarios are illustrated in the
next section.

2. Problem description

A heliocentric phasing maneuver entails varying the angular position of a spacecraft along its reference
(working) orbit, without affecting the other orbital parameters [31, 32]. Possible applications of phasing
maneuvers include orbital rendezvous with a target object [33], active debris removal [34], and orbital
repositioning on a given working orbit [35].
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(a) Courtesy of Alexandre Szames, Antigravité (Paris).
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(b) Conceptual scheme.

Figure 1: Artistic rendering and conceptual sketch of an Electric Solar Wind Sail. Figure adapted from Ref. [26].

Phasing trajectories are usually classified into drift ahead or drift behind maneuvers. In the former case,
the final spacecraft angular coordinate is greater than that of a virtual point that tracks the working orbit
with a Keplerian motion. Likewise, in the latter case, this coordinate is smaller than that of the virtual
point. These two cases are both shown in Fig. 2, which illustrates both a drift ahead and a drift behind
maneuver with respect to the Earth, assuming that the spacecraft leaves the Earth’s sphere of influence with
zero excess velocity relative to it.

Typically, a phasing trajectory on a circular working orbit may be obtained in a very simple way with
a bi-impulsive maneuver by means of a chemical thruster, in which the two impulses give the same velocity
variation and are both tangentially directed. This approach, however, usually requires a significant value
of velocity variation and, therefore, a large amount of propellant consumption. Accordingly, the possibility
of exploiting a low-thrust propellantless propulsion system in this mission scenario is an interesting option.
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Figure 2: Conceptual sketch of a phasing maneuver on the Earth’s heliocentric orbit.

In particular, the problem of investigating a solar-sail-enabled phasing maneuver has been investigated at
length in the literature [36, 17, 37], with possible applications involving a Smart Dust [29, 35], that is,
a miniaturized femtosatellite with a high area-to-mass ratio [38]. Some results also exist for a spacecraft
propelled by an E-sail [18], even though they were obtained with a quite simplified thrust model that is based
on the assumption that the propulsive acceleration magnitude is independent of the spacecraft attitude.

A special application of a set of (consecutive) phasing maneuvers consists in a constellation deployment by
means of a sort of“deployer”spacecraft. Such a mission involves an E-sail-based shuttle, the payload of which
is constituted byN ≥ 2 small satellites, each one being equipped with suitable scientific instrumentation. The
constellation deployment is achieved by means of succeeding heliocentric phasing maneuvers. In particular,
at the end of each phasing trajectory arc, one of the satellites stowed in the deployer is ejected (with
zero velocity relative to it). Once the whole payload has been ejected from the shuttle, the deployment
phase ends, and the satellites are all placed on the same heliocentric (working) orbit with a prescribed
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angular separation, thus enabling a scientific observation of the Sun from different locations. A sketch of
a constellation deployment scenario is shown in Fig. 3. Such an idea may be considered as a potential
extension of the STEREO mission concept [16].
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deployer

satellite 2

reference
orbit

Figure 3: Conceptual sketch of a constellation deployment scenario by means of an E-sail-based deployer.
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3. Mathematical model

According to the recent results by Huo et al. [27], the propulsive acceleration vector a generated by a
flat, disc-shaped E-sail may be written in a compact analytical form as

a = τ
ac
2

(r⊕
r

)
[r̂ + (r̂ · n̂) n̂] (1)

where τ ∈ {0, 1} is a dimensionless parameter that accounts for the possibility of switching either on (τ = 1)
or off (τ = 0) the electron gun that maintains the E-sail (positive) grid voltage, r⊕ , 1 au is a reference
distance, r̂ is the Sun-spacecraft unit vector (with r = ‖r‖), and n̂ is the unit vector normal to the E-sail
nominal plane and directed outwards with respect to the Sun; see Fig. 4. In Eq. (1), ac is the characteristic
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Figure 4: Conceptual sketch of the vectors involved in E-sail thrust generation. Adapted from Ref. [39]

acceleration, which depends on the grid voltage and the sail design parameters, and is usually chosen as the
reference performance parameter for an E-sail-based spacecraft. The assumption of a constant value of ac
implies that the variations of the solar wind properties are neglected to a first order. The interested reader
may find more details on this topic in Refs. [40, 39, 41], which discuss the effects of the solar wind dynamic
pressure variation on the characteristic acceleration value. Note that Eq. (1) also assumes that the E-sail
tethers belong to same plane (that is, the E-sail has an ideal flat shape), in accordance with the recent results
stating that the thrust magnitude reduction caused by tether inflection is negligible [42, 43]. In particular,
the thrust model of Eq. (1) gives a propulsive acceleration vector a, whose maximum inclination with respect
to the radial direction is about 19.5 deg. Such a result has been obtained first by numerical simulations [44]
and then derived analytically in Ref. [27], starting from the preliminary results of Ref. [45]. A thorough
description of the E-sail thrust direction constraint (and, in general, of the adopted thrust model) may be
found in Ref. [27].

Consider an E-sail-based spacecraft which covers a heliocentric, circular working orbit of radius r0.
Assume that the propulsive acceleration vector a belongs to the working orbit plane, and introduce a polar
heliocentric reference frame T (O; r, θ) of unit vector îr ≡ r̂ and îθ, whose origin coincides with the Sun’s
center-of-mass O. In particular, θ is the azimuthal angle measured counterclockwise from a given (fixed)
direction that coincides with the initial Sun-spacecraft line; see Fig. 5.

Taking into account that the spacecraft motion is two-dimensional, from Eq. (1) the radial (ar) and
circumferential (aθ) components of the propulsive acceleration may be written as

ar , a · îr = τ
ac
4

(r⊕
r

)
[3 + cos (2αn)] (2)

aθ , a · îθ = τ
ac
4

(r⊕
r

)
sin (2αn) (3)

where αn ∈ [−90, 90] deg is the sail pitch angle defined as the angle between the direction of r̂ and that of
n̂, viz.

αn , sign (v · n̂) arccos (r̂ · n̂) (4)
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Figure 5: Reference frame and spacecraft state variable.

where v is the spacecraft velocity vector, and sign (2) is the signum function. In the rest of the analysis, it
is assumed that the sail pitch angle αn can be varied by adjusting the voltage level of tethers with a suitable
control law, as proposed in Refs. [46, 47].

Bearing in mind Eqs. (2) and (3), the spacecraft dynamics in the polar reference frame T can be written
as

ṙ = u (5)

θ̇ = v/r (6)

u̇ = −µ�

r2
+
v2

r
+ τ

ac
4

(r⊕
r

)
[3 + cos (2αn)] (7)

v̇ = −u v
r

+ τ
ac
4

(r⊕
r

)
sin (2αn) (8)

where the dot symbol denotes a time derivative, µ� is the Sun’s gravitational parameter, and u and v are
the radial and circumferential components of the spacecraft velocity vector v. According to Eqs. (5)–(8), the
spacecraft (two-dimensional) motion is described by the four state variables {r, θ, u, v} and the two control
variables {τ, αn}.
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3.1. Trajectory optimization

Let the state variables at the initial time t0 , 0 be

r(t0) = r0, θ(t0) = 0, u(t0) = 0, v(t0) =
√
µ�/r0 (9)

where the angular coordinate θ(t0) has been set to zero, without loss of generality, because the working orbit
is circular. The optimization of a phasing maneuver consists in looking for the control law that minimizes
the time ∆t , tf − t0 ≡ tf required for the spacecraft to track the same initial (circular) orbit, but with an
angular drift ∆φ ∈ [0, 360) deg. The latter is measured at tf counterclockwise from the line connecting the
Sun and a virtual point that has continued tracking the nominal (Keplerian) orbit from t0 to tf . In other
terms, the boundary conditions at time tf are given by

r(tf ) = r0, θ(tf ) = ω0 tf + ∆φ, u(tf ) = 0, v(tf ) =
√
µ�/r0 (10)

where ω0 ,
√
µ�/r30 is the angular velocity on the working orbit. In particular, denoting with either ∆θA

or ∆θB the absolute value of the angular variation in a drift ahead or a drift behind maneuver, respectively,
∆φ is defined as

∆φ ,

{
∆θA drift ahead case

360 deg −∆θB drift behind case
(11)

in accordance with Fig. 2.
The minimum-time trajectory corresponding to the phasing maneuver with boundary conditions (9) and

(10), is obtained by maximizing the performance index

J , −tf (12)

The dynamical system defined by Eqs. (5)–(8) admits an Hamiltonian function H, defined as

H , λr u+ λθ
v

r
+ λu

(
−µ�

r2
+
v2

r
+ ar

)
+ λv

(
−u v
r

+ aθ

)
(13)

where ar and aθ are given by Eqs. (2) and (3), while λr, λθ, λu, and λv denote the adjoint variables associated
with the state variables r, θ, u, and v. Their time derivatives are given by the Euler-Lagrange equations as

λ̇r , −
∂H
∂r

= λθ
v

r2
+ λu

(
v2

r2
− 2µ�

r3
+
ar
r

)
+ λv

(
−u v
r2

+
aθ
r

)
(14)

λ̇θ , −
∂H
∂θ

= 0 (15)

λ̇u , −∂H
∂u

= −λr + λv
v

r
(16)

λ̇v , −
∂H
∂v

= −λθ
1

r
− 2λu

v

r
+ λv

u

r
(17)

In particular, Eq. (15) states that λθ is a constant of motion.
The optimal phasing trajectory is the solution of a two-point boundary value problem (TPBVP), consti-

tuted by the equations of motion (5)–(8) and the Euler-Lagrange equations (14)–(17), with four boundary
conditions at t = t0 given by Eqs. (9), and four at t = tf given by Eqs. (10). The final (minimum) time tf
is obtained by enforcing the transversality condition [48], which is obtained from Eq. (12) and the second of
Eqs. (10) as

H(tf ) = 1 + λθ

√
µ�

r30
(18)

Using the Pontryagin’s maximum principle, the optimal control law τ = τ?(t) and αn = α?n(t) are found
by maximizing, at each time instant t, the Hamiltonian function given by Eq. (13). Bearing in mind the
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geometric approach discussed in Ref. [27], the optimal control law can be written as

τ? =
1 + sign (1 + 3 cosαp)

2
(19)

α?n =
αp
2

(20)

where the angle αp ∈ [−180, 180] deg, defined as

αp , sign (λv) arccos

(
λu√

λu
2 + λv

2

)
(21)

denotes the angle between the Lawden’s primer vector [49] λv , [λu, λv]
T and the radial direction.

4. Numerical simulations

The time-optimal phasing maneuvers performed by an E-sail have been investigated with numerical
simulations, in which the differential equations have been integrated in double precision by means of a
variable order Adams-Bashforth-Moulton solver scheme [50, 51] with absolute and relative errors of 10−12.

4.1. Phasing maneuvers

As a first exemplary case, consider a spacecraft propelled by a low-performance E-sail with characteristic
acceleration ac = 0.1 mm/s2. The reference orbit coincides with the Earth’s (circular) heliocentric orbit
(r0 = r⊕). This case corresponds to a situation in which the spacecraft leaves the planet’s sphere of
influence with zero excess velocity. Figure 6 shows the minimum flight time tf as a function of the angular
drift ∆φ given by Eq. (11), in both cases of either drift ahead or drift behind maneuvers.
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Figure 6: Minimum flight time tf as a function of the angular drift ∆φ when ac = 0.1 mm/s2.

Each value of ∆φ can be obtained, in principle, both with a drift ahead and a drift behind maneuver.
When only the magnitude of the angular drift is relevant for the mission requirements, considering either
a drift ahead maneuver with angular change ∆θA or a drift behind maneuver with ∆θB = ∆θA, the latter
choice is better (that is, smaller) in terms of flight time. However, when a given angular displacement ∆φ
must be obtained (see Eq. (11)), a drift ahead maneuver could be more convenient, in particular for small
values of ∆φ. There exists, however, a threshold value, beyond which a drift behind maneuver requires a
smaller flight time. This is clearly illustrated in Fig. 6, from which the value of ∆φtr is about 150.7 deg
when ac = 0.1 mm/s2. The global minimum of the flight time, for both cases of drift ahead and drift
behind maneuvers, is reported in Figure 7 as a function of ∆φ. The maximum flight time is obtained when
∆φ = ∆φtr and is equal to tfmax

= 1836 days ' 5 years.
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Figure 7: Global minimum of the flight time tf as a function of the angular drift ∆φ when ac = 0.1 mm/s2.

4.2. Constellation deployment scenario

The constellation deployment scenario has been described in Section 2. Assume a deployer payload mass
mpay = 100 kg, which coincides with the total mass of the N spacecraft stowed within it, and consider
an initial characteristic acceleration ac = {0.1, 1}mm/s2. According to the E-sail mass budget model of
Ref. [52], these performance parameters could be achieved by a spacecraft with a total in-flight mass of
mtot = {280, 391} kg. In particular, the results of Ref. [52] suggest that an E-sail with ac = 0.1 mm/s2 and
mpay = 100 kg should be equipped with 12 tethers with a length of about 4 km each, so its mass would be
31.7 kg. The estimated power consumption is 38.5 W only. For comparative purposes, a high-performance
deployer with ac = 1 mm/s2 and mpay = 100 kg should be propelled by an E-sail with 44 tethers, with a
length of about 15 km each. The total E-sail mass would be 143 kg, with a total power consumption on the
order of 400 W.

The constellation deployment can be seen as a succession of consecutive phasing maneuvers with the same
angular drift and with identical boundary conditions as those of Eqs. (9) and (10). This is a consequence of
the assumption that the reference orbit is circular, so that the initial value of the angular coordinate may be
freely chosen. Assuming that the first satellite is released in proximity of Earth (just outside its sphere of
influence), the trajectory tracked by the deployer is composed of N − 1 arcs. The angular drift in each arc
depends on the number N of satellites stowed in the deployer. Indeed, if a constellation with equally-spaced
elements must be obtained, the angular drift in the generic i-th trajectory arc is

∆θBi =
360

N
deg for i = 1, 2, . . . , N − 1 (22)

where a drift behind maneuver is assumed, based on the previously discussed results. The value of ∆φi is
obtained by substituting Eq. (22) into Eq. (11). Note that the spacecraft characteristic acceleration has a
discontinuity at each deployment time tfi, due to the instantaneous reduction of the total deployer mass.
In particular, the characteristic acceleration aci during the i-th trajectory arc is given by

aci = ac
mtot

mtot −mpay(i/N)
for i = 1, 2, . . . , N − 1 (23)

where ac0 ≡ ac is the initial value of characteristic acceleration. Finally, the total maneuver time is simply
the sum of all the time intervals required to perform each phasing maneuver, viz.

tf =

N−1∑
i=1

tfi (24)

Figure 8 shows the values of tfi as a function of the (initial) characteristic acceleration ac and the
total number of satellites N . Once the E-sail characteristic acceleration in the i-th arc is found with
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Eq. (23), the flight time tfi is obtained graphically from Fig. 8 as a function of N . Finally, the total time
for the constellation deployment is given by Eq. (24). Table 1 summarizes the results for an E-sail-based
constellation deployment for different numbers of satellites N , assuming an initial characteristic acceleration
ac = 0.1 mm/s2.
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Figure 8: Time required to accomplish an arc of the constellation deployment mission tfi = tfi (aci , N) when ac =
{0.1, 1}mm/s2.

∆θBi [deg] N tf [days]
120 3 2385
90 4 3012
72 5 3428
60 6 3799
40 9 4685
30 12 5315

Table 1: Constellation deployment performance as a function of N when ac = 0.1 mm/s2.

The deployment of a considerable number of satellites requires a very high value of tf . Indeed, even
assuming that the deployer contains just three satellites (i.e. N = 3), the total deployment time amounts
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to more than 6 years. However, the mission time could be substantially shortened by increasing the E-sail
performance. This is clearly illustrated in Tab. 2, which reports the same cases as those of Tab. 1, but now
assuming ac = 1 mm/s2.

∆θBi
[deg] N tf [days]

120 3 785
90 4 1030
72 5 1241
60 6 1438
40 9 1953
30 12 2407

Table 2: Constellation deployment performance as a function of N when ac = 1 mm/s2.

For example, if the deployer inserts N = 3 equally-spaced spacecraft on the reference orbit (i.e. ∆θBi
=

120 deg), the total mission time reduces to 785 days ' 2.15 years. The corresponding trajectory is sketched
in Fig. 9, which shows that the optimal transfer trajectory includes also coasting (Keplerian) arcs, in which
τ = 0.
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Figure 9: Constellation deployment trajectory with ac = 1 mm/s2 and N = 3 (propelled arc: solid line; coasting arc: dash line;
satellite releases: stars; deployed satellite position at tf : circles).

5. Conclusions

This work has presented a preliminary analysis of an optimal phasing maneuver along a circular helio-
centric orbit performed by means of an Electric Solar Wind Sail-based spacecraft. Taking into account that
such an advanced propulsion system is propellantless, time-optimal phasing trajectories have been investi-
gated in both cases of drift ahead and drift behind maneuvers. In particular, for a given (fixed) angular
displacement, a drift behind maneuver is the most convenient option in terms of required time.
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A special application of phasing maneuvers has been proposed, which consists in a constellation de-
ployment scenario by means of a sort of deployer spacecraft propelled by an Electric Solar Wind Sail. In
particular, the deployer releases the generic satellite along the (same) working orbit with zero relative veloc-
ity. In this context, the simulation results suggest that a constellation of equally-spaced satellites could be
inserted along a heliocentric orbit of radius equal to one astronomical unit, even though the total required
time assumes a reasonable value only using a medium- or high-performance sail.
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