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Summary 59 

• In coastal and estuarine systems, foundation species like seagrasses, mangroves, 60 

saltmarshes, or corals provide important ecosystem services. Seagrasses are globally 61 

declining and their reintroduction has been shown to restore seagrass functions. 62 

However, seagrass restoration is often challenging, given the dynamic and stressful 63 

environment that seagrasses often grow in. 64 

• From our worldwide meta-analysis of seagrass restoration successes (1786 trials), we 65 

describe general features and best practice for seagrass restoration. We confirm that 66 

removal of threats is important prior to replanting. Reduced water quality (mainly 67 

eutrophication), and construction activities led to poorer restoration success than for 68 

instance dredging, local direct impact and natural causes. Proximity to and recovery of 69 

donor beds were positively correlated to trial performance. Planting techniques can 70 

influence restoration success. 71 

• The meta-analysis shows that both trial survival and seagrass population growth rate in 72 

survived trials are positively affected by the number of plants or seeds initially 73 

transplanted. This relationship between restoration scale and restoration success was 74 

not related to trial characteristics of the initial restoration. The majority of the seagrass 75 

restoration trials has been very small, which may explain the low overall trial survival 76 

rate (i.e., estimated 37%).  77 

• Successful regrowth of the foundation seagrass species appears to require crossing a 78 

minimum threshold of reintroduced individuals. Our study provides the first global field 79 

evidence for the requirement of a critical mass for recovery, which may also hold for 80 

other foundation species showing strong positive feedback to a dynamic environment.  81 
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• Synthesis and Applications: For effective restoration of seagrass foundation species in its 82 

typically dynamic, stressful environment, introduction of large numbers is seen to be 83 

beneficial and likely serves two purposes. First, a large-scale planting increases trial 84 

survival - large numbers ensure the spread of risks which is needed to overcome high 85 

natural variability. Second, a large-scale trial increases population growth rate - by 86 

enhancing self-sustaining feedback which is generally found in foundation species in 87 

stressful environments such as seagrass beds. Thus, by careful site selection and applying 88 

appropriate techniques, the spreading of risks and enhancing self-sustaining feedback in 89 

concert increase success of seagrass restoration. 90 

 91 

 92 

Introduction 93 

 94 

Coastal and estuarine habitats are characterised by dynamic and stressful environments. 95 

Many coastal ecosystems are dominated by one or few ‘foundation’ species (cf. Bruno and 96 

Bertness, 2001, species that positively affect the fitness of other species through their 97 

modification of the environment). Seagrass beds are a clear example of ecosystems 98 

dominated by foundation species. They typically ameliorate stress, usually passively by the 99 

mere presence of their structure creating shelter and sediment stabilisation, resulting in 100 

lower water turbidity and amelioration of wave action, but also by processes influencing 101 

water quality like nutrient uptake. This ecosystem engineering by seagrass beds (cf Jones et 102 

al. 1994) forms the basis of key ecosystem services, including erosion control (Hansen and 103 

Reidenbach 2012, Christianen et al. 2013), carbon sequestration for climate change 104 

mitigation (Thorhaug et al. 2009, McLeod et al. 2011, Duarte et al. 2013a, Duarte et al. 105 

Page 5 of 78 Journal of Applied Ecology



For Peer Review

 

6 
 

2013b), fisheries habitat support (Watson et al. 1993, McArthur and Boland 2006, Unsworth 106 

et al. 2010), and high biodiversity, including iconic and highly endangered species 107 

(Hemminga and Duarte 2000). 108 

 109 

Seagrasses rank among the most productive yet highly threatened ecosystems on earth with 110 

rates of decline accelerating globally from a median of 0.9 % yr-1 before 1940 to 7 % yr -1 111 

since 1990 (Waycott et al. 2009). Legislation for protection and restoration of seagrass 112 

habitat as well as for improving coastal quality has been established in many nations to 113 

prevent further losses and facilitate recovery (Duarte 2002, Orth et al. 2006). Water quality 114 

improvements have led to seagrass recovery in a limited number of studies (Greening and 115 

Janicki et al. 2006, Cardoso et al. 2010, Vaudrey et al. 2010, but see Valdemarsen et al. 116 

2011), but has apparently not slowed the global rate of loss of seagrass substantially. 117 

Seagrass restoration is thus a necessary additional instrument to offset the loss of seagrass 118 

habitat’s ecosystems biodiversity and their services. Restoration efforts have been 119 

performed worldwide to compensate or mitigate seagrass losses and have been shown to 120 

enhance the associated ecosystem services (Paling et al. 2009). However, seagrass 121 

restoration seems to have low performance rates (Fonseca et al. 1998), though a 122 

comparative quantitative global overview on the performance of seagrass restoration is 123 

lacking and the processes influencing success or failure of restoration programs have not 124 

been systematically assessed. 125 

 126 

In this paper we use a global, systematic analysis of seagrass restoration to identify 127 

characteristics that promote seagrass restoration success and present best practices to 128 

support and develop existing restoration guidelines. Second, we study the effect of 129 
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restoration scale (i.e., initial number of reintroduced plants) on the trial survival and 130 

population growth rate in survived trials. A larger restoration scale is hypothesised to be 131 

beneficial for two reasons: to overcome the stochasticity related to the dynamic 132 

environment (e.g., Morris & Doak 2002), and to provide a critical mass for stress 133 

amelioration by the starting founders (i.e., the initial planting unit) themselves (cf, Bos & van 134 

Katwijk, 2007, van der Heide et al. 2007, 2011, Carr et al. 2010, 2012, Orth et al. 2012). We 135 

recorded trial survival and population growth of survived trials in 1786 seagrass restoration 136 

trials described in 215 studies. To analyse best practice and to test for confounding effects 137 

with restoration scale, we analysed the trial characteristics regarding environmental 138 

variables, techniques and species used. 139 

 140 

We find both trial survival and population growth rate in survived trials positively affected by 141 

the numbers of plants or seeds initially planted. This relation was not confounded by other 142 

trial characteristics such as species, method of planting, or environmental characteristics at 143 

the recipient sites. As the majority of the seagrass restoration trials has been very small ( 144 

55% had fewer than 1000 specimens initially planted), this likely explains the low trial 145 

survival rates recorded. From this we have derived a conceptual framework to demonstrate 146 

how spreading of risks and enhancing self-sustaining feedback in concert increases 147 

restoration success. 148 

 149 

 150 

Materials and methods 151 

 152 
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We compiled data from restoration trials conducted worldwide from published articles listed 153 

in Web of Science (92 papers), grey literature (120 reports) and own unpublished data (187 154 

trials), from 17 countries, resulting in 1786 trials. Each of the 1786 rows in the dataset 155 

represents a trial, the oldest one planted in 1935. A trial consists of one or more shoots or 156 

seeds that have the same ‘treatment’, i.e., they are planted at the same location, with 157 

similar techniques and treatments in the same year and season, using the same species and 158 

plant material. Occasionally, trials from multiple years could not be separated and we 159 

recorded the first year or the year of largest effort as the planting year. (Sources used: see 160 

Appendix S1 in Supporting Information). The study is not a traditional meta-analysis (e.g. 161 

Harrison 2011); firstly, we aimed to not exclude any reported trial (resulting in many missing 162 

values); secondly, the recorded characteristics usually have no controls, so effect sizes can 163 

only be estimated relatively between categories (e.g. plant material has the categories: 164 

seeds, sods, rhizome fragments or seedlings); thirdly, the data did not allow for assignment 165 

of a nesting factor like sources or planting teams. This is because very similar trials regarding 166 

site and techniques are sometimes based on multiple sources and planting teams, and vice 167 

versa, very diverse trials are sometimes listed by single sources or planting teams..  168 

 169 

Effect of restoration scale on trial survival and population growth rate 170 

To test for restoration scale effect (i.e., initial number of reintroduced plants) on trial 171 

survival we recorded trial survival (1=one or more shoots survived or 0=none of the shoots 172 

survived) at the end of the monitoring period and performed survival analyses (see below). 173 

The seagrass population growth rate in survived trials was calculated as the intrinsic rate of 174 

increase of an exponential growth function, log (nsht/nsh0) / t, where nsh0 is the number of 175 
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shoots1 at t=zero and nsht is the number of shoots at the end of monitoring after t months. 176 

In total, 1060 trials contained data to perform the survival analysis and 486 trials contained 177 

data to calculate seagrass population growth rate in survived trials.  178 

 179 

The relationship between trial survival and initial number of shoots/seeds (restoration scale) 180 

was tested in five categories, 1: <100 shoots/seeds, 2: 100-1000 shoots/seeds, 3: 1000-181 

10,000 shoots/seeds, 4: 10,000-100,000 shoots/seeds, 5: > 100,000 shoots/seeds, using 182 

survival analysis (SAS PROC LIFETEST testing whether the scale categories have identical 183 

survivor functions using a proportional hazard model). Trial survival after 2 years was 184 

estimated using Kaplan-Meier estimation of the survival function using the same SAS 185 

procedure. The relationship between population growth rate (increase in number of shoots 186 

or seeds month-1) and the five categories of initial number of shoots/seeds scale was 187 

analysed and tested using ANOVA. 188 

 189 

Estimation of long term trial survival  190 

To estimate long term trial survival, we went through the following steps. Because 191 

monitoring periods and frequency differed between trials, and many trials were monitored 192 

only once, we first analysed trial survival (1=one or more shoots survived or 0=none of the 193 

shoots survived at the moment of monitoring) per phase. We distinguished three phases: (1) 194 

first 9 months; (2) between 10 and 22 months (thus including minimally one adverse season; 195 

and (3) more than 22 months (thus including 2 adverse seasons). In general, adverse seasons 196 

can either be autumn/winter (e.g., storms, colds) or summer (e.g., high temperature, high 197 

salinity, desiccation). Second, trial survival (1 or 0) was averaged for each of the 3 phases and 198 

                                                             
1
 Shoots refer also to seeds or seedlings that were used in few trials 
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the three averages were multiplied to obtain a conservative estimate of overall trial survival 199 

at the long term (i.e., representing a median monitoring duration of 36 months, see Table 1). 200 

1656 out of 1786 trials had one or more data on trial survival (one or more monitoring 201 

events). 202 

 203 

Factors affecting restoration performance 204 

To evaluate best practice and to test for confounding effects, 15 trial characteristics were 205 

analyzed simultaneously with restoration performance. Restoration performance was 206 

expressed by a semi-quantitative measure “integrated success score” which allowed us to 207 

evaluate 1289 trials rather than the 478 trials that had quantitative data (which was not 208 

sufficient for the evaluation of trial characteristics having many missing values). Integrated 209 

success score (ISS) was composed of two metrics: (1) initial trial survival being 1 (or 0) when 210 

plants were still present (or had disappeared) in the trial at a monitoring event in phase 1 (≤ 211 

9 months); and (2) long-term planting performance during phase 3 which was quantified by 212 

assigning scores to the trials that had data monitored in phase 3 (> 22 months, 414 trials), 213 

with scores: 0=lost during phase 3, 1=declined, 2=equal presence and 3=increased since 214 

planting. These scores were based upon very diverse monitoring and evaluation methods 215 

(i.e., number of shoots, areal development, percentage survival, or textual evaluation, or a 216 

combination of those). During the intermediate phase (9-22 months) trials were rarely 217 

monitored, therefore these data were only used for the estimation of overall survival of all 218 

trials, see above, but not for the evaluation of trial performance. ISS was calculated by 219 

multiplying the mean initial trial survival by the mean long-term trial performance. Both 220 

means were calculated per category of the trial characteristics (calculation per trial was not 221 

possible because only few trials had data for both metrics). The standard deviation of the 222 
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mean of the integrated success score was computed from the standard deviations of the 223 

initial trial survival and the long-term trial performance after initial survival. 224 

 225 

Trial characteristics tested were: seagrass species, reason for planting (categories: restore 226 

natural values, mitigation for damage, research and test plots), cause of decline (no decline, 227 

substrate-related, construction, local direct impact, natural causes and water quality, see 228 

Table 2), removal of threats (no threats, complete removal, partial removal), distance from 229 

donor site (<1 km, 1-10 km, 10-50 km, >50 km), donor site recovered (yes/no), bioturbation 230 

(yes/no), depth (0 – 0.5 m, 0.5-1 m, 1-2m, 2-4 m, >4 m), emergence (subtidal/intertidal), 231 

anchoring technique (weights, staples, none and non-weighted frames, see table 3), type of 232 

plant material (sods, rhizome fragments, seeds, seedlings, see table 3), fertilisation (yes/no), 233 

planting methods (manual/mechanical), habitat manipulation (none, anti-bioturbation 234 

measures, sediment stabilisation), protection measures (none, against hydrodynamics, 235 

against grazing). The magnitude of response (effect size) describes the difference between 236 

integrated success scores (ISS, calculation see above) of the categories with the highest and 237 

the lowest value for ISS (i.e., ISShighest / ISSlowest); most characteristics do not have a control 238 

category, so these differences are relative to each other. 239 

 240 

A logistic regression and one-way ANOVA were used to test the effect of 15 trial 241 

characteristics on two measures for trial performance, namely initial trial survival (≤ 9 242 

months) and long-term trial success (> 22 months), respectively. All analyses were univariate 243 

because the 15 trial characteristics had many missing values (e.g. no studies had information 244 

on all 15 characteristics). To identify characteristics that had significantly different 245 

performance metrics between their categories, we performed contrast tests (with statistics 246 
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based on the asymptotic chi-square distribution of the Wald statistic) and Tukey’s post-hoc 247 

tests, respectively. Similarly, to test for possible confounding effects between the initial 248 

number of shoots/seeds (=restoration scale) and other trial characteristics, we first used 249 

ANOVA to identify characteristics that were significantly affected by the number of 250 

shoots/seeds initially planted. To identify whether these characteristics could have 251 

confounded effects, we estimated whether the initial number of shoots/seeds correlated 252 

positively with total trial performance. A positive correlation between the initial numbers of 253 

shoots/seeds and restoration performance indicates the existence of confounding effects. 254 

 255 

All statistical analyses were performed in SAS 9.2 (http://support.sas.com, consulted on 25 256 

June 2014 and 15 June 2015). 257 

 258 

 259 

Results  260 

 261 

Analysis of seagrass restoration trials 262 

Seagrass restoration trials started during the first half of the twentieth century, but efforts 263 

remained low until the 1970’s, with 20-60 trials initiated per decade. In the 1970’s, when 264 

seagrass loss started to accelerate (Waycott et al. 2009), the interest in restoring seagrass 265 

meadows rapidly increased. Since then, about 450 new trials were initiated globally per 266 

decade (Figure S1a). Most (68 %) documented trials were conducted along the temperate 267 

and subtropical coastlines of the northern hemisphere (Figure 1). Most restoration areas 268 

were previously colonised by seagrass meadows lost due to water quality deterioration (54 269 

%, chiefly eutrophication), coastal construction (15 %) and mechanical destruction of the 270 
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habitat (8 %), as was reported in the documented trials. The objectives of seagrass 271 

restoration were to restore natural values (31 %), mitigate damage and loss (15 %) and gain 272 

knowledge (54 %). 273 

 274 

One third of the seagrass flora, 26 species, spanning the entire range of size and growth 275 

rates among the seagrass flora, was utilised in restoration programs. However, a single 276 

species, the temperate Zostera marina with the broadest geographical distribution, was 277 

utilized in 50% of the reviewed trials. For all seagrass species, rhizome fragments with shoots 278 

(55 %) and sods and plugs (24 %) were the most common material planted, whereas 279 

seedlings, seeds and seed-bearing shoots have been used in but a few seagrass – most 280 

frequently Z. marina - restoration programs (12 %, 8 % and 1 %, respectively).  281 

 282 

Seagrass restoration trials were on the average small scale with fewer than 409 shoots/seeds 283 

and a 0.93 m2 standardised plant area (i.e., the area that these shoots/seeds would occupy 284 

in a full cover or coalesced situation, calculated per species), although occupied areas 285 

extended to 3 to 4 orders of magnitude larger with far greater number of shoots/seeds for 286 

the larger trials (figure 1, table 1). Monitoring was on the average 12 months or less (50 %). 287 

However, monitoring duration extended beyond 2 years for 27.5 % of the restoration trials 288 

and the longest monitoring period was 38 years (Thalassia testudinum in Florida, planted in 289 

1973 (Thorhaug 1974 and unpublished data) (table 1)).  290 

 291 

Analysis of best practice of seagrass restoration 292 

Traditional seagrass restoration guidelines recommend careful site selection, i.e. a sheltered 293 

location with an adequate light environment, and recommend reversal of habitat 294 
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degradation prior to restoration. Data on shelter and light availability were very scarce and 295 

were not included in the analysis. Analysis of the planting depth range showed a weak 296 

optimum of intermediate depths. Shallow depth (< 0.50 m) had poorest restoration success, 297 

with intertidal sites performing worst (magnitude of response 2.5, Table S1).  298 

 299 

The review shows the importance of removal of threats (Table S1). Worldwide, causes of 300 

decline are generally known in restoration trials (78% of the cases). However subsequent 301 

restoration success varies with different causes: particularly restoration following losses 302 

derived from reduced water quality (usually eutrophication) are less successful than, for 303 

example, those derived from construction activities (68%), substrate manipulations like 304 

dredging and filling (43%), or in areas where there has been no seagrass decline (36%). 305 

Recovery and proximity of donor beds were positively correlated to trial performance, with 306 

magnitudes of response of 6.4 and 3.9 respectively (Figure 2). Bioturbation can lead to 307 

severely reduced initial trial survival and long-term population expansion of survived trials 308 

(Table S1). The review shows no consistent correlation between restoration performance 309 

and planting season (results not shown). 310 

 311 

Seedlings consistently perform worse than any other plant material used, whereas seeds 312 

have intermediate scores; anchoring of rhizome fragments using weights gives better 313 

success scores than any other combination of plant material and anchoring technique 314 

(Figure 2). The magnitude of response to anchoring technique and plant material was 7.1. 315 

Any anchoring (weights, staples, frames or using sods) improved the initial survival of plants 316 

by 84 % on average (p < 0.0001, Table S2). The application of weights (sand bags, stones, 317 

shells) improved later success scores by 45 % whereas other anchoring methods do not 318 
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contribute to the later success scores (Table S2). Mechanical planting methods improved 319 

initial survival, but somewhat reduced later success scores as compared to manual planting 320 

methods (Table S2). Habitat manipulations and protection measures had no positive effect 321 

on success (Table S2). Fertilization, if applied (only in 9 cases with long-term data) improved 322 

success scores with a magnitude of response of 2.4. Note that for some species fertilization 323 

has been demonstrated to inhibit survival and growth (e.g., Posidonia australis, Cambridge & 324 

Kendrick 2009), illustrating that our meta-analysis provides general trends and averages 325 

regarding planting procedures which may not hold for all species or sites. 326 

 327 

The effect of trial scale on restoration success 328 

Trial survival (proportional hazard model P < 0.01) and seagrass population growth rate in 329 

survived trials (in number of shoots or standardised area, month-1) were directly related to 330 

the initial number of shoots or seeds planted. After 23 months, estimated survival of small 331 

trials was 22 % (<100 shoots/seeds planted), but trial survival increased to 42 % for the 332 

largest scale trials (>100,000 shoots/seeds planted, figure 3a). Likewise, the population 333 

growth rate (as increase in number of shoots) in seagrass restoration trials initiated at less 334 

than 1000 shoots/seeds was negative, whereas population growth rates for trials with more 335 

than 10,000 planted shoots/seeds were positive (figure 3b). The positive effect of 336 

restoration scale on both trial survival and population growth rate in survived trials suggests 337 

the existence of a threshold of scale of the trial required for restoration progress between 338 

1000 - 10,000 shoots/seeds.  339 

 340 
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The ‘better performing’ sites, species and techniques were generally near zero or (weakly) 341 

negatively correlated to initial planting scale (Table S3). This robustly shows the absence of 342 

confounding effects in the relationship between restoration scale and restoration success. 343 

 344 

Discussion 345 

Best practice of seagrass restoration 346 

Experiences of seagrass restoration efforts worldwide have been collated in the form of 347 

transplantation guidelines (e.g., Addy 1947; Phillips 1980; Thorhaug 1981; Fonseca et al. 348 

1998; Campbell 2002; Short et al. 2002; van Katwijk et al. 2009; Cunha et al 2012), largely 349 

based on regional studies and a few species. They recommend careful site and species 350 

selection, i.e. a sheltered location with an adequate light environment, and recommend 351 

reversal of habitat degradation prior to restoration. They provide best practices addressing 352 

anchoring techniques, habitat manipulations, type of plant material used, planting 353 

mechanisms, and strategies to cope with the large stochasticity related to the dynamic 354 

seagrass environment. However, the drivers of success in seagrass restoration programs 355 

have not been objectively and systematically assessed globally, which has been a key factor 356 

in preventing improvements based on past experiences (e.g., our analysis shows the absence 357 

of a learning curve, Figure S1b). Still, it should be reminded that a global analysis like ours 358 

can only provide generalities, and local and regional expertise remains vital for seagrass 359 

restoration success.  360 

 361 

The importance of shelter and sufficient light is tentatively confirmed in our semi-362 

quantitative worldwide analysis by the slightly better performance of plantings at 363 

intermediate planting depths (i.e., very shallow sites probably suffer from wave dynamics, 364 
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whereas very deep sites are light-limited). Direct evidence cannot be obtained as 365 

information on local energy regimes and light availability is largely lacking in literature. Our 366 

review confirms the importance of removal of threats. Restoration following losses derived 367 

from reduced water quality (usually eutrophication) are less successful than, for example 368 

those derived from construction activities, substrate manipulations like dredging and filling, 369 

or in areas where there has been no seagrass decline.  370 

Recovery and proximity of donor beds were positively correlated to trial performance. Donor 371 

bed proximity indicates nearby seagrass presence, which, together with its recovery 372 

potential demonstrates that the environment is suitable for seagrass growth (e.g. Orth et al. 373 

2006). The positive role of donor proximity may additionally be due to ‘type-matching’ or 374 

genetic provenance; the use of local plants could be beneficial due to the presence of locally 375 

adapted gene complexes in adjacent meadows (Hämmerli and Reusch 2002; Fonseca 2011; 376 

Sinclair et al. 2013). Third, it may also be correlated with the donor material being in better 377 

physiological condition when planted given the minimum time between collection and 378 

planting.  379 

 380 

Regarding planting procedures, the most important factors affecting the success of 381 

revegetation trials were anchoring technique and plant material (combined magnitude of 382 

response 7.1). During the first months after planting, any anchoring of rhizome fragments or 383 

seedlings enhanced survival in comparison to no anchoring. Subsequently, the application of 384 

weights (sand bags, stones, shells) significantly improved later success scores in comparison 385 

to frames, staples or sods. Weights may mitigate significant water dynamics whereas light 386 

frames or staples may become set into motion by water dynamics and thus destabilise the 387 

rooting process of the plantings in the long-term. Seedlings consistently perform worse than 388 
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rhizome fragments, sods or seeds. Mechanical planting methods achieved a somewhat lower 389 

success than manual planting methods though initial survival is higher; potentially this 390 

reflects the exploratory nature of many of these mechanical planting methods (e.g. Paling et 391 

al., 2001).  392 

 393 

Large restoration trials have generally performed better 394 

The performance of seagrass restoration was largely dependent on the trial scale, since trial 395 

survival and population growth rate in restoration trials were directly related to the initial 396 

number of shoots or seeds planted. For example, after 23 months, estimated survival of 397 

small trials was 22 % (<100 shoots/seeds planted), but trial survival increased to 42 % for the 398 

largest scale trials (>100,000 shoots/seeds planted). Likewise, the population growth rate (as 399 

increase in number of shoots) in the seagrass restoration trials initiated at less than 1000 400 

shoots/seeds was negative, whereas population growth rates for trials with more than 401 

10,000 planted shoots/seeds were positive, and thus appear to effectively restore the 402 

seagrass meadow. The positive effect of restoration scale on both trial survival and 403 

population growth rate of survived trials suggests the existence of a threshold of scale of the 404 

trial required for restoration progress between 1000 - 10,000 shoots/seeds. Note that the 405 

threshold for success will vary over time and in space, depending on factors such as stress 406 

levels and natural variability. 55% of the seagrass restoration trials worldwide had less than 407 

1000 shoots or seeds initially planted, which may have contributed to the low overall trial 408 

survival from 1786 trials (conservatively estimated to be 37% after median 36 months).  409 

 410 

It is critical to point out that seagrass restoration performance is not only related to the trial 411 

scale, but also to site characteristics and planting procedures, and may differ between 412 
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species (as shown in our meta-analysis). This could potentially lead to confounding effects; 413 

the larger scale trials may target more suitable sites and techniques than smaller scale trials. 414 

However, the ‘better performing’ sites, species and techniques were generally (weakly) 415 

negatively correlated to initial planting scale. This robustly indicates the absence of such 416 

confounding effects in the positive relationship between restoration scale and restoration 417 

success. 418 

 419 

Large restoration scales may generally benefit restoration successes  420 

Plantings (or new colonisations) are vulnerable to extinction by a multitude of factors, 421 

including (i) the variability in external factors of influence (environmental variability), and (ii) 422 

positive density dependence or positive feedback (e.g., Morris & Doak 2002). A large-scale 423 

planting (particularly when covering a large areal extent) increases the range of 424 

environmental conditions experienced by the plants, and hence the likelihood of 425 

encountering suitable conditions for positive growth. The local environment is likely 426 

heterogeneous due to for example local accumulation of organic matter or macroalgae, 427 

bioturbation or mere stochastic variation in water dynamics rising from the hydrodynamic 428 

regime. When strong positive feedback occurs, a critical threshold population density is 429 

needed to initiate self-facilitating processes (e.g., Morris & Doak 2002, van der Heide et al. 430 

2007, Nystrom et al. 2012). Our meta-analysis of global seagrass restoration supports that 431 

both processes occur in seagrass beds. With increasing numbers of initially planted 432 

individuals (i) the survival percentage increased, which relates to spreading of risks to 433 

overcome environmental variability, and (ii) the population growth rate increased, which 434 

relates to positive feedback. Given the typically dynamic and stressful coastal environment 435 

of seagrass habitats, and the large number of already identified positive feedbacks in 436 
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seagrass beds (e.g. Bos and van Katwijk 2007, van der Heide et al. 2007, 2011, Carr et al. 437 

2010, 2012, Orth et al. 2012), this finding may not be surprising. However, our study is the 438 

first to show this occurs in seagrass restoration trials at a global scale. To our knowledge, this 439 

is the first time this principal has been globally demonstrated as an example of foundation 440 

species restoration trends in coastal environments.  441 

 442 

Our finding implies that – after careful site and species selection - large-scale plantings are 443 

highly preferable in the typically dynamic and/or stressful environments of (former) seagrass 444 

beds. To not risk planting under the suggested threshold, it is even advisable to use a larger 445 

planting scale than estimated by the planters. However, we recognize this is costly both with 446 

respect to extracting donor material as well as operational costs (though regained 447 

ecosystem services may compensate and eventually surpass these investment costs, e.g. 448 

Duarte et al. 2013b).  449 

If managers decide on a larger number of individuals in a restoration project, these large 450 

numbers can be used to increase the density (to reach the threshold for density-dependent 451 

feedback, i.e., planting density > density required to restore self-sustaining feedback), but 452 

also to increase the spatial extent (in order to spread risks, i.e., the spatial extent of the 453 

planting > extent of environmental variability – note that environmental variability relates to 454 

spatial heterogeneity resulting from both natural variability and stochasticity). We have 455 

depicted the synergy to employ both, in a conceptual framework (figure 4). For a given 456 

number of plants available for restoration, focus could be more on either increasing spatial 457 

extent or increasing planting density. Clearly, in highly dynamic systems with large 458 

unpredictable disturbances, environmental forcing will overrule benefits from restoring 459 

feedback, and spreading of risks is of paramount importance (for seagrass beds indicated by 460 
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e.g., Suykerbuyk et al. submitted this journal). In those cases a focus on large spatial extent is 461 

preferable. Reversely, in less dynamic environments, positive feedback may accelerate 462 

restoration processes (for seagrass beds indicated by e.g., McGlathery et al. 2012, for 463 

shellfish beds e.g. indicated by Schulte et al. 2009), and local high planting densities could be 464 

aimed at. This choice should depend upon the wisdom of the local seagrass experts. Our 465 

framework implies an ‘irony of the test plot’: the test plot has the lowest chances for trial 466 

survival and subsequent population expansion of all. A surviving and expanding test plot 467 

could indicate a bonanza or an exceptionally benign environment, but it can also indicate 468 

mere luck. (Note that seagrass restoration practitioners use relatively large numbers of 469 

shoots in what are still called ‘test plots’, so we did not show this effect for ‘test plots’ in our 470 

meta-analysis). Our results indicate that also a slowly recovering, sparse seagrass bed may 471 

benefit from additional planting. 472 

 473 

A large restoration scale is even more beneficial in situations with potential bistability: a 474 

conceptual framework 475 

Our study shows strong positive feedback, i.e., at low initial numbers of shoots/seeds (fewer 476 

than 1000), the population growth becomes negative. This means that the initial stages of a 477 

restoration trial of foundation species may generate bistability, where two alternative and 478 

potentially persistent ecosystem regimes are possible (Nystrom et al. 2012).  479 

Bistability has been proposed in seagrass systems (e.g., van der Heide et al. 2007, 2008, Carr 480 

et al. 2010, 2012). In a framework with alternative stable states, thresholds (tipping points) 481 

exist above which self-sustaining feedback promotes recovery (figure 5a). Below the 482 

threshold, the planting extirpates, in line with our findings. Note that our findings represent 483 

an average situation – individual systems may not show threshold behaviour. From this 484 
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framework we have demonstrated that, in order to reach a tipping point for recovery it 485 

helps to combine (i) increasing the presence of self-facilitating seagrass as a foundation 486 

species (vertical wide arrow in Figure 5b and referring to positive density dependence or 487 

allee effects, i.e., via reduction of environmental stress by the species engineering activity, 488 

Morris & Doak 2002) and (ii) externally reducing the environmental stress (horizontal wide 489 

arrow in Figure 5b). Environmental stress has a mean component, and a variance component 490 

due to natural variability. The mean component can obviously be reduced by for example 491 

habitat rehabilitation and is not related to transplantation scale. The variance component 492 

can be tackled by spreading of risks. Spreading of risks is accomplished using large numbers 493 

of individuals and hence the spatial extent of the plot, which increases the variability of 494 

environmental conditions within the plot and hence the likelihood that favourable 495 

conditions are encountered by at least some of the planting (cf. Morris & Doak 2002; our 496 

study). Thus, increasing the initial number of shoots/seeds may increase restoration 497 

performance via the two pathways that concertedly help to reach the tipping point for 498 

recovery in a situation with alternative stable states (figure 5b). 499 
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Figure legends 639 

Figure 1. Map of 1786 trials analysed (green dots represent trials). Frequency diagrams of 640 

the initial scale of the restoration trials per bioregion show that most trials start with less 641 

than 1000 shoots. Blue lines separate the bioregions. 642 

Figure 2. Performance of seagrass restoration trials in relation to cause of decline prior to 643 

planting, distance from and recovery of the donor site and plant material and anchoring 644 

techniques. The semi-quantitative integrated succes score and its standard error of the 645 

mean were calculated from initial survival and long-term performance after initial survival, 646 

see materials and methods. The categories for causes of decline and anchoring techniques 647 

are elaborated in table 2 and 3 respectively. Rhiz.fr. = rhizome fragments 648 

Figure 3. Positive effects of restoration scale (number of initially planted shoots) on the trial 649 

survival and population growth rate of seagrass in survived trials. (a) Kaplan-Meier-650 

estimated trial survival after ≥ 23 months, ± confidence interval (proportional hazard model 651 

over entire period: p=0.0070); (b) Log mean population growth rate (log of increase in 652 

number of shoots mo-1) ± standard error of the mean, ANOVA p<0.0001, df=4. 653 

 654 

Figure 4. Framework depicting the synergy to investing in spatial extent and planting density, 655 

and the trade-off, given a high but limited number of plants, to invest relatively more in 656 

either spatial extent or in planting density. A large investment in high numbers may be 657 

needed for best restoration practice in dynamic systems to capture windows of opportunity 658 

generated by spatial heterogeneity (horizontal axis: spreading of risks, or spatial extent of 659 

planting, m2) and to reach threshold required to initiate self-sustaining feedback (vertical 660 
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axis: recovery of feedback, or planting density, m-2). Knowledge of the local environment is 661 

essential to choose the best planting strategy. 662 

 663 

Figure 5. How large initial numbers of foundation individuals (i.e., a large-scale restoration) 664 

are particularly needed when alternative stable states are likely and a critical threshold 665 

needs to be crossed, as in our study object. (a) Situation with alternative stable states. The 666 

dotted line indicates tipping points for recovery and collapse: above this line self-sustaining 667 

feedback propellers the system to high presence of the foundation species through natural 668 

recovery. Below this line the system will collapse towards a state without the foundation 669 

species. (b) How reintroduction (vertical arrow) and stress reduction (horizontal arrow) 670 

concertedly help to reach a tipping point for recovery. Large numbers of initial numbers of 671 

foundation individuals considerably increase the chance to reach a tipping point for 672 

recovery, via dual action: (i) obviously the reintroduction itself is scale dependent due to 673 

positive feedback, but also (ii) large numbers are needed to overcome the variable and 674 

stochastic part of environmental stress (left part of horizontal arrow, indicated by ‘var’), by 675 

spreading of risks in time and space.  676 
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Supporting Information.  677 

Additional Supporting Information may be found in the online version of this article:  678 

 679 

Appendix S1: Sources for the dataset 680 

Table S1: Effect of species and environmental characteristics on restoration performance. 681 

Table S2: Effect of planting techniques on restoration performance 682 

Table S3: Tests for confounding effects 683 

Figure S1: Numbers per decade and learning curve of seagrass restoration trials 684 
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Table 1. Overview of results and characteristics of the trials. Phase 1 ≤ 9 months, phase 2: 

10-22 months and phase 3 ≥ 23 months. The number of samples (N) depended on the 

availability of the data.  

 N median min max 

number of shoots at t=0 1109 409 2 3E+06 

standardised area at t=0 (m
2
)

a 
1108 0.93 0.001 5730 

number of shoots of surviving trials at t=t 487 720 0.43 3.E+09 

standardised area of surviving trials at t=t (m
2
) 487 1.26 0.0001 9.E+06 

monitoring time t (months) 1715 12 0.70 456 

growth rate* of surviving trials (months
-1

) 486 -0.005 -2.996 1.251 

 population growth rate phase 1 189 -0.082 -2.996 1.251 

 population growth rate phase 2 173 0.025 -0.453 0.406 

 population growth rate phase 3 124 0.029 -0.354 0.245 

     

 N % 

Median monitoring 

time (months) 

overall trial survival**  37 %   

 trial survival phase 1 1034 70 % 5.7  

 trial survival phase 2 677 67 % 12  

 trial survival phase 3 412 79 % 36  

 
a 

Areal extent (m
2
) was estimated from the standardised area per species (saps), which was 

calculated from the average diameter of the area that a shoot occupies (spacer length, sl) 
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per species (Marbà and Duarte 1998) and multiplied by the number of shoots (nsh): saps = 

nsh x π x (½sl)
2
.  

*Growth rate refers to increase in number of shoots . 

**The overall trial survival refers to the survival of trials, not shoots, and has been estimated 

by multiplying the actual trial survival rates within each of the three phases, i.e. 70% x 67% x 

79% (note that most trials have only one or two monitoring dates). 
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Table 2. Classification of causes of decline of the meadows in the area of the restoration trial  

Main target of 

disturbance  

Types of disturbance Impact  

Local direct 

impact 

Trawl fishing 

Boat/vessel damage 

Dumping 

Mining in meadow 

Mechanical damage & removal 

Water quality Thermal pollution 

Eutrophication 

Oil or chemical pollution 

Turbidity increase  

Heat stress 

Nutrient stress / algal overgrowth / sulfide toxicity 

Chemical impact 

Lack of light 

Substrate Dredging 

Filling 

Erosion (of seagrass bed 

sediment) 

Temporary increased turbidity 

Smothering (by sediment)  

Temporary increased sediment dynamics 

Changes in sediment type (e.g. replacement by less 

favourable sediment) 

Natural cause Wasting disease 

Storms 

Beach erosion 

Overwash 

Infection, thinning, mortality 

Unstable sediment, loss of anchoring 

Construction 

 

Large scale construction 

(e.g. sea walls, ports, 

bridges); reclamation 

Removal of part or entire seagrass meadow 
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Table  3. Categories of anchoring techniques and plant material as distinguished in this study 1 

Anchoring technique categories: weights are provided by rocks, shells, bricks or sandbags and 2 

include the TERFS method: Transplanting Eelgrass Remotely with Frame System (Short et al. 2002); 3 

staples include rods, bamboo’s, pegs, sprigs and washers; frames include anchoring techniques that 4 

attach the planting material to frames, grids, quadrates, nets, mats or meshes that are not weighted 5 

and do not include TERFS. 6 

Plant material comprise the categories sods: intact units of native sediment with roots, rhizomes and 7 

leaves, sometimes also referred to as plugs and peat pots (the latter are only included here if the 8 

sediment is included in the transplantation), rhizome fragments with shoots, also sometimes 9 

referred to as turions or sprigs; seeds and seedlings. 10 
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Figure 2. Performance of seagrass restoration trials in relation to cause of decline prior to planting, distance 
from and recovery of the donor site and plant material and anchoring techniques. The semi-quantitative 
integrated succes score and its standard error of the mean were calculated from initial survival and long-

term performance after initial survival, see materials and methods. The categories for causes of decline and 
anchoring techniques are elaborated in table 2 and 3 respectively. Rhiz.fr. = rhizome fragments  
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Figure 3. Positive effects of restoration scale (number of initially planted shoots) on the trial survival and 
population growth of seagrass in survived trials. (a) Kaplan-Meier-estimated trial survival after ≥ 23 
months, ± confidence interval (proportional hazard model over entire period: p=0.0070); (b) Mean 

population growth rate (increase in number of shoots mo-1) ± standard error of the mean, ANOVA 
p<0.0001, df=4.  
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Figure 4. Framework depicting the trade-off to investing in either planting density or spatial extent, and the 
synergy to invest in both. A large investment in high numbers may be needed for best restoration practice in 

dynamic systems to capture windows of opportunity generated by spatial heterogeneity (horizontal axis: 

spreading of risks, or spatial extent of planting, m2) and to reach threshold required to initiate self-
sustaining feedback (vertical axis: recovery of feedback, or planting density, m-2). Knowledge of the local 

environment is essential to choose the best planting strategy.  
297x420mm (300 x 300 DPI)  
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Figure 5. How large initial numbers of foundation individuals (i.e., a large-scale restoration) are particularly 
needed when alternative stable states are likely and a critical threshold needs to be crossed, as in our study 
object. (a) Situation with alternative stable states. The dotted line indicates tipping points for recovery and 

collapse: above this line self-sustaining feedback propellers the system to high presence of the foundation 
species through natural recovery. Below this line the system will collapse towards a state without the 
foundation species. (b) How reintroduction (vertical arrow) and stress reduction (horizontal arrow) 

concertedly help to reach a tipping point for recovery. Large numbers of initial numbers of foundation 
individuals considerably increase the chance to reach a tipping point for recovery, via dual action: (i) 

obviously the reintroduction itself is scale dependent due to positive feedback, but also (ii) large numbers 
are needed to overcome the variable and stochastic part of environmental stress (left part of horizontal 

arrow, indicated by ‘var’), by spreading of risks in time and space.  
297x420mm (300 x 300 DPI)  
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Supplementary Information Table S1. Restoration success in relation to general and environmental 1 

characteristics. Initial trial survival (< 10 months, scores 0=no survival and 1=survival) and long term 2 

trial success (>22 months, scores 0=no survival, 1=decrease, 2=equal presence and 3=increase) in 3 

relation to general characteristics, plant and environmental characteristics and planting techniques. 4 

Integrated success score is the multiplication of initial trial survival and long term trial success. 5 

Logistic regression of initial trial survival and anova p-values of long term trial success are presented 6 

per variable. Number of plantings (N) and estimated mean scores are presented per category with 7 

differing letters in superscript denoting logistic regression contrasts in initial trial survival and Tukey 8 

posthoc significant differences in long term trial success at an alpha level of 0.05. 9 

 Initial trial survival 

(< 10 months) 

Long term trial success 

(> 22 months) 

integrated 

success 

score 

Variable N p-value and 

estimated mean 

N p-value and 

estimated mean 

 

Reason for planting 

 restore natural values 

 mitigation 

 research 

 test plots 

 

318 

90 

275 

218 

<0.0001 

0.53
B
 

0.86
A
 

0.91
A
 

0.58
B
 

 

119 

138 

123 

24 

0.0185 

1.49
B
 

1. 80
AB

 

1.65
B
 

2.25
A
 

 

0.79 

1.55 

1.50 

1.31 

Source 

 grey literature 

 

395 

0.0055 

0.73
A
 

 

213 

0.0004 

1.92
A
 

 

1.40 
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2 
 

 

 

 

 

 

 web of science 632 0.65
B
 201 1.50

B
 0.98 

Cause of decline
1 

 no decline 

 substrate 

 construction 

 local direct impact 

 natural cause 

 water quality 

 

103 

60 

132 

36 

68 

475 

<0.0001 

0.92
A
 

0.85
AB

 

0.81
B
 

0.69
BC

 

0.56
C
 

0.56
C
 

 

22 

31 

110 

14 

12 

144 

<0.0001 

2.59
A
 

2.32
AB

 

1.56
B
 

1.64
B
 

1.83
AB

 

1.53
B
 

 

2.38 

1.97 

1.26 

1.13 

1.02 

0.86 

Removal of threats 

 no threats 

 complete removal 

 partial removal 

 

93 

30 

344 

0.0043 

0.92
A
 

0.70
B
 

0.78
B
 

 

22 

26 

157 

<0.0001 

2.59
A
 

2.39
A
 

1.62
B
 

 

2.41 

1.67 

1.26 

Distance from donor site 

 < 1 km 

 1-9.99 km 

 10-49.99 km 

 >= 50 km 

 

151 

103 

324 

155 

<0.0001 

0.74
B
 

0.88
A
 

0.66
B
 

0.32
C
 

 

46 

70 

92 

44 

<0.0001 

2.70
A
 

1.36
B
 

1.54
B
 

1.64
B
 

 

2.00 

1.20 

1.02 

0.52 

Donor site recovered 

 yes 

 no 

 

217 

68 

<0.0001 

0.88
A
 

0.31
B
 

 

111 

22 

<0.0001 

2.05
A
 

0.91
B
 

 

1.80 

0.28 

Bioturbation was a factor  0.0005  <0.0001  
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3 
 

 

 

 

 

 

 no 

 yes 

258 

28 

0.78
A
 

0.46
B
 

116 

42 

2.05
A
 

1.71
B
 

1.60 

0.79 

Depth 

 0-0.49 m 

 0.5-0.99 m 

 1-1.99 m 

 2-3.99 m 

 >4 m 

 

169 

175 

195 

112 

97 

<0.0001 

0.55
C
 

0.45
C
 

0.69
B
 

0.86
B
 

0.93
A
 

 

51 

20 

71 

37 

80 

0.0014 

1.29
B
 

2.20
A
 

1.48
AB

 

2.05
A
 

1.30
B
 

 

0.71 

0.99 

1.02 

1.76 

1.21 

Emergence 

 subtidal 

 intertidal 

 

702 

238 

<0.0001 

0.72
A
 

0.50
B
 

 

318 

84 

<0.0001 

1.88
A
 

1.05
B
 

 

1.35 

0.53 

1
Explanation see Table 2. 10 
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Supplementary Information Table S2. Restoration success in relation to planting procedures. 1 

Explanation see table S1. 2 

 3 

 Initial trial survival 

(< 10 months) 

Long term trial 

success (> 22 months) 

integrated 

success 

score 

Variable N p-value and 

estimated 

mean 

N p-value and 

estimated 

mean 

 

Anchoring technique
1 

 weight (including TERFS) 

 staple 

 none 

 frame 

 

106 

301 

417 

93 

<0.0001 

0.76
A
 

0.79
A
 

0.52
B
 

0.82
A
 

 

35 

129 

142 

54 

<0.0001 

2.69
A
 

1.78
B
 

1.73
B
 

0.93
c
 

 

2.07 

1.41 

0.95 

0.76 

Type of plant material
1 

 sods 

 rhizome fragments 

 seeds 

 seedlings 

 

149 

570 

88 

179 

<0.0001 

0.79
A
 

0.71
A
 

0.58
B
 

0.55
B
 

 

116 

210 

22 

49 

<0.0001 

1.79
A
 

1.90
A
 

1.77
A
 

0.67
B
 

 

1.41 

1.35 

1.03 

0.37 

Anchoring technique combined with 

plant material
1 

 

 

 

<0.0001 

 

 

 

<0.0001 
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2 
 

 

 

 

 

 

   rhizome fragments + weights 

   rhizome fragments + frames 

   sods (no anchoring) 

   rhizome fragments + staples 

   seeds (no anchoring) 

   rhizome fragments (no anchoring)  

  seedlings + frames 

 seedlings (no anchoring) 

85 

39 

103 

283 

80 

148 

35 

112 

0.78
A 

0.87
A
 

0.85
A
 

0.81
A
 

0.55
B
 

0.45
B
 

0.8
A
 

0.43
B
 

34 

14 

71 

115 

20 

32 

32 

14 

2.77
A
 

1.86
B
 

1.85
B
 

1.76
B
 

1.95
AB

 

1.91
AB

 

0.59
C
 

0.71
C
 

2.16 

1.62 

1.57 

1.43 

1.07 

0.86 

0.47 

0.31 

Fertilization 

 fertilized 

 not fertilized 

 

83 

931 

<0.0001 

0.92
A
 

0.66
B
 

 

9 

391 

0.0021 

2.89
A
 

1.66
B
 

 

2.66 

1.10 

Planting method 

 manual 

 mechanical 

 

601 

41 

0.0325 

0.69
B
 

1.00
A
 

 

290 

34 

0.008 

1.88
A
 

1.35
B
 

 

1.30 

1.35 

Habitat manipulation 

 none 

 anti-bioturbation measures 

 sediment stabilisation 

 

428 

21 

59 

0.0004 

0.71
B
 

1.00
A
 

0.80
AB

 

 

215 

15 

28 

<0.0001 

2.03
A
 

1.33
B
 

0.50
C
 

 

1.44 

1.33 

0.40 

Protection measures 

 none 

 against hydrodynamics 

 

419 

34 

<0.0001 

0.72
A
 

0.35
B
 

 

240 

7 

0.2433 

1.87 

1.57 

 

1.35 

0.55 
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3 
 

 

 

 

 

 

 against grazing 18 0.33
B
 12 1.33 0.44 

 
1
Explanation of categories, see Table 3 4 
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Supplementary Information Table S3. Tests for confounding effects. Relationship between 

initial number of shoots (log-transformed) and 15 trial characteristics (listed in column 1) is 

depicted in column 4 by the average number of shoots after log-transformation; the p-value 

and Tukey posthoc tests (alpha level of 0.05) show significant number of shoots between 

categories. Differing letters in superscript denote Tukey posthoc significant differences at an 

alpha level of 0.05. The number of trial (N) are presented in column 3. The correlation 

between integrated success score (column 2, see Table S1 and S2) and estimated mean 

number of shoots per category (column 4) is presented in column 5.  Only trials were 

included that also evaluated the number of shoots at the end of monitoring) are presented 

per category. There are no confounding effects as the correlation coefficients are all 

negative or near zero. 

 Integrated 

success 

score 

Initial planting scale 

log (number of shoots) 

 potential 

confounding 

effects 

Characteristics  N p-value and 

estimated mean 

Correlation 

coefficient 

Seagrass species 

 Posidonia australis 

 Posidonia oceanica 

 Halodule wrightii 

 Zostera marina 

 Posidonia sinuosa 

 Syringodium filiforme 

 Zostera noltii 

 

2.71 

1.68 

1.36 

1.18 

1.01 

0.98 

0.92 

 

19 

51 

58 

202 

5 

17 

27 

>0.0001 

6.34
AB 

4.77
B 

8.74
AB 

6.44
AB 

8.52
AB 

9.78
A 

7.67
AB 

-0.55 
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 Thalassia testudinum 

 Amphibolis antarctica 

0.83 

0.63 

51 

1 

8.12
AB 

6.22
AB 

Reason for planting
 

 restore natural values 

 mitigation 

 research 

 test plots 

 

0.79 

1.55 

1.50 

1.31 

 

41 

105 

152 

96 

<0.0001 

8.31
A 

8.82
A 

4.83
C 

7.06
B 

-0.25 

Cause of decline
1 

 no decline 

 substrate 

 construction 

 local direct impact 

 natural cause 

 water quality 

 

2.38 

1.97 

1.26 

1.13 

1.02 

0.86 

 

57 

95 

102 

22 

16 

147 

<0.0001 

4.77
C 

9.05
A 

6.14
BC 

9.58
A 

9.41
A 

7.1
B 

-0.46 

Removal of threats 

 no threats 

 complete removal 

 partial removal 

 

2.41 

1.67 

1.26 

 

54 

35 

213 

<0.0001 

4.73
C 

8.94
A 

7.66
B 

-0.79 

Distance from donor site 

 < 1 km 

 1-9.99 km 

 10-49.99 km 

 >= 50 km 

 

2.00 

1.20 

1.02 

0.52 

 

118 

69 

114 

43 

0.0004 

8.01
A 

7.26
AB 

6.66
B 

8.05
A 

0.15 

Donor site recovered 

 yes 

 no 

 

1.80 

0.28 

 

260 

14 

n.s. 

7.96
 

8.49
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Bioturbation was a factor 

 no 

 yes 

 

1.60 

0.79 

 

284 

10 

0.0002 

7.61
B 

10.63
A 

-1.0 

Depth 

 0-0.49 m 

 0.5-0.99 m 

 1-1.99 m 

 2-3.99 m 

 >4 m 

 

0.71 

0.99 

1.02 

1.76 

1.21 

 

29 

34 

105 

93 

79 

<0.0001 

6.6
B 

9.61
A 

8.41
A 

7.07
B 

5.16
C 

-0.18 

Emergence 

 subtidal 

 intertidal 

 

1.35 

0.53 

 

377 

42 

N.S. 

7.59 

7.02 

 

Anchoring technique
2 

 weight (including TERFS) 

 staple 

 none 

 frame 

 

2.07 

1.41 

0.90 

0.76 

 

84 

133 

202 

32 

<0.0001 

6.52
B 

5.25
C 

8.96
A 

5.2
C 

-0.13 

Type of plant material
2 

 sods 

 rhizome fragments 

 seeds 

 seedlings 

 

1.41 

1.35 

1.03 

0.92 

 

79 

329 

16 

37 

<0.0001 

9.04
B 

6.59
C 

11.97
A 

6.62
C 

0.023 

Anchoring technique combined with 

plant material
2 

   rhizome fragments + weights 

   rhizome fragments + frames 

 

 

2.16 

1.62 

 

 

73 

24 

 

<0.0001 

6.70
ED 

4.81
F 

 

0.01 
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1
Categories are explained in Table 2 

2
Categories are explained in Table 3 

 

   sods (no anchoring) 

   rhizome fragments + staples 

   seeds (no anchoring) 

   rhizome fragments (no anchoring)  

   seedlings + frames 

   seedlings (no anchoring) 

1.57 

1.43 

1.07 

0.86 

0.47 

0.31 

67 

131 

16 

93 

5 

25 

9.29
B 

5.24
EF 

11.97
A 

8.65
CB 

3.99
F
 

7.24
CD

 

Fertilization 

 fertilized 

 not fertilized 

 

2.66 

1.10 

 

54 

429 

<0.0001 

5.73
B 

7.36
A 

-1.00 

Planting method 

 manual 

 mechanical 

 

1.30 

1.35 

 

324 

20 

n.s. 

7.89 

9.05 

- 

Habitat manipulation 

 none 

 anti-bioturbation measures 

 sediment stabilisation 

 

1.44 

1.33 

0.40 

 

332 

11 

6 

n.s. 

7.52 

9.45 

8.03 

 

Protection measures 

 none 

 against hydrodynamics 

 against grazing 

 

1.35 

0.55 

0.44 

 

319 

8 

5 

n.s. 

7.54 

6.69 

7.03 
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Supplementary material s1 

 

Supporting Information Appendix S1. Sources for the dataset. Data accessibility: data are 

intended to be stored at Radboud University Repository 
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