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ABSTRACT

This paper deals with the problem of Spectrum &gnand Spectrum Sharing for
Cognitive Radar operating in spectrally dense emwnents. Spectrum sensing and
spectrum sharing are the two main functions th&vela cognitive radar to measure,
sense, learn, and be aware of the parameters mklae the radio channel
characteristics. This paper focuses on the rol€ompressed Sensing (CS) in Spectrum
Sensing and on the problem of channel parameteémasbn for Spectrum Sharing.
This paper shows how CS can allow a significantiotidn in acquisition time reducing
the cost for high-resolution analog-to-digital camnters with large dynamic range, and
high speed signal processors. We derive an algorifior estimating the channel
parameters that characterize the behaviour of theary users and a spectrum sharing
method that exploits these estimates to minimeénterference between the radar and
the primary user. The proposed method optimizepénmrmance of the radar and, at

the same time, limits the interference receivethbyother users.
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1. Introduction

Radar technology has been evolving towards higlesolation, high-precision
detection instruments with an ever-increasing disfunctionalities. One of the areas
that have very good potential of combining the liegheof these developments is
multifunctional radar systems. These systems joigide the same system, and
simultaneously, multiple functions such as suraeitke, tracking, confirmation of false
alarm, back-scanning, clutter and interferencenmedton, which are traditionally
performed by dedicated individual radars [1]-[2].

For these reasons, multifunctional radar systerosildibe able to work with wider
frequency bands than traditional radar systemsarylethis is in contrast with the
growth of activities in the area of civii communicas, the emergence of new
technologies and new services that involve a strd@mand for spectrum allocation
inducing a very strong pressure upon the frequest@nnels currently allocated to
radars.

Some portions of the radar bands have been recalitlyated to communication
services. For instance, the International Telecomoation Union (ITU) decided to
allocate the spectrum between 5150 and 5350 MHzbatdeen 5470 and 5725 MHz
on a co-primary basis to wireless access systeohsding RLANs (Radio Local Area
Networks) [3]-[4]. In the United States, the Na@bnTelecommunications and
Information Administration (NTIA) has recently deed efforts on identifying
frequency bands that could be made available foreless broadband service
provisioning. A total of 115 MHz of additional spgran (1695-1710 MHz and 3550-
3650 MHz bands) has been identified for wirelesmtiband implementation [5].

A recent work [6] focused on the primary-seconddrgring between a radar system
and indoor system providing broadband servicessidenng an Air Traffic Control
(ATC) radar operating in the 2.7-2.9 GHz band arfuaveillance Radar in the 16.7-
17.3 GHz. The case study analysed in this workik-Band radar that shares the same
frequency band with a JTDIS (Joint Tactical Infotima Distribution System) radio
system, supposed to be the primary user of thengthanhe JTIDS is a radio system for
exchanging tactical information between aircrafd aground stations or ships and
between aircraft. The JTDIS radio system operatethé frequency band 969-1206
MHz, subdivided into sub-channels used for freqydrapping.



From the above examples, it is clear that the albaily of frequency spectrum for
multifunction radar systems has been severely comjsed and the available frequency
bands are continuously diminished.

This unique issue of spectrum crowding and steadidyeasing radar requirements
cannot be addressed by traditional modes of operdtiuture systems require the ability
to anticipate the behaviour of radiators in therapenal environment. This in turn
leads to the need for critical and new methodokdiased upon cognition as an
enabling technology [7]-[12].

The cognitive methodology to reduce mutual intenfiee between the radar and the
other radiating elements is based on two main queceSpectrum Sensing and
Spectrum Sharing. Spectrum Sensing has the goatctmnize the frequencies used by
other systems using the same spectrum in real tivhde Spectrum Sharing has the
goal to limit interference from the radar to otkervices and vice-versa.

Through these functions, a cognitive radar caniobtacessary observations about
the radio frequency channel, such as the presencther users and the appearance of
spectrum opportunities, i.e. spectrum holes whens possible to transmit without
interfering with other users of the channel. Afteing this information, a cognitive
radar is able to adapt its transmit and receivarpaters, such as the transmission power
and the operating frequency, in order to achiefieieft spectrum utilization.

In cognitive radio terminology, primary users idided as the users who have higher
priority or legacy rights on the usage of a speqifart of the spectrum. On the other
hand, secondary users, which have lower prioritplat this spectrum in such a way
that they do not cause interference to primarysuser

Therefore, secondary users need to have cogndilie capabilities, such as sensing
the spectrum reliably to check whether a primasr is using it and to change the radio
parameters to exploit the unused part of the spectr

In this work, we analyse the problem of a widebeadthr system that shares the same
frequency band with a communication system, thequeecy band of the
communication system is divided into several fremyechannels used for dynamic
spectrum access. The radar system is the secomdarywhile the communication
system is the primary user of the channel.

As an illustrative example, Figure 1 shows the spet opportunities in the
frequency channels. As apparent, the availabletepeds divided into narrow chunks

of bands. Spectrum opportunity in this dimensiorangethat not all the bands are used



simultaneously at the same time; therefore, someddamight be available for
opportunistic usage. To this end, a cognitive radhould detect the spectrum
opportunities, selecting the best frequency chanaet vacating the frequency when a
primary user appears.

In this paper, we focus on two important topicg tise of CS for Spectrum Sensing
and the problem of channel parameter estimatiorSfiectrum Sharing application. In
particular, we analyse the use of CS, focusing ow this emerging technology can
represent a helpful tool to solve some importamdbf@ms related to the hardware
requirement for the design of a responsive specsansing system, which is able to
react to the changes of the operating frequencgreflagquickly. As a matter of fact, to
have high spectrum efficiency and high sensing r@ogt) a cognitive radar has to
perform real-time wideband monitoring of the licedsspectrum, using a dual-radio
architecture [13]-[14], where one chain is dedidate radar operations while the other
chain is dedicated to spectrum sensing. The drawbBsuch approach is the hardware
cost, as the related systems requires high sammiegand high resolution Analog-to-
Digital Converters (ADCs) with large dynamic rang&js the use of high speed signal
processors. Moreover, when the required time usegstimate the spectrum occupancy
is very short and the monitored frequency bandidewthe current generation ADCs are
even unable to collect the required samples atNyguist-rate. A signal processing
technique that can solve this problem is basedemuse of Compressed Sensing.

Recent results on CS state that it is possibleetmrrstruct a sparse signal from
random projections of the sensor data (see e.d-[I¥}). The number of random
projections can be very small, in proportion to thenber of the channels occupied by
the other users. Under the hypothesis that theuénecy spectrum of the other users is
sparse, CS can be profitably used to solve thewsasd constraints by reducing the
sampling rate and decreasing the computational =ity

The second problem considered in this paper iset@anation of the channel
parameters that describe the behaviour of the pyimgers of the channels and how to
exploit these estimates to minimize the interfeeerietween the radar and the
communication system.

Analysing the behaviour of the primary users anplaing the time history of the
channel occupancy, the cognitive radar system gafuate the probability to have a
spectrum opportunity, i.e. the probability that thenitored frequency channel is free at

the time of transmitting. Evaluating this probalilia cognitive radar can decide



whether it is possible or not to transmit in thenibared frequency channel at the
beginning of each time slot.

The remaining part of the paper is organized aevi@. Section 2 introduces the
channel models for frequency spectrum occupandiie@primary user, introducing the
concept of interfering temperature and defining twodels for the primary user
dynamics and for the spectrum occupancy. Sectiomle8cribes how CS-based
techniques can be used for Spectrum Sensing. 8ettdescribes how to estimate the
main channel parameters and how to evaluate thbapildy to have a spectrum
opportunity using these parameter estimates. Stronlaesults are reported both in

Section 3 and in Section 4. Conclusions and fiealarks are summarized in Section 5.
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Figure 1 —Spectrum Opportunities.

2. Channel Model

As described, the cognitive radar is assumed tihdasecondary user of the channel,
therefore, it can use the spectrum only when iseawmno harmful interference to the
primary user. This requires a cognitive radar toehaipped with a spectrum sensing
function, which can detect primary users’ appeagagied decide which portion of the
spectrum is available.

Such a decision can be made according to variowscmeThe traditional approach
is to limit the transmitter power of interferinguilees, i.e. the transmitted power should
be no more than a prescribed noise floor at aicedtatance from the transmitter.

However, due to the increased mobility and varigbdof radio frequency emitters,
constraining the transmitter power becomes prokiiemaince unpredictable new
sources of interference may appear. To addressighige, the FCC Spectrum Policy
Task Force [18] has proposed a new metric on imtenice assessment, the interfering

temperature, to enforce an interference limit pgszkby receivers.



Like other representations of radio signals, insta@ous values of interference
temperature would vary with time and, thus, woudgkch to be treated statistically. In
this section, we present a model for the interfeeetemperature dynamics and the

Hidden Markov Model (HMM) for channel occupancy.

2.1lInterfering Temperature

The FCC has proposed the interference temperatura metric for interference
analysis. The US Federal Communications Commissid2002 investigated the future
needs of radio frequency spectrum and the limmatiof current spectrum policies, as
well as develops recommendations for enhancingentpolicies. One recommendation
was the use of an interference metric to enforaeenti spectrum access rights and
create new opportunities for dynamic spectrumasiion [19]-[20]

The interference temperature is defined as the desmtyre equivalent of the RF

power available at a receiving antenna per unithedth [21], i.e.

R (f.B)

Ti(fe, B)=— 2

: (1)

where P(fc,B) is the average interference power in Watts, cedtatfc, covering
bandwidthB measured in hertz, and Boltzmann’s conskast1.38x10" JK .

The FCC further established an interference tenwmerdimit, which provides a
maximum amount of tolerable interference for a giveequency band at a particular
location. Any secondary transmitter using this bemgt guarantee that its transmission
plus the existing noise and interference will neteed the interference temperature
limit at a primary user. Since any transmissiortha licensed band is viewed to be
harmful if it would increase the noise floor abdkie interference temperature limit, it is
necessary that a cognitive radar receiver has iablel spectral estimate of the
interference temperature. Given a particular freguyeband in which the interference
temperature limit is not exceeded, that band cdaddmade available for secondary
usage. If a regulatory body sets an interferenogpégature limitT,_ for a particular
frequency band with bandwidtB, then the secondary user has to keep the average
interference belovkBT,. Therefore, assuming that a secondary user isatipgrwith
average powepP in a band fc-B/2, fc+B/2], the interference temperature limit will
ensure that [21]:
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wherelL represents path loss attenuation between the dagotransmitter and the

primary receiver.

2.2 Statistical model for primary user’s channel occopa

In this section, we introduce a statistical modeldrimary user’s channel occupancy,
describing the statistical model used to charam#ethe signal received by the cognitive
radar and the statistical model for the observatamirthe output of the spectrum sensing
detector.

The spectrum sensing module of the cognitive raglegiver periodically scans and
senses multiple licensed channels to measure i ehannel the interference
temperature exploiting the received signal, thecoinpares the measured interference
temperature with a predefined threshold value &luate if the channel is busy or free.
However, due to the noise in the channel, a fregél can be classified as busy and a
busy channel classified as free. In order to mdlakelchannel dynamics of the primary
users, HMMs are proposed in [22]-[24]. In the cahtef dynamic spectrum access
networks, HMMs are used to model the primary useupancy of the channel. HMMs
represent a useful tool for this problem since togeupancy states are not always
known to the cognitive radar after the SpectrumsBenprocess.

As discussed, the case study analysed in this werkelated to an L-band
surveillance radar, which shares the same frequieacg with a JTDIS communication
system. The frequency band used by the communicatystem is subdivided intd
frequency channels of bandwidB used for frequency division multiple access. As
showed in Figure 1, the time axis is divided intoet slots of duratiort.

In general, a HMM is comprised of a &bf possible states and a §gtof possible
emissions. The possible states represent the ctiglty of the primary user in each
frequency channel, if the primary user is trangngttat time slott, the state i5=1,
otherwise, if the channel is free, the state&s#0. However, due to the noise in the
channel, a free channel can be classified as ugyaausy channel classified as free.
Therefore, there are also two possible emissionsichw are represented by the

observation symbdD; at the output of the spectrum sensing detector.



Figure 2 shows the HMM for spectrum occupancy inheftequency channel, in
particular the lower part of the figure describke primary user’'s dynamic while the
upper part the secondary user’s observation.

The primary user’s dynamic is described by theest&=0 and S=1, and is
characterized by the 2x2 state transition prolgbiinatrix A, that represents the

probabilities associated with changing from onéesta another and it is given by

[Al :ahk:Pr[St: h S = *' h,k=0,1. (3

In each frequency channel and in each time sldhefprimary user is transmitting,

the received signal at the radar receiver is gibgran oscillation at that frequency

whose amplitude is a Gaussian random variable) (uith zero mean and varianeg’,

that is

[t] =a¢ cos(wj, =1, N, 4)

wherei is the frequency channel index, whilés then-th time sample.
If the channel is free, the received sigrigh [is zero. In each time slot, the multiband
received signal is given by the combination of signal in each frequency channel and

Additive White Gaussian Noise (AWGN) with zero meamd variances? :

N

£=3F, +w . (5)

i=1

The values oA may be different in each frequency channel.

The spectrum occupancy is given by the Discreten@éokransform (DCT) of, that is

=¥'f (6)

whereY is the DCT matrix whose elements are given by

[¥], =¢, co{wj, ij=1,...N. (7)



In (4) and (7) the values ¢fare given by

zi :{Wﬁ’ = (®)

2/N, 2<is<N

Note that, in this work, without any lack of gerayawe can consider real signals,
instead of the complete complex signals. In factnbnitor the spectrum occupancy of
the primary users and to reduce the cost of theivec further, it is not necessary to
process the In-Phase (I) and Quadrature (Q) conmi®ié the received signal, but only
one of them. Figure 3 shows the squared absoluige vaf x, that is the channel
occupancy evolution during an observation time cosep of ten time slotat. The
channel is composed df=256 frequency bands and the Signal to Noise Rd&bned
as SNRu? /02, is 20dB.

To evaluate the channel occupancy evolution iteisessary to perform the DCT of
the received time samples evetlyseconds. When the frequency band to be monitored
tends to be very wide and/or the time shbttends to be very short, it should be very
difficult to collect theN time samples at the Nyquist-rate. In Section 3,stuely how

CS may be used to alleviate this hardware constrain

Figure 2 —HiddenMarkov Model representation for spectrum occupancy.



frequency channels

time slots

Figure 3 - Channel occupancy evolution in ten time sldts256, SNR=20dB.

In the open literature, there are several Spec®emsing techniques to recognize if
the channel is occupied by the primary user, ssdh@energy detector, feature detector
or matched filtering detection techniques [25]. darticular, at each time slot, the
cognitive radar records an observation sym@pl depending upon the following

conditions:

(9)

0,=0, fT(H<T
o=1 IT(M)>T

The radar periodically makes the observations &edrds an observation sequence
0O=[0;...04] over a period ofT time slots. The transitions from the stagdgo the
observationsO; are described by the 2x2 emission probability maB, which
represents the probabilities associated with oirtgim certain output given that the

model is currently in a true stade

[Bli =b(K =PI’[On: h| §= l} (10)

The emission probability matrig is related to the Receiver Operating Characteristi
(ROC) of the Spectrum Sensing detector. As a maftéact, by(1) is the probability of
false alarm, that is the probability to classiffree channel as busy, wherdaf)) is the
probability of miss detection, that is the probipito classify a busy channel as free.
Clearly, bp(0)=1-p(1) andb;(1)=1-b:1(0). These probabilities depend on the channel



noise, the kind of signal emitted by the primargruand the spectrum sensing detector
used at the cognitive radar receiver, that is enstiecific characteristics of the systems
that share the same channel. Knowing these chastici®, the elements @ can be
calculated or evaluated through Monte Carlo sinmt&t Hence, without loss of
generality, hereafter we assume tBas known. Section 4 will describe how to estimate
the channel parameters from the observation sequ@énand how to exploit these
estimates to minimize the interference between rdmar and the communication

system.

3. Compressed Spectrum Sensing

In this section, after a brief introduction to thenciples of Compressed Sensing
(CS), we focus on its application to Spectrum Semsthat will be referred to as
Compressed Spectrum Sensing (CSS). For more detailSS we refer the reader to
[15]-[17] and references therein.

CS is a signal processing methodology for signebvery from highly incomplete
information.

The central results state that a sparse vegoR" can be recovered from a small
number of linear measuremenis=HxOR", K«N (or y=Hx+w when there is
measurement noise) by solving a convex program[LlH] To make this possible, CS
relies on two principles: sparsity, which pertaites the signal of interest, and
incoherence, which pertains to the sensing modalionsidering the real signEl R"
defined in (5) and bein¥=[y:... yn] an orthonormal basis (e.g. the DCT), then the
representation of on the basi®¥ is given byf=¥x, wherex is the sparse coefficient
vector. Given a set of vectorg,[...,px] and denoting with® the KxN sensing matrix
whose rows are they's, the measures are collected by means of lineactibnals
y=0f=0W¥Yx[R" [15]-[16]. The interest is in undersampled sitoas in which the
numberK of available measurements is much smaller thadithensionN of the signal
f. The process of recovering tKe1 vectorx="¥'f from theNx1 measurement vector
y=®f is, in general, ill-posed whel<N. However, ifx is s-sparse, then the problem
can be solved provided>s. A necessary and sufficient condition for this lgem is
that, for some smali>0, the matrixH=®W¥ satisfies the Restricted Isometry Property
(RIP) [26]:

! A vector iss-sparse if it has at mosnonzero entries.
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(A=) x|, < [Hx], < @+ )], (11)

The RIP implies that matrid must preserve the length ®6parse vectors. A related
condition to RIP is referred ascoherence The coherence between the measurement
matrix @ and the representation mat#kmeasures the largest correlation between any

two columns of these matrix and is defined as

p(®¥) =N max

1<k, j<N

<¢k '\Ilj>‘ : (12)

It can be shown [15]-[17] thap((I),‘I’)D[l,\/W] The design of a measurement

matrix ® such thatH=®W¥ has the RIP requires that all possible combinatbrs
nonzero entries on the vectoof lengthN have to satisfy (11). However, both the RIP
and incoherence can be achieved with high prolalily designing® as a random
matrix [15].

Now, it is natural to attempt to recoverby solving the following optimization

problem:

x=argmin[x|,, s.t.®W¥x=y. (13)

XOR

In the literature, this minimization is referred #ee Basis Pursuit (BP) method,
which, for real valued signals, can be recast ligear programming problem. The BP
method is guaranteed to find a reconstruction of-sparse signal if there is no
measurement noise. However, in the presence ofuregaent noise, its influence on
the signal reconstruction can be minimized by apglyhe Basis Pursuit De-Noising

(BPDN) method which finds a solution of the follawgiproblem [27]:

X = arngDr]lgp||x||l, st.|y-o¥x|, <o, (14)

where the positive parameteis an estimate of the noise level in the data. ddsss=0
corresponds to the basis pursuit problem. The BRri2thod can be solved by means of

linear programming algorithms.



As previously discussed, when the frequency specwi the user radiating in the
same channel as the cognitive radar is a spamsalsigis possible to apply CS ideas to
Spectrum Sensing. For the problem at hand, theeseptation matriX¥ is the DCT,
whose elements are defined in (7). In this work,caesider two kind of measurement
matrices @, the first one is the Gaussian matrix, which ismfed by sampling
independent and identically distributed (1ID) easrifrom the normal distribution with

zero mean and varianceKl/

[@]i’j ~N(0,1/K), i=1...K;j=1,...N. (15)

The second measurement matrix is the Spiky matviengby randomly selectink
rows of theNxN identity matrix. The latter case is the more iesting because, from
the definition of this matrix, the measurement wegtis obtained by simply selecting
samples of at random. The use of CS allows to use an ADC withte oK/At instead
of an ADC with rateN/At. For the physical implementation of the CS fillesr® refer
the reader to [28]-[30].

Figure 4 shows the channel occupancy evolutionigfiré 3 recovered using the
Gaussian measurement matrix, whereas Figure 5 sttmvesults obtained using the
Spiky measurement matrix. In both cake$N/2 and SNR=20dB.

frequency channels

1 z 3 4 5 [ 7 g 9 10
tirme slots

Figure 4 - Channel occupancy evolution recovered using thes&an measurement matriGN/2.

13



frequency channels
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Figure 5 - Channel occupancy evolution recovered using thkySpeasurement matrik=N/2.

Figure 6 shows the Root Mean Square Error (RMSte) dfie reconstruction of the
channel occupancy signal. The RMSE measures theiarreconstructing using CSS

w.r.t. the reference signal estimated with all thgamples, that is

x0-x0[° (16)

1
RMSE= WZLZL

wherem andh are the time slot and the Monte Carlo run indexaspectively.

The results are shown as a functiorKdjpercentage dfl) for both the measurements
matrices and for different values of the SignaNmise power ratio (SNR). The
performance results obtained using the two matrares about the same. It is also
apparent that, in the absence of noise, it is ptes$d reconstruct the signal of interest
using a very low number of samples (30%\df However, as the noise power increases
we need more samples to minimize the influence hd hoise on the signal
reconstruction. Anyway, when the SNR tends to kghhthe signal can be almost
perfectly reconstructed using fewer samples (40%)ofrom our analysis (see Figures
5-6), the RMSE in reconstructing the signal iscirirelated to the fact that, when the
channel is busy, we need a high number of samplesconstruct the whole spectrum
with high precision. However, in this case, evewd use a low number of samples, a
busy channel is always recognized to be busy. Amitter of fact, when performing the

cognitive spectrum sensing function, we are naraggted on reconstructing the whole

14



spectrum with high accuracy, but rather on decidivigch channels are busy. With
regard to this latter operation, we apply the datadsenergy detector technique [31],
which compares the squared value of each elemetiteo$pectrum occupancy vector
nexs with a threshold{ to evaluate if the channel is busy/free. We euallighe
percentage of error in the decision on the chamuelupancy applying the same
threshold to the reconstructed signal as a funcaifdt

According to the signal model described in Sec®a®, in the two hypotheses the

elements of the vectorare given by

{Xk - N(O!Jvz\/)’ HO (17)

X~ N(O’O-fz +0—v€)' Hl

where g’ is the variance of the primary user’s signal afids the variance of the

noise. Being the squared value of a Gaussian & .ra. with one degree of freedom,

the binary hypothesis test is given by

22
{rk Jw)(l HO (18)

h~ (07 +on)x. H,

Indicating withP the upper incomplete gamma function, the prohgbii detection

Pp and the probability of false alarRya are given by

pszr{rk2Z|Hl}=Pr{)(122 zZ 2}:P(2(; ’E] (19)

PFA:Pr{r,(zZ|HO}:Pr{szé}:P( ¢ 1]. (20)

202 2

In our Monte Carlo simulations, we evaluated thec@rtage of error in the decision
on the channel occupancy (i.e. if a free channdeared as busy and vice versa), the
results are shown in Figure 7 whérs fixed for a probability of detection of 0.8. téo
that in a radar detector the probability of faltsra is fixed to a desired value and the

probability of detection is maximized accordingthe Newman-Pearson criterion. It is
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convenient to keep constant the probability ofdatarm to a low value because a false
alarm is more problematic than a miss detectiona Asatter of fact, for each detection a
lot of radar procedures, such as target trackimgtarget identification, are activated, if
there are a lot of false alarms a great portiothefsystem memory and computational
capabilities are occupied for the tracking of imtemt targets. For the problem of
Spectrum Sensing, being the radar the secondany afs¢he channel, the more
problematic event is the miss detection, that iemthe channel is declared as free and
the primary user is transmitting. For this reasbis, convenient to fix the probability of
detection to a desired value and minimize the fritibaof false alarm. Note also that
in this case, being the threshold dependent orStfie, the probability of false alarm
depends on the SNR. In particular, in the simutativze probability of detection has
been fixed to 0.8 for each value of SNR, while teeresponding probability of false
alarm according to (20) is 0.01 for SNR=20dB aribGor SNR=15dB.

The results in Figure 7 show that, when the SNRuSiciently high, the error
percentage is reasonably low, which means thatbtisy/free decision can still be
carried out on the signal reconstructed with femglas (<30% oN), even if the signal

is not accurately reconstructed.
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Figure 6 - RMSE for channel occupancy reconstruction asation ofK (percentage df) for different
SNR values.
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4. Channel Monitoring for Spectrum Sharing

In the previous Section, we showed how the specsensing detector exploits the
received signal to obtain the observation symiylsised to evaluate if the channel is
busy or free at time sldt To detect the presence of the primary user, geeteum
sensing detector must process the time signal wvedein the whole time slot.
Considering that the Pulse Repetition Interval (P&tithe radar system and the time
slot of the communication system are of the same tluration, in each channel at the
time of transmitting (i.e. at the beginning of edRl), the radar could not be able to
measure if the frequency channel is effectivelyupoed by the communication system.

For minimizing interference to primary users whiteaking the most out of the
spectrum opportunities, the cognitive radar shdwdep track of variations in spectrum
availability and, exploiting the history of the speim usage information, should make
predictions of the future profile of the spectrufimerefore, the cognitive radar system
analyses the behaviour of the primary user in tbguency channel and, exploiting the
time history of the channel occupancy (i.e. a segeef observation symbols), it can
evaluate the probability to have a spectrum oppitstuat the beginning of each PRI, i.e.
the probability that the monitored frequency chamhé&ee at the time of transmitting.

In this Section, we describe how to estimate thenobkl parameters that model the
behaviour of the primary user in a frequency chhand how to exploit this estimate to

evaluate the probability to have a spectrum oppastu

17



4.1 Channel parameters estimation
As discussed in Section 2.2, the statistical pataraghat describe each frequency
channel are the state transition probability ma&jxhe emission probability matrig,

and the initial state distributiar={r;}, defined as
m=Pi[s=$], i=0,1. (21)

Matrix B is related to the ROC of the spectrum sensingctiatand, as discussed in
Section 2.2, is assumed to be a-priori known. Hetieeproblem of channel parameter
estimation is to determine a method to estimateribdel parameter8 andx using a
finite observation sequen€=[0;...Oq] of T elements. The observation sequence used
to adjust the model parameters is called traingggence since it is used to “train” the
HMM. There is no way to solve analytically this ptem [32]. In fact, given any finite
observation sequence as training data, there @ptimal way of estimating the model
parameters. However, the most widely adopted itergirocedure is the Baum-Welch
method, which is closely related to the Expectaaximization (EM) method [23],
[24], [32], [33]. The Baum-Welch method selects fr@ametersA andzw such that
Pr[OJA,x] is locally maximized.

In order to describe the iterative procedure famestion of the HMM parameters,
first we must define some useful variables. Firshsider the forward variable(i)

defined as
a,(i)=Pr[00,..Q 5= $ A 7] (22)
That is the probability of the partial observatgeguenc®;...O; and state&§ at time

t, given the channel parametefs and n. The forward variable can be inductively

calculated initializing

(i) =7(0), i=0,1, (23)
and iterating
() = {Zl: a.( )aij j|bj Q.), =t<T-1,j=0,1. (24)
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In a similar manner, the backward variahlg) is defined as
(i) =Pr0,,0...-O Is= S A a], (25)

that is the probability of the partial observatesguence fromt+1 to T, given state&§
at timet and the channel parameté&snds.

Similarly, pi(i) can be solved inductively initializing

B.()=1, i=0,1 (26)

and iterating

AD=X 8D QuAa(), =T-L... Li=01, (27)

Another important variable is the probability
y(i)=Pr[s, =S [OA a], (28)

that is the probability of being in stafeat timet, given the observation sequer@e
and the channel parameté&xsandz. This probability can be expressed simply in terms

of the forward-backward variables:

pliy == 20RO g g (29)

> a()A)

Concluding, for the iterative estimation of the HMdArameter we must define the
probability of being in stat§ at timet and state§ at timet+1, given the observation

sequenc® and the channel parameté&randn
&G,7)=Prs,=S,8,= SIOA x|, ij=0,1. (30)

From the definitions of the forward and backwardalales, we can write (30) in the
form [32]:
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at (I)au bj (Q+1)ﬁ+1( J)
> a,()a;b (Q.) A..( )

1
i=0 j=

&G,0)= ., 1j=0,1. (31)

It is easy to verify by using (30) that the proti&pin (28) is given by
- 1 . - -
y()=>&G.j), i=0,1. (32)
j=0

If we sumy(i) over the time indek we get a quantity which can be interpreted as the
expected (over time) number of times that stgtes visited, or equivalently, the
expected number of transitions made from s&at8imilarly, summation of;(i,j) overt
(from t=1 tot=T-1) can be interpreted as the expected nhumbeapnsitions from state
S to stateS. Using (29) and (31) with the concept of countéwgnt occurrences, it is
possible to define a method to iteratively estintageparameters of an HMM.

Considering that thg—th element of the state transition probability mxaf can be
considered as the ratio of the expected numbeansitions from stat§ to state§ and
the expected number of transitions made from s$até is possible to estimate the

elements oA by using the following equation

T-1 o
PRA))
& =S ——, ij=0,1. (33)
y(i)
t=1
Similarly, the initial state distributiom can be considered as the expected number of

times in stat&§ at timet=1, therefore we can estimateising
T =y (i), i=0,1. (34)

If we define the current channel paramet&randz and we use them to compute

(29) and (31), and we define the re-estimated oblaparameters asA and 7,
determined from (33) and (34), then it has beewgman [34] and [35] that the model
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described byA and & is more likely than the model describedAwndmr, in the sense

that Prp|A , 7t |>Pr[OJA,x], i.e. we have found a new set of channel pararmdtem

which the observation sequence is more likely teeH@een produced.

Based on the above procedure, if we iteratively,&sandft in place ofA andr and
repeat the re-estimation, we can improve the pridihabf O being observed from the
model until some limiting point is reached. Thealfirresult of this procedure is a
maximum likelihood (ML) estimate of the HMM [32].his procedure is called Baum-

Welch method and it is summarized in Table 1.

Input : observation sequen€=0;...0y

initialize A andn
for k=1:Maxlter
calculateyy(i) and&(i,j) fromA andn

estimateA and & from y,(i) andéy(ij)
substituteA andz with A and 7 .

end

Output: estimate oA andy(i), n=1,...N; i=0,1.

Table 1 -Baum-Welch procedure.

By Monte Carlo simulation, we evaluated that usB@ iterations the algorithm
converges to a stable estimatefoindz. Figure 8 shows the Root Mean Square Error
(RMSE) of the estimation of the elementsfoas a function of the number of elements
of the observation sequende These results have been obtained throughMénte
Carlo runs by random generatiagy anda;; as independent and identically distributed
(ID) random variables, uniformly distributed in,]Q. Considering that (29) and (31)
measure the expected number of transitions fronstate to the other, it is clear that in
order to have a good estimateAf we need an high value @f when the number of

elements of the observation sequence is too lovestimate ofA is biased.
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Figure 8 - RMSE in the estimation oA as a function of the number of elements of theenlzion

sequence.

4.2 Probability of Spectrum Opportunity

In the previous Section, we showed how to estirttatechannel parameters using a
finite observation sequence. In this section, wewshow the cognitive radar exploits
these estimates to avoid interference with the amymuser. We also show some
simulation results that highlight how the proposeethodology can provide good radar
performance in the presence of the user and lowadainpn the performance of the
primary user by the presence of the radar.

As discussed, in the analysed scenario, at thedin@nsmitting the cognitive radar
is not able to evaluate instantaneously if the afeg channel is free or busy. However,
using the channel parameter estimates obtainedtfiertastT channel observations, the
cognitive radar can calculate the probability thiathe time of transmitting the channel
is free, i.e. the probability to have a spectrunparpunity. If this probability is
sufficiently high, the cognitive radar transmittherwise it does not transmit.

Figure 9 shows how the radar processes the continsequence of observations at
the output of the spectrum-sensing detector. Sineesstimation of A angk(i) is time
consuming, the radar receiver performs these etgnsing non-overlapping blocks of
T elements, in each block the initialization is penfied using the channel parameter
estimates of the previous block. As showed in Fedlyrthe channel parameter estimates
performed in each block are used to evaluate tlbghility to have a spectrum
opportunity using a sliding window that collect® tlastT observations received in the

previous time slots.
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There areT sliding windows for each block, in particular imetk-th sliding window,
using the estimate & and fixingrmi=yk(i), the signal processor of the radar evaluates the
forward and the backwards variables using (23):(dHerefore, similarly to (29),
evaluates the probability that the last observatiothe sliding window corresponds to

the channel statg, that is

VG)ZM’ i=0,1. (35)
ZaT(j)IBT(j)

This probability is used to evaluate the probaptiit have a spectrum opportunity:

Pso = ¥(0)ay, + Y1)y, (36)

i.e. the probability that in the previous time stbe channel was free and in the
current time slot it remains free plus the prolgpihat in the previous time slot the
channel was busy and in the current time slot dobees free. The signal processor
compares the probability to have a spectrum oppaytuwith a thresholdA, and
transmits only if the probability is greater tHan

There are two kinds of errors. The first oeg,is the event in which the cognitive
radar does not transmit and the channel is freethe probability to lose a spectrum
opportunity. The other kind of errog, is the case in which the radar transmits and the
channel is occupied by the primary user, i.e. ttodability to have a collision.

Figure 10 shows the probability of these two er@ssa function of the threshald
this graph can be used to tune the cognitive ré&mlahe desired performance. These
results have been obtained throughi M®nte Carlo runs by random generatig and
ay1 as independent random variables uniformly distedun the range [0,1].

It is clear that when threshaoldis zero, the radar is always transmitting, thexetbe
probability of e coincides with the probability that the channebissy, that for the
matrix A that we used in our simulation, is 0.5. Similadhen the threshold is one,
the radar never transmits and the probabilitgyafoincides with the probability that the

channel is free, that in our particular case, % 0.
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Figure 11 shows the probability to lose a spectapportunity and the probability to
have a collision as a function of time, observing performance of the system for 9246
time slots (i.e. 9 blocks of 1024 elements). Theselts have been obtained througfi 10
Monte Carlo runs, generatirggo anda;; as 11D random variables uniformly distributed
in [0,1] and fixing the thresholdto 0.65.

The simulation results show how the performanca obgnitive radar that adopts the
proposed methodology are constant during the timd enuch better than the
performance of the non cognitive radar that alwagasmits ignoring the presence of
the primary user and than the radar that nevestnés to avoid interference with the

primary user of the channel.

for each block:
evaluateA andy,(i)

Block 1 Block 2
...01011001011110101111010100bserved sequence

Sliding Window of Block 1

in each window:
givenA andy, (i), evaluategg

Figure 9 -How to process the observed sequence.

Figure 10 -Probabilities ok, ande; as a function of.
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5. Conclusions

Since the availability of frequency spectrum fordaa sensors continuously
diminished and fragmented, next generation radstesys should be able to operate in
spectrally dense environments, coexisting with othestems operating in the same
frequency channel. For this reason, an importastegy requirement is the ability to
recognize and react to the behaviour of other usstmting in the same operational
environment that, in turn, leads to the need of nethodologies and techniques, based
upon cognition as enabling technology. The cogaitinethodology to reduce mutual
interference between the radar and the other radigiements is based on two main
concepts: Spectrum Sensing, that has the goattgnéze the frequencies used by other
systems using the same spectrum in real time, padt®im Sharing, that has the goal to
limit interference from the radar to other servieesl vice versa.

This paper focus on two main topics, the role thaimpressed Sensing in Spectrum
Sensing and the problem of channel parameter asiméor Spectrum Sharing. In
particular, we demonstrate that CS techniques cawige a significant reduction in
acquisition time, reducing the cost for high retiolu Analog-to-Digital converters with
large dynamic range and high speed signal procesksothe specific application, where
the goal is not reconstructing the whole spectruitih \lmigh accuracy, but rather to
decide which are the busy channels in the congideaed, the results show that, when
the SNR is sufficiently high, the error percentagethe busy/free decision can be low
already using less than 30% of the total samplékeobriginal signal. This mitigates the
hardware constraints of conventional spectrum sgngichniques and allows to reduce

the sampling rate. Moreover, this paper describé&schnique to estimate the channel
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parameters that model the behaviour of the prinoggr of the channel, and propose a
cognitive method that, exploiting these estimasables a radar to operate in a
spectrally dense environment. The performance efcibgnitive radar is evaluated in
terms of probability to lose a spectrum opporturitg probability to have a collision
with the primary user of the channel. The numerreaults suggest that the proposed
cognitive algorithm lowers the mutual interfererietween the radar and the primary

users.
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