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Experimenting SDN and Cloud Orchestration in
Virtualized Testing Facilities:

Performance Results and Comparison
B. Martini, M. Gharbaoui, D. Adami, P. Castoldi, S. Giordano

Abstract—Due to the impressive demand for communication-
intensive applications deployed in the cloud, cross-layer orches-
tration solutions for Cloud data centers (DCs) are essential for
the effective usage of both network and cloud resources while
addressing service requirements and user expectations. In this
regard, the Software-Defined Networking (SDN) can play a key
role thanks to programmable network control operations and
to a more effective inter-working between network controllers
and cloud management platforms. On the other hand, due to
the relevant size of Cloud DCs, a significant evaluation of SDN-
based orchestration solutions requires testing environments with
proper scales and significant level of fidelity.

This paper discusses the opportunities of using virtual testbeds
to carry out Cloud-related experimentations while addressing
with significant scale requirements of DC infrastructures. Firstly,
we present a set of results of a test campaign we carried out using
the Fed4FIRE experimental facility aiming at a comprehensive
performance evaluation of an SDN-based orchestration solution
for Cloud DCs. Secondly, we provide a comparison between
virtual testbeds and other testing environments, i.e., laboratory
testbeds, simulators and emulators, in terms of offered advan-
tages and effectiveness in experimentations. Moreover, we discuss
the appropriateness and advisability of using virtualized testbeds
for research on novel SDN and Cloud orchestration solutions at
scale, by highlighting advantages of virtual testbeds in compar-
ison with laboratory, simulation and emulation testing facilities
in terms of effectiveness of experimentations and accuracy of
results.

Index Terms—SDN, Cloud Computing, Data Center, Virtual
Machine, Orchestration, Virtual Testbed

I. INTRODUCTION

THE increasing popularity of Cloud Computing applications
and the prominent advances in virtualization software

technologies (e.g., Hypervisor and Virtual Machines (VM))
have driven Data Center (DC) infrastructures toward greater
complexity and workload dynamicity. The large amount and
the high volatility of VM deployments give rise to unpre-
dictable traffic patterns that might have an impact on the proper
operation of the DC network due to the over-subscription of
switches and possible bandwidth contentions. To meet this
challenge, Cloud DCs require more advanced network control
capabilities toward the automation of service deployments and
a tighter coordination (i.e., orchestration) with cloud resource
management operations [1] [2].
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The Software Defined Networking (SDN) paradigm
promises to foster innovation in DC networks especially
addressing the above requirements [3]. Indeed, SDN can effec-
tively provide programming abstractions that can be exploited
via software network controllers to dynamically enforce traffic
steering rules into switches and to set-up data delivery paths
while addressing specified requirements (e.g., bandwidth de-
mand). In addition, software network controllers may offer
northbound interfaces that can be exploited to effectively
put into operation orchestration tasks to assure both traffic
and computing demands of cloud applications as result of a
combined control of both DC network and cloud resources
[4] [5].

As an approach to address these challenges, we designed
and developed an SDN-based orchestration system for Cloud
DCs, i.e., SDN-DC orchestrator, able to interwork with both
an SDN controller and a cloud management platform (i.e.,
VM Manager/Hypervisor) to adaptively coordinate and auto-
matically provide both network and computing services while
satisfying specified service requirements (i.e., CPU core and
bandwidth demands). The resources underpinning the provi-
sioned services are selected based on their availability (i.e.,
current load) evaluated from data status collected by network
devices. We deployed and run the SDN-DC orchestrator as
part of a EU project promoting the set-up of SDN-based
European experimental facility [6]. Within this project, we
focused on (i) the specification of orchestration algorithms
for the coordinated and adaptive selection of computational
and network resources [7], (ii) the design, development and
experimental validation of an SDN-DC orchestrator proto-
type [8]. To validate the orchestration approach, we firstly
relied on a simulator to assess the devised algorithms using
a significant number of network and compute nodes to assess
performance indicators, such as blocking probability of service
requests and the rate of resource utilization. Secondly, we
set-up a laboratory testbed reproducing a Cloud DC using
virtualized servers and we carried out validation tests to verify
the orchestrator software program against system requirements
and to assess additional performance indicators (e.g., service
set-up time).

However, based on these testing activities, we realized that
a significant evaluation of SDN-based orchestration system
for Cloud DCs requires experimental environments with a
larger scale and with a higher level of fidelity to reproduce
a testing environment as close as possible to production DC
environments where the SDN-DC orchestrator would be even-
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tually put into operation. Indeed, although relying on software
virtualization (i.e., hypervirsor), by using a laboratory testbed
we could not deploy a testing environment with an adequate
size to achieve accurate performance results. On the other
hand, by simulations we could not assess a comprehensive set
of orchestrator performance indicators (e.g., the actual server
and link utilization, rate of data throughput degradations)
since the system operation (e.g., network data plane) is just
synthetically reproduced. Hence, another challenge to foster
innovation in Cloud DCs is to promote an adequate quality
of experimentation using testing facilities with proper scales
and significant level of fidelity. These features are especially
relevant for cloud and DC experimentations where the number
of involved systems (i.e., servers, switches), processes (e.g.,
cabling), and service dynamics are intrinsically high.

To address the aforementioned challenges, in this paper we
present and discuss experimental results collected during a
long-running test campaign carried out in a virtualized testbed
facility to assess a resource orchestration solution for Cloud
DCs. Virtualized testbed facilities are virtual laboratories built
on top of a coordinated federation of testbeds according
to the experimentation frameworks (e.g., FIRE [9]) to offer
large-scale and wide range of technologies for researchers to
remotely perform experiments in a variety of application fields
(e.g., e-health). In the following, the terms virtualized testbed
facility and virtual testbed are used interchangeably.

More specifically, we provide the following twofold contri-
bution:

1) performance evaluation of the SDN-DC orchestrator
based on experimental results we collect using a vir-
tual testbed reproducing a DC facility on top of the
Fed4FIRE experimentation infrastructure [10] assuring
both a significant level of fidelity and a proper scale of
experimentation so as to obtain meaningful performance
data and complementary set of performance indicators.
Indeed, Fed4FIRE platform is able to offer a large
federation of testbed facilities featured by a wide range
of Internet technologies (i.e., wired/wireless networks,
Internet of Things, SDN, cloud computing), large system
capacity (e.g., large number of computing nodes) and
a rich set of experimentation services (e.g., bare metal
services offering remote control of physical machines to
experimenters).

2) discussion on the appropriateness and advisability of
using virtual testbeds for experimentations on cloud and
DC systems and a comparison of virtual testbeds with
laboratory, simulation and emulation testing facilities in
terms of effectiveness of experimentations and accuracy
of results. This contribution is the result of a wide hand-
on experience in testing the SDN-DC orchestrator in a
variety of testing facilities. Indeed, we also provide a
discussion of the obtained experimental results also in
terms of soundness and consistency with performance
results we previously obtained from laboratory experi-
ments and simulations [7] [8] [11].

The paper is organized as follows. Section. II gives an
overview of related works in the literature. Section. III de-

scribes the virtual testbed we set-up to carry out experiments
on SDN-based orchestration in Cloud DCs and the features
of the SDN-DC orchestrator prototype. It then reports the
experimental results we collected using the virtual testbed.
Section. IV presents the main advantages in using virtual
testbeds along with a comparison among different testing
environments in terms of offered capabilities and scales. It
then discusses the experimental results against the ones we
obtained while testing SDN-DC orchestrator in laboratory and
simulation testing environments. Finally, Section. V provides
the concluding remarks for this paper.

II. RELATED WORKS

In this section, we discuss the research works in main
related areas and we highlight the contribution of this work in
comparison with the reported works.

A. Experimentations in Cloud/DCs resource management and
orchestration

A number of research works have been devoted to experi-
mentations deployed in the DC environments to provide novel
solutions addressing stringent requirements of communication
intensive applications and user expectations. [12] [13] explore
the use of SDN to improve data transfer rates or quickly
recover from failures in DC networks exploiting programma-
bility and flexibility features of OpenFlow. [14] analyzes
historical data collected from a set of servers and focuses on
optimizing VMs placement, while considering capacity con-
straints at these servers. In [15] authors present a framework
for VM management that optimizes the placement of VMs,
while requests arrive. The framework leverages applications
topology as well as availability constraints also based on
network monitoring data to avoid performance degradations
at VMs due to network failures. However, these works do
not address joint orchestration (i.e., allocation) of network
and cloud resources thereby improving overall resource usage.
Most importantly, in all these works the authors have consid-
ered small-scale laboratory testbeds to validate the proposed
solutions while they had to resort to simulations in order to
significantly show the merits of their proposals.

Other works in literature discuss the use of SDN-based
solutions for resource orchestration in DCs and in some
cases deployed them successfully [16][17]. In [18] the authors
propose optimal algorithm for provisioning VMs and network
bandwidth in a cloud computing environment, enabled by SDN
capabilities and combining planned (i.e., in advance) and on-
demand allocations. Due to limited resources, authors experi-
ment the proposed solution in a small testbed. In [19] authors
propose a platform for Software-Defined Clouds which allows
for VM placements by jointly considering computing and net-
work resource availability. The platform is then evaluated on
an experimental testbed. These works consider instantaneous
values of VM traffic to make allocation decisions. In [5]
authors present an SDN-based orchestration prototype that not
only controls the network, but also VMs and hypervisors to
place VMs in optimized way. As for the network load, this
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work considers average values of throughput exchanged be-
tween VMs over a certain time window. With respect to these
works, our experiments demonstrate an orchestration process
based on traffic load estimations resulting from a weighted
average of a set of collected traffic data throughput values
thereby making more effective data delivery path decisions
and offering better than best-effort quality of service. Again,
in both cases the proposals have a flaw on the scalability
since their experiments have been carried out in a small-scale
laboratory testbed.

ESCAPE [20] is an orchestrator prototype that allows for
the coordinated deployment of cloud resources (i.e., VMs run-
ning network appliances) within DCs while connecting them
dynamically through SDN. The validation of the prototype has
been provided using an emulated environment (i.e., Mininet)
and using a limited number of VMs and simple connections
due to the very small size of the testing set-up, e.g., one single
software SDN switch emulating an SDN interconnection net-
work. Some advanced tests as regards the system architecture
were presented in [21][22] where orchestration was performed
across an abstract view of a multi-DC environment to address
service chaining use cases and, thus, not considering resource
usage details and dynamics at intra-DC level, that might be
relevant aspects for DC/cloud operators.

B. Experimentations in Virtual Testbeds

Virtual testbeds offer open and large-scale virtualized in-
frastructures for researchers to perform experimentations in a
Future Internet applications and network innovations. Thanks
to ad-hoc experimentation frameworks, virtual testbeds allow
to (i) combine special and different kinds of resources (robots,
wireless, cloud), (ii) scale-up capabilities, and (iii) benefit
from a number of tools to automate virtual testbed set-
up and experiment operations (e.g., resource discovery and
reservation, experiment control, measurements).

Many initiatives have been launched for the deployment of
testbed federations. The most considerable initiatives in this
direction are FIRE (Future Internet Research and Experimenta-
tions) in Europe [9], GENI (Global Environment for Network
Innovations) [23] and SAVI (Smart Applications on Virtual
Infrastructure) [24] [25] in North America. GENI provides
a virtual laboratory for at-scale networking and distributed
systems research and education, thereby promoting innova-
tions in network science, security, services and applications.
SAVI is a research testbed with the purpose of creating
and delivering Future Internet applications. It allows for the
deployment of SDN infrastructures within a virtualized envi-
ronment composed of heterogeneous resources (e.g., FPGA,
Software-Defined Radio, servers). FIRE offers cutting-edge
testbed facilities aiming at enhancing the knowledge in Future
Internet technologies through experimentations within multi-
disciplinary and multi-technology testing environments (e.g.,
wireless and wire networks, cloud computing, automotive).
Within these initiatives, a wide range of experiments have been
enabled in many different fields, going from the evaluation of
peer-to-peer mobile communications [26], Earth Observation
emulation [27], the enhancement of medical applications with

Future Internet capacities [28] and indoor localization estima-
tion of robotic mobile nodes [29]. Moreover, within these ini-
tiatives international/European projects have funded to set-up
testing facilities fostering experimentations in specific fields,
such as SDN (e.g., OFELIA [6]) and Next Generation Internet
(e.g., Fed4Fire [10]). Using these facilities, experiments have
been carried out using SDN and cloud testbeds, e.g., [30].
However, these works did not tackle SDN-based orchestration
as this work does. Moreover, as far as our knowledge, with
respect to the works cited above, our experiment run on a
larger scale. In fact, regarding the Fed4FIRE testbeds, on av-
erage requested slices include 5.3 nodes while our experiment
required 38 nodes [31].

Public cloud platforms also offer the opportunity to benefit
of virtualized capabilities and of a variety of services, includ-
ing data analytics, machine learning, Internet of Things set-
up [32][33]. However, the goals and intents they pursue are
different, along with the users they target compared to FIRE
or GENI. Indeed, they offer solutions especially to enterprises
in order to help their business to scale and grow, foster more
secure operations or enable cost savings. Moreover, despite
the variety of services, some of cutting-edge technologies are
not offered, such as 5G, as FIRE actually offers. Finally,
services are not free and require payments to be issued which
constitutes, for research activities, a real limitation.

C. Experimentations in Emulated Testbeds

A number of initiatives have been devoted to provide quite
realistic emulated environments to perform experimentations,
especially in the networking field. DOT [34] is a low cost and
scalable network emulator, which provides guaranteed com-
pute and network resources for the emulated components (i.e.,
switches, hosts and links). It can easily scale with network
size and traffic volume, allowing to emulate large datacenters
and wide-area networks. However, it is less realistic than
Fed4FIRE regarding the cloud platforms. In fact, hosts are
emulated by deploying user supplied VMs while in our case
we could use physical machines, although remotely, thanks
to bare metal services provided by Fed4FIRE platform. This
way we could perform real lifecycle management operations to
VMs (i.e., VM clone, run, shutdown, remove operations) after
the installation of hypervisors and VM managers. Moreover,
while the network embedding problem is trivial in the case
of the Fed4FIRE testbed (the mapping of the tested network
onto the physical infrastructure only depends on the number
of available physical machines), in the DOT case it is more
complicated and necessitates the use of a heuristic algorithm
to minimize the translation overhead. Mininet-HiFi [35] is
another network emulator that guarantees resource isolation
and provisioning. It also monitors performance fidelity to help
verify that an experiment is operating realistically. However,
the performance of the network emulated on Mininet-HiFi
still depends on the characteristics of the physical machine
on which it is created. In fact, aggregate resource require-
ments of the emulated network must fit within the available
single server. MaxiNet [36] is also a distributed emulator for
SDN networks which spans the emulated networks on several
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physical machines, thus allowing the emulation of large DC
networks. Again, the performance of the emulator depends
on the characteristics of the physical machines (even if more
than one is used), which restricts its usage in heterogeneous
environments. In fact, the load ends up to be evenly distributed
over all physical machines, so the weak ones will become the
bottleneck of the emulation. On the contrary, in the Fed4FIRE
testbed, since bare metal services are supported, physical
machines are made available to the experimenters and all have
the same characteristics.

III. VIRTUAL TESTBEDS AND ORCHESTRATION
EXPERIMENT RESULTS

In this section, we describe the virtual testbed we set-up on
top of the Fed4FIRE facility to perform experiments on SDN-
based orchestration in Cloud DCs and the main components
of the SDN-DC orchestrator prototype. We then report the
experimental results we collected using the virtual testbed
from the Fed4FIRE federated facility.

A. Fed4FIRE facility

Funded by the EU in the framework of Future Internet
Research and Experimentation (FIRE) initiative, Fed4FIRE
offers a heterogeneous, scalable and federated experimental
facility in which a large number of European testbeds are
integrated to provide a comprehensive testing environment
covering various technology domains, including but not lim-
ited to, cloud computing, wireless and wired networks, sensor
networks, and software defined networks.

A virtual testbed on top of the Fed4FIRE facility can be
fully remotely operated by experimenters thanks to a com-
prehensive software framework offering a set of tools for the
management of the overall experiment lifecycle (e.g., tools for
resource discovery and reservation, experiment control, mea-
surements) and key features of trustworthiness (e.g., federated
identity management and access control, accountability, SLA
management). Hence, the experimenters can securely access
all the required resources with a single account and focus
on his/her core task of experimentation instead of dealing
with specific practical aspects of each testbed (e.g., request
of different accounts, learning different technicalities).

Regarding the access to the testbeds, a set of tools allow ex-
perimenters to specify and allocate a slice of virtual resources
(i.e., virtual servers, VMs and virtual links) to carry out his/her
experiments (i.e., experiment container). More specifically, the
MySlice Web portal offers an ingress point to experimenters
to access the Fed4FIRE federation and its facilities, while
the jFed platform provides additional tools to check the
resources availability and, eventually, reserve resources in the
federated testbeds to run automated tests, and to provision
and manage experiments [37] [38]. The experimenters can
use the experiment container to host a set of VM images
running the software modules of his/her system under test and
start performing experiments. The experimenters have also the
possibility to work with ready-to-use VMs selected from a
toolkit with a large set of available VM images equipped with
auxiliary services (e.g., Operating Systems such as Debian,

Ubuntu, CentOS) and software appliances (e.g., Open vSwitch
(OVS) [39], POX [40]). Finally, experimenters can benefit of
a set of tools (e.g., Zabbix, Nagios, Collectd) for monitoring
and measurement tasks during the tests.

Regarding the computation and communication efficiency
of the cloud services running on the allocated resources,
Fed4FIRE guarantees that the performance experienced by
a user is in line with the capabilities required during the
resources reservation phase and is not affected by other users.
More specifically, Fed4FIRE is not a public virtual environ-
ment, but a real testbed that makes available physical machines
(i.e., bare metal machines) where perfect isolation from other
experiments running on the same testbed is provided at the
computing level. At the network level, the links capacity is also
guaranteed through gigabit ethernet links, partitioned among
vlans in the switches. In such a case, the background load has
no effects on the obtained results and the required throughput
is guaranteed (no packets delay/loss is experienced if not
explicitly configured by the experimenters) [41]. Finally, the
facilities offered by Fed4FIRE are for free while the access to
the most interesting services of public cloud platforms such
as AWS [32] and GCP [33] is subject to charges, which
constitutes, for research activities, a real limitation.

B. Virtual DC Testbed and SDN-based Orchestration Set-Up
in Fed4FIRE

The virtual testbed we set-up on Fed4FIRE for the ex-
periments on cloud and SDN orchestration reproduces a DC
environment with a set of components devoted to orchestration
and resource control tasks. To this purpose, we established
two experiment containers within the Virtual Wall testbed [42]
which was identified as the most appropriate platform for
our experiments among the different testbeds provided by
Fed4FIRE. Indeed, the Virtual Wall testbed offers a large num-
ber of VMs to experimenters thereby providing experiment
containers with large capabilities as we required to set-up a
DC testbed with a significant number of switches and servers.
The Virtual Wall testbed also provided us with the capability of
adjusting the network state (e.g., traffic load) according to the
experiment needs. Moreover, it allowed for setting any kind of
network impairment (i.e., latency, packet loss) through specific
tools (e.g., iperf) thereby making experimental scenarios much
more realistic. Finally, it gave us the possibility to use ad-hoc
scripts to automate a set of testing operations, e.g., monitoring
data collection. Fig. 1 shows the two experiment containers we
set-up, each of the them being composed of a pool of VMs
that we used to deploy the needed software components.

The first experiment container (left) is composed of 37
VMs that we used to reproduce the overall DC environment.
More specifically, we used 20 VMs to deploy OpenFlow soft
switches by means of OVS [39]. Then, the OVS switches
were interconnected through virtual links according to a fat-
tree topology with 3 switching layers, i.e., edge, aggregation
and core. Other 16 VMs were used to deploy virtual servers.
Indeed, those VMs were equipped with the Xen Cloud Plat-
form (XCP) [43] which is a Virtual Machine Manager (VMM)
also providing the Xen API tool stack that supports lifecycle
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Fig. 1. Virtual Testbed set-up: Experiment containers.

management capabilities for the VMs running in the virtual
servers (i.e., VM clone, run, shutdown, remove operations).
The remaining VM was used to run an outside host that acted
as a sink for the traffic generated by the VMs installed in the
virtual servers. More specifically, we used the iperf tool [44]
to generate Variable Bit Rate (VBR) traffic from the running
VMs to the outside host. The second experiment container
(right) is composed of one VM (i.e., orchestration node) and
is used to deploy the orchestration components which consist
of the SDN-DC orchestrator along with an SDN/OpenFlow
controller (i.e., POX controller [40]) managing the OVSs in
the other experiment container over a secure connection using
the OpenFlow protocol.

The main blocks of the SDN-DC orchestrator are shown
in Fig. 2. It consists of a Resource Orchestration Engine
(i) exploiting APIs offered by the POX controller and the
XCP running in the servers to control and manage resources
(i.e., switches and servers, respectively), and (ii) elaborating
requests for VM set-up and termination coming from the VM
Request Manager. Upon the arrival of a VM set-up request
from the VM Request Manager, the Resource Manager extracts
the VM specifications (i.e., number of CPU cores required
for a proper data processing rate and the bandwidth demand
to sustain the VM traffic). Such specifications are then used
to perform the combined selection of (i) one server able to
host the VM, and (ii) a sequence of switches able to sustain
the required VM traffic load in the DC network. To perform
the selection, the Resource Manager leverages a Selection
Algorithm that uses load status data related to both servers
and switches that are stored in the Host Information Database
and Network Information Database, respectively. According to
the selections, the Resource Manager triggers the coordinated
provision of (i) the VM at the selected server, and (ii) the
data delivery path across the selected switches by leveraging

SDN-DC Orchestrator

VM 
Request 
Manager

Resource Orchestration Engine

Selection Algorithm

Resource Manager

Network 
Information 

DB

Host 
Information 

DB

Network 
Infrastructure 

Manager

Cloud 
Infrastructure 

Manager

Fig. 2. Software Components of SDN-DC orchestrator.

technology-independent APIs offered by the Cloud Infras-
tructure Manager and the Network Infrastructure Manager,
respectively. This way, underlying either technology-specific
resource controllers can be used. In this case, the Network In-
frastructure Manager leverages the POX OpenFlow Controller
to enforce forwarding instructions to selected switches through
OpenFlow messages, and the Cloud Infrastructure Manager
leverages the XCP to set-up and stop the VMs into the servers.

The process of server and switch selection is a multi-
step process that is constrained by the multi-layer DC topol-
ogy, where the selection of the server restricts the possible



6

sequences of switches that can be chosen and vice versa.
Firstly, two different orders can be followed to select the
server and the switches. Correspondingly, we conceived two
categories of algorithms: (i) Server-Driven (SD) that first
attempts to find one server for the VM and then a sequence
of three network switches/links for the data delivery path
across core, aggregation and edge layers; (ii) Network-Driven
(ND) that first attempts to find a sequence of three network
switches/links for the data delivery path across core, aggrega-
tion and edge layers and then a server where to deploy the VM.
At each step of server and switch selection, multiple choices
are possible as result of a redundant tree-like DC network
topology and multiple servers connected to each edge switch.
Correspondingly, we considered two bin-packing policies to
select the switch/link and server at each step of selection:
(i) First Fit (FF) that allocates the VM (traffic load) in the
first-indexed server (switch) provided that the required CPU
cores (bandwidth) are (is) available to meet the request; (ii)
Worst Fit (WF) that searches for the most unloaded server
(switch) to allocate the requested VM (traffic load), i.e., where
the largest amount of CPU cores (bandwidth) is available
provided that it is sufficient to meet the request. Ultimately,
four possible selection algorithms can be adopted in the SDN-
DC orchestrator by combining the two resource selection
orders with the two bin-packing policies, i.e., SD-FF, SD-WF,
ND-FF and ND-WF. For the sake of clarity, these algorithms
are summarized in Table. I

TABLE I
SELECTION ALGORITHMS DESCRIPTION.

Algorithm Description
SD-FF Server-Driven First Fit
SD-WF Server-Driven Worst Fit
ND-FF Network-Driven First Fit
ND-WF Network-Driven Worst Fit

Whatever algorithm is used, the selection of server and
switches is performed based on load estimations carried out
by the Resource Manager and made available to the Selection
Algorithm. As for the server load, the number of CPU cores
already allocated to run VMs retrieved from the XCP are used.
As for the network switch load, OpenFlow traffic statistics
are exploited that are available from the POX Controller.
More precisely, values of per-port received/transmitted bytes
counters of each switch are used that are queried periodically
through a daemon that triggers the issuing of OpenFlow
commands to switches through the POX Controller. Then,
the daemon computes the delta of received/transmitted bytes
between two consecutive queries, and consequently the traffic
rate at the switch ports over time by dividing the resulting
value by the duration of the polling time [45]. Based on this
information, the Resource Manager can build consolidated
trends of traffic load at switch ports by making averages of
traffic rates over time according to an exponential weighted
moving average scheme [8]. Basically, the Resource Manager
computes the weighted average between the last computed
(i.e., instantaneous) value of the traffic rate at a specific
switch port and the previously obtained (i.e., historical) av-
erage values. The result of such an averaging process can be

the smoothing of short-term fluctuations and the highlighting
of longer-term trends or cycles in the traffic rates at the
switch ports thereby the influence of past values decreases
exponentially. Accordingly, the Selection Algorithm is able to
track the switch load while making selection decisions with a
level of reactivity that depends on the relative weight given to
the instantaneous and historical values (i.e., history weight α)
in the average process. In fact, giving weight to instantaneous
values allows for responding to fluctuations in a faster way,
whereas giving more weight to the historical values allows for
smoothing out short-term load fluctuations and highlighting
longer-term trends or cycles. Also the number of historical
values (i.e., size of the monitoring window M) considered in
the averaging process is significant to highlight specific trends
in the switches/links utilization. Finally, the interval used to
query the switches and to compute traffic rates (i.e., polling
interval ∆T ) is relevant. Indeed, having a long polling interval
might miss the bursty flows whereas a short polling interval
could increase the processing load at the SDN orchestrator and
worsen the performance.

C. SDN-DC Orchestrator Performance Evaluation
In this section, we report the experimental results collected

from the testing campaign to evaluate the performance of the
SDN-DC orchestrator using the virtual DC testbed described
in the previous sections.

Table. II summarizes the settings we used to perform the
experiments. We generated the requests for VM allocations
(i.e., VM requests) according to a Poisson process charac-
terized by inter-arrival (IAT) and holding times exponentially
distributed with an average of 1/λ and 1/µ, respectively. 1/λ
varies within the range [80s, 200s], whereas 1/µ is fixed to
10.000 seconds. Each request includes the demand for (i)
computational power expressed in number of CPU cores and
uniformly distributed within the interval [2, 4], (ii) bandwidth
(i.e., traffic rate) expressed in Mb/s and uniformly distributed
within the range [20, 80], (iii) storage capacity equal to 1GB,
and (iv) RAM also equal to 1GB. Regarding the DC initial
configuration, the computational power of the servers is fixed
to 20 CPU whereas the links capacity is fixed to 80Mb/s.
Results are plotted for each resource selection algorithm (i.e.,
SD-FF, SD-WF, ND-FF and ND-WF) and, if not otherwise
specified, considering ∆T equal to 35s, the history weight α
equal to 0.2 and a monitoring window M equal to 6 values.

To load the network links, we have created a script that
generates variable data streams from the allocated VMs to-
wards the outside host following the selected paths. More
specifically, we used the iperf tool to send variable TCP traffic
in line with the traffic demand in VM request. We first started
an iperf process in a server mode as a traffic receiver at the
outside host, then at every allocated VM, another iperf process
was started in client mode as the traffic sender for the whole
duration of the holding time.

To evaluate the orchestrator performance, we consider as a
baseline the case of a random selection of the server and the
use of the spanning tree algorithm to select the path followed
by VM traffic data. This baseline reproduces a common prac-
tice in DCs where neither the resource management operations



7

TABLE II
EXPERIMENT PARAMETERS.

Parameters Values
Average inter-arrival time 1/λ [80s, 200s]
Average holding time 1/µ 10.000s
VM computational power [2, 4] CPU cores
VM bandwidth [20Mb/s, 80Mb/s]
VM storage capacity 1GB
VM RAM 1GB
Number of servers 16
Number of switches 20
Servers computational power 20 CPU cores
Link capacity 80Mb/s
α - History weight 0.2
∆T - Polling interval 35s
M - Size of the monitoring window 6

(e.g., server selection) nor path selections are engineered [46].
Indeed, as for the path selection, load-balancing approaches
are used, such as the Equal-Cost Multi-Path (ECMP), which
under-utilizes the network links by wasting on average 61%
of bisection bandwidth [47] [46]. By adopting the spanning
tree algorithm in the baseline we emulate the same behavior
by not using the redundant links, which can be considered
an acceptable approximation. Finally, for a sake of fairness in
the comparison with orchestration algorithms, the admission
control based on the load on the network links is carried out
also in the baseline.

In the following subsections, the experimental results are
reported divided by category of performance indicators and
performance analysis.

1) Blocking Probability analysis: We assessed the Blocking
Probability as the percentage of requests that are rejected due
to the lack of resources (i.e., either network bandwidth or
servers CPU cores) to satisfy the VM allocation request. The
obtained results are plotted in Fig. 3 as a function of the IAT.
As expected, the blocking probability decreases as the IAT
values increase because in general more resources are available
as the VM request is processed. Moreover, all the orchestration
algorithms significantly outperform the baseline which does
not utilize all the redundant links at the aggregation and core
levels, thus de-facto reducing the available network resources
and increasing the blocking probability. More specifically, the
ND algorithms present the lowest rejection rate and a gain
of around 5% is achieved with respect to the SD algorithms
as the network resources are more efficiently used in the ND
case [7].

2) Analysis of Resource Utilization rates: We assessed
the Resource Utilization rate as average switches load and
percentage of active servers out of the total number of servers.
For this analysis and the following ones we present results for
an IAT fixed to 150s.

Fig. 4 plots the switches load for the orchestration poli-
cies. As expected, the baseline presents the lowest average
since 50% of the available links are not used which lowers
the amount of traffic transiting over the switches and then
decreases their average load. Regarding the other policies,
although the values are very close, we notice that in the SD-
FF case the average is slightly lower which can be explained
as follows. The values of this figure correspond to the case

where the IAT is equal to 150s. As previously shown in Fig. 3,
the blocking probability is higher in SD-FF than in the other
policies, which means that less VMs are allocated and then
lower traffic is injected into the network. Such reduction in
the amount of traffic is reflected in a decrease of the overall
switches load. However, the peculiarities of the DC network
topology with three fat-tree levels and with over-subscription
adopted at the core levels, calls for an in-depth analysis of the
switch load.

In Fig. 5 we split the average switches load according to
the three fat-tree levels, i.e., core, aggregation and edge levels.
We can observe that the baseline presents the highest average
load at the core level (around 15% on average more with
respect to our algorithms) which is explained by the actual
use of only one core switch that handles all the traffic, due to
the underutilization of resources caused by the application of
the spanning tree algorithm. Regarding our resource selection
algorithms, we notice that the average load at the core level
is still higher than at the other network levels with almost the
same at the aggregation and edge levels. This is mainly due
to the over-subscription ratio of 1 : 2 illustrated by a number
of available switches at these two levels higher than at the
core level, which burdens the core switches while reduces the
average load at the aggregation and edge switches.

Going into more detail on the distribution of the load among
switches, in Table. III and IV we present the load at the Edge
Switch 1 and Edge Switch 3, respectively (going from the left
to the right in the established DC fat-tree topology).

TABLE III
LOAD OF EDGE SWITCH 1 [%].

Algorithms Peak Value
[Mb/s]

Mean Value
[Mb/s]

Standard De-
viation [Mb/s]

SD-FF 70.99 43.66 17.93
SD-WF 54.70 24.62 13.64
ND-FF 41.06 19.33 15.52
ND-WF 38.91 21.21 14.06
Baseline 66.02 32.51 17.92

TABLE IV
LOAD OF EDGE SWITCH 3 [%].

Algorithms Peak Value
[Mb/s]

Mean Value
[Mb/s]

Standard De-
viation [Mb/s]

SD-FF 55.75 31.89 11.87
SD-WF 40.90 18.44 12.004
ND-FF 32.12 18.54 7.5
ND-WF 37.27 21.77 11.56
Baseline 56.67 32.37 15.37

The obtained values show that Edge Switch 1 has the highest
load peak values in case of SD-FF algorithm. In fact, the
servers are chosen according to the order given by their id
value, i.e., the server with the lower id is firstly selected
if it has enough capacity, with a resulting consolidation of
selections in the first-indexed servers. Since the servers are
directly connected to the edge switches, the selection order of
the Edge Switch follows the same order of server selections,
also resulting in a consolidation of load in the first-indexed
Edge Switches. Indeed, the same trend can be observed for
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the Edge Switch 3. Also in the baseline, the Edge Switch 1
and Edge Switch 3 are significantly loaded. This is instead due
to the use of a more restricted set of resources with respect
to the orchestration algorithms (i.e., redundant links not used)
which allocates the load on a subset of switches. Also due to
the random selection of servers, this results in a similar average
utilization of Edge Switches as shown in Table. III and IV. On
the other hand, ND orchestration algorithms present the lowest
mean and peak load values. In fact, since the selection of the
path is performed starting from the core network level down to
the edge level (i.e., the core switch is firstly selected, then the
aggregation switch and at the end the edge switch), the choice
of the path is biased and depends mainly on the selections
in the previous network levels. This results in a spreading of
utilization of switches, and thus of edge switches and servers,
even in the case of ND-FF despite the intrinsic consolidation
effect of FF policy. Because of the limited space, and without
lack of generality, we restricted the measurements to only two
switches.

Finally, in Fig. 6 we plot the percentage of active servers
for the four algorithms with respect to the baseline, at half
and at the end of the experiment. By active servers we mean
the servers that contain at least one running VM when the
results are collected. Results show that the FF algorithms
present a lower number of active severs at half experiment
since they tend to consolidate the allocations on a subset of
the resources (either servers or switches/links). Moreover, due
to the spreading of allocations in WF algorithms, 87% and
94% of the servers are on at half experiment in the ND and SD
case, respectively. The same trend is observed at the end of the
experiment where all the servers are on in the WF case while
only around 50% of the servers are active in the FF case. For
the baseline the number of active servers remains always the
same mainly because of the limited set of used links/switches
(i.e., in the spanning tree algorithm, the redundant links are
not used), which makes the algorithm choose almost always
the same subset of servers.

3) Data throughput and latency analysis: The effectiveness
of the SDN-DC orchestrator is demonstrated by the higher
acceptance rate of VM requests coupled with a significant im-
provement in terms of resource utilization. However, this can
be obtained at the cost of an increased risk of data throughput

degradations at switches. Indeed, the traffic generated by the
allocated VMs is subject to high fluctuations in Cloud DCs,
and correspondingly the switches might be overloaded at a
certain time and underloaded few seconds later or vice versa.
Data throughput degradations are minimized in our work since
the admission decision and the selection of switches are made
by the SDN-DC orchestrator based on always-on monitoring
data collection about switch port usage to estimate trends in the
switches load and to make an educated guess of the capability
of switches to sustain the required traffic rate (i.e., bandwidth
demand). However, as an estimation process, it is affected by
an intrinsic although minimal risk to incur in switches overload
cases. This is especially true for core switches that in the fat-
tree DC network are subject to over-subscription. In case of
overload, data throughput at switches could be degraded with
impact in terms of latency experienced by data packets.

For this reason, we considered as a performance indica-
tor the Degradation Index (DI) accounted as the percentage
of time the links are overloaded (i.e., reaching 100% of
utilization) which introduces delays in the delivery of the
packets. In fact, during the tests, since the VMs holding time
is very high (10.000s on average), the load of the network
should continuously increase and so the utilization of the links.
However, due to the high variability of the traffic, such effect
is mitigated and the actual status of the network fluctuates
constantly. During the tests we collect the statistics every ∆T
seconds, and, then at the end of the experiment, we calculate
DI which accounts for the number of times the actual links
utilization reached 100% over the total number of statistics
occurrences. As result, the DI takes into account the likelihood
of degradations in the data delivery that might be experienced
by users.

In Fig. 7 and Fig. 8 we plot the average DI for the core
switches and the DI per each core switch, respectively, with
IAT fixed to 150s. Results show that FF algorithms tend
to have higher DI values as expected due to the resulting
consolidated selection of resources that increases the usage
of a restricted set of links/switches. Indeed, during the tests
we noticed that especially in the ND-FF case more links
have a load within the [80%, 100%] of link capacity. This
usage profile definitely increases the risk of overload for those
links/switches and thus of data throughput degradations in the
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ND-FF algorithms. Moreover, this is in line with the average
switch load in FF cases which was around 20% (as shown in
Fig. 4) since the consolidated usage of resources is masked
by the average process. While the average DI in the SD-
FF is higher than in the other algorithms, the difference is
significantly lower in the ND-FF case, since the selection of
the links is biased by the selection of the server which slightly
scatters the link usage across the network thus decreasing the
link overload occurrence. The WF algorithms present a lower
DI because of the intrinsic scattering of selections performed
both at the server and switch/link level that significantly
alleviate the occurrence of data throughput degradations. The
fact that all the algorithms present DI values higher than the
baseline is to be considered as a cost to pay for having higher
request acceptance and resource utilization rates (and thus
revenues).

The DI results are in line with the measurements on the
delay (i.e., latency) experienced by packets across the network.
By delay we refer to the Round Trip Time (RTT) which is the
time required for a packet to travel from a specific source to
a specific destination and then get back again. Once a VM
is allocated on a server, we use the ping utility installed on
the outside host to start measuring the RTT from the outside
host to the VM for the whole duration of the holding time.
Table. V summarizes the carried out measurements. For sake
of brevity, we show the ones taken for only one server (i.e., the
RTT values for a ping between a VM allocated on server 3 and
the outside host). Also in these results, since we are interested
in studying the occurrence of link overload impacting the
latency performance, mean values might be not significant.
For this reason, we will comment on the peak values. We
can see that the ND-FF presents the highest latency peak
value and then the lowest data throughput experienced by
packets. In fact, as long as enough bandwidth is available, the
ND-FF algorithm consolidates link selections, thus tending to
congest a subset of them. Among the other algorithms, ND-
WF presents the lowest peak value since it distributes the load
on all the available links. The SD algorithms present almost the
same results since the choice of the network path is performed
after the selection of the server which then limits the choice.
With respect to our algorithms, the baseline has a lower peak
value but presents a higher average. In fact, despite the high

variability of the traffic, the limited set of available links
at the aggregation and core levels minimizes the resources
selection possibilities which limits the latency fluctuations but
increases its average. Finally, the WF algorithms present a
lower standard deviation with respect to FF algorithms and
baseline, as result of a more uniform resource usage pattern.

TABLE V
NETWORK LATENCY.

Algorithms Peak Value
[ms]

Mean Value
[ms]

Standard De-
viation [ms]

SD-FF 0.986 0.589 0.108
SD-WF 0.985 0.555 0.085
ND-FF 1.04 0.584 0.107
ND-WF 0.847 0.597 0.086
Baseline 0.706 0.641 0.0207

TABLE VI
SERVICE SETUP TIME: MEAN VALUES AND CONFIDENCE INTERVAL AT

95%.

Algorithms Algorithm
Computa-
tion time
[ms]

Confidence
Interval

Total
Setup time
[ms]

Confidence
Interval

SD-FF 36,85 5.6 42525,96 201,37
SD-WF 38,21 8.7 38265,97 646,18
ND-FF 15,96 5.84 40396,4 957,48
ND-WF 17,77 4.46 38813,01 721,42
Baseline 21,47 6.25 38122,28 872,59

4) Setup time analysis: We assessed the set-up time com-
puted as the time needed to fulfill a VM allocation request.
Table. VI reports the set-up time split into the resource
selection time and the total request processing time (both
reported with the mean values and the confidence intervals
at 95% and for IAT fixed to 150s.). In addition to the server
and path selection time, the processing time includes the VM
cloning time, the IP address assignment time by the DHCP
server and the time needed for the setup of the forwarding
rules along the selected path. The server and path selection
time is higher for the SD algorithms and the baseline, since
the number of servers to check is higher than the number of
switches. Specifically, the baseline has a lower selection time,
since after the choice of the server the path is already pre-
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Fig. 10. Impact of ∆T on the blocking probability
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Fig. 11. Impact of M on the Blocking probability

configured. Regarding the two SD policies, the WF takes more
time since it checks all the available resources before selecting
the most unloaded ones, while the FF policy takes the first
available server/switch. Finally, the overall processing time is
equivalent for all the algorithms and almost independent from
the network load. In fact, the main difference resides in the
resources selection time which is however negligible (tens of
milliseconds) with respect to the VM cloning time (around
4 seconds) and the DHCP time (around 35 seconds) that are
almost the same for all the algorithms.

5) Analysis of the impact of the estimation parameters:
We assessed the impact of the load estimation parameters (i.e.,
α, ∆T and M) on the SDN-DC orchestrator performance to
derive design guidelines helpful to properly tune the estimation
process while reducing the processing burden and the risk of
data throughput degradations. For sake of brevity, we report
the results for the tests related to the SD-FF and SD-WF
algorithms.

Fig. 9 plots the blocking probability as a function of the
parameter α. Results show that by increasing α, the blocking
probability slightly decreases. In fact, a higher α corresponds
to giving more weight to the instantaneous values of the traffic
leading to estimation values changing as rapidly as current
load values thus with minor filtering of spikes [8]. This leads
to a beneficial effect in terms of blocking probability since this
variability of estimations presents more available resources
useful for allocating new VMs. However, as shown in Fig. 12
this lower blocking probability is paid in terms of higher
degradation index since accepting more VM requests leads
to higher likelihood of data throughput degradation. In case
of SD-FF algorithm the values of blocking probability are
lower (and correspondingly the DI values higher) than in SD-
WF since the consolidation of allocations across servers and
links/switches (instead of spreading of allocations) leads to
multiple releases that are more likely to concern the same
links/servers which increases the probability to have available
resources that meet the requests requirements thus improving
the rejection rate.

Fig. 10 presents the effect of ∆T on the blocking probabil-
ity. We notice that by enlarging ∆T , the blocking probability
slightly increases. In fact, a larger statistic polling interval
means using a lower number of measurements and thus

less precise estimations. Overall, this leads to increasing the
rejection rate because the orchestrator is unaware about the
VMs that were released and the traffic variability within the
interval of time separating two consecutive statistic collections.
The increase of the blocking probability is slightly lower in the
case of SD-FF algorithm which takes advantage from the high
variability of the traffic to condensate more VMs on the servers
and thus more traffic in low-indexed switches/links. However,
as shown in Fig. 13, with less requests that are admitted, lower
DI values can be observed as ∆T values increase.

Finally, Fig. 11 plots the blocking probability as a function
of the number of samples M in the monitoring window. We
can observe that by increasing M the blocking probability
slightly increases since the historical traffic load values are
more considered thereby highlighting more long-term trends
while smoothing load variations in the short term. As result,
the orchestrator takes less advantage from the variability of
the traffic to allocate new VMs and the blocking probability
increases. However, such effect is restrained and we can
see that above a certain limit (10 samples), the blocking
probability remains stable in case of the SD-WF algorithm
whereas it slightly decreases in the SD-FF case.

The fluctuating trend in both the SD-FF and SD-WF cases
can be explained by the impact of the value of α on the
plotted results. In fact, in Fig. 11 α is equal to 0.2, which,
as previously explained, gives more weight to the historical
samples and then leads to decrease the allocation of new
VMs when M is low. On the contrary, adopting higher M
values introduces more historical values which then confirms
the trend of a higher Blocking Probability as already explained
in Fig. 9. As shown in Fig. 14, the DI values decrease as a
result of adopting higher M values thus confirming the better
estimation of the historical values of the traffic and the lower
effect of the traffic variability on the system performance.
Moreover, as previously explained, DI is slightly lower in the
SD-WF algorithm thanks to its scattering effect.

IV. DISCUSSION ON VIRTUAL TESTBEDS AND
COMPARISON

In this section we analyze the advantages offered by virtual
testbeds compared to other testing facilities in terms of effec-
tiveness in experimentations. To deepen this analysis, we fur-
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ther discuss the experimental results presented above against
results obtained while testing the SDN-DC orchestrator in lab-
oratory [8] [48] and simulation testing environments [7] [49].

A. Virtual Testbeds: advantages and comparison with Labo-
ratory Testbeds and Simulation Environments

Virtual testbeds provide relevant benefits that make them
very attractive for experimentation.

First, the experimenter can evaluate the performance of the
system under test without the need of owning and operating
an experimental facility. Indeed, the set-up of an experimental
facility generally demands costly, cumbersome, and time-
consuming efforts, especially in case of DC testbeds that
are featured by a very large number of devices and links
(i.e., switches, servers, cables). With virtual testbeds, the
experimenter can start performing significant tests of the sys-
tem prototypes before passing them to the production phase,
thereby achieving evaluation process effectiveness and cost
savings.

Second, the use of VM images allows the experimenter to
manage the testbed in a straightforward way, especially in
case of DC experiments where a high number of identical
devices (i.e., switches, servers) are deployed. Indeed, in case
of a laboratory testbed, the management and configuration op-
erations on identical devices could be highly time-consuming
and error-prone. Instead, in virtual testbeds, the configuration
operations are performed only once, while building the VM
image. Then, the VM image is saved and used (i.e., through
cloning) as many times as needed into the other systems, thus
significantly simplifying and reducing setup times. Hence, the
experimenter is relieved from spending plenty of time in case
of crashes to completely reconfigure the testbed or in case of
repetitive testing operations.

In Table. VII, we provide insights on the comparison of
virtualized testbed environments with other well-known testing
environments (i.e., laboratory testbeds, emulators, simulators)
in terms of experiment scale, fidelity, usability of experimenter
software modules, and experiments repeatability. As for lab-
oratory testbed we refer to a set-up typically in university-
owned facility for conducting experiments and testing of
theories, tools and, in general, new technologies.

Virtual testbeds generally offer high scales through large
testbed facility and testbed federation. The scales offered by
simulators (e.g., ns-2 [50]) are higher (theoretically unlimited),
since they reproduce the operation of the system under test
through a software program. On the other hand, the experi-
mental scale for laboratory testbed is very limited, especially
in the case of DC testbeds, due to the costs for purchasing
and upgrading equipment. One possibility to slightly mitigate
this scale constraints could be the use of virtual servers in
the laboratory (e.g., local OpenStack deployment). However,
such solution still present the same shortcomings because
ultimately number of virtual servers are still constrained by
the availability of physical servers or servers capacity in
the laboratory. The emulators stay in-between by offering
higher scales than laboratory testbeds, but still lower than
simulators because the scale is dramatically constrained by
processing capabilities of hosting physical machines in terms
of CPU cores and RAM. For instance, Mininet [51] allows
to reproduce the operation of a complete network, including
hosts, links, and switches on a single host machine. However,
network topologies generally need to be scaled down (e.g.,
dozens of servers/switches with low links capacities) to have
the experiments running in expedited way.

TABLE VII
COMPARISON OF THE VALIDATION ENVIRONMENTS.

Testing
Environ-
ment

Scale of
Experi-
ment

Usability
of exper-
imenter
software
modules

Level of
Realism

Level of
Repeata-
bility

Virtual
Testbed

High Yes High Quite Low

Laboratory
Testbed

Very Low Yes Very High Low

Emulator Low Yes Quite High Quite Low
Simulator Very High No Quite Low Very High

The possibility to use software components developed by
the experimenters in the virtual testbed, laboratory testbeds
and emulators allows to carry out experiments directly using
the same software modules as the real system. This possibility
is not supported by simulators. This has an impact in terms
of level of realism, i.e., fidelity, that can be achieved by the
testing facility. Both virtual testbeds and laboratory testbeds
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allow to reproduce real system capabilities with high fidelity
through the usage of the same software modules as the real
system, although running in an experiment container. The em-
ulators offer quite realistic testing environments. For instance,
Mininet’s virtual hosts, switches, links, and controllers behave
like real components although operated using software rather
than hardware (e.g., software switch operations reproduced
using OVS). On the other hand, the fidelity to the real system
offered by simulators is generally quite low since they just
synthetically reproduce (i.e., through a software program) the
operation of the system under test. Ideally, if the simulation
model was accurate, the reproduced system operation would be
highly realistic. In practice, some shortcuts to the simulation
model are likely to be adopted and thus often some opera-
tional aspects are just approximately reproduced for feasibility
reasons (e.g., data plane modeled as program data structures
instead of real flows of packets), with consequent impact on
the realism of the obtained results.

Finally, in terms of level of experiment repeatability [52],
simulators allow to perform a high number of experiment
repetitions with the same set-up and system operation, which
definitely improves the statistical significance and the accuracy
of the results that can be obtained. In general, this is not true in
the other testing facilities, including virtual testbeds, because
it is not always possible to repeat the experiment in a short
period of time, due to supervening resources unavailability or
failures, software configuration or management issues.

B. Discussion of Orchestration Results against laboratory
testbed and simulation results

The Blocking Probability results obtained using the virtual-
ized testbed follow the same trend as simulations. This demon-
strates that the testbed we set-up has both the appropriate scale
and the proper level of realism thereby effectively reproducing
the actual system capabilities. In simulations, we could effec-
tively evaluate the blocking probability (i.e., with the system
in a steady state conditions) since we could arrange high scales
of resources and we could stress the system with a large range
of request rates and service durations. The main drawback was
that the traffic data was synthetically produced and we could
not collect some performance indicators in terms of network
load (e.g., occurrence of data delivery degradations). With
respect to experiment results, we obtained, at comparable rates
and resource demands, lower blocking probability values and a
more significant difference among the orchestration algorithms
thereby better highlighting algorithm peculiarities in resources
utilization [8]. In laboratory testbeds, we had to struggle with
resource constraints to reproduce DC environments especially
in terms of network topology. This definitely resulted in
higher loads for switches and servers thus producing not
only higher request blocks but also hiding peculiarities in
the resources utilization profiles in different algorithms and
smoothing out differences in the blocking probability values.
The opportunity to set-up the virtual testbed definitely allowed
us to obtain the performance evaluations in a significant scale
while using directly software modules under test and TCP
traffic. Thanks to the monitoring features made available by

the testing infrastructure, we could perform a more compre-
hensive assessment of the orchestration algorithms in terms
of Resources Utilization rates, which was not possible during
the simulations where the load was deduced from the nominal
values of the allocated requests as result of the data plane
synthetically reproduced. Moreover, we performed a more
extended and sophisticated set of measurements in terms of
number of evaluated switches/links while leveraging higher
accurate monitoring data and in a more realistic scenario.
Indeed we could reproduce a fat-tree network with a significant
number of switches and connected servers with respect to
laboratory experiments and we could use a realistic traffic in
contrast to simulations. As for server utilization, with respect
to our previous studies where we evaluated the number of VMs
per server in the experimental tests and the overall servers
utilization/occupancy in the simulations, in this paper we
gave a more comprehensive evaluation considering the overall
profile of servers utilization by assessing the total number
of active servers. In fact, in the experiments, the number of
servers was very low (6 with respect to 16 here) with low
capacities (less than 10 VMs were able to be allocated on each
server) which prevented us from performing a comprehensive
assessment of VMs placement profiles. In the simulations,
the synthetic data plane prevented us from doing fine-grained
evaluations on server and switch capacity occupancy. On the
other hand, the focus was mainly on the effectiveness of the
orchestration process on a long run which we could assess
by doing long-term evaluations with the system in steady
status conditions (i.e., after the allocation/release of around
1000 VMs) which was really challenging to achieve using
experimental facilities, either laboratory or emulated ones.

The Degradation Index results were overall in line with
the ones obtained in the simulations in terms of different DI
profiles we obtained for the orchestration algorithms, i.e., FF
algorithms tend to have higher DI values than WF algorithms
due to the consolidated usage of resources that increase the
risk of overload. As for DI values, we obtained higher risk of
degradations which can be partly explained with a higher load
applied to the system. The rest of reasons have to be found in
the more realistic evaluation we could perform thanks to the
use of realistic network and traffic data instead of a synthetic
data plane used in simulations. Also in the laboratory tests we
noticed that especially in the ND-FF case more links have a
load within the [80%, 100%] interval which increases the risk
of data delivery degradations. However, in the experiments
in laboratory we could not compute the number of overload
but just qualitatively assessed through the pattern of link
utilizations derived from the overall shape of the plots.

The set-up time measurements were taken during the exper-
iments performed on a laboratory testbed. Though the obtained
values had the same order of magnitude, the virtualized
environment allowed us to have more accurate results (a
much lower confidence interval). This is mainly because it
offers a set of identical servers with the same capabilities
which homogenizes the performance and makes the system
more stable. In fact, in the laboratory tests we noticed that
the duration of such operations depends on the server that
is involved. This is due to the different hardware of the
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workstations used in the experiment [8]. Moreover, as in
the virtualized environment, in the experimental testbed, the
computation time and the path set-up time have a negligible
impact on the total time. On the other hand, the DHCP time
and the cloning time are responsible for most of the total time
necessary to complete the allocation of a new VM. In fact,
such operations involve the interaction with the DHCP server
and the cloud platform that are time-consuming actions.

The impact of the estimation parameters on the orchestration
operation were also assessed during the simulations and the
set of experiments performed on a laboratory testbed. The
observed results in the virtualized environment confirmed
the results obtained during the simulations, although with a
more stable trend in simulations as expected thanks to the
high number of iterations that can be performed under the
same conditions and the large scale of the DC topology.
Moreover, thanks to fully software-based operations to collect
results in simulations we could use larger parameter ranges.
A deviation in the trend was observed for DI measurements
for different ∆T values. This could be explained by the
use of synthetic data traffic in simulations. Regarding the
experimental tests, because of the limited set of resources and
the topology constraints, we could not draw conclusions about
the overall performance of the effect of the estimations on the
orchestration process. Instead, we selected a set of use cases
under specific conditions (current load, monitoring parameters
settings) and we measured the load of a subset of links. From
this, we demonstrated the effect of the orchestrator allocation
decisions and the estimation process on the resources manage-
ment objectives (e.g., link usage consolidation). As result, we
could carry out qualitative analysis in terms of advisability of
an estimation process that smooths traffic spikes while track-
ing average load values versus a more reactive orchestration
system that quickly reacts to traffic spikes although temporary
that the final settings need to be decided based on the desired
pattern of resource utilization, e.g., consolidation of resource
usages, load balancing, along with the congestions risk the DC
operator is willing to take.

V. CONCLUSIONS

This paper discussed pros and cons of using virtual testbeds
to carry out Cloud-related experimentations while coping with
significant scale requirements of DC infrastructures. More
specifically, in this work we carried out experiments on the
SDN and cloud resource orchestration while using a realistic
DC environment to increase performance analysis soundness.
This has been possible thanks to the use of the FED4FIRE
virtualized testbed infrastructure. The SDN-DC orchestrator
performance has been extensively evaluated in terms of an
extended set of performance indicators and under realistic
network set-up and traffic traces. The presented results confirm
the feasibility and effectiveness of our proposed orchestration
algorithms that outperform the baseline both in terms of
request acceptance ratio, network efficiency and resources
utilization. Indeed, thanks to the continuous monitoring and
online estimation of the traffic load, the proposed SDN orches-
tration process ensures higher rate of VM allocations while

guaranteeing a higher resource utilization of both servers and
network capacity at the cost of a minimal risk of data delivery
degradations. Moreover, the obtained results provided signif-
icant and additional inputs on how to tune the orchestration
settings in order to obtain more efficient performance.

The experimental analysis also provided a comparison be-
tween virtual testbeds and other testing environments, i.e., lab-
oratory testbeds, simulators and emulators, in terms of offered
advantages and effectiveness in experimentations. Indeed, by
using virtual testbed we could overcome some inherent re-
strictions of laboratory testbeds and simulation environments
in terms of scale, reproducibility of actual system capabilities
(e.g., real data packet switching across network nodes in
simulators), accuracy of results and, finally, easiness of use and
deployment. Indeed, virtual testbed environments are flexible,
deployable and configurable in a straightforward way and
allow to address also scale requirements of Cloud- and DC-
related exerimentations. In addition, with respect to simulators,
virtual testbeds can be set-up using the same software modules
the experimenter is evaluating for a possible use in the field
while leveraging a scale which is higher than the one used in
the laboratory testbed. Overall, the experiment results confirm
the trend observed in the simulations and laboratory testbed
but with more accurate and extended evaluations thanks to
both the realistic scale and operations we could achieve using
the virtual testbed. In the near future, additional experimental
activities are planned to evaluate the orchestration system
operation while applying other selection algorithms (e.g., Best
Fit) and in comparison with alternative approaches (e.g. round
robin selection).
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