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Abstract

Equivalence checking plays a crucial role in formal verification and model check-
ing. It is a natural relation to use for matching a system implementation with its
specification. In this paper we present an efficient procedure, based on heuristic
search, for checking well-know bisimulation equivalences for concurrent systems
specified using process algebras. An heuristic mechanism for the exploration of
the search space is used, in order to avoid the construction of the complete state
graph. The method is evaluated on several examples exploiting a prototype that
shows that a considerable reduction of the state space size can be achieved.
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1. Introduction

Verification of concurrent systems is often carried out by means of the anal-
ysis of the state space generated by the system. A very used method is model
checking that is a technique originating in works by Clarke and Emerson [1]
and Queille and Sifakis [2] from the early 1980s. It is an automated technique
that, given a finite-state model of a system and a formal property, systemati-
cally checks whether this property holds for (a given state in) that model. An
alternative way for establishing desirable properties of a model is by showing
that it is behaviorally related to another model that is known to have those
properties. Depending on the type of relation that is chosen, this verification
technique is called refinement or equivalence checking [3].

The verification of concurrent systems based on state exploration suffers from
the so-called state explosion problem. The parallelism between the processes of
the system leads to a number of reachable states which may become very large,
in some cases on the order of millions or billions of states. When the number of
states is too large to fit in a computer’s main memory, automated verification
quickly breaks down.
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Several approaches have been developed to solve or reduce the state explo-
sion problem. They are general methods that typically are used to reduce the
state space explosion while verifying a set of properties. Among them, reduc-
tion techniques based on process equivalences [4, 5], symbolic model checking
techniques [6], on-the-fly techniques [7], heuristic searches [8, 9, 10], local model
checking approaches [11], partial order techniques [12, 13, 14], compositional
techniques [15, 16], and abstraction approaches [17, 18].

We propose to check equivalence of concurrent systems by applying heuris-
tic search techniques on AND/OR graphs. Heuristic search [19] is one of the
classical techniques in Artificial Intelligence and has been applied to a wide
range of problem-solving tasks including puzzles, two player games and path
finding problems. A key assumption of heuristic search is that a utility or cost
can be assigned to each state to guide the search by suggesting the next state
to expand; in this way the most promising paths are considered first. There
are several heuristic search algorithms for AND/OR graphs: a main difference
among them is whether they tolerate cyclic AND/OR graphs or not. AO*
[20, 19] is the most widely known algorithm that requires the AND/OR graph
to be acyclic, while S2 [21], which will be used here, is an algorithm designed to
work on cyclic AND/OR graphs. In any case, the algorithms expand the graph
incrementally, starting from the initial node; an heuristic function assigns a cost
to each node and is used to guide the expansion. The optimality of the solution
supplied by the algorithm is guaranteed by the property of admissibility of the
heuristic function, i.e., the function never overestimates the distance to the goal.

In this paper, concurrent systems are specified by means of process algebras
and the equivalence checking of processes is formalised as a search problem on
AND/OR graphs. Then an equivalence checking procedure is presented that is
based on S2 and uses admissible heuristic functions for weak and strong equiva-
lences. To evaluate the method, the heuristic functions are syntactically defined
considering a specific process algebra: the Calculus of Communicating Systems
(CCS) [22]. The method is completely automated, i.e., there is no need for
user intervention or manual effort. The goal is to check equivalence between
processes, but also to find the minimal sub-graph leading to two not equivalent
states. We believe that it is important to return the minimal graph, since that
graph will be examined in order to determine the source of the error. Big graphs
can prevent an easy comprehension of the fault. This approach extends tradi-
tional techniques to efficiently explore the search space. The heuristic overcomes
the bottleneck of the exhaustive exploration of the global state graph of the two
systems. Moreover, it is possible to apply our approach also in verifying infinite
concurrent systems.

To show that a significant space reduction may be obtained with respect to
other approaches, a prototype tool is built implementing the presented method
and several experiments are carried on processes of different sizes. As far as
we know, this is the first attempt to exploit process algebra-based heuristics
for equivalence checking in concurrent systems. A preliminary version of the
results presented in this paper can be found in [23], where the simulation relation
defined by Milner [22] has been considered.
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The paper is organised as follows: in Section 2 the basic concepts of behav-
ioral equivalence and of the heuristic search algorithms are recalled. Section 3
describes our approach. In Section 4 the prototype tool implementing the ap-
proach is briefly presented, and the experimental results obtained are reported.
Finally, comparisons with related works are discussed in Section 5.

2. Preliminaries

To develop the method in a language independent way, we assume a set of
processes ∆, a set of actions Θ and a function σ that maps each p ∈ ∆ to a
finite set {(p1, α1), . . . , (pn, αn)} ⊆ ∆ × Θ. If (p′, α) ∈ s(p), we say that p can

perform the action α and reach the process p′, and we write p
α−→ p′.

Behavioral equivalence

Process algebras can be used to describe both implementations of processes
and specifications of their expected behaviors. Therefore, they support the
so-called single language approach to process theory, that is, the approach in
which a single language is used to describe both actual processes and their
specifications. An important ingredient of these languages is therefore a notion
of behavioral equivalence. One process description, say SYS, may describe an
implementation, and another, say SPEC, may describe a specification of the
expected behavior. This approach to program verification is also sometimes
called implementation verification.

In the following we introduce well-known notions of behavioral equivalence
which describe how processes (i.e. systems) match each other’s behavior. Mil-
ner introduces strong and weak equivalences. Strong equivalence is a kind of
invariant relation between process that is preserved by actions as stated by the
following definition.

Definition 2.1 (strong equivalence). Let p and q be two processes.

- A strong bisimulation, B, is a binary relation on ∆ such that p B q implies:

(i) p
α−→ p′ implies ∃q′ such that q

α−→ q′ with p′ B q′; and

(ii) q
α−→ q′ implies ∃p′ such that p

α−→ p′ with p′ B q′

- p and q are strongly equivalent (p ∼ q) iff there exists a strong bisimulation
B containing the pair (p, q).

The idea underlying the definition of the weak equivalence is that an action
of a process can now be matched by a sequence of action from the other that has
the same “observational content” (i.e. ignoring internal actions) and leads to a
state that is equivalent to that reached by the first process. In order to define
the weak equivalence, we assume there exists a special action τ ∈ Θ, which we
interpret as a silent, internal action, and we introduce the following transition
relation that ignores it.
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Let p and q be processes in ∆. We write p
ε

=⇒ q if and only if there is a
(possibly empty) sequence of τ actions that leads from p to q. (If the sequence

is empty, then p = q.) For each action α, we write p
α

=⇒ q iff there are processes
p′ and q′ such that

p
ε

=⇒ p′
α

=⇒ q′
ε

=⇒ q.

Thus, p
α

=⇒ q holds if p can reach q by performing an α action, possibly preceded
and followed by sequences of τ actions. For each action α, we use α̂ to stand
for ε if α = τ , and for α otherwise.

Definition 2.2. (weak equivalence). Let p and q be two processes.

- A weak bisimulation, B, is a binary relation on ∆ such that p B q implies:

(i) p
α−→ r′ implies ∃q′ such that q

α̂
=⇒ q′ with p′ B q′; and

(ii) q
α−→ q′ implies ∃p′ such that p

α̂
=⇒ p′ with p′ B q′

- p and q are weak equivalent (p ≈ q) iff there exists a weak bisimulation B
containing the pair (p, q).

2.1. Heuristic search: AND/OR Graphs and Algorithm S2

In this section we briefly review AND/OR graphs and the heuristic search
algorithm S2 [21] for solving problems formalized as AND/OR graphs.

First we establish some terminology for graphs in general. A (directed) graph
G is a pair (N,A) where N is a set of nodes and A ⊆ N ×N is the set of arcs.
If n ∈ N is a node of G, then

sG(n) = {m ∈ N | (n,m) ∈ A }

is the set of successors of n in G. A graph G′ = (N ′, A′) is a subgraph of graph
G = (N,A) if N ′ ⊆ N and A′ ⊆ A. A graph G = (N,A) is finite if both N and
A are finite sets. Let G = (N,A) be a graph and s, d ∈ N be two nodes (not
necessarily distinct). A path from s to d is a sequence of nodes n1, . . . , nk with
k > 1 such that s = n1, d = nk and (ni, ni+1) ∈ A for each 1 ≤ i < k. A path
from a node to the same node is a cycle. A graph is acyclic if it contains no
cycles, and cyclic otherwise.

A problem can be formalized in terms of a graph, for example as follows.
A common problem solving strategy consists of decomposing a problem P into
subproblems, so that either all or just one of these subproblems need to be
solved in order to obtain a solution for P . Each problem can be represented as
a node in a directed graph, where arcs express the decomposition relationship
between problems and subproblems. The two kinds of decomposition give rise
to two kinds of nodes: AND nodes and OR nodes.

An AND/OR graph G is a directed graph with a special node s, called
the start (or root) node, and a nonempty set of terminal leaf nodes denoted
as t, t1, . . .. The start node s represents the given problem to be solved, while
the terminal leaf nodes correspond to subproblems with known solutions. The
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nonterminal nodes of G are of three types: OR, AND, and nonterminal leaf.
An OR node is solved if one of its immediate subproblems is solved, while
an AND node is solved only when every one of its immediate subproblems is
solved. A nonterminal leaf node has no successors and is unsolvable. AND
nodes with at least two successors are recognized from OR nodes by connecting
the subproblems arcs by a line, like in Fig. 1.

n

n1 · · · nm

Figure 1: An AND node.

Given an AND/OR graph G, a solution of G is represented by an AND/OR
subgraph, called solution (sub)graph of G with the characteristics given below.

Definition 2.3. A finite subgraph D of an AND/OR graph G is a solution
subgraph of G if it is acyclic and:

(i) the start node of G is in D;

(ii) if n is an OR node in G and n is in D, then exactly one of the immediate
successors of n in G is in D;

(iii) if n is an AND node in G and n is in D, then all the immediate successors
of n in G are in D;

(iv) every maximal path in D ends in a terminal leaf node.

Each solution subgraph can obtain a cost through a cost function that assigns
a cost to each arc: each directed arc (m,n) in the graph has a discrete cost
c(m,n) > 0.

Definition 2.4. Let D be a solution graph and n a node in D, the cost of n in
D, denoted h(n) is defined as follows:

(i) h(n) = 0 if n is a terminal leaf node;

(ii) h(n) =∞ if n is a nonterminal leaf node;

(iii) h(n) = c(n, p) +h(p) if n is an OR node and p is its immediate successor;

(iv) h(n) =
∑k
i=1[c(n, pi) +h(pi)] if n is an AND node with immediate succes-

sors p1, p2, . . . , pk.

A solution graph of an AND/OR graph G is a minimal-cost solution graph if
the cost of its root is the minimum over the cost of the roots of all the solution
graphs of G. The goal of any search algorithm for AND/OR graphs is to find a
minimal-cost solution graph.

Since in most domains the AND/OR graph G is unknown in advance, it is
not supplied explicitly to a search algorithm. We refer to G as the implicit graph;
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S2.1 Create an explicit graph G′ consisting solely of the start node s. Set
front(s) = s. If s is a terminal leaf set h(s) = 0; else if s is a nonterminal
leaf set h(s) =∞.

S2.2 While (front(s) is not a terminal leaf and h(s) 6=∞) do:

S2.2.1 Let n = front(s). Expand n and add all its children n1, . . . , nk to
G′. For each newly occurring node ni in G′ set front(ni) = ni. If
ni is a terminal leaf set h(ni) = 0; else if ni is nonterminal leaf set

h(ni) =∞; else set h(ni) = ĥ(ni).

S2.2.2 Create a list OPEN containing all the tip nodes of G′. Label all the
nodes in OPEN as eligible and initial.

S2.2.3 Call Bottom Up(OPEN).

S2.3 If front(s) is a terminal leaf node, output h(s) and terminate with SUC-
CESS; else terminate with FAILURE.

Table 1: The S2 algorithm.

it is specified implicitly by a start node s and a successor function. The search
algorithm works on an explicit graph G′, which initially consists of the start
node s. The start node is then expanded, that is, all the immediate successors
of s are added to the explicit graph G′. At any moment, the explicit graph has
a number of tip nodes, which are nodes with no successors in the explicit graph,
and the search algorithm chooses one of these tip nodes for expansion. In this
way, more and more nodes and arcs get added to the explicit graph, until finally
it has one or more solution graphs as subgraphs. One of these solution graphs
is then output by the search algorithm.

Heuristic search algorithms use an heuristic estimate function ĥ, which can
be viewed as an estimate of h, to direct the search and to restrict the number
of nodes expanded within acceptable limits. Thus, the heuristic search can find
an optimal solution graph without evaluating the entire state space. There are
several heuristic search algorithms for AND/OR graphs. The algorithms differ
on the kind of AND/OR graphs they accept as input and the solution subgraphs
they produce as output. The classic AO* algorithm [20, 19] only works with
AND/OR graphs, both explicit and implicit, that do not contain cycles; for
cyclic AND/OR graphs we have algorithm REV* [24], which only works on
explicit graphs, and algorithms CFCREV* [25] and S2 [21] that accept implicit
AND/OR graphs. All these algorithms only search for solution subgraphs that
do not themselves contain cycles, and thus adhere to Definition 2.3. Algorithm
LAO* [26] removes this limitation in the context of Markov decision problems.

In this paper we use the algorithm S2 reproduced in Table 1. The algorithm
mainly consists of two iterated steps: (i) expand the most promising tip node of
the explicit graph (step S2.2.1); (ii) update of the computed node costs (step
S2.2.3). The algorithm uses a map front to select the node to expand in step
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B1 Initialize a list, CLOSED, to nil.

B2 While (OPEN contains an eligible node and s /∈ CLOSED) do:

B2.1 Select an eligible node q from OPEN that has minimum h-value.

B2.2 If q is not an initial node, then do the following: Let q1, q2, . . . , qr
be the children of q in G′′ which are in CLOSED. If q is an OR node
let j = argmin1≤i≤r{c(q, qi) + h(qi)} and set front(q) = front(qj). If
q is an AND node let qj be the leftmost child of q whose front is not
a terminal leaf and set front(q) = front(qj). (Use q1 if no such qj
exists).

B2.3 Put q in CLOSED. Let p1, . . . , pk be the parents of q in G′. For each
pi do:

∗ (If pi is an OR node) if pi 6∈ OPEN∪CLOSED set h(pi) = h(q)+
c(pi, q), put pi in OPEN and mark it eligible; else if pi is already
in OPEN with h(pi) > h(q) + c(pi, q), set h(pi) = h(q) + c(pi, q).

∗ (If pi is an AND node) if pi /∈ OPEN, put it in OPEN and set
h(pi) = h(q) + c(pi, q); else set h(pi) = h(pi) + c(pi, q) + h(q). If
all children of pi are in CLOSED, mark pi as eligible.

B3 Remove any remaining nodes from OPEN.

B4 If s /∈ CLOSED set h(s) =∞.

Table 2: The Bottom Up(List OPEN) procedure.

(i). This map is updated during step (ii), together with the node costs. Step (ii)
uses the procedure Bottom Up defined in Table 2. The algorithm terminates
with success if an acyclic solution exists, otherwise it terminates with failure.
When the acyclic solution exists it also returns the cost of the solution.

An important property holds: S2 returns a minimal-cost solution graph if
the heuristic estimate function ĥ (used in step S2.2.1 of Table 1) satisfies the

so-called admissibility condition, i.e. ĥ is optimistic. More formally:

Definition 2.5 (admissibility). A heuristic estimate function ĥ defined on the
nodes of an AND/OR graph G is admissible if for each node n in G,

ĥ(n) ≤ h(n).

3. The method

In this section we explain the basis of our approach to strong equivalence
checking. In the sub-section 3.1 AND/OR structures are defined as a slight
modification of the concept of AND/OR graph more suitable to the problem
of equivalence checking. Given two processes p and q, we build an AND/OR

7



structure that has a solution if and only if p and q are bisimilar (Theorem 3.2).
In subsection 3.2 we show how algorithms for heuristic search on AND/OR
graphs can be used to find solutions of AND/OR structures. This allows for the
method to be implemented in practice. In subsection 3.3 we apply the method
to the CCS language. In subsection 3.4 the heuristic function to be used in the
search for strong equivalence of CCS processes is described and its admissibility
is proved, while the in subsection 3.5 the heuristic function for weak equivalence
is defined. Finally, subsection 3.6 shows how our approach can be also applied
to infinite concurrent systems.

3.1. AND/OR structures

AND/OR structures are related to AND/OR graphs, but differ slightly in
the way the terminal nodes and the solution subgraphs are defined. These dif-
ferences allow AND/OR structures to have duals which are again AND/OR
structures. More importantly, the existence of solutions for an AND/OR struc-
ture can be related to the existence of solutions for its dual (Theorem 3.1).

Definition 3.1 (AND/OR structure). An AND/OR structure is a triple 〈G, s, t〉,
where G = (N,R) is a directed graph, s ∈ N is the start node, and t : N →
{AND ,OR}.

Nodes in t−1({AND}) are called AND nodes and nodes in t−1({OR}) are
called OR nodes. Terminal and non terminal leaves are defined as special cases
of AND and OR leaves (i.e., nodes with no successors): AND leaves are terminal,
while OR leaves are non terminal.

The AND/OR structure 〈G, s, t〉 is finite/cyclic/acyclic if G is respectively
finite/cyclic/acyclic.

Definition 3.2 (Solution). Let T = 〈G, s, t〉 be an AND/OR structure. A
subgraph D = (N ′, R′) of G is a solution of T if:

(i) s ∈ N ′;
(ii) if n ∈ N ′ and t(n) = AND, then sD(n) = sG(n);
(iii) if n ∈ N ′ and t(n) = OR then sD(n) 6= ∅.

In point (iii) it is required at least one successor for OR nodes, in contrast
with the exactly one successor required in Definition 2.3. Moreover, the solution
is not required to be acyclic and the maximal paths are not required to end in
terminal leaves. Note that OR nodes which have no successors in G cannot
belong to any solution, hence their labelling as non terminal leaves.

Now it is defined the notion of dual of an AND/OR structure that is obtained
by switching the type of all the nodes of the original structure.

Definition 3.3 (Dual). If T = 〈(N,R), s, t〉 is an AND/OR structure, its
dual, denoted T ∂ , is the AND/OR structure 〈(N,R), s, t∂〉, where t∂ : N →
{AND ,OR} is defined as

t∂(n) =

{
AND if t(n) = OR,

OR if t(n) = AND.
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Note that the terminal leaves of the original structure became non terminal
leaves of the dual structure, while non terminal leaves of the original become
terminal in the dual.

The utility of the notion of dual comes from the following Theorem, which
permits to look for acyclic solutions even if the original problem may admit
cyclic solutions.

Theorem 3.1. A finite AND/OR structure has no solutions iff its dual has an
acyclic solution.

Proof. Let T = 〈G, s, t〉 be a finite AND/OR structure and let T ∂ be the dual
of T . We prove the ⇐ direction first. The proof is by contradiction, so let
C = (N ′, R′) be an acyclic solution of T ∂ and assume that there exists a solution
D = (N ′′, R′′) of T . Let n1, n2, . . . be a topological sorting of the nodes of C
with n1 = s and such that if (ni, nj) ∈ R′ then i < j. Note that n1 = s ∈ N ′′.
We claim that if a non-leaf ni is in N ′′, then there is a j > i such that also
nj is in N ′′. Indeed, if t(ni) = AND then ni is an OR node in T ∂ , thus C
must contain a successor node, which must be nj for some j > i. Then surely
nj ∈ N ′′, since D must contain all successors of ni. If, instead, t(ni) = OR,
then D must contain a successor node m. Since ni is an AND node in T ∂ , m
must appear as nj for some j > i. If we iterate this reasoning we must arrive at
a terminal leaf of T ∂ which is in D, but this is a contradiction, since terminal
leaves of T ∂ are non terminal leaves of T and cannot belong to a solution.

Now let us prove the =⇒ direction. We know that G has no solutions. This
implies that any subgraph of G that contains s will either contain an AND node
without containing at least one of its successors, or it will contain an OR node,
but none of its successors. We use this property to build an acyclic solution for
T ∂ in the following way: we build a sequence D1, . . . , Dk of subgraphs of T and a
parallel sequence C1, . . . , Ck of subgraphs of T ∂ such that: (i) for each 1 ≤ i ≤ k,
subgraph Ci is acyclic and the set of nodes of Ci and Di form a partition of the
nodes of G; (ii) s is contained in Di for all 1 ≤ i < k; (iii) s is not contained in
Dk. Then Ck will be the required solution. To build the two sequences, start
with D1 = G. Then D1 must contain at least a non terminal leaf, be it n1. Let
C1 = ({n1},∅) and build D2 = D1−n1, i.e., D1 after the removal of n1 and all
arcs incident on n1. If n1 = s we are done, otherwise we can continue. Assume
we have already built sequences D1, . . . , Di and C1, . . . , Ci satisfying properties
(i) and (ii) above. If Di does not contain s we are done, otherwise Di must
contain an AND node with at least one successor in Ci, or an OR node with all
of its successors in Ci. Let ni+1 be any such node. Let Di+1 = Di − ni+1 and
build Ci+1 from Ci by adding node ni+1 and all the arcs from ni+1 to nodes
already in Ci. Since Ci was assumed to by acyclic, so is Ci+1. We can iterate
the process and, since G is finite, property (iii) will eventually hold.

Let p and q be two processes in ∆: an AND/OR structure can be built that
has a solution iff p and q are bisimilar. The idea is to check the requirements
of Definitions 2.1 and 2.2 by letting p and q move in alternating turns.
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Let T (p, q) = 〈G, s, t〉 with G = (N,R). The nodes contained in N are
4-uples 〈r, s, γ, u〉 where

• r is a derivative of p;

• s is a derivative of q;

• γ ∈ {>,⊥} ∪Act ;

• u ∈ {1, 2, λ}.

We assume that {>,⊥} ∩ Act = ∅ and that u = λ iff γ = >. When γ = > it
is the turn of both r and s to move; when γ = ⊥ then r has to move if u = 1,
while s has to move if u = 2; finally, when γ = α ∈ Act then r has to move if
u = 1 and s has to move if u = 2, but, in both cases, α has to be performed (the
idea is that α is the action that the other process has performed in the previous
turn).

The map t of T (p, q) only depends on γ and is defined as

t(〈r, s, γ, u〉) =

{
AND if γ = > or γ = ⊥;

OR if γ ∈ Act .

The graph G of T (p, q) is obtained by repeated application of the operators
given in Table 3, starting with a graph containing the node 〈p, q,>, λ〉 and no
arcs. The operators generate the outgoing arcs and the successor nodes of each
node; if (n, n′) ∈ R, we write n−→n′. The operators with the form

premise

n−→n1 and · · · and n−→nm

where premise is the antecedent, possibly empty, of the rule, generate all the
outgoing arcs and successor nodes of the AND node n. On the other hand, the
operators with the form:

premise

n−→n1 or · · · or n−→nm

generate all the outgoing arcs and successor nodes of the OR node n. Finally,
the start node s of T (p, q) is 〈p, q,>, λ〉.

The rule op1 transforms the initial node, which is an AND node, into the
two successors nodes with γ = ⊥ and u = 1 and u = 2, respectively. The rule
op2 points out the possible moves (αi) of p when u = 1 and γ = ⊥; in this way
an AND node can be connected with its successor nodes in the graph, all such
successors have γ = αi and u = 2; roughly speaking if p can move performing
an action αi and reaches the process pi then it is the turn of q to move with the
same action αi. The rule op′2 is similar to op2 applied when it is the turn of q
to move. In rule op3, the process p must simulate the action α performed by q,
while in rule op′3, it is the process q that must simulate the action α performed
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op1 〈p, q,>, λ〉 −→〈p, q,⊥, 1〉 and 〈p, q,>, λ〉 −→ 〈p, q,⊥, 2〉

op2

σ(p) = {(p1, α1), . . . , (pn, αn)} 6= ∅
〈p, q,⊥, 1〉 −→〈p1, q, α1, 2〉 and · · · and 〈p, q,⊥, 1〉 −→〈pn, q, αn, 2〉

op′2
σ(q) = {(q1, α1), . . . , (qn, αn)} 6= ∅

〈p, q,⊥, 2〉 −→〈p, q1, α1, 1〉 and · · · and 〈p, q,⊥, 2〉 −→〈p, qn, αn, 1〉

op3

σ(p) = {(p1, α1), . . . , (pn, αn)} 6= ∅, αi = α ∀i ∈ [1..n]

〈p, q, α, 1〉 −→〈p1, q,>, λ〉 or · · · or 〈p, q, α, 1〉 −→〈pn, q,>, λ〉

op′3
σ(q) = {(q1, α1), . . . , (qn, αn)} 6= ∅, αi = α ∀i ∈ [1..n]

〈p, q, α, 2〉 −→〈p, q1>, λ〉 or · · · or 〈p, q, α, 2〉 −→〈p, qn,>, λ〉

Table 3: The operators.

by p. In both cases an OR node can be connected with its successor nodes in
the graph, all such successors have γ = > and u = λ, i.e. nodes that can be
transformed only through the operator op1 like the initial node.

The following theorem shows that finding a solution of T (p, q) is equivalent
to checking whether p and q are strongly bisimilar.

Theorem 3.2. Let p and q be two processes in ∆ and consider the AND/OR
structure T (p, q) generated starting from 〈p, q,>, λ〉 using the operators of Ta-
ble 3. Then p ∼ q iff T (p, q) has a solution.

Proof. Let us prove the⇐ direction first. Take a solution D = (N,R) of T (p, q)
and consider the relation

S = { (p′, q′) | 〈p′, q′,>, λ〉 ∈ N }. (*)

Clearly (p, q) ∈ S. We claim that S is a strong bisimulation, thus proving p ∼ q.
Indeed, take any (p′, q′) ∈ S. Thus, the AND node 〈p′, q′,>, λ〉 is in N and,
sinceD is a solution, both its successors 〈p′, q′,⊥, 1〉 and 〈q′, p′,⊥, 2〉 (as given by

operator op1 in Table 3) are also in N (according to Definition 3.2). If p′
α−→ p′′,

then node 〈p′, q′,⊥, 1〉 will produce processes in ∆ node 〈p′′, q′, α, 2〉 through
operator op2. Since 〈p′, q′,⊥, 1〉 is and AND node in D and D is a solution,
then node 〈p′′, q′, α, 2〉 will also be in D. Now, node 〈p′′, q′, α, 2〉 is an OR node,
thus D must contain at least on successor for it (Definition 3.2(iii)). Since
successors of node 〈p′′, q′, α, 2〉 are produced by operator op′3, this means that
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q′
α−→ q′′ must hold for some q′′. Moreover, the successor of node 〈p′′, q′, α, 2〉

will be node 〈p′′, q′′,>, λ〉. Since this latter node must be in D, then (p′′, q′′)
must be in S according to (∗). This proves point (i) of Definition 2.1. Point (ii)
is proved symmetrically.

Now let us prove the =⇒ direction. Assume we are given a bisimulation B
such that (p, q) ∈ B. We first use B to build and AND/OR structure D(B). We
build D(B) in two steps:

A. For each (p′, q′) ∈ B we add toD(p, q) the AND nodes 〈p′, q′,>, λ〉, 〈p′, q′,⊥, 1〉
and 〈p′, q′,⊥, 2〉, with the appropriate arcs.

B. for each p′
α−→ p′′ such that (p′, q′) ∈ B for some q′, we use point (ii) of

Definition 2.1 to find q′′ such that q′
α−→ q′′ and (p′′, q′′) ∈ B. Then we

add to D(p, q) the OR node 〈p′′, q′, α, 2〉, with an arc coming from node
〈p′, q′,⊥, 1〉 and an arc going to node 〈p′′, q′′,>, λ〉 (these latter two nodes

were added in step A). We operate analogously for each q′
α−→ q′′ such that

(p′, q′) ∈ B for some p′.

It is now easy to show that D(B) is a solution of T (p, q).

3.2. Heuristic search for strong equivalence

The AND/OR structure T (p, q) built in the previous section can be readily
interpreted as an AND/OR graph, so that the heuristic search algorithm S2
can be applied to it. However, algorithm S2 searches for solutions of AND/OR
graphs as defined in Definition 2.3, while we are interested in the solutions of
AND/OR structures as defined in Definition 3.2.

The main difference between the two kinds of solutions is that Definition 2.3
requires acyclicity, while Definition 3.2 does not. Indeed, it is easy to find
bisimilar processes p and q such that T (p, q) only contains cyclic solutions:

consider for example two processes p and q such that p
a−→ p and q

a−→ q.
To cope with this problem we use Theorem 3.1. More precisely, given two

processes p and q, an heuristic search on T ∂(p, q), the dual of T (p, q), can be
performed. If the search terminates with failure, then p and q are bisimilar.
If, instead, the search terminates with success, then p and q are not bisimilar
and, as an additional result, the heuristic search has found a counterexample of
minimal cost. The cost of each arc is 1, so that the cost of the counterexample
is related to the number of actions performed by the two processes.

The other differences between Definition 2.3 and Definition 3.2 are minor.
Note that Definition 2.3 is more restrictive than Definition 3.2, so that any solu-
tion found by S2 is automatically a solution of T ∂(p, q). In the other direction,
assume D is an acyclic solution of T ∂(p, q). Since we are assuming that the
processes are finite and D is acyclic, the maximal paths in D must end in a
node with no successors. This must be an AND node, since D is a solution.
But AND nodes with no successors are terminal nodes, so point (iv) of Defini-
tion 2.3 is satisfied. Now, D may fail to be a solution in the AND/OR graph
sense only if some of the OR nodes it contains have more than one successor
in D. However, we can build a subgraph D′ of D in which we keep all nodes,
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all outgoing arcs of the AND nodes, and exactly one outgoing arc for each OR
node. Then, D′ is still a solution of T ∂(p, q) according to Definition 3.2, but it
is also a solution according to Definition 2.3. Therefore S2 finds a solution iff
T ∂(p, q) has a solution.

3.3. Application of the method to CCS processes

In this section we apply our method to the CCS language specification. Thus,
we briefly recall the Calculus of Communicating Systems (CCS) [22], which is
an algebra suitable for modelling and analysing processes. The reader can refer
to [22] for further details. The syntax of processes is the following:

p ::= nil
∣∣ α.p ∣∣ p+ p

∣∣ p | p ∣∣ p\L ∣∣ p[f ]
∣∣ x

where α ranges over a finite set of actions Act = {τ, a, a, b, b, ...}. Input actions
are labeled with “non-barred” names, e.g. a, while output actions are “barred”,
e.g. a. The action τ ∈ Act is called internal action. The set L, in processes with
the form p\L, ranges over sets of visible actions (V = Act −{τ}), f ranges over
functions from actions to actions, while x ranges over a set of constant names:

each constant x is defined by a constant definition x
def
= p. Given L ⊆ V, with

L◦ we denote the set { l, l | l ∈ L }. We call P the processes generated by p.
Given a process p, a constant x of p is said to be guarded in p if x is contained

in a sub-process of p of the form α.q, where q is a process. A process p is guarded
if every constant of p is guarded in p, it is unguarded otherwise. In the following
we consider only guarded processes.

The standard operational semantics [22] is given by a relation −→ ⊆ P ×
Act ×P, which is the least relation defined by the rules in Table 4 (we omit the
symmetric rule of Sum and Par).

A (labeled) transition system is a quadruple (S,Act ,−→, p), where S is a set
of states, Act is a set of transition labels (actions), p ∈ S is the initial state, and

−→ ⊆ S ×Act ×S is the transition relation. If (p, α, q) ∈ −→, we write p
α−→ q.

If δ ∈ Act∗ and δ = α1 . . . αn, n ≥ 1, we write p
δ−→ q to mean p

α1−→· · · αn−→ q.

Moreover p
λ−→ p, where λ is the empty sequence. Given p ∈ S, with R(p) =

{ q | p δ−→ q } we denote the set of the states reachable from p by −→, also
called derivatives of p. When p has a finite number of syntactically different
derivatives, p is called finite state, or simply finite.

Given a CCS process p, the standard transition system for p is defined as
S(p) = (R(p),Act ,−→, p). Note that, with abuse of notation, we use −→ for
denoting both the operational semantics and the transition relation among the
states of the transition system.

Given a process p, we define F(p) = {α ∈ Act | ∃p′ s.t. p
α−→ p′ } as the set

of all the first actions that p can perform. It can be syntactically defined as the
least solution of the following recursive definition:
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Act
α.p

α−→ p
Sum

p
α−→ p′

p+ q
α−→ p′

Con
p

α−→ p′

x
α−→ p′

x
def
= p Par

p
α−→ p′

p | q α−→ p′ | q

Com
p

l−→ p′, q
l−→ q′

p | q τ−→ p′ | q′
Rel

p
α−→ p′

p[f ]
f(α)−→ p′[f ]

Res
p

α−→ p′

p\L α−→ p′\L
α 6∈ L◦

Table 4: Operational semantics of CCS.

Definition 3.4 (First actions).

F(nil) = ∅;

F(α.p) = {α};
F(p+ q) = F(p) ∪ F(q);

F(p\L) = F(p)− L◦;

F(x) = F(p) if x
def
= p;

F(p[f ]) = { f(α) | α ∈ F(p) };

F(p | q) =

{
F(p) ∪ F(q) ∪ {τ} if ∃α ∈ F(p), α ∈ F(q),

F(p) ∪ F(q) otherwise.

Remark 3.1. From now on, without loss of generality, we consider only parallel
compositions of the form (q1 | · · · | qn), such that each process qi, i ∈ [1..n] does
not contain the parallel operator. Moreover, for each process q = (q1 | · · · | qn)
we assume that if an action α belongs to the sort1 of qi, with i ∈ [1..n] and α
belongs to the sort of qj with j ∈ [1..n] and i 6= j, then the process q occurs
under a restriction set L such that L◦ contains α. If both α and α appear in a
process, it is reasonable to assume that they are communication actions.

In this paper we use CCS without the relabelling operator. Note that this
is not a restriction since the calculus is still turing equivalent.

To build the AND/OR structure for CCS processes, we take ∆ as the set
of CCS processes P, and the σ function described in the previous sub-section,
is rephrased using the standard operational semantic, i.e. σ(p) = { (p′, α) |
p

α−→ p′ } = {(p1, α1), . . . , (pn, αn)}.

1The sort of a CCS process p is the alphabet of p. For the precise definition see [22].
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〈p, q,>, λ〉

〈p, q,⊥, 1〉

〈nil , q, b, 2〉

〈c.nil ,nil ,>, λ〉

. . . . . .

〈k.d.f.nil , q, c, 2〉

〈k.d.f.nil , k.d.nil ,>, λ〉

. . . . . .

〈p, q,⊥, 2〉

〈p, c.nil , b, 1〉

〈nil , c.nil ,>, λ〉

. . . . . .

〈p, k.d.nil , c, 1〉

〈k.d.f.nil , k.d.nil ,>, λ〉

. . . . . .

Figure 2: The AND/OR structure T (p, q).

Example 3.1. Consider the following CCS processes:

p
def
= b.nil + c.k.d.f.nil

q
def
= b.c.nil + c.k.d.nil

The AND/OR structure T (p, q) generated starting from 〈p, q,>, λ〉, using the
operators of Table 3, is sketched in Fig. 2. For simplicity, only the first four
levels have been shown in detail.

3.4. The heuristic function for checking strong equivalence

In order to apply an heuristic search, an heuristic function over nodes has to
be defined, such function is called ĥ and is aimed at working on the AND/OR
structure dual to that built by the operators of Table 3 and then at looking for
a state containing two not bisimilar processes.

Definition 3.5 (ĥ(〈p, q, γ, u〉): the heuristic function). ĥ(〈p, q, γ, u〉) uses three
auxiliary functions, one for each value of the γ component of the node:

• ĥ>, when γ is equal to >;

• ĥ⊥, when γ is equal to ⊥;

• ĥα, when γ is equal to α; the latter is actually a family of functions one
for each α ∈ Act.

Each auxiliary function has four arguments, namely ĥx(p, q, Ap, Aq), where x ∈
{>,⊥} ∪ Act, Ap, Aq ⊆ V. The three functions are defined in Table 5 and
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Table 6, while

ĥ(〈p, q, γ, u〉) =



ĥ>(p, q,∅,∅) if γ = >;

ĥ⊥(p, q,∅,∅) if γ = ⊥, u = 1;

ĥ⊥(q, p,∅,∅) if γ = ⊥, u = 2;

ĥα(p, q,∅,∅) if γ = α, u = 1;

ĥα(q, p,∅,∅) if γ = α, u = 2.

The heuristic function guides the construction of the AND/OR structure

aiming to find a node containing two not bisimilar states; in fact, ĥ(n) associates

a non negative value with each node n of the structure, called ĥ-value of n:
roughly speaking, that value approximates the number of arcs of the structure
that must be crossed to establish that p and q are not bisimilar. It is worth
noting that ĥ is easy to be computed, since it depends only on the syntax of
the processes and not on their semantics.

The auxiliary functions are parametric with respect to the restriction envi-
ronments Ap and Aq, which contain the set of actions on which some restriction
holds for the processes p and q, respectively. The functions are initially applied
with Ap = Aq = ∅. The current environment Ap is modified when the function
is applied to p\L: in this case the actions in L◦ are added to Ap.

The first auxiliary function is ĥ> that, applied to the node n, holds the
minimum value between the values computed for the successors of n plus 1.
Since ĥ must be admissible, we choose the minimum between such two values,
while 1 is the cost of each arc connecting n to its successors.

The second and third auxiliary functions are inductively defined on the syn-
tactic structure of p: both of them are aiming at reaching a derivative of p of
the form α.p′. When a derivative of p of the form α.p′ is found, ĥ⊥ switches the
control to the function ĥα; in the other cases it keeps the control while analyzing
the type of the operator at the top level of p. The function halts without calling
ĥα with value 0 when a derivative is found that might not be able to perform
any action; on the other hand, the returned value is ∞ when both processes
have reached a derivative with no possible further move.

We analyse the function ĥ⊥ more in detail:

• Rule R1 applies to a process p = nil and returns ∞ if the process q too
is able to perform no move (i.e. the set of first actions of q decreased with
the actions belonging to a restricted environment is equal to the empty
set), in fact, in this case, the processes are surely bisimilar; otherwise the
rule returns 0 since a possible action of q will be not matched by p.

• Rule R2 applies when p = α.p′ and optimistically returns 0 if α is
restricted by Ap; otherwise it passes the control to ĥα trying to check
whether q is able to perform the same action; the final value computed by
this call is increased of 1, since a possible successor node of p exists for
which an arc with cost equal to 1 will be added to the AND/OR structure.
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• Rule R3 applies when p = p1+p2. Two cases are possible. When q is not
of the form q = q1 + q2, ĥ⊥ is again applied to q and each sub-component
pi, i ∈ {1, 2} of p, trying to obtain derivative of the form pi = α.p′; the

minimum number of the computed values is returned as value of ĥ⊥ applied
to p and q. When q too is of the form q = q1+q2, the minimum is required
among all the combinations of the sub-processes of p and q. To retrieve the
correct values computed by such successive invocations of ĥ⊥, the operator
cross is used that takes into account only the values supplied by the correct
combinations. Consider, for example, p = p1 + p2 and q = q1 + q2 with
p1 = a.c.nil , p2 = b.d.nil and q1 = a.c.nil , q2 = b.d.nil . It is necessary to
compare p1 against both q1 and q2, but, if p1 is discovered bisimilar to one
of two’s, for example q1, the result of the comparison of p1 and q2 must
not be considered.

• Rule R4 applies to p = p1|p2 and examines the form of p1 and p2: only
if both the sub-processes are of the form αi.ri, i ∈ {1, 2}, it is possible to

call ĥαj
on q and rj |αk.rk (i.e. the derivative of p after the execution of

αj). If both αi are possible, both values returned by ĥαj
are considered

and the minimum is assigned as value of ĥ⊥, while 1 is the cost of the first
action. It is also possible that αi be a communication between p1 and p2
(recall the Remark II.1), in this case its cost is again 1, since the action τ
must be executed, but there is only one derivative of p to be considered.

• Rule R5 applies to p = p′\L and simply adds the set of actions L◦ to Ap.
So, when considering any sub-process r of p, its environment takes account
of the union of all the restriction contexts containing that occurrence of
r. For example, if

p =
(

(a.b.x)\{e} |
(
b.y + (c.y)\{d}

))
\{b}

a.b.x is evaluated under the environment {e, b, e, b} and c.y is evaluated
under the environment {d, b, d, b}.

• Rule R6 applies to p = x and always returns 0; this rule can be refined
by further investigating the structure of the process bound with the con-
stant x; the way in which this refinement could be defined can be easily
understood from the previous rules, we do not deepen here the definition
of Rule R5 since we are mainly interested into the approach.

The third auxiliary function behaves as ĥ⊥ except that the occurrence of the
particular action αi is required in the derivatives of the form αi.ri in R2 and
R4, and not simply that such derivative exists. Moreover, ĥα passes the control
to ĥ> when the processes can perform the required action in R2 and R4. Also
R1 is different since it is required that the first process be able to perform α
(that is the action that the other process has previously performed).
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ĥ>(p, q, Ap, Aq) = 1 + min(ĥ⊥(p, q, Ap, Aq), ĥ⊥(q, p, Ap, Aq))

ĥ⊥(nil , q, Ap, Aq) =

{
∞ if F(q)−Aq = ∅,

0 otherwise;
R1.

ĥ⊥(α.p′, q, Ap, Aq) =

{
1 + ĥα(q, p′, Aq, Ap) if α /∈ Ap,
0 otherwise;

R2.

ĥ⊥(p1 + p2, q, Ap, Aq) ={
cross{ĥ⊥(pi, qj , Ap, Aq)}1≤i,j≤2 if q = q1 + q2,

min(ĥ⊥(p1, q, Ap, Aq), ĥ⊥(p2, q, Ap, Aq)) otherwise;

R3.

ĥ⊥(p1 | p2, q, Ap, Aq) =

1 + min(ĥα1
(q, r1 |α2.r2, Aq, Ap), ĥα2

(q, α1.r1 | r2, Aq, Ap)
if p1|p2 = α1.r1 |α2.r2, α1 6∈ Ap, α2 6∈ Ap,

1 + ĥτ (q, r1 | r2, Aq, Ap) if p1|p2 = α1.r1 |α1.r2,

1 + ĥα1(q, r1 |α2.r2, Aq, Ap)

if p1|p2 = α1.r1 |α2.r2, α1 6∈ Ap, α2 ∈ Ap,
1 + ĥα2

(q, α1.r1 | r2, Aq, Ap)
if p1|p2 = α1.r1 |α2.r2, α1 ∈ Ap, α2 6∈ Ap,

0 otherwise;

R4.

ĥ⊥(p′\L, q,Ap, Aq) =
{
ĥ⊥(p′, q, Ap ∪ L◦, Aq) R5.

ĥ⊥(x, q,Ap, Aq) = 0
R6.

where

cross{xij}1≤i,j≤2 =

{
∞ if x11 = x22 =∞ or x12 = x21 =∞,

min{xij}1≤i,j≤2 otherwise.

Table 5: The ĥ⊥ function and the ĥ> function for strong equivalence.

18



ĥα(nil , q, Ap, Aq) = 0 R1.

ĥα(β.p′, q, Ap, Aq) =

{
1 + ĥ>(p′, q, Ap, Aq) if β = α, β 6∈ Ap
0 otherwise;

R2.

ĥα(p1 + p2, q, Ap, Aq) ={
cross{ĥα(pi, qj , Ap, Aq)}1≤i,j≤2 if q = q1 + q2,

min(ĥα(p1, q, Ap, Aq), ĥα(p2, q, Ap, Aq)) otherwise;

R3.

ĥα(p1 | p2, q, Ap, Aq) =

2 + ĥ>(r1|α.r2, q, Ap, Aq) + ĥ>(α.r1|r2, q, Ap, Aq)
if p1|p2 = α.r1|α.r2, α 6∈ Ap,

1 + ĥ>(r1|r2, q, Ap, Aq) if p1|p2 = α1.r1|α1.r2, α = τ ,

1 + ĥ>(α1.r1|r2, q, Ap, Aq)
if p1|p2 = α1.r1|α.r2, α1 6= α, α 6∈ Ap,

1 + ĥ>(r1|α2.r2, q, Ap, Aq)

if p1|p2 = α.r1|α2.r2, α 6∈ Ap, α2 6= α,

0 otherwise;

R4.

ĥα(p′\L, q,Ap, Aq) = ĥα(p′, q, Ap ∪ L◦, Aq); R5.

ĥα(x, q, α,Ap, Aq) = 0
R6.

Table 6: The ĥα function for strong equivalence.
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Consider the following two CCS processes

p =(c.k.nil | c.nil)\{c}
q =(d.h.nil | d.nil)\{d}

Let n = 〈p, q,⊥, 1〉, it holds that ĥ⊥(p, q,∅,∅) = 3. In fact,

ĥ⊥(p, q,∅,∅)

= ĥ⊥(c.k.nil | c.nil , q, {c, c},∅) (Dfn. ĥ⊥: Rule R5)

= 1 + ĥτ (q, k.nil |nil ,∅, {c, c}) (Dfn. ĥ⊥: Rule R4)

= 1 + ĥτ (d.h.nil | d.nil , k.nil |nil , {d, d}, {c, c}) (Dfn. ĥα: Rule R5)

= 1 + 1 + ĥ>(h.nil |nil , k.nil |nil , {d, d}, {c, c}) (Dfn. ĥ⊥: Rule R4)

= 2 + 1 + min(n1, n2) (Dfn. ĥ>)

where

n1 = ĥ⊥(h.nil |nil , k.nil |nil , {d, d}, {c, c}); and

n2 = ĥ⊥(k.nil |nil , h.nil |nil , {c, c}, {d, d}).

Finally,

n1 = ĥ⊥(h.nil |nil , k.nil |nil , {d, d}, {c, c}) = 0, (Dfn. ĥ⊥: Rule R4)

n2 = ĥ⊥(k.nil |nil , h.nil |nil , {c, c}, {d, d}) = 0. (Dfn. ĥ⊥: Rule R4)

Since ĥ⊥(p, q,∅,∅) = 3, to reach two non bisimilar states we have to cross 3
arcs: the two arcs corresponding to the τ actions and the arc connecting the
node > with a node ⊥. Then, the value of ĥ(n) could be interpreted as a lower
bound to the number of actions that have to be performed by both processes
before reaching a node in which they are discovered not bisimilar. Nevertheless
this is an optimistic point of view: in fact, it is possible that a bigger number
of actions be required. Consider, for example, the node n = 〈p, q,⊥, 1〉, where
p =

(
(a.nil + d.b.nil) | a.nil

)
\{a} and q =

(
(a.nil + d.k.nil) | a.nil

)
\{a}. It holds

that ĥ(n) = 0, but, to reach two non bisimilar sub-processes of p and q at least
the two d actions must be performed.

The following theorem states that the heuristic function is admissible, i.e.,
it never overestimates the actual cost.

Theorem 3.3. Let D = (N,R) be a solution graph. It holds that

∀n ∈ N, ĥ(n) ≤ h(n)

where h(n) is the actual cost of n.
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〈p, q,>, λ〉

〈p, q,⊥, 1〉
ĥ = 0

〈nil , q, b, 2〉
ĥ = 0

〈c.nil ,nil ,>, λ〉
ĥ = 1

〈k.d.f.nil , q, c, 2〉
ĥ = 0

〈k.d.f.nil , k.d.nil ,>, λ〉
ĥ = 7

〈p, q,⊥, 2〉
ĥ = 0

〈p, c.nil , b, 1〉
ĥ = 0

〈nil , c.nil ,>, λ〉
ĥ = 1

〈nil , c.nil ,⊥, 1〉 〈nil , c.nil ,⊥, 2〉
ĥ = 1

〈nil ,nil , c, 1〉

〈p, k.d.nil , c, 1〉
ĥ = 0

〈k.d.f.nil , k.d.nil ,>, λ〉
ĥ = 7

Figure 3: An example.

Proof. Let n = 〈p, q, γ, k〉. First we prove that ĥ⊥(p, q, Ap, Aq) ≤ h(n), with
Ap ⊆ V, Aq ⊆ V, γ = ⊥ and k = 1. Therefore n = 〈p, q,⊥, 1〉. The proof
is made by induction on the structure of the process p. The admissibility of
other auxiliary heuristic functions can be proved similarly. The interesting cases
involve the action prefix and the parallel composition, so we consider only these
two cases.
Base step. nil: straightforward.
Inductive step. Let us assume that the theorem holds for p1 and p2.

p = α.p1. According to the definition of the auxiliary heuristic function

ĥ⊥ (see Rule R2 in Table 5), two cases exist: α 6∈ Ap and α ∈ Ap. In the first

case, ĥ⊥(n) = 1+ ĥα(q, p1, Aq, Ap). Using the operators of Table 3, it holds that
n = 〈p, q,⊥, 1〉 −→〈p1, q, α, 2〉, thus h(n) = 1+h(〈p1, q, α, 2〉) (according to Def-

inition 2.4). The thesis follows by inductive hypothesis, that is ĥα(〈q, p, α, 2〉) ≤
h(〈p1, q, α, 2〉)). Remember that by Definition 3.5, ĥ(〈q, p, α, 2〉) = ĥα(q, p,∅,∅).

In the second case, α is a restricted action and ĥ⊥(n) = 0. Consider now the
actual moves of p. If p can perform an action, then h(n) ≥ 1, which is greater
than zero: the theorem is obviously true. Otherwise, if p can perform no ac-
tions, then h(n) = 0, which is equal to ĥ⊥(n): also in this case the theorem is
true.

p = r1|r2. According to the definition of the auxiliary heuristic function ĥ⊥
(see Rule R4 in Table 5), five cases may occur.

1. suppose that r1 = α1.p1 and r2 = α2.p2 and both actions α1, α2 are not
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restricted actions. It holds that

ĥ⊥(n) = 1 + min(ĥα1(q, p1|α2.p2, Aq, Ap),

ĥα2(q, α1.r1|r2, Aq, Ap))

Consider now the possible moves of n. Recall the assumption made in Sec-
tion 3.3 (Remark 3.1). With this assumption it is not possible to apply,
at the same time, both Com rule and Par rule (see Table 4), involving
a same action. Therefore, using the operators of Table 3, it holds that n =
〈p, q,⊥, 1〉 −→〈p1|α2.p2, q, α1, 2〉 and n = 〈p, q,⊥, 1〉 −→〈α1.p1|p2, q, α2, 2〉.
Now, node n is an OR node, thus D must contain at least one succes-
sor. Therefore, either h(n) = 1 + h(〈p1|α2.p2, q, α1, 2〉) or h(n) = 1 +

h(〈α1.p1|p2, q, α2, 2〉) (according to Definition 2.4). Since ĥ⊥(n) chooses
the minimum of the two values, the thesis follows by inductive hypothesis.

2. Now, suppose that r1 = α1.p1 and r2 = α2.p2, both actions α1, α2 are
restricted actions and are complementary actions, i.e. α1 = α2. It holds
that

ĥ⊥(n) = 1 + ĥτ (q, p1|p2, Aq, Ap)

Using the operators of Table 3, n = 〈p, q,⊥, 1〉 −→〈p1|p2, q, τ, 2〉. The
successors of n is in D, therefore, h(n) = 1 + h(〈p1|p2, q, τ, 2〉) (according
to definition of h 2.4). The thesis follows by inductive hypothesis.

3. All the other cases can be proved in a similar way.

Example 3.2. Recall the CCS processes p and q of Example 3.1 and let us apply
our method to check whether p and q are strong bisimilar. Using the CWB-NC
the result is:

cwb-nc> eq -S bisim p q

Building automaton...

States: 9

Transitions: 10

Done building automaton.

FALSE...

p satisfies:

[b][c]ff

q does not.

Thus, the complexity in space of equivalence checking is heavily influenced by
the size of S(p) and S(q). It holds that both the transition systems have five
states. Applying our approach, the dual of the AND/OR structure of Fig. 2 is
constructed. As shown in Fig. 3, we stop the generation of states of the stan-
dard transition systems of both processes when we can deduce that they are not
bisimilar. Moreover, since our heuristic is admissible as stated by Theorem 3.3,
we find the minimal-cost solution graph leading to two not bisimilar states. We
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point out that finding the minimal-cost solution graph is useful since that graph
is examined to pinpoint the source of the error. Little graphs facilitate the com-
prehension of the fault. In this simple example, since all the AND nodes have at
least one successor, the solution graph is actually a path (the bold line in figure)

of cost equal to five. In Fig. 3, the ĥ value of each node is reported. For example,
it holds that ĥ(〈nil, c.nil ,>, λ〉 = 1. Note that, the node ĥ(〈nil, c.nil ,⊥, 1〉 is a

nonterminal leaf node, while the node ĥ(〈nil,nil , c, 1〉 is a terminal one. With
our approach only six states are generated: p, q, c.nil , k.d.f.nil , k.d.nil and nil ,
obtaining a reduction of three states. With this little example we have provided
evidence of the reduction of the state space that may result when applying our
methodology.

3.5. The heuristic function for checking weak equivalence

In this section we slightly modify the heuristic function defined in the previ-
ous section to manage the weak equivalence. The three auxiliary functions ĥ>,
ĥ⊥ and ĥα are shown in Tables 7 and 8. The novelty of these new functions
is that the silent action τ is skipped when counting the number of arcs of the
AND/OR structure that must be crossed to establish that p and q are not weak
bisimilar. The AND/OR structure to check weak equivalence is built using the
operators of Table 3 where the σ function is rephrased using the transition rela-
tion =⇒ i.e., σ(p) = { (p′, α) | p α

=⇒ p′ } = {(p1, α1), . . . , (pn, αn)}. Skipping the
τ action is obtained by modifying the rules R2, R3 and R4 of Table 7. Similarly
for the rules in Table 8. Note that ĥα is never called with α = τ , since the τ
action is irrelevant for checking equivalence. Theorem 3.3 stating the admissi-
bility of the heuristic function for strong equivalence still holds also for the new
heuristic function for checking weak equivalence. The proof easily follows by
Theorem 3.3 since the new auxiliary functions never increments the ĥ-value of
each node.

3.6. Infinite CCS processes

In many approaches, in order to disprove that a CCS process p is equivalent
to another process q, the whole transition systems for p and for q are built and
then almost all the existing verification environments (see for example [27, 28])
are based on an internal finite state representation of the processes. For this
reason, a very common requirement in these environments is the following:

the parallel and relabelling operators are allowed inside the body of a process
name as long as no process name occurs in the arguments [29].

Obviously, these approaches cannot be used when the transition systems of the
processes to check are infinite. Instead our method can be applied also in these
situations.

Consider the following CCS processes:

x
def
= (a.b.nil | b.c.x) + c.d.nil

y
def
= (a.b.nil | b.c.y) + c.e.nil
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ĥ>(p, q, Ap, Aq) = 1 + min(ĥ⊥(p, q, Ap, Aq), ĥ⊥(q, p, Ap, Aq))

ĥ⊥(nil , q, Ap, Aq) =

{
∞ if F(q)−Aq = ∅,

0 otherwise;
R1.

ĥ⊥(α.p′, q, Ap, Aq) =


1 + ĥα(q, p′, Aq, Ap) if α /∈ Ap ∪ {τ},
ĥ⊥(p′, q, Ap, Aq) if α = τ ,

0 otherwise;

R2.

ĥ⊥(p1 + p2, q, Ap, Aq) =
0 if τ ∈ F(p1 + p2) ∪ F(q),

cross{ĥ⊥(pi, qj , Ap, Aq)}1≤i,j≤2 if q = q1 + q2 and

τ 6∈ F(p1 + p2) ∪ F(q),

min(ĥ⊥(p1, q, Ap, Aq), ĥ⊥(p2, q, Ap, Aq)) otherwise;

R3.

ĥ⊥(p1 | p2, q, Ap, Aq) =

1 + min(ĥα1(q, r1 |α2.r2, Aq, Ap), ĥα2(q, α1.r1 | r2, Aq, Ap)
if p1|p2 = α1.r1 |α2.r2, α1 6∈ Ap ∪ {τ}, α2 6∈ Ap ∪ {τ},

ĥ⊥(r1 | r2, q, Ap, Aq) if p1|p2 = α1.r1 |α1.r2,

1 + ĥα1
(q, r1 |α2.r2, Aq, Ap)

if p1|p2 = α1.r1 |α2.r2, α1 6∈ Ap ∪ {τ}, α2 ∈ Ap,
1 + ĥα2

(q, α1.r1 | r2, Aq, Ap)
if p1|p2 = α1.r1 |α2.r2, α1 ∈ Ap, α2 6∈ Ap ∪ {τ},

0 otherwise;

R4.

ĥ⊥(p′\L, q,Ap, Aq) =
{
ĥ⊥(p′, q, Ap ∪ L◦, Aq) R5.

ĥ⊥(x, q,Ap, Aq) = 0
R6.

where

cross{xij}1≤i,j≤2 =

{
∞ if x11 = x22 =∞ or x12 = x21 =∞,

min{xij}1≤i,j≤2 otherwise.

Table 7: The ĥ⊥ function and the ĥ> function for weak equivalence.
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ĥα(nil , q, Ap, Aq) = 0 R1.

ĥα(β.p′, q, Ap, Aq) =


1 + ĥ>(p′, q, Ap, Aq) if β = α, β 6∈ Ap ∪ {τ},
ĥα(p′, q, Ap, Aq) if β = τ ,

0 otherwise;

R2.

ĥα(p1 + p2, q, Ap, Aq) =
0 if τ ∈ F(p1 + p2) ∪ F(q),

cross{ĥα(pi, qj , Ap, Aq)}1≤i,j≤2 if q = q1 + q2 and

τ 6∈ F(p1 + p2) ∪ F(q),

min(ĥα(p1, q, Ap, Aq), ĥα(p2, q, Ap, Aq)) otherwise;

R3.

ĥα(p1 | p2, q, Ap, Aq) =

2 + ĥ>(r1|α.r2, q, Ap, Aq) + ĥ>(α.r1|r2, q, Ap, Aq)
if p1|p2 = α.r1|α.r2, α 6∈ Ap ∪ {τ},

1 + ĥ>(α1.r1|r2, q, Ap, Aq)
if p1|p2 = α1.r1|α.r2, α1 6= α, α 6∈ Ap ∪ {τ},

1 + ĥ>(r1|α2.r2, q, Ap, Aq)

if p1|p2 = α.r1|α2.r2, α 6∈ Ap ∪ {τ}, α2 6= α,

0 otherwise;

R4.

ĥα(p′\L, q,Ap, Aq) = ĥα(p′, q, Ap ∪ L◦, Aq); R5.

ĥα(x, q, α,Ap, Aq) = 0
R6.

Table 8: The ĥα function for weak equivalence.
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It holds that S(x) and S(y) are infinite: we choice to move first the second
branch of the + operator both in x and y, since the value returned by the heuris-
tic function in these cases is lesser than that returned by the other branches,
and, after having generated 17 states, a counterexample of cost equal to 5 is
produced. Other approaches for verification of infinite systems can be found in
[30, 31].

4. Experimental Results

In this section we present and discuss our experience with using the tool to
check both strong and weak equivalence of several well-known processes. Our
aim is to evaluate the performances of the approach presented in Section 3 and
compare it against both the CWB-NC and the CADP tool [32]. Experiments
were executed on a 64 bit, 2.67 GHz Intel i5 CPU equipped with 8 GiB of RAM
and running Gentoo Linux.

First, we consider several instances of the dining philosophers example. In
the first solution, when a philosopher gets hungry, he can, without any control,
pick up his left fork first, then his right one; if he can eat, then puts the forks
down in the same order that he had picked them up. In the second solution,
shown in [33], when a philosopher gets hungry, he tries to sit at the table, but
an usher keeps at least one philosopher from sitting. Only after having sit, a
philosopher can pick up his left fork and then his right one; he eats and then
puts the forks down in the same order that he picked them up. We prove that
the two solutions are not strongly equivalent.

Table 9 shows the number of generated nodes resulting from the CWB-NC
and using our approach, where column n indicates the number of philosophers.
The column “dimension” shows the number of states of the standard transition
system of the two CCS processes specifying the two solutions of the dining
philosophers, namely p and q. Finally, the last column indicates the cost of the
counterexample. We may see the significant reduction of the state-space that
results when applying our heuristic function. In fact, for n = 6 the CWB-NC
tool was not able give an answer, while with our methodology we managed to
check equivalence up to a configuration of 20 philosophers.

In Table 10 our approach is compared with the CADP tool. Again we con-
sider the dining philosophers example and we check the strong equivalence.
Since CADP tool uses LOTOS [34] as specification language, all the CCS spec-
ifications have been equivalently translated in LOTOS. Moreover, the memory
usage is considered instead of the generated states. The table shows both the
memory consumption (KB) and the runtime performance (sec) of our approach
and of the CADP tool.

Both the classic CWB-NC environment and of the CADP environment use
efficient algorithms, and, in particular, in the CADP, great attention is devoted
to implementation efficiency issues. Note that the execution time of our tool
for 5 philosophers was about 11 seconds. This is quite high, considering the
scale of the process: anyway, we found that it is mostly due to the overhead of
the use of S2 algorithm. Also the authors of S2 have found that the algorithm
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n our approach CWB-NC dimension state space cost of
gen gen p q reduction counterexample

2 60 156 74 82 62 % 14
3 163 1072 639 433 85 % 14
4 348 7212 5510 1702 95 % 14
5 664 53815 47496 6319 99 % 14
6 1170 - - - - 14
8 3070 - - - - 14
12 13770 - - - - 14
16 43676 - - - - 14
20 111700 - - - - 14

Table 9: Results on the dining philosophers (CWB-NC - strong equivalence)

n our approach CADP our approach CADP
memory memory time time

2 10000 51600 0.04 0.60
3 13856 57840 0.20 0.66
4 27648 62672 2.13 0.77
5 64640 67824 11.5 1.01

Table 10: Results on the dining philosophers (CADP - strong equivalence)

is much slower than the competing algorithm CFCREV*, for example, but we
found that S2 is relatively easy to explain and it is proved to reach the minimum
counterexample (this is the main reason of our choice). Similar algorithms in
literature with better performances pay the price of a more complex behavior.
We recall that our aim was checking equivalences trying to save as memory
space as possible and to obtain the minimum counterexample in the case of two
non equivalent processes; thus we reasonably choose S2 as search algorithm and
consequently defined an admissible heuristic function. However, in general, the
choice of saving space cannot be compatible with the needs of obtaining low
execution time; this is true when the two processes are similar, but also in the
worst cases of non similar processes. This approach has the advantage that a
good heuristic function should help to obtain both memory saving (less nodes
to explore) and low execution time (less work to do).

For a more complete evaluation of our approach, we select from the literature
a sample of well known systems. In all examples we prove the equivalence
between two processes, namely p and q.

• DEK-PET

– p: the CCS specification of the mutual exclusion algorithms [35] due
two Dekker;

– q: the CCS specification of the mutual exclusion algorithms [35] due
two Peterson.
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– It holds that p 6∼ q.

• BUFF:

– p: a buffer of capacity 2;

– q: the implementation of the buffer obtained by composing in parallel
2 copies of a buffer cell.

– It holds that p 6∼ q.

• XOR:

– p: specification of an XOR of 3 inputs

– q: the implementation obtained using two XOR gates of 2 inputs
each one.

– It holds that p 6∼ q.

• MUTUAL:

– p: a system handling the requests of a resource shared by 8 processes.
It presents two alternative choices between a server based on a round
robin scheduling and a server based on mutual exclusion.

– q: similar to p with the round robin scheduling changed.

– It holds that p 6∼ q.

• MAIL:

– p: an old specification of a mail system, devised by Gordon Breb-
ner [36].

– q: a new specification of a mail system, always produced by Gordon
Brebner [36].

– It holds that p 6∼ q.

• BRP: Philips Bounded Retransmission Protocol (BRP): the Bounded Re-
transmission Protocol used by the Philips Company in one of its prod-
ucts [37, 38, 39].

– p and q are two similar specifications of the protocol.

– It holds that p ∼ q.

The results of all runs are reported in Table 11 (comparison with CWB-NC)
and Table 12 (comparison with CADP), while Table 13 shows the results of our
approach against CADP for checking weak equivalence.

From the point of view of our initial goal, with these examples we have pro-
vided some experimental evidence of the reduction of the state space that may
result when applying our methodology with respect to CWB-NC. Note that in
some cases we obtain a reduction more than 85%. However, the tests performed
so far show that our approach based on heuristic searches is comparable to the
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case study our approach CWB-NC dimension state space cost of
gen gen p q reduction counterexample

DEK-PET 39 256 165 91 85 % 17

BUFF 12 17 7 10 29 % 5

XOR 12 18 8 10 33 % 8

MUTUAL 4508 8704 6912 6912 48% 20

MAIL 99 1434 1025 409 93 % 17

BRP 1518 1518 759 759 0 % strong bisimilar

Table 11: Results for other systems (CWB-NC - strong equivalence)

case study our approach CADP our approach CADP
memory memory time time

DEK-PET 9664 50848 0.00 0.32

BUFF 8528 44784 0.08 0.3

XOR 8592 46464 0.00 0.40

MUTUAL 42528 63392 9.22 0.70

MAIL 10816 53008 0.01 1.44

Table 12: Results for other systems (CADP - strong equivalence)

case study our approach CADP our approach CADP weak
memory memory time time bisimilar?

DEK-PET 67264 73472 12.45 0.45 no

BUFF 9280 46544 0.00 0.32 yes

XOR 9264 47584 0.00 0.32 yes

MUTUAL 108064 105712 131.11 2.47 yes

MAIL 4513 106960 3.21 0.46 no

Table 13: Results for other systems (CADP - weak equivalence)
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CADP tool in terms of memory space reduction. On the contrary, its perfor-
mance, with particular reference to the scalability of the analysis, is lower. For
the time being, our impression is that our technique looks promising for further
refinements of the method. For example, we investigated the use of more ac-
curate heuristic functions (and more complex); in fact, as the accuracy of the
heuristics improves, the amount of search required to find a solution and the
time for obtaining the solution both decrease. On the other hand, the exploita-
tion of heuristic searches for checking equivalence is a novel approach, which,
in our knowledge, has never used before. As said before and as evidenced by
the experiments, the S2 algorithm for detecting processes similarities has lower
performance especially due to the Bottom Up step of Table 2. However, we
think that our heuristic-based approach is a viable solution, due to the avail-
ability of several algorithms with better performances. Note that the research
of algorithms for cyclic AND/OR graphs is very recent, thus we hope that new
more efficient algorithms can be proposed in the future.

In our approach particular attention is paid to the representation of coun-
terexamples. In fact, in formal verification, learning why a system fails or passes
a verification task, could be as important as the result itself. The CWB-NC sup-
ports a game theoretic representation of counterexamples and, if two systems
are not equivalent, generates a logic formula as diagnostic information. How-
ever, often this formula is fairly hard to understand and is inadequate to be used
for debugging the model. Our approach returns a graphical AND/OR structure
representation, which is the minimal sub-graph leading to two not equivalent
states. This structure allows the user to understand and navigate through the
counterexample better, especially in a setting with highly non-deterministic au-
tomata where counterexamples may become rather complicated. For example,
consider the following CCS processes:

p
def
= a.(b.e.nil + b.k.nil)

q
def
= a.(b.c.nil + b.c.nil)

It holds that p 6∼ q. The CWB-NC returns as counterexample:

FALSE...

p satisfies:

<a><b><e>tt

q does not.

The graphical structure representation returned by our approach is shown
in Figure 4.

5. Conclusion and Related Work

A method that uses heuristic searches has been proposed for equivalence
checking for concurrent systems described in CCS. The novel contributions of
our work are the following.
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Figure 4: Our counterexample.

• Application of heuristic search for equivalence checking. As far as we
know, it is the first attempt to exploit process algebra-based heuristics for
equivalence checking in concurrent systems.

• The definition of an admissible heuristic function. In this way, by S2, we
can always find minimal graph leading to two not equivalent states. We
believe that it is important to return the minimal graph, since that graph
is examined in order to determine the source of the error. Big graphs can
prevent an easy comprehension of the fault.

• The heuristics is syntactically defined, i.e., it is only based on the CCS
specifications of the process, and the proposed method is completely au-
tomatic, thus it does not require user intervention and manual efforts.

The most challenging task when applying automated model checking in practise
is to conquer the state explosion problem. Hence, equivalence algorithms with
minimal space complexity are of particular interest. Two algorithmic families
can be considered to perform the equivalence checking. The first one is based on
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refinement principle: given an initial partition, find the coarsest partition stable
with respect to the transition relation see for example the algorithm proposed by
Paige and Tarjan in [40]. The other family of algorithms is based on a Cartesian
product traversal from the initial state [41, 42]. These algorithms are both ap-
plied on the whole state graph, and they require an explicit enumeration of this
state space. This approach leads to the well-known state explosion problem.
Classical reduction algorithms already exist [43, 44], but they can be applied
only when the whole state space has been computed, which limits their interest.
A possible solution is to reduce the state graph before performing the check as
shown in [45] where symbolic representation of the state space is used. In [4]
is presented an algorithm that allows the minimization of the graph during its
generation, thus avoiding in part the state explosion problem. The main prob-
lems of this algorithm arise from the model itself, a system of communicating
automata, where some base automata can be bigger than the full model itself.
We avoid this problem since we use an heuristic that guides the generation of
states that are still belonging to the standard transition systems of the two CCS
processes under consideration.

Other algorithms are the ones by Bustan and Grumberg [46] and by Gen-
tilini, Piazza and Policriti [47]. For an input graph with N states, T transitions
and S simulation equivalence classes, the space complexity of both algorithms
is O(S2 + N logS). The approach of Gentilini et al. represents the simulation
problem as a generalised coarsest partition problem. Our heuristic approach can
produce great reduction in space, which becomes the bottleneck as the input
graph grows, especially when two processes do not bisimulate each other.

Recently great interest was shown in combining model checking and heuris-
tics to guide the exploration of the state graph of a system. In the domain of
software validation, the work of Yang and Dill [48] is one of the original ones.
They enhance the bug-finding capability of a model checker by using heuristics
to search the states that are most likely to lead to an error. In [49] genetic al-
gorithms are used to exploit heuristics for guiding a search in large state spaces
towards errors like deadlocks and assertion violations. In [50] heuristics have
been used for real-time model checking in UPPAAL. In [51, 52] heuristic search
has been combined with on-the-fly techniques, while in [53, 54] with symbolic
model checking. Other works, as for example [55, 56], used heuristic search
to accelerate finding errors, while in [57] heuristic search is used to accelerate
verification.

As a future work we intend apply this approach also for other equivalences,
as for example weak equivalence and ρ-equivalence, introduced in [17], that
formally characterizing the notion of “the same behavior with respect to a set ρ
of actions”: two transition systems are ρ-equivalent if a ρ-bisimulation relating
their initial states exists. Moreover, we intend to investigate more accurate
heuristic functions.
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