
Simplifying Self-Adaptive and Power-Aware Computing with Nornir

Daniele De Sensi, Tiziano De Matteis, Marco Danelutto

Department of Computer Science, University of Pisa, Italy
Largo B. Pontecorvo 3, I-56127 Pisa, Italy

Abstract

Self-adaptation is an emerging requirement in parallel computing. It enables the dynamic selection of resources to allocate to the
application in order to meet performance and power consumption requirements. This is particularly relevant in Fog Applications,
where data is generated by a number of devices at a varying rate, according to users’ activity. By dynamically selecting the
appropriate number of resources it is possible, for example, to use at each time step the minimum amount of resources needed to
process the incoming data.

Implementing such kind of algorithms may be a complex task, due to low-level interactions with the underlying hardware and
to non-intrusive and low-overhead monitoring of the applications. For these reasons, in this paper we propose Nornir, a C++-
based framework, which can be used to enforce performance and power consumption constraints on parallel applications running
on shared memory multicores. The framework can be easily customized by algorithm designers to implement new self-adaptive
policies. By instrumenting the applications in the PARSEC benchmark, we provide to strategy designers a wide set of applications
already interfaced to Nornir. In addition to this, to prove its flexibility, we implemented and compared several state-of-the-art
existing policies, showing that Nornir can also be used to easily analyze different algorithms and to provide useful insights on
them.

Keywords: Self-Adaptive, Power-Aware, Quality of Service, Data Stream Processing, Fog Computing, Parallel Computing

1. Introduction

Nowadays, the amount of data produced by internet-
connected devices is constantly growing. Data Steam Process-
ing (DaSP) applications deal with the processing of this contin-
uous and, often, infinite flows of information. Usually, these ap-
plications have to face different challenges concerning Quality
of Service (QoS) expectations from end users and developers.
For this reason, they exploit parallel and distributed hardware
to cope with the high volume of incoming data in a quasi-real
time fashion. In addition to this, DaSP applications are affected
by highly variable arrival rates and changes in their workload
characteristics. Due to economic costs, resource availability
and resource sharing issues, using all the available resources is
often not the right choice. Moreover, power consumption man-
agement has become a major concern for data centers and using
computing facilities that could be otherwise allocated to other
jobs is a waste of resources. Therefore, Self-Adaptivity (some-
times referred as autonomicity or elasticity) is a fundamental
feature: applications must be able to autonomously adjust their
resources usage (i.e. their configuration) to accommodate dy-
namic requirements and workload variations by maintaining the

Email addresses: desensi@di.unipi.it (Daniele De Sensi),
dematteis@di.unipi.it (Tiziano De Matteis),
marco.danelutto@unipi.it (Marco Danelutto)
©Elsevier, 2018. This is the author’s version of the work. It is posted

here by permission of Elsevier for your personal use. Not for redistribution.
The definitive version was published in Elsevier Future Generation Computer
System (FGCS) (https://doi.org/10.1016/j.future.2018.05.012).

desired QoS in terms of performance and/or power consump-
tion.

These issues are particularly relevant in the area of Fog Com-
puting, where data is generated at varying rates according to
users’ activity. Being able to explicitly control power consump-
tion and performance of an application is fundamental to decide
if some parts of the computation need to be offloaded to the
cloud [1]. Furthermore, sensors and edge devices often have
energy harvesting capabilities [2], i.e. they can harvest power
from renewable energy sources, like from embedded solar pan-
els. In such cases, it may be useful to maximize performance
while not consuming more energy than that harvested from the
environment [3].

Controlling performance and power consumption is not only
relevant for streaming applications but also for classical batch
applications. Indeed, by finding proper tradeoffs between per-
formance and power consumption it would be possible, for ex-
ample, to explicitly control the battery life of mobile devices
(e.g. smartphones).

Programming tools for facing these issues are missing in
existing Stream Processing Systems (SPSs) and Parallel Pro-
gramming Frameworks. Currently, users and applications pro-
grammers have to manually decide when to change the oper-
ating conditions of the deployed applications. Moreover, de-
spite many self-adaptive strategies have been recently proposed
(e.g. [4, 5, 6, 7, 8]), implementing such strategies is a cumber-
some and error-prone duty for developers. Indeed, they have
to deal with many architectural low-level issues related to hard-

Preprint submitted to Future Generation Computer System May 18, 2018

https://doi.org/10.1016/j.future.2018.05.012


ware management mechanisms like voltage, frequency, cores
topology, etc. Even interfacing with applications for monitor-
ing purposes may not be an easy task. We believe that this is
one of the reasons why these strategies are usually only simu-
lated on post-mortem data instead of being validated on actual
application executions. Despite a simulation can provide a first
approximation of the accuracy of the algorithm, it is difficult to
precisely estimate the run-time overhead and the effectiveness
of these methods. Even when such algorithms are actually exe-
cuted, they are often validated on a specific application or run-
time [4]. Since the logic for implementing the self-adaptivity
is embedded inside the application code, it would be difficult
to use the same implementation of the algorithm for different
applications. As a consequence, comparing new self-adaptive
strategies with existing ones would be a difficult task.

For these reasons, in this paper we present Nornir, a cus-
tomizable C++ framework for self-adaptive and power-aware
computing1. On one side, Nornir can be used to enforce spe-
cific performance and power consumption requirements on par-
allel applications, by using some self-adaptive strategies al-
ready provided by the framework. On the other side, Nornir
can be customized by adding new self-adaptive algorithms.
This would allow a designer (i.e. the person in charge of creat-
ing new self-adaptive strategies) to just focus on the algorithm,
by exploiting the infrastructure provided by the framework to
interact with the application and with the underlying comput-
ing system. We believe that this is a fundamental step for
rapidly prototyping new self-adaptive techniques and for their
wide adoption. In addition, it would be possible for the design-
ers to easily compare their new algorithms with those already
provided by Nornir.

As additional contributions, we provide a wide set of applica-
tions already interfaced to Nornir, by instrumenting the appli-
cations in the PARSEC [9] benchmark. By doing so, we allow
the designers of new self-adaptive strategies to easily test and
validate their algorithms. The instrumented applications have
been integrated in the existing P3ARSEC benchmark suite [10]
and released as open source.

Eventually, to prove the flexibility of our approach, we used
Nornir to implement some state-of-the-art self-adaptive algo-
rithms and to test them over the instrumented PARSEC bench-
marks. This allowed us to compare these algorithms (some of
which were originally only tested on post-mortem data) and to
show advantages and disadvantages of each of them.

The paper is organized as follows. In Section 2 we pro-
vide the background and we describe some state of the art ap-
proaches. In Section 3 we depict the design of Nornir and in
Section 4 we show how application users can use Nornir to
enforce performance and power consumption requirements on
their applications. In Section 5 we discuss the possibilities an
application programmer has for connecting an application to
Nornir and in Section 6 we outline how Nornir can be cus-
tomized by adding new self-adaptive algorithms. After that, in

1The framework is released under open source license and publicly available
at http://danieledesensi.github.io/nornir/

Section 7 we show how to extend Nornir to support, for exam-
ple, other runtimes for parallel applications. We briefly describe
the applications we already interfaced to Nornir in Section 8,
and we will use them in Section 9 to compare some existing
self-adaptive algorithms and to evaluate how they behave when
they are actually executed instead of being just simulated. Fi-
nally, in Section 10 we draw conclusions.

2. Background and Related Work

Self-adaptive systems are able to alter their behavior accord-
ing to QoS requirements and to the surrounding conditions in
order to achieve some goal, without any human intervention.
Altering the behavior usually implies changing the configura-
tion of the application, e.g. the amount of used resources.

Self-adaptive solutions are usually time-driven and, at each
time step, act by following a generic Monitor-Analyze-Plan-
Execute (MAPE) loop [11]. In the Monitor phase, various mea-
surements are collected from the application (e.g. performance
and power consumption). In the Analyze phase, monitored data
collected at the current and previous time steps, is compared
against the user’s requirements. If requirements are violated, in
the Plan phase new optimal resources allocation are computed.
The planned decisions are applied to the application during the
Execute phase, by acting on proper actuators.

Different self-adaptive strategies have been proposed to sat-
isfy user’s requirements in terms of performance ([6, 4, 8, 12]),
power consumption ([7]) or both of them ([5, 13]). Such re-
quirements are usually enforced even in presence of workload
fluctuations or external interferences. However, in many cases,
these techniques are only simulated or implemented for specific
applications.

In the literature, some proposed framework target a problem
similar to the one we are addressing in this work [14, 15, 16].
However, they provide very limited customization opportuni-
ties, are quite outdated and the source code is not publicly avail-
able.

Adam [17] allows the customization of the plan phase but the
execute and monitor phases are fixed, allowing the interaction
with only two actuators (DVFS and Thread Packing).

SEEC [18], Bard [19] and Poet [20] allow the customization
of the monitor and execute phases of the MAPE loop, but pro-
vide their own plan algorithm. Albeit being a flexible strategy,
it is not possible to replace it with a different one. This is an
important limitation, since in some cases the designer may ex-
ploit some knowledge about the application or the architecture
to design more efficient plan algorithms with respect to those
already provided by the framework. Moreover, Bard and Poet
require the user to know a priori the performance and power
consumption of the application in each possible configuration.
This is a cumbersome task for the user, since it needs to execute
the application in all its possible configurations. Furthermore,
such frameworks cannot be used if the applications to be exe-
cuted are not known a beforehand.

IBM StreamS [21] is a commercial and proprietary frame-
work for the development and deployment of (distributed)

2

http://danieledesensi.github.io/nornir/


stream processing applications. Complex applications are ex-
pressed by means of computational graphs of Processing Ele-
ments (PEs) that cooperate by exchanging data. Each PE can be
internally parallelized exploiting a certain number of threads.
StreamS may change at runtime the number of used threads to
maximize throughput (using its own strategy [22]), but it does
not allow users to enforce a specific throughput or power con-
sumption for the application or to define custom decision strate-
gies.

With respect to the mentioned solutions, Nornir is a com-
pletely customizable and publicly available framework. It al-
lows runtime developer to modify the monitoring and execute
phases. In addition to this, it allows the designer of the plan
strategy to just focus on the algorithm, exploiting the infras-
tructure provided by the framework to collect the data and to
apply the decisions. This is a fundamental step to quickly pro-
totype and validate customized planning strategies and to easily
compare them with existing ones.

3. Nornir Design

Nornir is a customizable C++ framework for self-adaptive
and power-aware parallel applications on shared memory mul-
ticore machines. It can be used to reconfigure parallel appli-
cations to enforce specific performance and power consump-
tion requirements and, at the same time, can be customized by
adding new self-adaptive strategies. Its general architecture is
depicted in Figure 1.

Figure 1: General Architecture of Nornir Framework.

Nornir can control different types of applications (upper
layer of Figure 1). To reach this goal, Nornir couples an appli-
cation with a Manager, which is in charge of driving application
execution to enforce the requirements expressed by the user. At
each sampling interval (also known as control step), the Man-
ager acts by executing an iteration of the so-called Monitor-
Analyze-Plan-Execute (MAPE) loop [11].

In the monitor phase, data is collected from “sensors” on
the computing node and on the application (e.g. power con-
sumption of the system, performance of the application, etc...).
Such data is aggregated, for example by averaging the moni-
tored samples over a time interval, and then passed to the an-
alyze phase. If the monitored data is not compliant with the
user’s requirement, the plan phase is triggered to decide the ac-
tions to be executed to achieve the goals specified by the user.
Such actions can be very simple (e.g. scale down the clock

frequency of the CPU) or could also be expressed as complex
operations. Eventually, the execute phase applies the recon-
figuration plan by using appropriate “actuators” (also known as
“knobs”). Such actuators may be present on both the computing
node and the application. To implement the monitor and exe-
cute phases, Nornir interacts with the system knobs and sen-
sors (e.g. power consumption one) by using the Mammut [23]
library2.

A common underlying assumption in these approaches is the
iterative nature of the managed application [24, 18, 25]. With
iterative we refer to an application that performs roughly the
same (or very similar) computation in each iteration or over a
set of contiguous iterations, thus exhibiting a certain degree of
repetitive behavior. This is a crucial property for the execution
of the MAPE loop, since the manager can assume that the de-
cisions taken at the current control step will still be valid at the
next control step, since in the meanwhile the characteristics of
the computation have not significantly changed. Many real ap-
plications fall into this category [25, 26, 24, 27, 10]. It is worth
noting that the application may still be characterized by differ-
ent phases, unless there are extreme behaviors like one different
phase at each control step. However, this is not the case in many
real applications [28], which are in general characterized by an
iterative behavior and by a small number of different phases.

Nornir features can be summarized as follows. It is:

• ready-to-use: the application users can express QoS re-
quirements on a controlled application by choosing a set
of available adaptation strategies. A Manager will control
the application. How this interaction take place is respon-
sibility of the application programmer that can exploit dif-
ferent possibilities (Section 5);

• customizable: strategy designers can focus on the imple-
mentation of their new self-adaptive strategy by using the
provided set of resource management mechanisms and the
application monitoring infrastructure (Section 6);

• extendable: support to additional parallel programming
framework or monitoring tools can be easily added (Sec-
tion 7).

In the next sections we will details how these different actors
can interact with Nornir.

4. The User Perspective

Given an application connected to Nornir, the user can ex-
press specific requirements on that application, regarding per-
formance or power consumption. If the application is modular,
like for example in data stream processing, where the applica-
tion may be composed by multiple co-running parallel opera-
tors, we would need to coordinate such operators. For example,

2Mammut is an object-oriented C++ framework allowing a transparent and
portable monitoring of system sensors as well as management of several system
knobs. It is publicly available at: http://danieledesensi.github.io/

mammut/

3

http://danieledesensi.github.io/mammut/
http://danieledesensi.github.io/mammut/


an operator may decide to increase the clock frequency while
the other decides to decrease it. In such a case, a coordination
is required to pick the best action for both operators. However,
coordination of multiple operators (or multiple parallel appli-
cations) will be part of our future work. It is worth noting that
we can still manage the cases where the operators are not co-
running (e.g. one parallel operator starts only when the previous
one terminated) as well as applications composed by multiple
phases.

We classify applications into two types:

Streaming Applications These applications receive a
“stream” of data, i.e. a continuous flow of elements. The
elements to be processed are not already available but will
be received at a possibly variable rate. The same function
is applied over each received element, or on a window
(i.e. a subset) of recently received elements. The number
of elements to be received may be finite or infinite (i.e. the
application could possibly run “forever”).

Batch Applications This class includes all the applications
that need to process data which are already available and
can be accessed by the application at any time

It is possible to specify different types of requirements, on
the metrics we report in Table 1.

The most appropriate requirement depends on the application
and on the user preferences. For example, in streaming appli-
cations the user may want to use a number of resources propor-
tional to the current workload. To reach this goal, it is sufficient
to require a utilization factor less than 1, while minimizing the
power consumption. This ensures that all the stream elements
will be timely processed with the minimum power consump-
tion possible. In other scenarios, different requirements may
be more appropriate. For example, consider an application per-
forming a nightly backup of all the data produced during the
day in a big company. In such case, we may want to set a max-
imum execution time for this process (i.e. to terminate before
the arrival of employees in the morning), while consuming as
less energy as possible.

The user details the constraints that should be enforced on the
application by specifying them in an XML file. Listing 1 shows
an example of requirements which can be used to ask Nornir
to find a configuration characterized by a power consumption
lower than 50 Watts and a latency lower than 30 ms. Since
more than one configuration could have such characteristics,
the user wants Nornir to select the one characterized by the
highest throughput.

By using the configuration file, the user can also specify other
optional parameters such as the length of the control step, the
self-adaptive strategy to be used, which control knobs can be
used by the algorithm and other parameters specific to the used
reconfiguration algorithm.

If the application is executed on a public cloud, we need to
consider that the user of the application and the cloud provider
may have different goals, and that the user may not explicitly
monitor and control the power consumption. Moreover, the

<?xml version="1.0" encoding="UTF-8"?>

<nornirParameters>

<requirements>

<throughput>MAX</throughput>

<latency>30</latency>

<powerConsumption>50</powerConsumption>

<requirements>

</nornirParameters>

Listing 1: Example of user requirements.

user may not have access to some knobs (e.g. frequency scal-
ing). In such a case, Nornir can still be used by the application
user, by only acting on the knobs he has access to (e.g. number
of threads), to tune and control the performance of the appli-
cation. Alternatively, Nornir could also be used by the cloud
operator, to control the power consumption of the applications
ran by the users and to ensure that the available power budget
is not exceeded.

Lastly, datacenter providers are considering the possibility to
provide economical incentives to the user if they are willing to
reduce their power consumption [29, 30]. In such a case, af-
ter a negotiation with the users, datacenter operators could use
Nornir to constraint the power consumption of users applica-
tions.

5. The Application Programmer

As anticipated, to control the application the Manager may
need to interact with the application during the monitor and ex-
ecute stages of the MAPE loop. To perform the interaction, the
application programmer needs to attach a Manager to the user’s
application. The Manager runs in a separate thread/process
and interacts with the application to gather monitoring data and
to apply reconfiguration decisions (e.g. changing the number
of threads), enforcing the user’s requirements. Nornir offers
different possibilities to application programmers for realizing
this interaction, allowing to chose the desired trade-off between
configuration optimality and required programming effort. In
general, more intrusive approaches collect more precise met-
rics and leads to better solutions, while requiring a higher effort
to the programmer. Furthermore, such solutions allow Nornir
to access some actuators which may be specific to the applica-
tion or to the runtime system, extending the range of possible
configurations and allowing the self-adaptive algorithms to take
better decisions. On the other hand, some approaches allow
users to directly interface applications to Nornir, without any
programmer intervention, despite this may lead to suboptimal
decisions during the plan phase.

In Figure 2 we depict a flowchart showing the different possi-
bilities available to the programmer and the sections where they
are described. In the following, we will discuss the different
opportunities, starting from the less optimal and less intrusive
ones.

4



Metric S Description (Streaming) Description(Batch)

Throughput R Number of stream elements processed per second. Number of iterations executed per second.
Latency L Time required to process a single stream element. Time required to perform a single iteration.
Completion
Time

T Time required to process all the elements on the stream. The user needs to specify the
expected length of the stream. By doing so, Nornir can estimate the completion time
as the ratio between the number of the number of elements still to be processed and
the current throughput. For this reason, this requirement can only be specified when
the length of the stream is known a priori.

Time required to perform all the iterations.
Similarly to the streaming case, the number
of iterations need to be known a priori.

Utilization
Factor

ρ Represents the utilization of the application, i.e. the fraction of time spent processing
stream elements (between 0 and 1). 1−ρ is the fraction of time wasted by the applica-
tion waiting for new data to arrive from the stream. A low ρ means that the resources
allocated to the application are not fully utilized. Note that this definition is slightly
different from the classical queueing theory one, where ρ could also be greater than
1.

Not applicable on batch applications since ρ
is always 1 (because the data is always avail-
able to the application and it never needs to
wait for new data to arrive).

Power Con-
sumption

P Instantaneous power consumption. Since current operating systems do not provide
mechanisms to monitor the individual power consumption of each application, this
may correspond to the system power consumption.

The same as streaming.

Energy E Power integrated over time. It can be both specified as energy required to process a
single stream element (or iteration in batch applications) or to process all the elements.
In the latter case, the number of elements to be received (or the number of iterations
to be executed) must be known a priori, since energy will be estimated as E = P × T .

The same as streaming.

Table 1: Performance requirements that can be specified by the user.

Figure 2: Flowchart describing the possible choices for the application pro-
grammer to interface Nornir manager to an application.

5.1. Black-Box Interaction
The simplest solution is to use Nornir on an existing applica-

tion without any modification to the code and without any pro-
grammer intervention. In some cases this may be the only feasi-
ble solution since the programmer may not have the possibility
to modify and/or recompile the application. A user can spec-
ify constraints on the foobar application by using the Nornir
applications launcher, as shown in Listing 2.

manager-blackbox --parameters parameters.xml

--application ./foobar

Listing 2: Example of attachment of a Nornir Manager to an already existing
application.

The NornirManager will run in a separate process and will
not interact directly with the application. In this case Nornir
can monitor the application only by relying on performance
counters, for example by monitoring the number of assembler
instructions executed per time unit (i.e. instructions per second,
IPS). Since it is not possible for Nornir to monitor detailed
metrics like latency and throughput, the user can only express
performance requirements for the application in terms of IPS.
Correlating the IPS to the actual application throughput is not

an easy task and not very intuitive from the user perspective.
Moreover, as shown in [18, 31, 32] performance counters may
not be a good performance proxy since they are not always
strictly correlated to the actual application-level performance.
For these reasons, this approach should be used only if none of
the other solutions (Sections 5.2, 5.3 and 5.4) can be adopted.

5.2. Instrumentation

If the source code of the application can be modified, the
programmer can explicitly interface it to a Nornir Manager
running in a separate process. As outlined in Section 1, self-
adaptive algorithms mainly work on iterative applications. For
streaming applications, an iteration would correspond to the
processing of an element received from the stream. To be ho-
mogeneous in the following, even when considering streaming
applications, we will usually refer generically to the term iter-
ation. The idea is to insert few instrumentation calls in the ex-
isting application. These calls will be invoked at each iteration
of the application, to collect all the performance data needed by
the manager to take reconfiguration decisions (e.g. latency and
throughput). Instead of sending data to the manager at each it-
eration, data is stored locally, and it is sent to the manager only
when the manager explicitly requests such data. All these oper-
ations are implicitly done when executing the instrumentation
calls, as shown in Listing 3.

On the left, we have the original streaming application in
which at each iteration of the while loop a stream element is
received and processed. On the right, we have the same appli-
cation after it has been instrumented. Here, in line 2 Nornir
opens a connection towards the Manager and sends to it the
XML configuration file which we described in Section 4 (con-
taining, among the others, user’s requirements). The process-
ing of each stream element is wrapped between 2 calls (lines
5 and 7). In line 9, the connection with the Nornir Manager
is closed. Timestamps collected during the r.begin() and

5



1 StreamElement* s;

2 while(s = receive())

3 process(s);

1 using nornir::Instrumenter;

2 Instrumenter

r("parameters.xml");↪→

3 StreamElement* s;

4 while(s = receive()){

5 r.begin();

6 process(s);

7 r.end();

8 }

9 r.terminate();

Listing 3: Example of streaming application instrumentation.

Figure 3: Relationship between α, β and arrival of stream elements.

r.end() calls are stored and used by the Instrumenter to
derive performance metrics.

When the Manager needs to collect monitoring data about
the application (i.e. once per control step), it will send a request
to the Instrumenter. The r.begin() call verifies if there is
any pending request and, if this is the case, the monitored data
is sent to the Manager.

To understand how throughput, latency and utilization factor
are derived from the timestamps, let us focus on a single con-
trol step. We define with Kbegin(i) and Kend(i) the timestamps
associated to r.begin() and r.end() calls performed for the
i − th iteration. Moreover, let’s suppose that at iteration α the
Instrumenter finds a pending monitoring request and that no
other monitoring requests are received until iteration β. The
distance between α and β depends on the length of the control
step used by the Manager. We define with s = β−α the number
of elements processed by the application during a control step.
The relationship between these quantities is clarified in Figure
3.

Nornir derives the metrics in Table 1 in the following way:

Throughput is computed as

R =
β − α

Kbegin(β) − Kbegin(α)

i.e. the number of iterations performed by the application
between two successive monitoring requests, divided by
the time elapsed between such requests.

Latency The latency monitored for the i − th element is

L(i) = Kend(i) − Kbegin(i)

To get the average latency per element, we need to sum all
the latencies computed between two requests and to divide

it by the number of received elements, i.e.

L =

∑i≤β
i=α Kend(i) − Kbegin(i)

β − α

Utilization Factor The time between the start of processing of
two successive elements is Kbegin(i+1)−Kbegin(i). This in-
cludes both the time to process element i (i.e. the latency)
and the time spent waiting for element i + 1 to appear on
the input stream3. The ratio between the latency and the
time elapsed between the start of two successive elements
is

ρ(i) =
Kend(i) − Kbegin(i)

Kbegin(i + 1) − Kbegin(i)
and corresponds to the time spent doing useful work when
processing element i. To get the average utilization, it is
sufficient to average these quantities over control step, i.e.

ρ =

∑i<β
i=α ρ(i)
β − α

Using this formulation, we have that 0 ≤ ρ ≤ 1 for stream-
ing applications while ρ = 1 in batch application (since
we have Kbegin(i + 1) − Kend(i) = 0, i.e. we never wait for
arrival of new data).

The advantage of this approach is that despite requiring the
insertion of only 4 instrumentation calls in the already existing
application, it provides Nornir all the application-level perfor-
mance metrics. Moreover, differently from the Black-Box case,
it is now possible for the user to express requirements on all the
metrics presented in Table 1.

To use begin() and end() in multiple threads at the same
time, it is sufficient to specify the identifier of the calling thread.
In Listing 4 we show how they can be used, for example, to
instrument a parallel OpenMP application.

1 Instrumenter r("parameters.xml");

2 StreamElement* s;

3 while(s = receive()){

4 #pragma omp task {

5 int threadId = omp_get_thread_num();

6 r.begin(threadId);

7 process(s);

8 r.end(threadId);

9 }

10 }

11 r.terminate();

Listing 4: Example of OpenMP application instrumentation.

It is worth to highlight that instrumentation can be performed
on any C or C++ based applications (e.g. implemented by using
OpenMP, TBB or C++ Threads).

3Actually it also includes the time required to perform the actual reading
of the element once it appears on the stream. To be more accurate, we should
remove this quantity from the computation of the utilization factor. However,
this would require application-specific modifications, leading to a more intru-
sive approach. We prefer to have a slightly approximated factor to keep this
solution as less intrusive as possible.

6



Furthermore, besides predefined performance metrics, it is
also possible to store custom values (e.g. application specific
metrics). Such values will be eventually provided to the self-
adaptive algorithm, which can use them together with standard
performance metrics to perform its decisions (Section 6).

The framework has been designed to be as lightweight as
possible. In particular, the begin() and end() calls only store
the timestamps, while the actual communication of the data
to the manager is done by a separate support thread. Locks
are not used, neither between the threads calling begin() and
end() calls nor by the support thread. The only synchroniza-
tions used, involve an atomic flag shared between each appli-
cation thread and the support thread. Despite this, for applica-
tions characterized by a low latency, the insertion of these two
instrumentation calls may have an impact on application perfor-
mance. Since the overhead is directly related to how often the
begin() and end() functions are called, by calling them less
often (every m iterations instead of every iteration), the over-
head will be reduced. Accordingly, it is always possible to find
the right sampling interval m which will lead to an overhead
below 1%. However, choosing the right value of m could be
critical for application programmers. For this reason, Nornir
uses an adaptive sampling mechanism, which automatically se-
lects the appropriate sampling length m to have a controlled
overhead below 1%.

Lastly, let us consider the case where the application is not
receiving any data to process (i.e. it is stuck on line 3 of List-
ing 4, waiting for new data to arrive). In this case (which can
only occur for streaming applications), the manager could be
stuck waiting for an answer from the application. To avoid this
issue, it is possible to specify a maximum timeout value, af-
ter which the application is considered to have (temporarily) a
throughput of zero iterations per second.

Despite being an integrating part of Nornir, the instrumen-
tation part has been implemented as a separate library, which
we called Riff4. We made this choice since Riff could also be
useful as a standalone library to be used for performance mon-
itoring of applications. We did not rely on existing monitoring
tools [24, 33] since they do not provide the possibility to moni-
tor utilization factor for streaming applications, to communicate
custom monitoring values or to select the appropriate sampling
rate automatically.

5.3. Interaction with Supported Runtimes

As described in Section 5.2, any iterative parallel application
can be interfaced to Nornir by using instrumentation. How-
ever, in some cases it may be useful to have a more intrusive
interaction, to access some additional reconfiguration mecha-
nisms which may be provided by the framework. For exam-
ple, some frameworks provide the possibility to dynamically
change the number of threads used by the runtime (i.e. con-
currency throttling [13]). To access these knobs, we need to
perform an explicit interaction with the runtime of the applica-
tion. At the time being, this is possible only for applications

4https://github.com/DanieleDeSensi/riff

implemented with the FastFlow framework [34]. FastFlow is
a C++ pattern based parallel programming framework, target-
ing multicore applications. To interface an existing FastFlow
application with the Nornir Manager, is sufficient to provide
the Manager (which will run in a separate thread) an handler
to the FastFlow parallel application. To provide this support
for other frameworks, custom monitoring and execution phases
needs to be implemented, as we will describe in Section 7.1 and
Section 7.2 respectively.

In general, a direct interaction with the runtime is not strictly
necessary. Indeed, all the results we will show in Section 9
have been collected by performing experiments on legacy ap-
plications, implemented with Pthreads or OpenMP, by just in-
strumenting them with the technique we showed in Section 5.2.

5.4. Applications Implemented from Scratch
The programmer can write a parallel application by using

the parallel programming interface provided by Nornir. This
interface allows the programmer to write both structured (i.e.
parallel patterns based) and unstructured applications expressed
as a graph of concurrent activities. By doing so, Nornir can
access many internal features of the runtime, thus extending its
monitoring capabilities and being able to operate on additional
executors. We provide both a threads-based interface (similar
to the FastFlow one) and a tasks-based programming interface
(details can be found in [35]).

6. The Strategy Designer

Self-adaptive strategy designers can add their new algorithms
to the framework by exploiting the monitoring infrastructure
and actuators already provided by Nornir.

Listing 5 shows a simplified version of the main parts of the
manager implementation (the actual implementation consists of
approximately 18000 lines of code). The meaning of this code
snippet will become clearer with the next section. For the mo-
ment being, we can focus on the MAPE loop implemented in
lines 10-24 of Listing 5.

To define a custom self-adaptive strategy, the designer must
define a subclass of the Selector class (Listing 5, lines 35-38)
and implement the getNextKnobsValues function. In its own
Selector the designer can access different information pro-
vided by the superclass, like parameters specified by the user,
the current configuration of the application and statistics about
the previous monitored samples. The type of monitored data
available depends on how the manager has been attached to the
application. For example, if black-box interaction was used,
the only available information is the throughput (expressed as
IPS). Monitored data is kept consistent and updated by Nornir
and should be exploited by the algorithm designer to select the
values to be applied to each knob (i.e. the configuration) at the
successive control step. Table 2 reports the knobs currently im-
plemented.

The output of the function represents the value that each knob
must assume at the end of the control step. Once the decision is
made, the next values of each knob must be stored into a Knob-
sValues object, an array of values (one for each knob) which

7

https://github.com/DanieleDeSensi/riff


1 typedef enum{

2 KNOB_VIRTUAL_CORES = 0,

3 ...

4 KNOB_NUM

5 }KnobType;

6

7 class Manager{

8 ...

9 void run(){

10 while(isRunning()){

11 sleep(samplingInterval);

12

13 // Monitor

14 ApplicationSample s = getSample();

15 storeSample(s);

16

17 // Analyze & Plan

18 KnobsValues k =

_selector->getNextKnobsValues();↪→

19

20 // Execute

21 for(uint i = 0; i < KNOB_NUM; i++){

22 _knobs[i]->changeValue(k[i]);

23 }

24 }

25 }

26 virtual ApplicationSample getSample()=0;

27 };

28

29 class Knob{

30 ...

31 std::vector<double> _knobValues;

32 virtual void changeValue(double v)=0;

33 };

34

35 class Selector{

36 ...

37 virtual KnobsValues getNextKnobsValues()=0;

38 }

Listing 5: Simplified version of the main parts of Nornir implementation.

can be accessed by using the enumeration values identifying
the type of the knob (Listing 5, lines 1-5). The returned object
will then be used to set the appropriate values on the available
knobs (Listing 5, lines 9-11).

For example, Listing 6 shows how to implement a simple
selector that, when the monitored latency is lower than 100 ms,
will force the application to run on the 25% of the available
cores, setting them to work at 50% of their maximum clock
frequency. When the latency is higher (or equal) than 100 ms,
it will run the application on the 80% of the available cores and
will set them to work at 100% of their maximum frequency.

Nornir will then automatically translate the percentage val-
ues for number of cores and frequencies in real values, accord-
ing to the availability of resources on the target architecture.
This greatly simplify the process for the designers, since they do
not have to deal with many different tools for each considered
knob. Moreover, there is no need to change the algorithm code
when running the self-adaptive strategy on a different comput-
ing system with a different number of cores or a different num-
ber of frequency steps. This is possible since Nornir relies on
the Mammut library to perform the actual interaction with the

Knob Description

Number
of Cores

Turns off (or on) some cores. If possible (e.g. for
FastFlow applications), it will also change the number
of threads used by the application (without stopping or
restarting it), to have one thread on each active core. Oth-
erwise, threads which were running on the shutdown cores
will be moved to the active cores, thus leading to a situa-
tion where more threads will contend for the same core.
Threads will be allocated to cores through the Threads
Mapping knob, while this knob only enforces the speci-
fied number of cores to be active.

Hyperthreading
Level

Number of hardware threads contexts to use on each phys-
ical core

Threads
Mapping

Once the number of cores to use has been decided, this
knob can be used to apply a given placement. For exam-
ple, to place them on a set of cores sharing some resources
(e.g. last level caches) for minimizing power consump-
tion, or to place them on a set of cores with the minimum
amount of shared resources, wasting more power but im-
proving performance.

Clock
Frequency

Operates on the clock frequency (and voltage) of the cores,
allowing to trade a decreased performance for a lower
power consumption.

Concurrency
Control

For applications using FastFlow as runtime support, this
knob operates on the algorithm to be used when two
threads access their shared message queue [36].

Table 2: Knobs currently implemented in Nornir

1 class SelectorDummy: public Selector{

2 ...

3 KnobsValues getNextKnobsValues(){

4 KnobsValues k(KNOB_VALUE_RELATIVE);

5 if(_samples->average().latency < 100){

6 k[KNOB_VIRTUAL_CORES] = 25;

7 k[KNOB_FREQUENCY] = 50;

8 }else{

9 k[KNOB_VIRTUAL_CORES] = 80;

10 k[KNOB_FREQUENCY] = 100;

11 }

12 return k;

13 }

14 };

Listing 6: Example of Selector implementation.

hardware components, thus exploiting its portability.
Alternatively, it is possible to directly express absolute val-

ues for the knobs. By replacing KNOB VALUE RELATIVE with
KNOB VALUE REAL in line 4 of Listing 6, Nornir will interpret
lines 6 and 7 as “Run the application on 25 cores and set their
frequency to 50Hz”. The samples variable contains the mon-
itored data and the designer can use this object to retrieve the
average value of each metric, the last monitored value, the min-
imum and the maximum, etc...

6.1. Full Example

To appreciate the programmability of Nornir, we show in
Listing 7 the code required to implement the self-adaptive al-
gorithm described in [37], which we denoted as Heuristic in
this paper. This algorithm can be used to enforce a through-
put higher than a given threshold on an application. Since
more configurations may have such throughput, the algorithm

8



will select the configuration with the lowest power consumption
among them.

The algorithm predicts the throughput of any configuration
starting from the throughput of the current configuration, sup-
posing that it scales linearly with both the frequency and the
number of cores. Accordingly, if R(n, f ) is the throughput of a
configuration using n cores with a clock frequency f , we have:

R(n, f ) = R(n̄, f̄ ) ·
n · f
n̄ · f̄

where n̄ is the number of cores currently used and f̄ is the
current clock frequency. In lines 4-5 we retrieve the n and f
for the configuration pConf we want to predict, while in lines
6-7 we get the current number of cores, the current clock fre-
quency and the current throughput. Eventually, in lines 9-11 we
perform the prediction.

Heuristic predicts the power consumption P(n, f ), as:

P(n, f ) = n · f · v2

with v being the voltage associated to a specific number of
cores and clock frequency. The voltage depends only on these
two factors and it is precomputed when installing Nornir and
stored to a configuration file, which can be accessed at runtime
through the getVoltage function. Lines 18-21 predicts the
power consumption of a specific configuration pConf by using
this model.

Then, as described in Section 6 we need to extend the
Selector class and define its getNextKnobsValues function
(lines 44-51). In lines 45-48 we check if the monitored through-
put is higher or equal to the one required. The monitoring data
can be accessed through the samples variable provided by the
Selector class5. If this is the case, the configuration we are
using satisfies the requirements expressed by the user and we
simply return it. Otherwise, the algorithm searches a better con-
figuration (line 49), by calling the getBestConfiguration

function. This function scans all the configurations (line 34)
and, for each of them, checks if the throughput is higher than
that required by the user, and if the power consumption is lower
then the lowest found up to that moment. If this is the case,
both the best configuration and its power consumption are up-
dated (lines 35-39). Eventually, the best configuration found is
returned (line 40). As discussed in Section 6, this configuration
will eventually be enforced by Nornir by using the appropriate
actuators.

Although being a simple example, it clearly shows the ad-
vantages using Nornir. Indeed, we only focused on the algo-
rithm, without dealing with complex issues related to monitor-
ing the application and interfacing with the underlying hard-
ware, which is automatically managed by Nornir.

5For brevity’s sake, we did not show the constructors of the different classes.
Constructor of SelectorAnalytical class simply creates the two predic-
tors objects, by providing them the configuration and samples variables,
which it gets from the Selector base class.

1 class PredictorHeuristicThroughput {

2 public:

3 double predict(const KnobsValues& pConf){

4 double cores = pConf[KNOB_VIRTUAL_CORES];

5 double freq = pConf[KNOB_FREQUENCY];

6 double currCores =

_configuration.getRealValue(KNOB_VIRTUAL_CORES);↪→

7 double currFrequency =

_configuration.getRealValue(KNOB_FREQUENCY);↪→

8 double currThr = _samples->average().throughput;

9 double scalingFactor = (cores * freq) /

10 (currCores * currFrequency);

11 return currThr * scalingFactor;

12 }

13 };

14

15 class PredictorHeuristicPower {

16 public:

17 double predict(const KnobsValues& pConf){

18 double cores = pConf[KNOB_VIRTUAL_CORES];

19 double freq = pConf[KNOB_FREQUENCY];

20 double voltage = getVoltage(cores, freq);

21 return (cores*voltage*voltage*freq);

22 }

23 };

24

25 class SelectorAnalytical: public Selector {

26 private:

27 PredictorHeuristicThroughput* _pThr;

28 PredictorHeuristicPower* _pPow;

29 public:

30 KnobsValues getBestConfiguration(){

31 KnobsValues bestConf =

_configuration.getRealValues();↪→

32 double bestConfPower =

numeric_limits<double>::max();↪→

33

34 for(const KnobsValues& pConf :

_configuration.getAllRealCombinations()){↪→

35 if(_pThr->predict(pConf) >

_p.requirements.throughput &&↪→

36 _pPow->predict(pConf) < lowestPower){

37 bestConf = pConf;

38 bestConfPower = _pPow->predict(pConf);

39 }

40 }

41 return bestConf;

42 }

43

44 KnobsValues getNextKnobsValues(){

45 if(_samples->average().throughput >=

46 _p.requirements.throughput){

47 return _configuration.getRealValues();

48 } else {

49 return _configuration.getBestConfiguration();

50 }

51 }

52 };

Listing 7: Implementation of the algorithm presented in [37] (denoted as
Heuristic in this paper.

7. Extending Nornir

The strategy designer or runtime support developer may de-
cide to extend Nornir to support other parallel programming
frameworks or to use other control knobs beside those already
provided.

9



7.1. Monitor

Extending the monitoring infrastructure may be useful for
two different reasons. On one side, the monitoring part can
be extended to gather additional metrics (for example in the
black-box case to retrieve metrics different than IPS). On the
other side, it can be used to interface Nornir with other parallel
programming frameworks.

In both cases, a new manager class must be defined, by sub-
classing the Manager class and implementing the getSample

function (Listing 5, line 26). For example, consider the case
where we want to interface Nornir with the Intel TBB run-
time. In this case, the getSample function should implement
the logic to interact with the runtime and to collect performance
metrics (e.g. number of tasks executed per second). If needed,
the user can store additional framework specific values (e.g.
number of tasks stolen by each thread) inside some member
variables of the ApplicationSample class.

At each control step, Nornir calls this function (Listing 5,
line 14) and the sample will be stored (Listing 5, line 15) to
be accessible from the Analyze and Plan phases, as we saw in
Section 6. By doing so, in the strategy the designer could, for
example, take decisions according to framework-specific met-
rics.

7.2. Execute

To implement a new executor, the designer must define a
subclass of the Knob class (Listing 5, lines 29-35). In the con-
structor, the knobValues vector must be populated with the
set of values that the knob can assume. When the planning
phase terminates, the function changeValue will be called by
the manager on all the available knobs (Listing 5, lines 21-23).
The parameter k[i] corresponds to the value that the specific
knob must assume according to the planning algorithm. By im-
plementing the function changeValue, the designer specifies
the actual code to be executed when the Plan phase decides to
change the value of that knob. The new Knob object must then
be created and added to the knobs array (used in Listing 5,
line 22). Moreover, a new enumeration value must be assigned
to this knob (Listing 5, lines 1-5). As anticipated, many avail-
able knobs have been implemented by using Mammut, which
could also be used to implement new actuators. New knobs
can be added to support framework-specific actuators. For ex-
ample, let us suppose the designer wants to add the possibil-
ity to dynamically change the number of threads in OpenMP.
In this case, a new Knob should be added, and the designer
should add in the changeValue function the code to change
the number of threads used by OpenMP (for example by setting
the OMP NUM THREADS environment variable).

8. Building the Testbed

As discussed in Section 5.2, Nornir can be used for con-
trolling already existing applications by instrumenting them. In
the following we will briefly discuss how it can be used to in-
strument the applications of the Princeton Application Reposi-
tory for Shared-Memory Computers (PARSEC) benchmark [9].

Apart from being a useful example of usage of the framework,
the contribution of this part is the release of a “Nornir-ready”
version of the benchmark suite. The modified PARSEC ap-
plications have been added to the P3ARSEC (Parallel Patterns
PARSEC) benchmark suite [10]6 and released as open source.

8.1. The PARSEC benchmark
The PARSEC benchmark is a well-known benchmark suite

composed of 13 parallel applications, diverse in terms of ap-
plication domain, programming model (pipeline, data-parallel
and unstructured), granularity, working set size, data sharing
and data exchange patterns [9]. Thanks to this heterogeneity,
this suite is often used in the HPC community with different
purposes. Therefore, providing a Nornir-ready version of the
PARSEC benchmark is interesting to validate self-adaptive al-
gorithms on a wide range of real world scenarios.

The PARSEC suite comprises different parallelization of
the applications. For all the benchmarks we considered the
Pthreads version, except for freqmine which only provides
the OpenMP version. Being integrated in the original PAR-
SEC tool chain, this Nornir-based version can be seamlessly
executed by using the standard tools already provided by PAR-
SEC. For example, to run the blackscholes application with
specific power consumption and performance requirements, the
user should create, in the PARSEC root directory, the XML
configuration file containing the requirements and the self-
adaptive reconfiguration algorithm to be used. Then, the ap-
plication can be executed by using the standard parsecmgmt

tool as follows:

./parsecmgmt -a run -p blackscholes -i native -n 24

-c gcc-pthreads-nornir

where we specified the benchmark name, the size of the input
set, the number of threads to be used and the version of the
benchmark to be run (gcc-pthreads-nornir)7. Basically, by
doing so we can set any performance and power consumption
requirement on all the applications in the PARSEC benchmark.

8.2. Instrumenting the Applications
In principle, we can control the applications without instru-

menting them, by relying on hardware performance counters
(e.g. Instructions Per Second (IPS)). In this case, performance
requirements should be expressed by the user in IPS. However,
as discussed in Section 5.1, correlating IPS with the actual ap-
plication performance is not an easy task. We believe that is
much more intuitive for the application user to express require-
ments in terms of frames per second or queries per second than
expressing them in terms of IPS. This is the reason why we
decided to instrument the different applications.

6The repository is publicly available at https://github.com/

ParaGroup/p3arsec
7In most cases, when additional implementations for the benchmark are

available (e.g. implementations with OpenMP or Intel TBB), we provide sup-
port for those versions as well.

10

https://github.com/ParaGroup/p3arsec
https://github.com/ParaGroup/p3arsec


As we anticipated in Section 3, self-adaptive reconfiguration
algorithms only work on iterative computations and all PAR-
SEC applications exhibit some kind of iterative behaviour. To
allow the framework to monitor the actual performance of the
applications, we modified them by inserting the required in-
strumentation calls (see Section 5.2). They will be invoked at
each loop iteration in order to send monitored performance (e.g.
number of iterations performed per time unit) to the Nornir
Manager. In Table 3 we show what an iteration is, according
to the specific instrumentation we made. Note that this reflects
directly on the way in which the user expresses performance re-
quirements, since throughput requirements will be expressed in
terms of iterations per second. Consequently, it would be pos-
sible for example for blackscholes to express requirements
in terms of stock options processed per second.

Benchmark Iteration
Blackscholes 1 Stock Option
Bodytrack 1 Frame
Canneal 1 Move
Dedup 1 Chunk
Facesim 1 Frame
Ferret 1 Query

Fluidanimate 1 Frame
Freqmine 1 Call of the FP growth function
Raytrace 1 Frame

Streamcluster 1 Evaluation for opening a new center
Swaptions 1 Simulation

Vips 1 Image Tile
X264 1 Frame

Table 3: Iteration meaning in PARSEC benchmarks, according to the instru-
mentation we performed.

Instrumenting the applications only required identifying the
outermost loop and the insertion of the two instrumentation
calls at the beginning and end of the loop. This thanks to the
fact that all the interaction with Nornir is managed by these
two calls.

9. The Designer Use-Case

One of the key point of our approach is that the strategy de-
signer can easily exploit the Nornir framework for comparing
and evaluating different reconfiguration strategies on the same
testbed. To prove the effectiveness of our approach, we im-
plemented some existing strategies by using Nornir. Then,
we exploited the testbed we described in Section 8 to compare
these algorithms over a wide set of real applications. Imple-
menting these algorithms required relatively low programming
effort since we were able to only focus on the actual code of the
algorithm, abstracting all the interactions with the underlying
hardware and with the application. Moreover, while some of
these algorithms were only simulated in the original works, by
using Nornir we were able to actually execute them at runtime
for reconfiguring parallel applications.

In the following, we will describe the different implemented
strategies and then we will discuss some results obtained by
considering the different solutions.

9.1. The strategies
We implemented different reconfiguration strategies: the

first two were designed by ourselves, while the others are ap-
proaches proposed in the literature. We will not enter into the
details of the implemented strategies but we will provide refer-
ences for all of them. They are usually characterized by a first
stage where they search for a proper configuration, which will
then be used to run the application for the remaining part of the
execution. In general, if the application enters a different phase
(e.g. it moves from an I/O intensive phase to a CPU intensive
phase), a new optimal configuration needs to be found. The
implemented algorithms are:

Heuristic: being n the number of cores and f the CPU fre-
quency, when the user requirements are violated, the algo-
rithm will search for another < n, f > configuration, with
acceptable performance according to the requirements.
For doing that, the algorithm first predicts the through-
put of the application for all the possible pairs, by as-
suming it to be proportional to the number of cores used
and the CPU frequency. Then, if required by the user,
among all the configurations with acceptable performance,
the algorithm could pick the one with the lowest estimated
power consumption. Instead of predicting the actual power
consumption, the algorithm will just estimate whether the
power consumption of a configuration is higher or lower
than the power consumption delivered by another config-
uration. For this reason, this algorithm can only be used
to enforce performance requirements. More details about
this algorithm can be found in [37].

Online Learning: this algorithm adopts machine learning
techniques and allows the user to express also explicit
power consumption requirements. It considers two dis-
tinct stages throughout the application execution: train-
ing phase and steady phase. When the application starts,
the algorithm begins the training phase, by applying the
following steps: i) a not yet visited < n, f > configura-
tion of the application is applied; ii) the throughput and
power consumption of the application are monitored for a
short predefined period; iii) monitored data is used to re-
fine power consumption and throughput prediction mod-
els; iv) throughput and power consumption of the current
configuration are predicted by using such models and are
compared with real monitored values. If the prediction er-
ror is lower than a specified threshold, the training phase
finishes, otherwise, the process is iterated. Once the train-
ing phase ends, the computed models are used to select
a proper configuration according to the requirements ex-
pressed by the user. More details about this algorithm can
be found in [13].

LiMartinez: Is a well-known heuristic presented in [12],
which uses a combination of hill climbing and binary

11



search algorithms to find the lowest power consuming so-
lution (in terms of number of cores n and frequency f )
under a performance constraint. However, since it does
not explicitly model power consumption, it is not possible
to specify any power consumption requirement.

Leo: Is a recent reconfiguration algorithm presented in [8]. It
uses an offline learning approach based on previous profil-
ing of the applications. These profiling data is integrated
with information collected online while the application is
running. This algorithm explores a fixed number of config-
uration during the online phase, set to 20 by its designers.
Differently from the other algorithms we presented (which
only operate on n and f ), this algorithm is more general
and it could in principle be used on any knobs. Due to
technical limitation of the algorithm, it was not possible to
run it on Facesim and Fluidanimate.

Rapl: Is an hardware-enforced solution available on newer In-
tel’s processors [38], which automatically scales the clock
frequency f and which can be used to limit the maximum
power consumption of the CPU over a time window. We
considered a time window of 1 second, equal to the one we
considered for the other algorithms. This algorithm cannot
be used to enforce performance requirements.

In Table 4 we outline the main characteristics of each algo-
rithm. All these policies are provided by Nornir and are ready
to be used without any additional effort.

Strategy Description Supported Require-
ments

Heuristic Simple heuristic assuming the per-
formance to be proportional to the
number of cores and to their clock
frequency.

Performance only.

Online
Learning

Online learning algorithm accu-
rately estimating performance and
power consumption of the applica-
tion, refining prediction models at
runtime.

Performance and
Power Consumption.

LiMartinez Heuristic using hill climbing and
binary search.

Performance only.

Leo Offline learning algorithm, refining
the model with data collected on-
line.

Performance and
Power Consumption.

Rapl Hardware-enforced solution operat-
ing on the clock frequency of the
cores.

Power Consumption.

Table 4: Reconfiguration Strategies

9.2. Evaluation

We conducted all the experiments on an Intel workstation
with 2 Xeon E5-2695 @2.40GHz CPUs, each with 12 2-way
hyperthreaded cores, running Linux x86 64. This machine has
13 possible frequency levels: from 1.2GHz to 2.4GHz with
steps of 0.1GHz. In all the experiments we used the native

input set provided by PARSEC.

To analyze the overhead introduced by Nornir, for each ap-
plication we compared the best execution time with the execu-
tion time when the application is interfaced with Nornir. For
all the applications, we measured an overhead lower than 1%.

To better analyze the behavior of the different strategies, we
divide the application into the following two sets, according to
the regularity of their run-time behavior:

Stable This set includes Blackscholes, Bodytrack,
Canneal, Facesim, Raytrace, Streamcluster,
Swaptions, Vips applications. These applications are
characterized by a throughput more or less stable during
their execution. Fluctuations in the throughput occur
but their amplitude is limited (as shown in Figure 4(a)
for the Raytrace application) or not too frequent (as
shown in Figure 4(b) for the last part of Streamcluster
execution).

Unstable This set includes Dedup, Ferret, Fluidanimate,
Freqmine, X264 applications. These applications are
characterized by large and frequent fluctuations, as shown
in Figure 4(c) for the Dedup application.

 2

 2.5

 3

 3.5

 4

 0  10  20  30  40  50  60  70

T
h

ro
u

g
h

p
u

t
(F

ra
m

e
s
/S

e
c
o

n
d

)

Time (seconds)

(a) Throughput of the Raytrace ap-
plication.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  50  100  150  200

T
h

ro
u

g
h

p
u

t
(E

v
a

lu
a

ti
o

n
s
/S

e
c
o

n
d

)

Time (seconds)

(b) Throughput of the
Streamcluster application.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  2  4  6  8  10  12  14

T
h

ro
u

g
h

p
u

t
(C

h
u

n
k
s
/S

e
c
o

n
d

)

Time (seconds)

(c) Throughput of the Dedup applica-
tion.

Figure 4: Stable and Unstable Applications

We need to perform this distinction since, as we will show
later, more complex algorithms may have difficulties in manag-
ing unstable applications, while they will work better than other
solutions when applied on stable applications.

In our evaluation we consider throughput and power con-
sumption requirements. In the former case, the self-adaptive
algorithm should find the configuration with the lowest power
consumption among the configurations with a throughput
higher than the specified one. In the latter, the self-adaptive al-
gorithm should find the configuration with the highest through-
put among the configurations with a power consumption lower
than the specified one.

To avoid biases in the results due to specific requirements
choices, we test the algorithms over a wide range of different
requirements. For example, if we need to specify a power con-
sumption requirement for an application that has a minimum
power consumption of 20 Watts and a maximum of 220 Watts,

12



we will slice the range in 10 equal interval, i.e. we will test
the algorithms by setting the power consumption requirement
to 40, 60, . . . and 200 Watts. The algorithm will be executed
5 times for each requirement and for each application. We will
show the average and the pooled standard deviation obtained
over all these requirements. The pooled standard deviation is a
weighted average of each group’s standard deviation. We con-
sidered pooled standard deviation since it can estimate variance
of several different groups when the mean of each groups may
be different, but the variance of each groups is very similar.
By doing so, we were able to aggregate the standard deviation
among the different experiments done for all the benchmarks.
For all the algorithms we set a control step of 1 second. To
speed up the search of a proper configuration, we set the control
step during the training phase (or search phase for the heuris-
tics) equal to 100 milliseconds. On our online learning algo-
rithm, the training phase will terminate when both the perfor-
mance and power consumption prediction errors are lower than
10%.

When evaluating the reconfiguration algorithms, we will
consider the metrics reported in Table 5.

Metric Description

Requirements
Violations

The percentage of test cases for which the algorithm failed
in finding a configuration with the required throughput or
power consumption

Training
Steps

The number of configurations visited by the algorithm
during the training phase (or during the search phase for
heuristics). If multiple training stages are executed (due
to phase changes), this metric will consider the sum of all
the training stages.

Training Time The time spent in the training phase (or during the search
phase for heuristics). Having a short training time is a de-
sirable property since during the training no guarantees on
performance and power consumption are provided. It is
worth noting that the training time is not simply the num-
ber of training steps multiplied by the length of the con-
trol step. Indeed, when collecting monitoring data from
the application, we need to collect data for at least one it-
eration. Accordingly, the actual length of the control step
depends on the length of one application iteration.

Suboptimality Even when a proper configuration is found, due to pre-
diction inaccuracies it may be not the optimal one. With
suboptimality we consider the percentage difference be-
tween the true optimal configuration and the configuration
selected by the algorithm. As optimal configuration, we
consider the one found by an ideal oracle, which knows
exactly the power consumption and performance of all the
possible configurations.

Table 5: Metrics used for evaluating the strategies

Intuitively, for all these metrics the lower is the value, the
better is the algorithm.

9.2.1. Requirement violations
We want to evaluate the percentage of tests for which the dif-

ferent algorithms failed in finding a configuration satisfying the
user requirements regarding performance or power consump-
tion. Figure 5 shows these results averaged over all the PAR-
SEC applications. We show the average between power con-
sumption and performance requirements since there was no sig-

nificant difference between the two. For algorithms supporting
only one requirement (e.g. Rapl which supports power con-
sumption requirements only), we show only the result for the
supported requirement. A similar approach will be adopted for
the next metrics.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Average

R
e

q
u

ir
e

m
e

n
ts

 V
io

la
ti
o

n
s
 (

%
)

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(a) Stable Applications

 0

 20

 40

 60

 80

 100

 120

Average

R
e

q
u

ir
e

m
e

n
ts

 V
io

la
ti
o

n
s
 (

%
)

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(b) Unstable Applications

Figure 5: Requirements violations of the different algorithms.

The first thing we notice is the high number of requirements
that Rapl is not able to enforce. Indeed, since it only operates
on the clock frequency, it is not able to decrease too much the
power consumption of an application, thus violating low power
consumption requirements. This is not an issue for the other
techniques, since they also operate on the number of cores, thus
being able to explore a broader range of possibilities.

For the stable case (Figure 5(a)), Online Learning, Heuristic
and LiMartinez algorithms violate the requirements in less than
10% of the cases. This percentage is slightly higher for Leo due
to mispredictions.

Concerning the unstable applications (Figure 5(b)), algo-
rithms that exploit some form of training significantly suffer
from the instability of the application. For example, in the On-
line Learning algorithm, the configuration found by the algo-
rithm could not be correct anymore, and could now violate the
requirements. Despite a new training phase is performed, in
some cases the algorithm could continuously chase the opti-
mal configuration but without actually finding it since it keeps
changing. This is not the case for Heuristic algorithm which,
due to a simpler search phase, reacts better to phase changes,
thus being able to satisfy user requirements even in presence of
workload fluctuations.

9.2.2. Training steps and training time
Considering the number of cores and CPU frequency level,

in the used workstation we have 312 different operating config-
urations. Figure 6 shows the average number of configurations
visited by each algorithm before they find a proper configura-
tion, averaged over all the requirements. For Leo, we only con-
sider the number of configurations explored in the online train-
ing part, that, as suggested by the designer in [8], is set to 20.
For Rapl algorithm we always consider both training steps and
training time to be zero since, when it can enforce the specified
power cap, it will usually do so in few milliseconds.

In stable applications, the Online Learning algorithm can
usually find a proper configuration after visiting less than 10
configurations, while the Heuristic is faster and can converge
after visiting less than 5 configurations. The LiMartinez algo-
rithm usually needs few more steps than the Online Learning

13



 0

 5

 10

 15

 20

Average

T
ra

in
in

g
 S

te
p
s

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(a) Stable Applications

 0

 10

 20

 30

 40

 50

 60

 70

Average
T

ra
in

in
g
 S

te
p
s

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(b) Unstable Applications

Figure 6: Training steps of the different algorithms.

algorithm before finding a suitable configuration.
For unstable applications, the situation is quite different.

The Online Learning algorithm does not perform well, due
to re-trainings, which increase the number of configurations
explored. On the other hand, both the Heuristic and the Li-
Martinez algorithms can usually converge in less than 10 steps,
since they do not require sophisticated training to be executed
for every different phase.

Figure 7 reports the training time, i.e. the absolute time spent
by the different algorithms in the training phase (see Table 5).

 0

 10

 20

 30

 40

 50

 60

Average

T
ra

in
in

g
 T

im
e
 (

s
)

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(a) Stable Applications

 0

 10

 20

 30

 40

 50

 60

Average

T
ra

in
in

g
 T

im
e
 (

s
)

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(b) Unstable Applications

Figure 7: Training time (seconds) of the different algorithms.

For stable applications the Online Learning algorithm can
quickly find a proper configuration, usually faster than the Leo
algorithm but not faster than the Heuristic and LiMartinez
heuristic algorithms. For unstable applications, Online Learn-
ing spends too much time performing re-trainings, while Li-
Martinez and Heuristic algorithms are not affected by fluctu-
ations in the workload, thanks to the simplicity of their heuris-
tic prediction algorithms. Despite Leo has a lower number of
tested configurations with respect to the Online Learning algo-
rithm, it spends more time in the training phase with respect to
the other solutions. This happens since Leo explores many slow
configurations, increasing the time spent in the training stage.

For completeness, in Table 6 we report the training time for
each benchmark, expressed as a percentage over the execution
time of the application. Training time for Rapl is not reported
since it is always close to zero. In the first half of the table we
report the data for stable applications, while in the second part
we report results for unstable benchmarks. The results are co-
herent with those we showed in Figure 7. It is worth to remark
that in these experiments we considered a worst case scenario,
where the execution time of the application is typically lower
than 1 minute. In such cases, even if the training only takes few

Benchmark
Online

Learning Heuristic LiMartinez Leo

Blackscholes 13.65 2.29 14.41 81.82
Bodytrack 15.23 6.44 10.16 61.76
Canneal 15.66 7.18 11.59 78.12
Facesim 17.82 6.71 13.12 N.A.
Raytrace 27.42 9.44 17.81 84.07

Streamcluster 11.02 2.33 5.63 40.62
Swaptions 7.46 1.22 6.81 63.37

Vips 20.91 3.59 25.58 90.43
Dedup 68.96 11.97 23.06 84.59
Ferret 47.82 4.99 9.14 58.68

Fluidanimate 51.29 6.82 3.99 N.A.
Freqmine 59.27 1.14 10.98 50.17

X264 71.28 10.58 17.92 80.00

Table 6: Average percentage of the execution time spent in training the algo-
rithm. Rapl is not reported since it is almost 0 in all the cases. The top part
of the table reports the stable benchmarks while the unstable benchmarks are
reported in the bottom part of the table. Due to thecnical limitation of the algo-
rithm, it was not possible to run Leo on Facesim and Fluidanimate.

seconds, in percentage, this looks like a significant impact. In
practice, such kind of self-adaptive techniques are mostly suited
for long running applications, for which the impact of the train-
ing would be much lower.

9.2.3. Suboptimality
Figure 8 shows the suboptimality of the configurations se-

lected by the different algorithms, i.e., how far is the selected
configuration from the optimal one.

 0

 2

 4

 6

 8

 10

 12

Average

S
u
b
o
p
ti
m

a
lit

y
 (

%
)

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(a) Stable Applications

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Average

S
u
b
o
p
ti
m

a
lit

y
 (

%
)

Online Learning
Heuristic

LiMartinez

Leo
Rapl

(b) Unstable Applications

Figure 8: Suboptimality of the different algorithms

For stable applications all the considered algorithms can find
configurations characterized by a power consumption (for the
performance requirement) or performance (for the power con-
sumption requirement) within 5% from the optimal one. Dif-
ferences become more evident in the case of unstable applica-
tions. The Rapl algorithm has the best performance here. How-
ever, as anticipated it can only provide guarantees on power
consumption. The Online Learning algorithm is slightly worst
than Rapl but can satisfy requirements on both performance
and power consumption. Due to its simplicity, the Heuristic
approach cannot find configurations as good as those found by
Online Learning algorithm.

14



9.2.4. Summary
In Figure 9 we report a summary comparison through a radar

chart, where we normalized the results we already showed with
values between 0 and 1. On each radius, the highest the value,
the better the algorithm is. Accordingly, if we consider for ex-
ample the Training Time radius, a higher value does not mean
that the algorithm has a higher training time but a better (i.e.,
shorter) training time. We added a Supported Requirements ra-
dius, to also consider the types of requirements supported by
each algorithm. We assigned a value of 0.5 to algorithms sup-
porting only power consumption or performance requirements
and a value of 1.0 to algorithms supporting both performance
and power consumption requirements.

Stable Applications. For stable applications, Online Learning,
Heuristic and LiMartinez violate a comparable number of re-
quirements. Rapl performs poorly since, by acting only on volt-
age and clock frequency, cannot decrease the power consump-
tion too much. Regarding optimality, configurations found by
Online Learning algorithm are very close to those found by
an efficient and hardware-enforced solution such as Rapl. On
the other hand, Online Learning and Leo supports both per-
formance and power consumption requirements, while Heuris-
tic and LiMartinez support only performance requirements and
Rapl only supports power consumption requirements. Con-
cerning the training, Online Learning can find a proper con-
figuration in a time comparable to Heuristic, LiMartinez and
Rapl.

Unstable Applications. For unstable applications the perfor-
mance of the Online Learning and Leo algorithms decreases
in terms of training time, training steps and requirements vio-
lations. However, our Heuristic algorithm still performs well
and, concerning requirements violations, better than the other
heuristic (LiMartinez) we considered in our comparison.

Figure 9: Summary comparison between the different algorithms.

To conclude, there are scenarios (e.g. unstable applications)
where there is not a clear winner and the best algorithm to be
used may depend on the user wishes. This highlights the impor-
tance of having a framework that allows an algorithm designer
to easily create new algorithms and to compare them with ex-
isting strategies.

10. Conclusions and Future Work

Being able to explicitly control performance and power con-
sumption of parallel application is a growing requirement in

different scenarios. In this paper, we presented the design and
implementation of Nornir, a framework which can be used to
implement self-adaptive algorithms or to apply self-adaptive re-
configuration decisions on parallel applications.

By using Nornir, the algorithm designer can just focus on
the algorithm itself, neglecting all the low-level issues related
to interaction with the application and with the underlying com-
puting node. We provide different solutions for interfacing
Nornir to an existing application, according to the effort the
programmer is willing to put in doing this task. The more is the
programming effort, the more are the information collected by
Nornir and the more are the reconfiguration mechanisms that
the algorithms could be able to exploit. To provide a mean-
ingful and varied testbed for the self-adaptive algorithms we
instrumented the applications in the PARSEC benchmark, by
creating a self-adaptive version of PARSEC, on which is pos-
sible to set performance and power consumption requirements
for each application.

Eventually, we used our framework to implement different
self-adaptive algorithms, some of which were originally only
simulated. By doing so we achieved two goals. On one side, we
proved that Nornir is flexible enough to implement a wide set
of different algorithms and that is possible to do that by just im-
plementing the algorithm logic, without having to explicitly in-
teract with the application or with the underlying hardware. On
the other side, we compared such algorithms, showing strength
and weaknesses of each of them.

In the future, we plan to extend Nornir to support applica-
tions running on heterogeneous platforms, for example by dy-
namically adapting GPU resources. This would require adding
new knobs to control resources on the GPU (e.g. block size,
etc...), as well as new self-adaptive algorithms to select the ap-
propriate value for each resource. New knobs can be added with
relatively low effort, thanks to the modular design of Nornir,
while the self-adaptation strategy can be implemented either by
relying on state of the art solutions or by designing new strate-
gies from scratch.

In addition, we would like to extend our work for applica-
tions running on distributed memory environment, either by
providing support to MPI-based applications or by providing
a more general solution, similarly to what we did with the in-
strumentation of general parallel applications.

Acknowledgements

This work has been partially supported by the EU H2020-
ICT-2014-1 project RePhrase (No. 644235).

References

[1] Y. Xiao, M. Krunz, Qoe and power efficiency tradeoff for fog comput-
ing networks with fog node cooperation, in: IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017, pp. 1–9. doi:

10.1109/INFOCOM.2017.8057196.
[2] S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: Survey

and implications, IEEE Communications Surveys Tutorials 13 (3) (2011)
443–461. doi:10.1109/SURV.2011.060710.00094.

15

http://dx.doi.org/10.1109/INFOCOM.2017.8057196
http://dx.doi.org/10.1109/INFOCOM.2017.8057196
http://dx.doi.org/10.1109/SURV.2011.060710.00094


[3] S. Peng, T. Wang, C. Low, Energy neutral clustering for energy harvesting
wireless sensors networks, Ad Hoc Networks 28 (Supplement C) (2015)
1 – 16. doi:https://doi.org/10.1016/j.adhoc.2015.01.004.
URL http://www.sciencedirect.com/science/article/pii/

S1570870515000062

[4] B. Gedik, S. Schneider, M. Hirzel, K. L. Wu, Elastic scaling for data
stream processing, IEEE Transactions on Parallel and Distributed Sys-
tems 25 (6) (2014) 1447–1463. doi:10.1109/TPDS.2013.295.

[5] T. De Matteis, G. Mencagli, Keep calm and react with foresight: Strate-
gies for low-latency and energy-efficient elastic data stream processing,
in: Proc. of the 21st ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP), 2016, pp. 13:1–13:12.

[6] B. Lohrmann, P. Janacik, O. Kao, Elastic stream processing with latency
guarantees, in: The 35th Intl. Conf. on Distributed Computing Systems,
2015.

[7] A. Gandhi, M. Harchol-Balter, R. Das, J. Kephart, C. Lefurgy, Power
Capping Via Forced Idleness, in: Proc. of Workshop on Energy-Efficient
Design, 2009.

[8] N. Mishra, H. Zhang, J. D. Lafferty, H. Hoffmann, A Probabilistic Graph-
ical Model-based Approach for Minimizing Energy Under Performance
Constraints, ACM SIGARCH Computer Architecture News 43 (1) (2015)
267–281.

[9] C. Bienia, S. Kumar, J. P. Singh, K. Li, The parsec benchmark suite: Char-
acterization and architectural implications, in: 17th Inter. Conf. on Paral-
lel Architectures and Compilation Techniques, PACT ’08, ACM, 2008,
pp. 72–81. doi:10.1145/1454115.1454128.

[10] D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli, M. Danelutto,
Bringing parallel patterns out of the corner: The p3arsec benchmark suite,
ACM Trans. Archit. Code Optim. 14 (4) (2017) 33:1–33:26. doi:10.

1145/3132710.
URL http://doi.acm.org/10.1145/3132710

[11] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Com-
puter 36 (1) (2003) 41–50. doi:10.1109/MC.2003.1160055.

[12] J. Li, J. F. Martı́nez, Dynamic power-performance adaptation of parallel
computation on chip multiprocessors, Proceedings - International Sympo-
sium on High-Performance Computer Architecture 2006 (2006) 77–87.

[13] D. De Sensi, M. Torquati, M. Danelutto, A reconfiguration algorithm
for power-aware parallel applications, ACM Trans. Archit. Code Optim.
13 (4) (2016) 43:1–43:25.

[14] R. Zhang, C. Lu, T. F. Abdelzaher, J. A. Stankovic, Controlware: a mid-
dleware architecture for feedback control of software performance, in:
Proceedings 22nd International Conference on Distributed Computing
Systems, 2002, pp. 301–310. doi:10.1109/ICDCS.2002.1022267.

[15] A. Goel, D. Steere, C. Pu, J. Walpole, Swift: A feedback control and
dynamic reconfiguration toolkit, Tech. rep. (1998).

[16] B. Li, K. Nahrstedt, A control-based middleware framework for quality-
of-service adaptations, IEEE Journal on Selected Areas in Communica-
tions 17 (9) 1632–1650. doi:10.1109/49.790486.

[17] J. Panerati, F. Sironi, M. Carminati, M. Maggio, G. Beltrame, P. J. Gmy-
trasiewicz, D. Sciuto, M. D. Santambrogio, On self-adaptive resource al-
location through reinforcement learning, in: 2013 NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS-2013), 2013, pp. 23–30.
doi:10.1109/AHS.2013.6604222.

[18] H. Hoffman, Seec: A framework for self-aware management of goals and
constraints in computing systems, Ph.D. thesis, Cambridge, MA, USA
(2013).

[19] C. Imes, H. Hoffmann, Bard: A unified framework for managing soft
timing and power constraints, in: 2016 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS), 2016, pp. 31–38. doi:10.1109/SAMOS.2016.7818328.

[20] C. Imes, D. H. K. Kim, M. Maggio, H. Hoffmann, Portable mul-
ticore resource management for applications with performance con-
straints, in: 2016 IEEE 10th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSOC), 2016, pp. 305–312.
doi:10.1109/MCSoC.2016.10.

[21] IBM, Ibm stream s, https://www.ibm.com/ms-en/marketplace/

stream-computing (2018).
[22] B. Gedik, S. Schneider, M. Hirzel, K. L. Wu, Elastic scaling for data

stream processing, IEEE Transactions on Parallel and Distributed Sys-
tems 25 (6) (2014) 1447–1463. doi:10.1109/TPDS.2013.295.

[23] D. De Sensi, M. Torquati, M. Danelutto, Mammut: High-level man-

agement of system knobs and sensors, SoftwareX 6 (2017) 150 – 154.
doi:https://doi.org/10.1016/j.softx.2017.06.005.
URL http://www.sciencedirect.com/science/article/pii/

S2352711017300225

[24] M. Maggio, H. Hoffmann, M. Santambrogio, A. Agarwal, A. Leva, Con-
trolling software applications via resource allocation within the heartbeats
framework, in: Decision and Control (CDC), 2010 49th IEEE Conference
on, 2010, pp. 3736–3741. doi:10.1109/CDC.2010.5717893.

[25] D. Chasapis, M. Casas, M. Moretó, M. Schulz, E. Ayguadé, J. Labarta,
M. Valero, Runtime-guided mitigation of manufacturing variability in
power-constrained multi-socket numa nodes, in: Proceedings of the 2016
International Conference on Supercomputing, ICS ’16, ACM, New York,
NY, USA, 2016, pp. 5:1–5:12. doi:10.1145/2925426.2926279.
URL http://doi.acm.org/10.1145/2925426.2926279

[26] M. Casas, R. M. Badia, J. Labarta, Automatic phase detection and struc-
ture extraction of mpi applications, Int. J. High Perform. Comput. Appl.
24 (3) (2010) 335–360. doi:10.1177/1094342009360039.
URL http://dx.doi.org/10.1177/1094342009360039

[27] E. Totoni, J. Torrellas, L. V. Kale, Using an adaptive hpc runtime system
to reconfigure the cache hierarchy, in: Proc. of SC 2014, IEEE Press,
2014, pp. 1047–1058.

[28] A. Sembrant, D. Black-Schaffer, E. Hagersten, Phase behavior in serial
and parallel applications, in: Workload Characterization (IISWC), 2012
IEEE Intl. Symposium on, 2012, pp. 47–58.

[29] M. A. Islam, S. Ren, X. Wang, Greencolo: A novel incentive mecha-
nism for minimizing carbon footprint in colocation data center, in: Inter-
national Green Computing Conference, 2014, pp. 1–8. doi:10.1109/

IGCC.2014.7039140.
[30] N. H. Tran, T. Z. Oo, S. Ren, Z. Han, E. N. Huh, C. S. Hong, Reward-

to-reduce: An incentive mechanism for economic demand response of
colocation datacenters, IEEE Journal on Selected Areas in Communica-
tions 34 (12) (2016) 3941–3953. doi:10.1109/JSAC.2016.2611958.

[31] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, M. Ri-
nard, Dynamic Knobs for Responsive Power-aware Computing, SIG-
PLAN Not. 46 (3) (2011) 199–212.

[32] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, A. Agar-
wal, A generalized software framework for accurate and efficient man-
agement of performance goals, in: 2013 Proceedings of the Interna-
tional Conference on Embedded Software (EMSOFT), 2013, pp. 1–10.
doi:10.1109/EMSOFT.2013.6658597.

[33] F. Sironi, D. B. Bartolini, S. Campanoni, F. Cancare, H. Hoffmann,
D. Sciuto, M. D. Santambrogio, Metronome: Operating system level per-
formance management via self-adaptive computing, in: Proceedings of
the 49th Annual Design Automation Conference, DAC ’12, ACM, New
York, NY, USA, 2012, pp. 856–865. doi:10.1145/2228360.2228514.
URL http://doi.acm.org/10.1145/2228360.2228514

[34] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, M. Torquati,
Accelerating code on multi-cores with fastflow, in: E. Jeannot,
R. Namyst, J. Roman (Eds.), Proceedings of the 17th International Con-
ference on Parallel Processing - Volume Part II, Vol. 6853 of Euro-Par’11,
Springer-Verlag, 2011, pp. 170–181.
URL http://dl.acm.org/citation.cfm?id=2033408.2033428

[35] M. Danelutto, D. De Sensi, M. Torquati, A power-aware,
self-adaptive macro data flow framework, Parallel Process-
ing Letters 27 (01) (2017) 1740004. arXiv:http://www.

worldscientific.com/doi/pdf/10.1142/S0129626417400047,
doi:10.1142/S0129626417400047.
URL http://www.worldscientific.com/doi/abs/10.1142/

S0129626417400047

[36] M. Aldinucci, M. Danelutto, D. De Sensi, G. Mencagli, M. Torquati,
Towards power-aware data pipelining on multicores, in: Proc. of
HLPP2017: Intl. Workshop on High-Level Parallel Programming, Val-
ladolid, Spain, 2017.

[37] D. De Sensi, Predicting performance and power consumption of parallel
applications, in: Proc. of 24th Euromicro Intl. Conf. on Parallel, Dis-
tributed, and Network-Based Processing, 2016, pp. 200 – 207.

[38] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, M. Schulz,
Beyond dvfs: A first look at performance under a hardware-enforced
power bound, in: Proc. of the 2012 IEEE 26th Intl. Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum, IPDPSW ’12,
IEEE Computer Society, Washington, DC, USA, 2012, pp. 947–953.

16

View publication statsView publication stats

http://www.sciencedirect.com/science/article/pii/S1570870515000062
http://www.sciencedirect.com/science/article/pii/S1570870515000062
http://dx.doi.org/https://doi.org/10.1016/j.adhoc.2015.01.004
http://www.sciencedirect.com/science/article/pii/S1570870515000062
http://www.sciencedirect.com/science/article/pii/S1570870515000062
http://dx.doi.org/10.1109/TPDS.2013.295
http://dx.doi.org/10.1145/1454115.1454128
http://doi.acm.org/10.1145/3132710
http://dx.doi.org/10.1145/3132710
http://dx.doi.org/10.1145/3132710
http://doi.acm.org/10.1145/3132710
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/ICDCS.2002.1022267
http://dx.doi.org/10.1109/49.790486
http://dx.doi.org/10.1109/AHS.2013.6604222
http://dx.doi.org/10.1109/SAMOS.2016.7818328
http://dx.doi.org/10.1109/MCSoC.2016.10
https://www.ibm.com/ms-en/marketplace/stream-computing
https://www.ibm.com/ms-en/marketplace/stream-computing
http://dx.doi.org/10.1109/TPDS.2013.295
http://www.sciencedirect.com/science/article/pii/S2352711017300225
http://www.sciencedirect.com/science/article/pii/S2352711017300225
http://dx.doi.org/https://doi.org/10.1016/j.softx.2017.06.005
http://www.sciencedirect.com/science/article/pii/S2352711017300225
http://www.sciencedirect.com/science/article/pii/S2352711017300225
http://dx.doi.org/10.1109/CDC.2010.5717893
http://doi.acm.org/10.1145/2925426.2926279
http://doi.acm.org/10.1145/2925426.2926279
http://dx.doi.org/10.1145/2925426.2926279
http://doi.acm.org/10.1145/2925426.2926279
http://dx.doi.org/10.1177/1094342009360039
http://dx.doi.org/10.1177/1094342009360039
http://dx.doi.org/10.1177/1094342009360039
http://dx.doi.org/10.1177/1094342009360039
http://dx.doi.org/10.1109/IGCC.2014.7039140
http://dx.doi.org/10.1109/IGCC.2014.7039140
http://dx.doi.org/10.1109/JSAC.2016.2611958
http://dx.doi.org/10.1109/EMSOFT.2013.6658597
http://doi.acm.org/10.1145/2228360.2228514
http://doi.acm.org/10.1145/2228360.2228514
http://dx.doi.org/10.1145/2228360.2228514
http://doi.acm.org/10.1145/2228360.2228514
http://dl.acm.org/citation.cfm?id=2033408.2033428
http://dl.acm.org/citation.cfm?id=2033408.2033428
http://www.worldscientific.com/doi/abs/10.1142/S0129626417400047
http://www.worldscientific.com/doi/abs/10.1142/S0129626417400047
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0129626417400047
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0129626417400047
http://dx.doi.org/10.1142/S0129626417400047
http://www.worldscientific.com/doi/abs/10.1142/S0129626417400047
http://www.worldscientific.com/doi/abs/10.1142/S0129626417400047
https://www.researchgate.net/publication/325160747

