
Residuation for Bipolar Preferences in Soft Constraints

Fabio Gadduccia, Francesco Santinib,∗

aDipartimento di Informatica, Università di Pisa, Italy
bDipartimento di Matematica e Informatica, Università di Perugia, Italy

Abstract

Soft constraint formalisms are an abstract representation of Constraint Satisfac-
tion Problems (CSPs): the set of preferences is now parametric, often forming
(a variety of) an absorptive semiring. However, the latter is suitable only for
negative preferences, i.e., such that the combination of constraints worsens the
quality of the solution. This work comments on related work and exploits
residuated semirings in order to lift the Local Consistency heuristics that hold
for classical CSPs. As a result, we merge and generalise existent formalisms for
modelling soft CSPs with bipolar (positive and negative) preferences.

Keywords: Soft Constraints, Bipolar Preferences, Local Consistency.

1. Introduction

Soft constraints refer to a family of formalisms adopted for modelling and
optimising problems of a combinatorial nature. They take the form of a set of
variable assignments, each one of them equipped with a value denoting the
degree of preference for that assignment as part of the solution to the problem.
A large body of work has been devoted to the study of algebraic structures for
sets of preferences guaranteeing that those techniques can be generalised. The
key idea is to consider operators such that the application of algorithms sums
up to the manipulation of the values associated to a given set of assignments.

Soft technology focussed mostly on structures modelling negative prefer-
ences, i.e., such that the combination of preferences worsens the solution. This
property underlies the earlier proposals (see e.g., [1, 2] and [3, Ch. 9.3]), and it
is the base for various extensions, such as those with partial inverses [4, 5, 6].

However, the literature on CSPs has recognised the need of positive prefer-
ences in a bipolar setting, see e.g., [7].Consider a scenario where a manufacturer
needs to produce different leather products from the same skin. Each product
unit has a cost in terms of power consumption and leather. Scheduling the cut-
ting in different ways may actually decrease the overall cost, e.g., by reducing
wasted skin. As noted in [8, §8], such situations cannot always be dealt with
by manipulating the problem to end up with prices above zero, that is, in other
terms, by transforming it into a scenario with negative preferences only.

∗Corresponding author
Email addresses: fabio.gadducci@di.unipi.it (Fabio Gadducci),

francesco.santini@dmi.unipg.it (Francesco Santini)

Preprint submitted to Elsevier October 14, 2016

The aim of this work is to i) review the two existing proposals in the litera-
ture (§2.2), ii) join them in a new framework through an operator that removes
preference values, and iii) recover the (soft) local-consistency algorithms in the
frame of bipolar preferences. Our starting point (§2) is the bipolar semiring
introduced in [9]: we add a partial inverse operator along the lines of what has
been done for negative preferences in [5], obtaining a residuated monoid en-
riched over a join semi-lattice. Our soft constraints are based on such structures
(§3). The inverse operator helps us to recover the aforementioned heuristics
and some upper bounds on approximated problems (§4). Residuated monoids
have a long tradition in logic [10]: they allow for a parametric framework where
it is possible to use different preference systems, each represented by a different
monoid instance. Finally, §5 wraps up the paper with final considerations.

2. Residuation for Bipolar Preferences

This section introduces some notions concerning monoids enriched over
semi-lattices. They allow for recasting the standard presentation of the soft
constraints paradigm, and for introducing a new approach to bipolar prefer-
ences. Finally, in §2.3 we provide a comparison with related work.

2.1. Residuated Monoids
The first step is to define an algebraic structure for modelling preferences.

Definition 2.1 (orders). A partial order (PO) is a pair 〈A,≤〉 such that A is a set and
≤ ⊆ A × A is a reflexive, transitive, and anti-symmetric relation. A join semi-lattice
(JSL) is a PO such that any finite subset of A has a least upper bound (LUB).

The LUB of a (possibly infinite) subset X ⊆ A is denoted
∨

X, and it is clearly
unique. By definition

∨
∅ is the bottom of the PO, and we denote it as ⊥.

Definition 2.2 (monoids). A (commutative) monoid is a triple 〈A,⊗, 1〉 such that
⊗ : A × A→ A is a commutative and associative function and

• ∀a ∈ A.a ⊗ 1 = a, where 1 ∈ A is the identity element.

We often use an infix notation, as a ⊗ b for ⊗(a, b).

Definition 2.3 (residuation). A residuated monoid (ReM) is a 5-tuple 〈A,≤,⊗, 	÷ , 1〉
such that 〈A,≤〉 is a PO, 〈A,⊗, 1〉 is a monoid, 	÷ : A × A→ A is a function and

• ∀a, b, c ∈ A.b ⊗ c ≤ a ⇐⇒ c ≤ a	÷ b.

A residuated JSL (ReSL) is an ReM such that the underlying PO is a JSL.

The lemma below states that residuation conveys the meaning of division.

Lemma 2.1. Let 〈A,≤,⊗, 	÷ , 1〉 be an ReM. Then

• ∀a, b ∈ A. a	÷ b =
∨
{c | b ⊗ c ≤ a};

• ∀a, b, c ∈ A. a ≤ b =⇒ (a	÷ c ≤ b	÷ c & c ⊗ a ≤ c ⊗ b).

2

Proof. The first item is straightforward, since by definition a	÷ b is an upper
bound of {c | b⊗c ≤ a}, and again by definition b⊗(a	÷ b) ≤ a. The latter property
ensures the monotonicity of 	÷ (on the first argument), since by definition
a	÷ c ≤ b	÷ c iff c⊗ (a	÷ c) ≤ b. As for the monotonicity of ⊗, it suffices to note that
by definition a ≤ (b⊗a)	÷ b and also by definition c⊗a ≤ c⊗b iff a ≤ (c⊗b)	÷ c. �

Note that by commutativity, ⊗ is actually monotone on both arguments.
Moreover, Lemma 2.2 states that in fact residuation implies distributivity.

Lemma 2.2. Let 〈A,≤,⊗, 	÷ , 1〉 be an ReSL and X ⊆ A a finite set. Then

• ∀a ∈ A. a ⊗
∨

X =
∨
{a ⊗ x | x ∈ X}.

Proof. Should X be empty, the proof is immediate, since by definition⊥ ≤ ⊥	÷ a.

∀y ∈ X. a ⊗ y ≤
∨
{a ⊗ x | x ∈ X} =⇒ ∀y ∈ X. y ≤ (

∨
{a ⊗ x | x ∈ X})	÷ a =⇒

=⇒
∨

X ≤ (
∨
{a ⊗ x | x ∈ X})	÷ a =⇒ a ⊗

∨
X ≤
∨
{a ⊗ x | x ∈ X}.

∀x ∈ X. x ≤
∨

X =⇒ ∀x ∈ X. x ≤ (a ⊗
∨

X)	÷ a =⇒

=⇒ ∀x ∈ X. a ⊗ x ≤ a ⊗
∨

X =⇒
∨
{a ⊗ x | x ∈ X} ≤ a ⊗

∨
X.

�

The proof also works for infinite sets, as long as the necessary LUBs exist.

Remark 2.1. It is now easy to show that ReSLs are tropical semirings, i.e., semirings
with a sum operator a ⊕ b =

∨
{a, b} that is idempotent. If 1 is also the top of the JSL,

we would end up in what are called absorptive semirings [11] in the algebra literature,
which in turn are known as c-semirings in the soft constraint jargon [1] (see e.g. [5] for
a brief survey on residuation for such semirings). Indeed, it is precisely the lack of the
latter requirement on 1 that makes ReSLs suitable for modelling bipolar preferences:
combined with monotonicity, imposing 1 to be the top means that preferences are
negative, that is, ∀a, b ∈ A.a ⊗ b ≤ a.

Some derived properties are ∀a ∈ A.1 ≤ a	÷ a and ∀a, b ∈ A.b ⊗ (a	÷ b) ≤
a ≤ (b ⊗ a)	÷ b, and as further consequences also ∀a ∈ A.a ⊗ (a	÷ a) = a and
∀a, b ∈ A.a < b =⇒ 1 � a	÷ b (for a < b meaning a ≤ b and a , b).

The latter property suggests the following definition.

Definition 2.4 (localisation / invertibility). An ReM 〈A,≤,⊗, 	÷ , 1〉 is

• localised if ∀a, b ∈ A.a ≤ b =⇒ a	÷ b ≤ 1;

• invertible if ∀a, b ∈ A.a ≤ b =⇒ b ⊗ (a	÷ b) = a.

Remark 2.2. Well-known structures used for soft constraints are the Fuzzy (〈[0, 1],≤,
min, 0, 1〉), Probabilistic (〈[0, 1],≤,×, 0, 1〉), and Tropical (〈R+

∪{+∞},≥,+,+∞, 0〉)
semirings, for ≥ the inverse of the standard order (thus +∞ is the bottom and 0 the top
of the JSL, respectively). In all these cases the underlying monoids are invertible and
localised, and the 	÷ operator can be used to (partially) relax constraints [5].

3

2.2. Another Look at Bipolar Proposals
We are aware of two proposals for modelling bipolar preferences using soft

constraint technology, by Bistarelli et alii [8, 12] and by Fargier and Wilson [9].

2.2.1. Bipolar semirings
The bipolar valuation structures proposed by Fargier and Wilson are the

main inspiration behind our formalism. Indeed, ReSLs appear as a stream-
lined extension of their bipolar semirings [9, §5], equipped with a residuation
operator, along the line of what has been done in [5] for negative preferences.

Definition 2.5. A bipolar semiring is a 6-tuple 〈A,≤,⊗,∨, 1,⊥〉 such that 〈A,≤〉 is a
PO, 〈A,⊗, 1〉 is a monoid, 〈A,∨,⊥〉 is an idempotent monoid and

• ∀a ∈ A.⊥ ≤ a;

• ∀a, b, c ∈ A. a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c);

• ∀a, b, c ∈ A. a ≤ b =⇒ (a ∨ c ≤ b ∨ c & c ⊗ a ≤ c ⊗ b).

The definition implies that a∨ b is an upper bound of a and b: our proposal
simply considers ∨ as the LUB of two elements, which is the standard interpre-
tation in soft problems. Note however that we could have started directly from
the definition above and just added residuation, since all the derived properties
would still hold, such as e.g. Lemma 2.2. Hence, asking for residuation is a
stronger requirement, yet resulting in a streamlined algebraic presentation.

2.3. Bipolar preference structures
Bistarelli et alii consider an absorptive semiring for negative preferences, and

a dual structure for positive ones, such that the monoid identity is the top of
the former and the bottom of the latter. The two structures might be unrelated,
and while an ordering encompassing both kinds of preferences is given, the
composition of a positive and a negative value might be not well-defined.
Adopting our notation, we can rephrase that definition in the following form.

Definition 2.6. A bipolar preference structure is a 4-tuple 〈A,≤,⊗, 1〉 such that
A = A+

]A− for A+ = {1 ≤ a | a ∈ A} and A− = {a ≤ 1 | a ∈ A}, 〈A−,≤〉 and 〈A+,≥〉
are JSLs, ⊗ : A × A → A is a commutative function, 〈A+,⊗, 1〉 and 〈A−,⊗, 1〉 are
monoids, and

• ∀a, b, c ∈ A. a ≤ b =⇒ c ⊗ a ≤ c ⊗ b;

• ∀a, b, c ∈ A+. a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c), and the same for A−.

These structures are more general than ReSLs. However, unless the positive
preferences are carved out of the negative ones by localisation [8, §9.1], requiring
⊗ to be associative is problematic. Indeed, in [12, §9] a few cases for the
positive/negative restriction of ⊗ are shown that make associativity fail. Hence,
optimisation has to be independently pursued on A+ and A−.

Summing up, besides the simplicity of the algebraic presentation, what is
noteworthy is that ReSLs allow for easily adapting to the bipolar setting some
algorithms (such as the one for local consistency) available for idempotent
and invertible absorptive semirings [1, 5], and this is the core of the paper

4

contribution, as shown in §4, where we extend local consistency algorithms
in [13] for weighted CSPs. And even if it is not pursued here, the formalism
is robust enough to be closed with respect to standard operators on semirings,
such as the Cartesian product and (Hoare) power-domain (the latter needed
for multi-criteria problems [14]). Variable elimination algorithms already exist
in the literature for partially-ordered sets of preferences, see e.g. [15]. Directly
related to our work on bipolar preferences, in [9] the authors present a forward-
checking algorithm, and in [12] a local-consistency algorithm for distributive
semirings, where ⊗ is idempotent: our proposal encompasses both of them.

3. Soft Systems and Problems

This section briefly recalls the key notions of the soft constraint framework,
casting them into our proposal using ReSLs (thus generalising [1]). In the
following we fix an ReSL S = 〈A,≤,⊗, 	÷ , 1〉.

Definition 3.1 (constraints). Let V be a (possibly ordered) set of variables and D =⋃
x∈V Dx a finite domain of interpretation for V. Then, a constraint (V → D)→ A is

a function associating a value in A to each assignment η : V → D of the variables.

Each Dx is the domain of interpretation of the variable x ∈ V, thus η(x) ∈ Dx
for each variable assignment. We denote by CV,D the set of constraints built
starting from V and D. The application of a constraint function c : (V → D)→ A
to an assignment η : V → D is denoted cη. Even if a constraint involves all
the variables in V, it may depend on the assignment of a finite subset of them,
i.e., its support. For instance, a binary constraint c with supp(c) = {x, y} is a
function c : (V → D) → A that depends only on the assignment of variables
{x, y} ⊆ V, meaning that two assignments η1, η2 : V → D differing only for the
image of variables z < {x, y} coincide (i.e., the evaluation cη1 and cη2 coincide).
The support corresponds to the classical notion of scope of a constraint.

The set of constraints (with finite support) forms an ReSL: the partial order
is lifted from S, and given c1, c2 ∈ CV,D we have that c1 ≤ c2 if c1η ≤ c2η for all
possible η : V → D. Combining two constraints by ⊗ means building a new
constraint whose support involves at most the variables of the original ones:
each tuple of domain values for such variables is associated with the element ofS
obtained by multiplying those elements associated by the original constraints to
the obvious sub-tuples. Even residuation works similarly: (c1 	÷ c2)η = c1η	÷ c2η.
The bottom constraint is the obvious constant function.

Since the domain of interpretation is finite, we define a projection operator ⇓
for each constraint c and variable x as

(c ⇓x)η =
∨
d∈Dx

cη[x := d].

Projection decreases the support: supp(c ⇓x) ⊆ supp(c)\ {x}. It is also associative:
c ⇓{x1,...,xn} denotes any finite sequence of projections (. . . (c ⇓x1) . . .) ⇓xn .

Definition 3.2 (soft CSPs). A soft constraint satisfaction problem (soft CSP or
SCSP) is a triple 〈V,D,C〉, where C ⊆ CV,D is a finite set of constraints. The conjunction
of all the constraints in a soft CSP P = 〈V,D,C〉 is CP =

⊗
c∈C c.

In the following, we fix a soft CSP P = 〈V,D,C〉 and write
⊗

C for
⊗

c∈C c.

5

x y
c2

c1 c3

a a = 2
a b = 3
b a = −1
b b = 2

a = −5
b = −4

a = −2
b = −3

Figure 1: A soft CSP based on the tropical semiring.

Definition 3.3 (solutions). A solution of P is an assignment η such that CPη , ⊥.
A solution η is optimal if for any other assignment η′ we have CPη ≮ CPη′.

3.1. A Running Example
A standard example of the domain of preferences in soft constraints is the

tropical semiring 〈R+
∪ {+∞},≥,+, 0,+∞〉, for ≥ the “greatest or equal” order

on integers (thus +∞ is the bottom and 0 the top of the JSL, respectively) and
addition as the monoidal operator. In our proposal, 	÷ = −̂ is defined as
a − b if the result is positive, 0 otherwise; this makes W an invertible ReSL. We
generalise the structure by considering the ReSLW = 〈R∪{−∞,+∞},≤,+,−, 0〉,
i.e., considering all the reals, which is also clearly localised and invertible.

Figure 1 shows a soft CSP 〈{x, y}, {a, b}, {c1, c2, c3}〉 as a graph with values
from W. We set this example in the same leather-products manufacturing
scenario in §1. Variables and constraints are respectively represented by nodes
and by undirected arcs (unary for c1 and c3, and binary for c2), and values are
written to the right of each tuple. The domain of the variables contains only the
elements a and b, which represent two different leather products, e.g., footwear
and gloves. The solution of the soft CSP of Figure 1 associates an element
with every domain value of the variables x and y: x is the first product to be
scheduled, and y the second one. Therefore, c1 and c3 represent a monetary
cost for allocating the first and second task to a or b, while c2 represents the cost
spent or saved for a given sequence. For instance, for the tuple 〈a, a〉 (that is,
x = y = a), we compute the sum of −5 (the value assigned to x = a in constraint
c1), 2 (〈x = a, y = a〉 in c2) and −2 (y = a in c3), for a total cost of −5. Hence,
producing two pairs of sandals in sequence saves two cost units (stated by c2).

4. Solving Soft CSP

Following Definition 3.2, we consider a soft CSP as a triple P = 〈V,D,C〉,
where V = {x1, . . . , xn} is an ordered set of variables and C ⊆ CV,D. Notation-
wise, we denote as cY a constraint whose support is Y, and we assume that
for each Y ⊆ V there is at most one such cY in C, always including c∅. In fact,
we assume that c∅ ∈ C, i.e., a constraint with empty support: we simply add
to C the constraint c∅ = 1 (the constant function mapping each η to 1) without
altering the solution. Finally, in the following we focus on a binary soft CSP,
i.e., such that no constraint has a support of arity greater than 2: our algorithms
might be easily adapted to n-ary soft CSP. However, even if the complexity of
finding a solution actually increases, there is no lack of generality, since any soft
CSP with n-ary constraints can be converted to an equivalent, binary one [16].

6

4.1. Soft Local Consistency
The idea behind local-consistency algorithms is to safely move costs (i.e.,

without changing the solution) towards smaller arity constraints. Such algo-
rithms can be used in branch-and-bound based solvers with the purpose to
find undominated solutions. Local Consistency is thus a family of increasingly
harder properties about a (soft) CSP [3]. The control parameter is the size of
the sub-network (i.e., the number of tuple variables) involved. The larger the
tuples, the harder the property is. The simplest forms of local consistency are
Node Consistency (NC), which accounts for unary constraints, and Arc Consis-
tency (AC), which accounts for binary constraints. In general, k-consistency
takes into account constraints with k + 1 variables in its scope. As we already
remarked, for the sake of simplicity we focus on NC and AC.

We are now ready to define our notions of NC and AC in the setting of
bipolar preferences, which extend the definitions for weighted CSPs [13].

Definition 4.1 (node/arc consistency). A variable x ∈ V is

• NC if cx ∈ C =⇒ ∀d ∈ Dx.c∅ ⊗ cx[x := d] , ⊥;

• AC if ∀y ∈ V.cxy ∈ C =⇒ cxy ⇓y= 1.

A problem is NC if each variable is so, AC if each variable is both NC and AC.

Each local-consistency property comes with its enforcing algorithm. In soft
CSPs, the effect of such transformations is a move of values. For instance, the
enforcement of AC moves values from binary to unary/zero-arity constraints.
Enforcing algorithms are based on the Local-consistency Rule, as defined in [5].

Definition 4.2 (local consistency rule). Let c1, c2 ∈ C be constraints such that
supp(c1) ⊂ supp(c2) and Z = supp(c2)\supp(c1). A Local-consistency Rule, denoted
CR(c1, c2), consists of the following two steps:

• combine c1 with the value induced by c2: c1 := c1 ⊗ (c2 ⇓Z);

• compensate in c2 the value combined with c1: c2 := c2 	÷ (c2 ⇓Z).

The support of the two constraints may be restricted after the rule applica-
tion. Also, rule application is usually incremental, and Z is a singleton.

Proposition 4.1 (preserving the solution). Let c1, c2 ∈ C be constraints such that
supp(c1) ⊂ supp(c2) andQ the soft CSP obtained after the application of the CR(c1, c2)
rule to P. Then CQ ≤ CP and, if R is invertible, they coincide.

The result extends [5, Proposition 10]. The proof is a consequence of the
notion of residuation, which ensures that c1 ⊗ (c2 ⇓Z) ⊗ [c2 	÷ (c2 ⇓Z)] ≤ c1 ⊗ c2.

4.2. Enforcing Algorithms
An algorithm to enforce NC is presented in Algorithm 1. It first applies the

CR rule in Definition 4.2 to unary constraints cz ∈ C, accumulating the possible
preferences of each cz to c∅. Then, the algorithm removes from the domain of a
variable those assignments that do not lead to a solution (see Definition 3.3).

Both algorithms mimic those for weighted CSPs in [13], the only difference
is the use of residuation in the application of the Local-consistency Rule. Thus,
we can replicate their considerations concerning soundness and complexity.

7

As far as time complexity is concerned, for Algorithm 1 it is determined
by the loop at lines 5-7, and it is O(

∑
z∈V |Dz|): in the worst case, all the d are

removed from all the variable domains Dz. Indeed, the first loop (lines 3-4)
is only O(|V|). Note that cz may not belong to C: if it does, then the first
loop removes weight from each cz, while the second loop guarantees that the
problem becomes node consistent, since the condition for NC in Definition 4.1
is always satisfied, possibly by removing some elements from the domain of z.
It is worth mentioning that, if the ReSL is invertible and the problem is already
node consistent, then the application of local consistency at lines 3-4 preserves
the property, thus there is no need to execute the loop at lines 5-7.

An algorithm to enforce arc consistency is presented in Algorithm 2. Q
represents the set of problem variables to be yet examined (the algorithm ends
when Q is empty). At each step (line 4), one variable y is extracted. Then, for
all the binary constraints involving y, i.e., cx,y, if a unary constraint cx is in C
as well, rule CR (Definition 4.2) moves the preference from cx,y to cx (in order
to later possibly remove domain values from Dx); otherwise, i.e., no unary
constraint is defined on x, CR moves the preference directly to c∅. Finally,
AC performs a round of NC: all the variables z whose domain of definition is
restricted are added to Q, since a further application of AC could be possible to
further improve some binary constraints involving z, even if z has been already
examined. More precisely, this removal may change the result of projection
cxz ⇓z, on which the application of CR at line 7 is based.

The soundness of the AC algorithm is guaranteed by the fact that appli-
cations of CR do not alter the solutions of the problem, and its termination is
ensured by the decrease of the interpretation domain of the variables after each
iteration. Let us consider its computational cost. Lines 5-9 are executed O(|V|2)
times (there are |V|2 binary constraints at most), while for line 10 the cost of
Algorithm 1 is O(

∑
z∈V |Dz|). If we suppose that all variable domains have the

same cardinality |D|, the complexity is O(|V| · (|V|+ |D|)). Now, what is relevant
is the cost of the top loop at line 3, i.e, how many times a variable can added to
the set Q. Now, a variable z is added to Q once in line 2, plus at most |Dz| times
at line 10 (each time a value is removed from Dz), for a total of at most |Dz| + 1
times. Hence, the total complexity is O(|V|2 · |D| · (|V| + |D|)).

An application of the two algorithms is shown for the soft CSP in Figure 2,
with V = {x, y} and Dx = Dy = {a, b}: there we move values from cxy to cx (from
sub-figure (a) to (c)) and to cy (from (c) to (d)). Considered assignments and
preferences are highlighted in bold. Since the ReSL is localised, all the positive

Algorithm 1 Node Arc Consistency
1: function NC(V,D,C)
2: P := ∅
3: for all cz ∈ C do
4: CR(c∅, cz)
5: for all cz ∈ C, d ∈ Dz do
6: if (c∅ ⊗ cz[z := d] = ⊥) then
7: Dz := Dz \ {d}
8: P := P ∪ {z}
9: return P

Algorithm 2 Soft Arc Consistency
1: procedure AC(V,D,C)
2: Q := V
3: while Q , ∅ do
4: y := pop(Q)
5: for all cxy ∈ C do
6: if cx ∈ C then
7: CR(cx, cxy)
8: else
9: CR(c∅, cxy)

10: Q := Q ∪NC(V,D,C)

8

x y
c2

c1 c3

a a = 2
a b = 3
b a = −1
b b = 2

a = −5
b = −4

a = −2
b = −3

c∅ = 0

(a)

x y
c2

c1 c3

a a = −1
a b = 0
b a = −1
b b = 2

a = −2
b = −4

a = −2
b = −3

c∅ = 0

(b)

x y
c2

c1 c3

a a = −1
a b = 0
b a = −3
b b = 0

a = −2
b = −2

a = −2
b = −3

c∅ = 0

(c)

x y
c2

c1 c3

a a = 0
a b = 0
b a = −2
b b = 0

a = ��−2 0
b = ��−2 0

a = ��−3 0
b = ��−3 0

c∅ = −5

(d)

Figure 2: We apply CR (Definition 4.2) to the example in §3.1; it moves all positive preferences and
as much negative preferences as possible to unary constraints. Each move is highlighted in bold.

preferences are eventually removed. Also, c∅ = −5 (see Figure 2(d)) after calling
NC at line 10 in Algorithm 2: the problem is NC but not AC (see Definition 4.1),
and all the preferences have been removed from unary constraints.

4.3. Preprocessing
The presence of a residuate operator may suggest to introduce a prepro-

cessing phase preceding the application of local consistency: the removal of
a fixed value b to each preference, in order to induce a totally positive or to-
tally negative set of constraints. Then, the soft CSP would boil down to solve⊗

(C	÷ b) instead of
⊗

C: the outcome of the latter problem would be obtained
by multiplying the solution of the former for bk, with k = 2|C|.

However, that procedure introduces an approximation in the solution, since
∀a, b ∈ A.b ⊗ (a	÷ b) ≤ a, and the result may be unsuitable. Also, the removal of
the same value from all constraints is less convenient than applying a different
value for each constraint, since for a ≤ b ≤ c we have c ⊗ (a	÷ c) ≤ b ⊗ (a	÷ b) ≤ a.

This problem arises even if the ReSL is localised: it must also be invertible
in order to ensure that a preprocessing phase produces an adequate soft CSP.

5. Conclusions and Future Work

We have shown how choosing residuated semi-lattices as domains of prefer-
ences allows for a streamlined presentation of bipolar preferences as well as for
recasting a well-known heuristics for negative preferences: Local Consistency.
This is exploited in adapting two consistency algorithms from the weighted
CSP literature. Also, should the semi-lattice be localised or invertible, the algo-
rithms used in the semiring-based soft constraint literature could be recovered
by a preprocessing phase, albeit with a loss of precision in the former case.

In the future we will adapt other well-known algorithms to the use of the
bipolar-preference framework shown in this paper: for instance, the (Soft)
Mini-bucket Elimination and the (Soft) Branch-and-bound algorithms. We intend
to use the 	÷ operator to compute the difference between exact solutions and
their approximation when optimality is difficult (with the Bucket algorithm) or
impossible (when the preference structure is not invertible) to be reached.

9

References

[1] S. Bistarelli, U. Montanari, F. Rossi, Semiring-based constraint satisfaction
and optimization, Journal of ACM 44 (2) (1997) 201–236.

[2] T. Schiex, H. Fargier, G. Verfaillie, Valued constraint satisfaction problems:
Hard and easy problems, in: IJCAI 1995, Morgan Kaufmann, 1995, pp.
631–639.

[3] F. Rossi, P. van Beek, T. Walsh, Handbook of Constraint Programming,
Elsevier, 2006.

[4] M. Cooper, T. Schiex, Arc consistency for soft constraints, Artificial Intel-
ligence 154 (1–2) (2004) 199–227.

[5] S. Bistarelli, F. Gadducci, Enhancing constraints manipulation in semiring-
based formalisms, in: G. Brewka, S. Coradeschi, A. Perini, P. Traverso
(Eds.), ECAI 2006, Vol. 141 of FAIA, IOS Press, 2006, pp. 63–67.

[6] S. Bova, Local computation schemes with partially ordered preferences,
in: C. Sossai, G. Chemello (Eds.), ECSQARU 2009, Vol. 5590 of LNCS,
Springer, 2009, pp. 887–898.

[7] D. Dubois, H. Prade, An introduction to bipolar representations of infor-
mation and preference, Intelligent Systems 23 (8) (2008) 866–877.

[8] S. Bistarelli, M. S. Pini, F. Rossi, K. B. Venable, From soft constraints to bipo-
lar preferences: modelling framework and solving issues, Experimental
and Theoretical Artificial Intelligence 22 (2) (2010) 135–158.

[9] H. Fargier, N. Wilson, Algebraic structures for bipolar constraint-based
reasoning, in: K. Mellouli (Ed.), ECSQARU 2007, Vol. 4724 of LNCS,
Springer, 2007, pp. 623–634.

[10] H. Ono, Substructural logics and residuated lattices – an introduction,
Trends in Logic 20 (2003) 177–212.

[11] J. Golan, Semirings and Affine Equations over Them: Theory and Appli-
cations, Kluwer, 2003.

[12] S. Bistarelli, M. S. Pini, F. Rossi, K. B. Venable, Uncertainty in bipolar
preference problems, Experimental and Theoretical Artificial Intelligence
23 (4) (2011) 545–575.

[13] J. Larrosa, Node and arc consistency in weighted CSP, in: R. Dechter, R. S.
Sutton (Eds.), AAAI/IAAI 2002, AAAI/The MIT Press, 2002, pp. 48–53.

[14] S. Bistarelli, F. Gadducci, J. Larrosa, E. Rollon, F. Santini, Local arc consis-
tency for non-invertible semirings, with an application to multi-objective
optimization, Expert Systems and Applications 39 (2) (2012) 1708–1717.

[15] H. Fargier, E. Rollon, N. Wilson, Enabling local computation for partially
ordered preferences, Constraints 15 (4) (2010) 516–539.

[16] F. Bacchus, P. van Beek, On the conversion between non-binary constraint
satisfaction problems, in: J. Mostow, C. Rich (Eds.), AAAI/IAAI 1998,
AAAI/The MIT Press, 1998, pp. 310–318.

10

View publication statsView publication stats

https://www.researchgate.net/publication/309365845

	Introduction
	Residuation for Bipolar Preferences
	Residuated Monoids
	Another Look at Bipolar Proposals
	Bipolar semirings

	Bipolar preference structures

	Soft Systems and Problems
	A Running Example

	Solving Soft CSP
	Soft Local Consistency
	Enforcing Algorithms
	Preprocessing

	Conclusions and Future Work

