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NODAL SOLUTIONS FOR THE CHOQUARD EQUATION

MARCO GHIMENTI AND JEAN VAN SCHAFTINGEN

Abstract. We consider the general Choquard equations

−∆u + u =
(

Iα ∗ |u|p
)

|u|p−2
u

where Iα is a Riesz potential. We construct minimal action odd so-
lutions for p ∈ ( N+α

N
, N+α

N−2
) and minimal action nodal solutions for

p ∈ (2, N+α
N−2

). We introduce a new minimax principle for least action
nodal solutions and we develop new concentration-compactness lemmas
for sign-changing Palais–Smale sequences. The nonlinear Schrödinger
equation, which is the nonlocal counterpart of the Choquard equation,
does not have such solutions.
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1. Introduction

We study the general Choquard equation

(C) − ∆u + u =
(

Iα ∗ |u|p)|u|p−2u in R
N ,

where N ≥ 1, α ∈ (0, N) and Iα : RN → R is the Riesz potential defined at
each point x ∈ R

N \ {0} by

Iα(x) =
Aα

|x|N−α
, where Aα =

Γ(N−α
2 )

Γ(α
2 )πN/22α

.
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When N = 3, α = 2 and p = 2, the equation (C) has appeared in several
contexts of quantum physics and is known as the Choquard–Pekar equa-

tion [15,24], the Schrödinger–Newton equation [13,14,20] and the stationary

Hartree equation.
The action functional A associated to the Choquard equation (C) is de-

fined for each function u in the Sobolev space H1(RN ) by

A(u) =
1

2

∫

RN
|∇u|2 + |u|2 − 1

2p

∫

RN

(

Iα ∗ |u|p)|u|p.

In view of the Hardy–Littlewood–Sobolev inequality, which states that if

s ∈ (1, N
α ) then for every v ∈ Ls(RN ), Iα ∗ v ∈ L

Ns
N−αs (RN ) and

(1.1)

∫

RN
|Iα ∗ v| Ns

N−αs ≤ C
(

∫

RN
|v|s

)

N
N−αs

,

(see for example [16, theorem 4.3]), and of the classical Sobolev embedding,
the action functional A is well-defined and continuously differentiable when-
ever

N − 2

N + α
≤ 1

p
≤ N

N + α
.

A natural constraint for the equation is the Nehari constraint 〈A′(u), u〉 = 0
which leads to search for solutions by minimizing the action functional on
the Nehari manifold

N0 =
{

u ∈ H1(RN ) \ {0} : 〈A′(u), u〉 = 0}.

The existence of such a solution has been proved when

N − 2

N + α
<

1

p
<

N

N + α
;

these assumptions are optimal [15,17,21].
We are interested in the construction of nodal solutions to (C), that is,

solutions to (C) that change sign. The easiest way to construct such solutions
is to impose an odd symmetry constraint. More precisely we consider the
Sobolev space of odd functions

H1
odd(RN ) =

{

u ∈ H1(RN ) : for almost every (x′, xN ) ∈ R
N ,

u(x′, −xN ) = −u(x′, xN )
}

,

we define the odd Nehari manifold

Nodd = N0 ∩ H1
odd(RN )

and the corresponding level

codd = inf
Nodd

A.

Our first result is that this level codd is achieved.

Theorem 1. If N−2
N+α < 1

p < N
N+α , then there exists a weak solution u ∈

H1
odd(RN ) ∩ C2(RN ) to the Choquard equation (C) such that A(u) = codd.

Moreover, u has constant sign on each of the half-spaces R
N
+ and R

N
− and u

is axially symmetric with respect to an axis perpendicular to ∂RN
+ = R

N−1 ×
{0}.
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Nodal solutions with higher level of symmetries and thus larger action
have already been constructed [8–10].

The proof of theorem 1 relies on two ingredients: a compactness prop-
erty up to translation under the strict inequality codd < 2c0 obtained by a
concentration–compactness argument (proposition 2.3) and the proof of the
latter strict inequality (proposition 2.4).

Another notion of solution is that of least action nodal solution, which
has been well studied for local problems [5–7]. As for these local problems,
we define the constrained Nehari nodal set (as in the local case, in contrast
with N0 and Nodd, the set Nnod is not a manifold),

Nnod =
{

u ∈ H1(RN ) : u+ 6= 0 6= u−,

〈A′(u), u+〉 = 0 and 〈A′(u), u−〉 = 0
}

,

where u+ = max(u, 0) ≥ 0 and u− = min(u, 0) ≤ 0. (In contrast with the
local case, we have for every u ∈ Nnod, 〈A′(u), u+〉 < 〈A′(u+), u+〉, and thus
u+ 6∈ N0 and u− 6∈ N0.) We prove that when p > 2, the associated level

cnod = inf
Nnod

A

is achieved.

Theorem 2. If N−2
N+α < 1

p < 1
2 , then there exists a weak solution u ∈

H1(RN ) ∩ C2(RN ) to the Choquard equation (C) such that A(u) = cnod,

and u changes sign.

The restriction on the exponent p can only be satisfied when α > N − 4.
We understand that u changes sign if the sets {x ∈ R

N : u(x) > 0} and
{x ∈ R

N : u(x) < 0} have both positive measure.
We do not know whether the solutions constructed in theorem 2 are odd

and coincide thus with those of theorem 1 or even whether the solutions
of theorem 2 have axial symmetry as those of theorem 1. We leave these
questions as open problems.

The proof of theorem 2 is based on a new reformulation of the minimiza-
tion problem as a minimax problem that allows to apply a minimax principle
with location information (proposition 3.2) and a new compactness property
up to translations under the condition cnod < 2c0 proved by concentration–
compactness (proposition 3.5), in the proof of which we introduce suitable
methods and estimates (see lemma 3.6). The latter strict inequality is de-
duced from the inequality cnod ≤ codd.

Compared to theorem 1, theorem 2 introduces the additional restriction
p > 2. This assumption is almost optimal: in the locally sublinear case
p < 2, the level cnod is not achieved.

Theorem 3. If max( N−2
N+α , 1

2) < 1
p < N

N+α , then cnod = c0 is not achieved in

Nnod.

Theorem 3 shows that minimizing the action on the Nehari nodal set does
not provide a nodal solution; there might however exist a minimal action
nodal solution that would be constructed in another fashion.
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We do not answer in the present work whether cnod is achieved when
p = 2 and α > N − 4. In a forthcoming manuscript in collaboration with
V. Moroz, we extend theorem 3 to the case p = 2 by taking the limit p ց 2
[12].

If we compare the results in the present paper to well-established features
of the stationary nonlinear Schödinger equation

(1.2) − ∆u + u = |u|2p−2u,

which is the local counterpart of the Choquard equation (C), theorems 1 and
2 are quite surprising. The action functional associated to (1.2) is defined
by

A(u) =
1

2

∫

RN
|∇u|2 + |u|2 − 1

2p

∫

RN
|u|2p,

which is well-defined and continuously differentiable when 1
2 − 1

N < 1
p < 1

2 .

Since in this case A(u) = A(u+) + A(u−), it can be easily proved by a
density argument that

codd = cnod = 2c0.

Therefore if one of the infimums codd or cnod is achieved at u, then both
u+ and u− should achieve c0 in N0. This is impossible, since by the strong
maximum principle u+ > 0 and u− > 0 almost everywhere on the space
R

N . This nonexistence of minimal action nodal solutions also contrasts
with theorem 3: for the nonlocal problem cnod is too small to be achieved
whereas for the local one this level is too large.

2. Minimal action odd solution

In this section we prove theorem 1 about the existence of solutions under
an oddness constraint.

2.1. Variational principle. We first observe that the corresponding level
codd is positive.

Proposition 2.1 (Nondegeneracy of the level). If N−2
N+α ≤ 1

p ≤ N
N+α , then

codd > 0.

Proof. Since Nodd = N0∩H1
odd(RN ) ⊂ N0 we have codd ≥ c0. The conclusion

follows then from the fact that c0 > 0 [21]. �

A first step in the construction of our solution is the existence a Palais–
Smale sequence.

Proposition 2.2 (Existence of a Palais-Smale sequence). If N−2
N+α ≤ 1

p ≤
N

N+α , then there exists a sequence (un)n∈N in H1
odd(RN ) such that, as n →

∞,

A(un) → codd and A′(un) → 0 in H1
odd(RN )′.

Proof. We first recall that the level codd can be rewritten as a mountain pass
minimax level:

codd = inf
γ∈Γ

sup
[0,1]

A ◦ γ,
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where the class of paths Γ is defined by

Γ =
{

γ ∈ C
(

[0, 1], H1
odd(RN )

)

: γ(0) = 0 and A(γ(1)
)

< 0
}

(see for example [30, theorem 4.2]). By the general minimax principle
[30, theorem 2.8], there exists a sequence (un)n∈N in H1

odd(RN ) such that
the sequence

(A(un)
)

n∈N
converges to codd and the sequence

(A′(un)
)

n∈N

converges strongly to 0 in the dual space H1
odd(RN )′. �

2.2. Palais–Smale condition. We would now like to construct out of the
Palais–Smale sequence of proposition 2.2 a solution to our problem. We shall
prove that the functional A|H1

odd
(RN ) satisfies the Palais–Smale condition up

to translations at the level codd if the strict inequality codd < 2c0 holds.

Proposition 2.3 (Palais–Smale condition). Assume that N−2
N+α < 1

p < N
N+α .

Let (un)n∈N be a sequence in H1
odd(RN ) such that, as n → ∞,

A(un) → codd and A′(un) → 0 in H1
odd(RN )′.

If

codd < 2c0,

then there exists a sequence of points (an)n∈N in R
N−1 × {0} ⊂ R

N such

that the subsequence (unk

(· − ank
)
)

k∈N
converges strongly in H1(RN ) to u ∈

H1
odd(RN ). Moreover

A(u) = codd and A′(u) = 0 in H1(RN )′.

Proof. First, we observe that, as n → ∞,

(1

2
− 1

2p

)

∫

RN
|∇un|2 + |un|2 = A(un) − 1

2p
〈A′(un), un〉

= A(un) + o

(

(

∫

RN
|∇un|2 + |un|2

)

1

2

)

= codd + o

(

(

∫

RN
|∇un|2 + |un|2

)

1

2

)

.

(2.1)

In particular, the sequence (un)n∈N is bounded in the space H1(RN ).
We now claim that there exists R > 0 such that

(2.2) lim inf
n→∞

∫

DR

|un|
2Np
N+α > 0,

where the set DR ⊂ R
N is the infinite slab

DR = R
N−1 × [−R, R].

We assume by contradiction that for each R > 0,

lim inf
n→∞

∫

DR

|un|
2Np
N+α = 0.

We define for each n ∈ N the functions vn = χRN−1×(0,∞)un and ṽn =

χRN−1×(−∞,0)un. Since un ∈ H1
odd(RN ), we have vn ∈ H1

0 (RN−1 × (0, ∞)) ⊂
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H1(RN ) and ṽn ∈ H1
0 (RN−1 × (−∞, 0)) ⊂ H1(RN ). We now compute

∫

RN

(

Iα ∗ |vn|p)|ṽn|p ≤2

∫

RN

∫

DR

Iα(x − y)|vn(y)|p|ṽn(x)|p dy dx

+

∫

RN \DR

∫

RN \DR

Iα(x − y)|vn(y)|p|ṽn(x)|p dy dx

By definition of the region DR we have, if β ∈ (α, N),

∫

RN

(

Iα ∗ |vn|p)|ṽn|p

≤ 2

∫

DR

(

Iα ∗ |un|p)|un|p +

∫

RN

(

(χRN \B2R
Iα) ∗ |un|p)|un|p

≤ 2

∫

DR

(

Iα ∗ |un|p)|un|p +
C

Rβ−α

∫

RN

(

(χRN \B2R
Iβ) ∗ |un|p)|un|p

Since by assumption p > N+α
N , we can take β such that moreover β <

(p − 1)N , and then by the Hardy–Littlewood–Sobolev inequality (1.1) and
the classical Sobolev inequality, we obtain that

∫

RN

(

Iα ∗ |vn|p)|ṽn|p ≤ C ′
(

∫

RN
|∇un|2 + |un|2

)

p
2
(

∫

DR

|un|
2Np
N+α

)

N+α
2N

+
C ′′

Rβ−α

(

∫

RN
|∇un|2 + |un|2

)p
,

from which we deduce that

(2.3) lim
n→∞

∫

RN

(

Iα ∗ |vn|p)|ṽn|p = 0.

For each n ∈ N, we fix tn ∈ (0, ∞) so that tnvn ∈ N0 or, equivalently,

t2p−2
n =

∫

RN
|∇vn|2 + |vn|2

∫

RN

(

Iα ∗ |vn|p)|vn|p

=

∫

RN
|∇un|2 + |un|2

∫

RN

(

Iα ∗ |un|p)|un|p − 2

∫

RN

(

Iα ∗ |vn|p)|ṽn|p
.

(2.4)

For every n ∈ N, we have

A(tnun) = 2A(tnvn) − t2p
n

p

∫

RN

(

Iα ∗ |vn|p)|ṽn|p

By (2.1), (2.3) and (2.4), in view of proposition 2.1, we note that limn→∞ tn =
1 and thus in view of (2.3) again we conclude that

codd = lim
n→∞

A(un) = lim
n→∞

A(tnun) = 2 lim
n→∞

A(tnvn) ≥ 2c0,

in contradiction with the assumption codd < 2c0 of the proposition.
We can now fix R > 0 such that (2.2) holds. We take a function η ∈

C∞(RN ) such that supp η ⊂ D3R/2, η = 1 on DR, η ≤ 1 on R
N and
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∇η ∈ L∞(RN ). We have the inequality [18, lemma I.1; 21, lemma 2.3;
27, (2.4); 30, lemma 1.21]

∫

DR

|un|
2Np
N+α ≤

∫

RN
|ηun|

2Np
N+α

≤ C
(

sup
a∈RN

∫

BR/2(a)
|ηun|

2Np
N+α

)1− N+α
Np

∫

RN
|∇(ηun)|2 + |ηun|2

≤ C ′
(

sup
a∈RN−1×{0}

∫

B2R(a)
|un|

2Np
N+α

)1− N+α
Np

∫

RN
|∇un|2 + |un|2.

Since the sequence (un)n∈N is bounded in the space H1(RN ) we deduce
from (2.2) that there exists a sequence of points (an)n∈N in the hyperplane
R

N−1 × {0} such that

lim inf
n→∞

∫

B2R(an)
|un|

2Np
N+α > 0.

Up to translations and a subsequence, we can assume that the sequence
(un)n∈N converges weakly in H1(RN ) to a function u ∈ H1(RN ).

Since the action functional A is invariant under odd reflections, we note
that for every n ∈ N, A(un) = 0 on H1

odd(RN )⊥ by the symmetric criticality
principle [23] (see also [30, theorem 1.28]). This allows to deduce from the
strong convergence of the sequence (A′(un))n∈N to 0 in H1

odd(RN )′ the strong
convergence to 0 of the sequence (A′(un))n∈N in H1(RN )′.

For any test function ϕ ∈ C1
c (RN ), by the weak convergence of the se-

quence (un)n∈N, we first have

lim
n→∞

∫

RN
∇un · ∇ϕ + unϕ =

∫

RN
∇u · ∇ϕ + uϕ.

By the classical Rellich–Kondrashov compactness theorem, the sequence
(|un|p)n∈N converges locally in measure to |u|p and by the Sobolev inequality,

this sequence is bounded in L
2N

N+α (RN ). Therefore, the sequence (|un|p)n∈N

converges weakly to |u|p in L
2N

N+α (RN ) (see for example [2, proposition 4.7.12;
31, proposition 5.4.7]), and, by the Hardy–Littlewood–Sobolev inequal-

ity (1.1), the sequence (Iα ∗ |un|p)n∈N converges weakly in L
2N

N−α (RN ) to
Iα ∗ |u|p. By the Rellich–Kondrashov theorem again, the sequence ((Iα ∗
|un|p)|un|p−2un)n∈N converges weakly in L

2N
N+2 (K) for every compact set

K ⊂ R
N . Therefore we have

lim
n→∞

∫

RN
(Iα ∗ |un|p)|un|p−2unϕ =

∫

RN

(

Iα ∗ |u|p)|u|p−2uϕ.

We have thus proved that

A′(u) = 0 = lim
n→∞

A′(un).
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Finally, we have

lim
n→∞

A(un) = lim
n→∞

A(un) − 1

2p
〈A′(un), un〉

= lim
n→∞

(1

2
− 1

2p

)

∫

RN
|∇un|2 + |un|2

≥
(1

2
− 1

2p

)

∫

RN
|∇u|2 + |u|2

= A(u) − 1

2p
〈A′(u), u〉 = A(u),

from which we conclude that A(u) = codd and that the sequence (un)n∈N

converges strongly to u in H1(RN ). �

2.3. Strict inequality. It remains now to establish the strict inequality
codd < 2c0.

Proposition 2.4. If N−2
N+α < 1

p < N
N+α , then

codd < 2c0.

Proof. It is known that the Choquard equation has a least action solution
[21]. More precisely, there exists v ∈ H1(RN ) \ {0} such that A′(v) = 0 and

A(v) = inf
N0

A.

We take a function η ∈ C2
c (RN ) such that η = 1 on B1, 0 ≤ η ≤ 1 on R

N

and supp η ⊂ B2 and we define for each R > 0 the function ηR ∈ C2
c (RN ) for

every x ∈ R
N by ηR(x) = η(x/R). We define now the function uR : RN → R

for each x = (x′, xN ) ∈ R
N by

uR(x) = (ηRv)(x′, xN − 2R) − (ηRv)(x′, −xN − 2R).

It is clear that uR ∈ H1
odd(RN ).

We observe that 〈A′(tRuR), tRuR〉 = 0 if and only if tR ∈ (0, ∞) satisfies

t2p−2
R =

∫

RN
|∇uR|2 + |uR|2

∫

RN

(

Iα ∗ |uR|p)|uR|p
.

Such a tR always exists and

A(tRuR) =
(1

2
− 1

p

)

(

∫

RN
|∇uR|2 + |uR|2

)

p
p−1

(

∫

RN
(Iα ∗ |uR|p)|uR|p

)

1

p−1

.

The proposition will follow once we have established that for some R > 0

(2.5)

(

∫

RN
|∇uR|2 + |uR|2

)

p
p−1

(

∫

RN
(Iα ∗ |uR|p)|uR|p

)

1

p−1

< 2

(

∫

RN
|∇v|2 + |v|2

)

p
p−1

(

∫

RN
(Iα ∗ |v|p)|v|p

)

1

p−1

.
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We begin by estimating the denominator in the left-hand side of (2.5).
We first observe that, by construction of the function uR
∫

RN

(

Iα ∗ |uR|p)|uR|p ≥ 2

∫

RN

(

Iα ∗ |ηRv|p)|ηRv|p + 2
Aα

(4R)N−α

(

∫

RN
|ηRv|p

)2
.

For the first term, we have
∫

RN

(

Iα ∗ |ηRv|p)|ηRv|p =

∫

RN

(

Iα ∗ |v|p)|v|p − 2

∫

RN

(

Iα ∗ |v|p)(1 − ηp
R)|v|p

+

∫

RN

(

Iα ∗ (1 − ηp
R)|v|p)(1 − ηp

R)|v|p

≥
∫

RN

(

Iα ∗ |v|p)|v|p − 2

∫

RN

(

Iα ∗ |v|p)(1 − ηp
R)|v|p.

By the asymptotic properties of Iα ∗ |v|p [21, theorem 4], we have

lim
|x|→∞

(

Iα ∗ |v|p)

Iα(x)
=

∫

RN
|v|p,

so that

2

∫

RN

(

Iα ∗ |v|p)(1 − ηp
R)|v|p ≤ C

∫

RN \BR

|v(x)|p
|x|N−α

dx.

We have thus
∫

RN

(

Iα ∗ |uR|p)|uR|p

≥ 2

∫

RN

(

Iα ∗ |v|p)|v|p +
2Aα

(4R)N−α

(

∫

BR

|v|p
)2

− C

∫

RN \BR

|v(x)|p
|x|N−α

dx.

We now use the information that we have on the decay of the least action
solution v [21]. If p < 2, then v(x) = O(|x|−(N−α)/(2−p)) as |x| → ∞ and

∫

RN \BR

|v(x)|p
|x|N−α

dx = O

(

1

R
Np−2α

2−p

)

= o
( 1

RN−α

)

,

since p > N+α
N > 2N

2N−α . If p ≥ 2, then v decays exponentially at infinity.
We have thus the asymptotic lower bound

(2.6)

∫

RN

(

Iα ∗ |uR|p)|uR|p

≥ 2

∫

RN

(

Iα ∗ |v|p)|v|p +
2Aα

(4R)N−α

(

∫

RN
|v|p

)2
+ o

( 1

RN−α

)

.

For the numerator in (2.5), we compute by integration by parts
∫

RN
|∇uR|2 + |uR|2 = 2

∫

RN
|∇(ηRv)|2 + |ηRv|2

= 2

∫

RN
η2

R(|∇v|2 + |v|2) − 2

∫

RN
ηR(∆ηR)|v|2

≤ 2

∫

RN

(|∇v|2 + |v|2)+
C

R2

∫

B2R\BR

|v|2.

If p < 2, we have by the decay of the solution v

1

R2

∫

B2R\BR

|v|2 = O

(

1

R
Np−2α

2−p
+2

)

= o
( 1

RN−α

)

.
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In the case where p ≥ 2, the solution v decays exponentially. We conclude
thus that

(2.7)

∫

RN
|∇uR|2 + |uR|2 = 2

∫

RN
|∇v|2 + |v|2 + o

( 1

RN−α

)

.

We derive from the asymptotic bounds (2.6) and (2.7), an asymptotic
bound on the quotient:

(

∫

RN
|∇uR|2 + |uR|2

)

p
p−1

(

∫

RN
(Iα ∗ |uR|p)|uR|p

)

1

p−1

≤ 2

(

∫

RN
|∇v|2 + |v|2

)

p
p−1

(

∫

RN
(Iα ∗ |v|p)|v|p

)

1

p−1

(

1 −
pAα

(

∫

BR

|v|p
)2

(p − 1)(4R)N−α

∫

RN
(Iα ∗ |v|p)|v|p

+ o
( 1

RN−α

)

)

.

The inequality (2.5) holds thus when R is large enough, and the conclusion
follows. �

2.4. Existence of a minimal action odd solution. We have now devel-
opped all the tools to prove the existence of a least action odd solution to
the Choquard equation, corresponding to the existence part of theorem 1.

Proposition 2.5. If N−2
N+α < 1

p < N
N+α , then there exists solution u ∈

H1
odd(RN ) ∩ C2(RN ) to the Choquard equation (C) such that A(u) = codd.

Proof. Let (un)n∈N be the sequence given by proposition 2.2. In view of
proposition 2.4, proposition 2.3 is applicable and gives the required weak
solution u ∈ H1(RN ). By the regularity theory for the Choquard equation
[21, proposition 4.1] (see also [8, lemma A.10]), u ∈ C2(RN ). �

2.5. Sign and symmetry properties. We complete the proof of theorem 1
by showing that such solutions have a simple sign and symmetry structure.

Proposition 2.6. If N−2
N+α < 1

p < 1
2 and if u ∈ H1

odd(RN ) is a solution to

the Choquard equation (C) such that A(u) = codd, then u has constant sign

on R
N
+ and u is axially symmetric with respect to an axis perpendicular to

∂RN
+ .

The proof takes profit of the structure of the problem to rewrite it as a
groundstate of a problem on the halfspace where quite fortunately the strat-
egy for proving similar properties of groundstates of the Choquard equation
still works [21, Propositions 5.1 and 5.2] (see also [22, propositions 5.2 and
5.3].

Proof of proposition 2.6. We first rewrite the problem of finding odd solu-
tions on R

N as a groundstate problem on R
N
+ whose nonlocal term has a

more intricate structure.
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Claim 1. For every v ∈ H1
odd(RN ),

A(v) = Ã(v|
RN

+
),

where R
N
+ = R

N−1 × (0, ∞) and the functional Ã : H1
0 (RN

+ ) 7→ R is defined

for w ∈ H1
0 (RN

+ ) by

Ã(w) =

∫

RN
+

|∇w|2+|w|2− 1

p

∫

RN
+

∫

RN
+

K(|x′−y′|, xN , yN )|u(x)|p|u(y)|p dx dy,

with x = (x′, xN ), y = (y′, yN ) and the kernel K : (0, ∞)3 → R defined for

each (r, s, t) ∈ (0, ∞)3 by

K(r, s, t) =
Aα

(

r2 + (s − t)2
)

N−α
2

+
Aα

(

r2 + (s + t)2
)

N−α
2

.

In particular, u ∈ Ñnod, where

Ñnod =
{

w ∈ H1
0 (RN

+ ) : 〈Ã′(w), w〉 = 0
}

and

Ã(u) = inf
Ñnod

Ã.

Proof of the claim. This follows from the fact that if u ∈ H1
odd(RN ), then

u|
RN

+
∈ H1

0 (RN
+ ) and by direct computation of the integrals. ⋄

Claim 2. One has either u > 0 almost everywhere on R
N
+ or u < 0 almost

everywhere on R
N
+ .

Proof of the claim. Let w = u|
RN

+
. We observe that |w| ∈ H1

0 (RN
+ ),

Ã(|w|) = Ã(w) = codd and 〈Ã′(|w|), |w|〉 = 〈Ã′(w), w〉.

Therefore, if we define ū ∈ H1
odd(RN ) for almost every x = (x′, xN ) ∈ RN

by

ū(x) =

{

|w|(x′, xN ) if xN > 0,

−|w|(x′, xN ) if xN < 0,

the function ū is a weak solution to the Choquard equation (C). This func-
tion ū is thus of class C2 [21, proposition 4.1] (see also [8, lemma A.10]) and,
in the classical sense, it satisfies

−∆ū + ū ≥ 0 in R
N
+ .

By the usual strong maximum principle for classical supersolutions, we con-
clude that |u| = ū > 0 in R

N
+ . Since the function u was also a solution to

the Choquard equation (C), it is also a continuous function, and we have
thus either u = |u| > 0 in R

N
+ or u = −|u| < 0 in R

N
+ . ⋄

Claim 3. The solution u is axially symmetric with respect to an axis parallel

to {0} × R ⊂ R
N .

Proof of the claim. Let H be a closed affine half-space perpendicular to ∂RN
+

and let σH : RN → R
N be the reflection with respect to ∂H. We recall that
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the polarization or two-point rearrangement with respect to H of w is the
function wH : RN → R defined for each x ∈ R

N by [1,4]

wH(x) =

{

max
(

w(x), w(σH (x))
)

if x ∈ H,

min
(

w(x), w(σH (x))
)

if x ∈ R
N \ H.

Since ∂H is perpendicular to R
N−1 × {0}, we have σH(RN

+ ) = R
N
+ so that

wH ∈ H1
0 (RN ) and [4, lemma 5.3]

∫

RN
+

|∇wH |2 + |wH |2 =

∫

RN
+

|∇w|2 + |w|2.

Moreover, we also have

(2.8)

∫

RN
+

∫

RN
+

K(|x′ − y′|, xN , yN )|wH(x)|p|wH(y)|p dx dy

=
1

2

∫

RN

(

Iα ∗ (|u|p)H)(|u|p)H ≥ 1

2

∫

RN
+

(

Iα ∗ |u|p) |u|p

=

∫

RN
+

∫

RN
+

K(|x′ − y′|, xN , yN ) |w(x)|p |w(y)|p dx dy,

with equality if and only if either |u|H = |u| almost everywhere on R
N
+

or |u|H = |u| ◦ σH almost everywhere on R
N
+ [21, lemma 5.3] (see also

[1, corollary 4; 28, proposition 8]), or equivalently, since by claim 2 w has
constant sign on R

N , either wH = w almost everywhere on R
N
+ or wH =

w ◦ σH almost everywhere on R
N
+ .

If the inequality (2.8) was strict, then, since p > 1 there would exist
τ ∈ (0, 1) such that τwH ∈ Ñ and we would have

A(τuH) < Ã(w) = codd,

in contradiction with claim 1.
We have thus proved that for every affine half-space H ⊂ R

N whose
boundary ∂H is perpendicular to ∂RN

+ , either wH = w almost everywhere

on R
N
+ or wH = w ◦ σH almost everywhere on R

N
+ . This implies that w is

axially symmetric with respect to an axis perpendicular to ∂RN
+ [21, lemma

5.3; 29, proposition 3.15], which is equivalent to the claim. ⋄
The proposition follows directly from claims 2 and 3. �

3. Minimal action nodal solution

This section is devoted to the proof of theorem 2 on the existence of a
least action nodal solution.

3.1. Minimax principle. We begin by observing that the counterpart of
proposition 2.1 holds.

Proposition 3.1 (Nondegeneracy of the level). If N−2
N+α ≤ 1

p ≤ N
N+α , then

cnod > 0.

Proof. In view of the inequality c0 > 0 [21], it suffices to note that since
Nnod ⊂ N0 we have cnod ≥ c0. �

We first reformulate the minimization problem as a minimax problem.
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Proposition 3.2 (Minimax principle). If N−2
N+α ≤ 1

p < 1
2 , then for every

ε > 0,

cnod = inf
γ∈Γ

sup
B2

A ◦ γ,

where

Γ =
{

γ ∈ C
(

B
2; H1

0 (RN )
)

: ξ
(

γ(∂B2)
) 6∋ 0, deg(ξ ◦ γ) = 1

and (A ◦ γ)
p−1

p−2 ≤ c
p−1

p−2

nod + ε − c
p−1

p−2

0 on ∂B2
}

,

where the map ξ = (ξ+, ξ−) ∈ C
(

H1(RN );R2
)

is defined for each u ∈
H1(RN ) by

ξ±(u) =























∫

RN
(Iα ∗ |u|p)|u±|p

∫

RN
|∇u±|2 + |u±|2

− 1 if u± 6= 0,

− 1 if u± = 0.

Moreover, for every γ ∈ Γ, Nnod ∩ γ(B2) 6= 0.

In this statement B
2 denotes the closed unit disc in the plane R

2 and deg
is the classical topological degree of Brouwer, or equivalently, the winding
number (see for example [19, §5.3; 25, chapter 6]).

The continuity of the map ξ on the subset of constant-sign functions in
H1(RN ) follows from the Hardy–Littlewood–Sobolev inequality (1.1) and
the classical Sobolev inequality, and requires the assumption p > 2.

The map ξ is the nonlocal counterpart of a map appearing in the varia-
tional characterization of least action nodal solutions by Cerami, Solimini
and Struwe for local Schrödinger type problems [7], which is done in the
framework of critical point theory in ordered spaces whereas our minimax
principle works in the more classical framework of Banach spaces.

Proof of proposition 3.2. We denote the right-hand side in the equality to
be proven as c̃ and we first prove that that c̃ ≥ cnod. Let γ ∈ Γ. Since
deg(ξ ◦ γ) = 1, by the existence property of the degree, there exists t∗ ∈ B

2

such that (ξ ◦ γ)(t∗) = 0. It follows then that γ(t∗) ∈ Nnod = ξ−1(0) and
thus

sup
B2

A ◦ γ ≥ γ(t∗) ≥ cnod,

so that c̃ ≥ cnod.
We now prove that c̃ ≤ cnod. For a given u ∈ Nnod, we define the map

γ̃ : [0, ∞)2 → H1(RN ) for every (t+, t−) ∈ [0, ∞)2 by

γ̃(t+, t−) = t
1

p

+u+ + t
1

p

−u−.

We compute for each (t+, t−) ∈ [0, ∞)2

(3.1) A(γ̃(t+, t−)
)

=
t
2/p
+

2

∫

RN
|∇u+|2 + |u+|2 +

t
2/p
−

2

∫

RN
|∇u−|2 + |u−|2

− 1

2p

∫

RN

∣

∣Iα/2 ∗ (t+|u+|p + t−|u−|p)
∣

∣

2
.
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The function A ◦ γ̃ is thus strictly concave and (A ◦ γ̃)′(1, 1) = 0. Hence,
(1, 1) is the unique maximum point of the function A ◦ γ̃.

We also have in particular

A(γ̃(t+, 0)
)

=
t
2/p
+

2

∫

RN

(

Iα ∗ |u|p)|u+|p − t2
+

2p

∫

RN

(

Iα ∗ |u+|p)|u+|p,

and therefore

(3.2) A(γ̃(t+, 0)
) ≤

(1

2
− 1

2p

)

(

∫

Rn

(

Iα ∗ |u|p)|u+|p
)

p
p−1

(

∫

Rn

(

Iα ∗ |u+|p)|u+|p
)

1

p−1

.

By the semigroup property of the Riesz potential Iα = Iα/2 ∗ Iα/2 (see for
example [16, theorem 5.9]) and by the Cauchy–Schwarz inequality,

(3.3)

∫

RN

(

Iα ∗ |u|p)|u+|p =

∫

RN
(Iα/2 ∗ |u+|p)(Iα/2 ∗ |u|p)

≤
(

∫

RN

∣

∣Iα/2 ∗ |u|p
∣

∣

2
)

1

2
(

∫

RN

∣

∣Iα/2 ∗ |u+|p
∣

∣

2
)

1

2

=
(

∫

RN

(

Iα ∗ |u|p)|u|p)
)

1

2
(

∫

RN
(Iα ∗ |u+|p)|u+|p)

)

1

2

,

and therefore by (3.2) and (3.3)

A(γ̃(t+, 0)
) ≤

(1

2
− 1

2p

)(

∫

Rn

(

Iα ∗ |u|p)|u+|p
)

p−2

p−1
(

∫

Rn

(

Iα ∗ |u|p)|u|p
)

1

p−1

We deduce therefrom that for every (t+, t−) ∈ [0, ∞)2,

(3.4) A(t1/p
+ u+)

p−1

p−2 + A(t1/p
− u−)

p−1

p−2 ≤ A(u)
p−1

p−2 .

Since u± 6= 0, we have

sup
t±∈[0,∞)

A(t1/p
± u±) ≥ c0,

we conclude that

sup
t∈∂([0,∞)2)

(A ◦ γ̃)
p−1

p−2 ≤ A(u)
p−1

p−2 − c
p−1

p−2

0 .

Moreover, we have by (3.1)

lim
|t|→∞

A(γ̃(t)
)

= −∞.

It remains to compute the degree of the map ξ ◦ γ̃ on a suitable set
homeomorphic to B2. We compute for each (t+, t−) ∈ [0, ∞)2, since u ∈
Nnod

(t+, t−) · ξ(γ̃(t+, t−))

= t
3− 2

p

+

∫

RN
(Iα ∗ |u+|p)|u+|p

∫

RN
(Iα ∗ |u|p)|u+|p

+ t
3− 2

p

−

∫

RN
(Iα ∗ |u−|p)|u−|p

∫

RN
(Iα ∗ |u|p)|u−|p

− t+ − t−
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Since p > 2, we can now take R >
√

2 large enough so that if t ∈ [0, ∞)2 ∩
∂BR, then

t · ξ(γ̃(t)) > 0 and
(A ◦ γ̃(t)

)

p−1

p−2 ≤ A(u)
p−1

p−2 − c
p−1

p−2

0 .

We now define the homotopy H : [0, 1]× [0, ∞)2 for each (τ, t+, t−) ∈ [0, 1]×
[0, ∞)2 by

H(τ, t) = τ(ξ ◦ γ̃)(t) + (1 − τ)(t+ − 1, t− − 1).

By the choice of R, for every (τ, t) ∈ [0, 1] × ∂([0, ∞)2 ∩ BR), H(τ, t) 6=
0, and thus by the homotopy invariance property of the degree, deg(ξ ◦
γ̃|(0,∞)2∩BR

) = 1. If we set γ = γ̃ ◦ Φ, where Φ : B2 → [0, ∞) ∩ B̄R is an
orientation preserving homeomorphism, we have γ ∈ Γ and supB2 A ◦ γ =
A(u).

We have thus proved that if u ∈ Nnod and if A(u)
p−1

p−2 ≤ c
p−1

p−2

nod + ε, then

A(u) ≥ c̃,

from which we deduce that cnod ≥ c̃. �

We would like to point out that the inequality (3.4) in the proof of propo-
sition 3.2 gives a lower bound on the level cnod that refines the degeneracy
given for p > 2 by theorem 3.

Corollary 3.3. If N−2
N+α ≤ 1

p ≤ 1
2 , then

cnod ≥ 2
p−2

p−1 c0.

In particular, corollary (3.3) allows theorem 3 to hold when p = 2.

Proposition 3.4 (Existence of a Palais-Smale sequence). If N−2
N+α ≤ 1

p < 1
2 ,

then there exists a sequence (un)n∈N in H1(RN ) such that

A(un) → cnod, dist(un, Nnod) → 0 and A′(un) → 0 in H1(RN )′,

as n → ∞.

Proof. We take Γ given by proposition 3.2 with ε < c
p−1

p−2

0 . The location
theorem [30, theorem 2.20] (see also [3, theorem 2][26, theorem 2.12]) is
applicable and gives the conclusion. �

3.2. Convergence of the Palais–Smale sequence. We prove that Palais–
Smale sequences at the level cnod and localized near the Nehari nodal set
Nnod converge strongly up to a subsequence and up to translations.

Proposition 3.5. Let (un)n∈N be a sequence in H1
odd(RN ) such that, as

n → ∞,

A(un) → cnod, dist(un, Nnod) → 0 and A′(un) → 0 in H1(RN )′.

If N−2
N+α < 1

p < 1
2 and if

cnod < 2c0,

then there exists a sequence of points (an)n∈N in R
N such that the subse-

quence
(

unk
(· − ank

)
)

k∈N
converges strongly in H1(RN ) to u ∈ H1(RN ).

Moreover

A(u) = cnod, u ∈ Nnod and A′(u) = 0 in H1(RN )′.
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Palais–Smale conditions have been already proved by concentration–com-
pactness arguments for local semilinear elliptic problems [7,11].

Proof of proposition 3.5. We shall proceed through several claims on the
sequence (un)n∈N.

Claim 1. The sequence (un)n∈N is bounded in the space H1(RN ).

Proof of the claim. We write, as n → ∞,

(1

2
− 1

2p

)

∫

RN
|∇un|2 + |un|2 = A(un) − 1

2p
〈A′(un), un〉

= A(un) + o

(

(

∫

RN
|∇un|2 + |un|2

)

1

2

)

.

from which the claim follows. ⋄

We now show that neither positive nor the negative parts of the sequence
(un)n∈N tend to 0.

Claim 2. The functional u ∈ H1(RN ) 7→ ∫

RN (Iα ∗ |u|p)|u±|p is uniformly

continuous on bounded subsets of the space H1(RN ).

We bring to the attention of the reader that the related map u ∈ H1(RN ) 7→
∫

RN |∇u±|2 + |u±|2 is not uniformly continuous on bounded sets.

Proof of the claim. For every u, v ∈ H1(RN ), we have

∫

RN
(Iα ∗ |u|p)|u±|p −

∫

RN
(Iα ∗ |v|p)|v±|p

=
1

2

∫

RN

(

Iα ∗ (|u|p + |v|p)
)(|u±|p − |v±|p)

+
1

2

∫

RN

(

Iα ∗ (|u|p − |v|p)
)(|u±|p + |v±|p).

By the classical Hardy–Littlewood–Sobolev inequality (1.1), we obtain

∣

∣

∣

∫

RN
(Iα ∗ |u|p)|u±|p −

∫

RN
(Iα ∗ |v|p)|v±|p

∣

∣

∣

≤ C
(

∫

RN

(|u|p + |v|p)
2N

N+α

)

N+α
2N
(

∫

RN

∣

∣|u±|p − |v±|p
∣

∣

2N
N+α

)

N+α
2N

+ C
(

∫

RN

(|u±|p + |v±|p)
2N

N+α

)

N+α
2N
(

∫

RN

∣

∣|u|p − |v|p
∣

∣

2N
N+α

)

N+α
2N

.

Since for every s, t ∈ R, one has
∣

∣|s±|p−|t±|p
∣

∣ ≤ ||s|p−|t|p| and |s±|p+|t±|p ≤
|s|p + |t|p, the latter estimate can be simplified to

∣

∣

∣

∫

RN
(Iα ∗ |u|p)|u±|p −

∫

RN
(Iα ∗ |v|p)|v±|p

∣

∣

∣

≤ 2C
(

∫

RN

(|u|p + |v|p)
2N

N+α

)

N+α
2N
(

∫

RN

∣

∣|u|p − |v|p
∣

∣

2N
N+α

)

N+α
2N

.



NODAL SOLUTIONS FOR THE CHOQUARD EQUATION 17

Next, for each s, t ∈ R, we have, since p ≥ 2,

∣

∣|s|p − |t|p
∣

∣ ≤ p|s − t|
∫ 1

0
p|τs + (1 − τ)t|p−1 dτ

≤ p|s − t|
∫ 1

0
τ |s|p−1 + (1 − τ)|t|p−1 dτ

=
p

2
|s − t|(|s|p−1 + |t|p−1).

Hence, we have,

∣

∣

∣

∫

RN
(Iα ∗ |u|p)|u±|p −

∫

RN
(Iα ∗ |v|p)|v±|p

∣

∣

∣

≤ 2C
(p

2

)

N+α
2N
(

∫

RN

(|u|p + |v|p)
2N

N+α

)

N+α
2N

×
(

∫

RN

(|u|p−1 + |v|p−1)
2N

N+α |u − v| 2N
N+α

)

N+α
2N

.

Therefore, by the Hölder inequality,

∣

∣

∣

∫

RN
(Iα ∗ |u|p)|u±|p −

∫

RN
(Iα ∗ |v|p)|v±|p

∣

∣

∣

≤ C ′
(

∫

RN
|u|

2Np
N+α + |v|

2Np
N+α

)

N+α
N

(1− 1

2p
)(
∫

RN
|u − v|

2Np
N+α

)

N+α
2Np

.

This shows that the map is uniformly continuous on L
2Np
N+α (RN ). Since by

assumption, N−2
N+α ≤ 1

p ≤ N
N+α , in view of the classical Sobolev embedding

theorem, the embedding H1(RN ) ⊂ L
2Np
N+α (RN ) is uniformly continuous, and

the claim follows. ⋄
Claim 3. We have

lim inf
n→∞

∫

RN
|∇u±

n |2 + |u±
n |2 = lim inf

n→∞

∫

RN

(

Iα ∗ |un|p)|u±
n |p > 0.

Proof of the claim. First we observe that if v ∈ Nnod, then by the Hardy–
Littewood–Sobolev inequality (1.1), the Sobolev inequality and the defini-
tion of the nodal Nehari set Nnod, we have

∫

RN

(

Iα ∗ |v|p)|v±|p ≤ C
(

∫

RN
|v|

2Np
N+α

)

N+α
2N
(

∫

RN
|v±|

2Np
N+α

)

N+α
2N

≤ C ′
(

∫

RN
|∇v|2 + |v|2

)

p
2
(

∫

RN
|∇v±|2 + |v±|2

)

p
2

= C ′
(

∫

RN
|∇v|2 + |v|2

)

p
2
(

∫

RN

(

Iα ∗ |v|p)|v±|p
)

p
2

.

Since v± 6= 0, we deduce that

inf
v∈Nnod

(

∫

RN
|∇v|2 + |v|2

)

p
2
(

∫

RN

(

Iα ∗ |v|p)|v±|p
)

p−2

2

> 0.

Since the sequence (un)n∈N is bounded in the space H1(RN ) and since
limn→∞ dist(un, Nodd) = 0, we deduce from the lower bound above and from
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the uniform continuity property of claim 2 that

lim inf
n→∞

∫

RN

(

Iα ∗ |un|p)|u±
n |p > 0.

Since limn→∞〈A′(un), u±
n 〉 = 0, the conclusion follows. ⋄

Claim 4. There exists R > 0 such that

lim sup
n→∞

sup
a∈RN

∫

BR(a)
|u+

n |
2Np
N+α

∫

BR(a)
|u−

n |
2Np
N+α > 0.

Proof of the claim. We assume by contradiction that for every R > 0,

lim
n→∞

sup
a∈RN

∫

BR(a)
|u+

n |
2Np
N+α

∫

BR(a)
|u−

n |
2Np
N+α = 0.

Then by lemma 3.6 below, since the sequences (u+
n )n∈N and (u−

n )n∈N are
bounded in the space H1(RN ), we have

lim
n→∞

∫

RN

(

Iα ∗ |u+
n |p)|u−

n |p = 0.

We now take tn,± ∈ (0, ∞) such that tn,±u±
n ∈ N0. Since

∫

RN
|∇u±

n |2 + |u±
n |2 =

∫

RN

(

Iα ∗ |un|p)|u±
n |p + 〈A′(un), u±

n 〉

=

∫

RN

(

Iα ∗ |un|p)|u±
n |p + o(1)

and
∫

RN

(

Iα ∗ |u±
n |p)|u±

n |p =

∫

RN

(

Iα ∗ |un|p)|u±
n |p −

∫

RN

(

Iα ∗ |u+
n |p)|u−

n |p

=

∫

RN

(

Iα ∗ |un|p)|u±
n |p + o(1),

it follows, in view of claim 3, that limn→∞ tn,± = 1. We compute

A(tn,+u+
n + tn,−u−

n )

= A(tn,+u+
n ) + A(tn,−u−

n ) − tp
n,+tp

n,−

p

∫

RN

(

Iα ∗ |u+
n |p)|u−

n |p.

and we deduce that

cnod = lim
n→∞

A(tn,+u+
n + tn,−u−

n )

≥ lim inf
n→∞

A(tn,+u+
n ) + lim inf

n→∞
A(tn,−u−

n ) ≥ 2c0,

in contradiction with the assumption of the proposition. ⋄
We now conclude the proof of the proposition. Up to a translation and a

subsequence, we can assume that

lim inf
n→∞

∫

BR(a)
|u±

n |
2Np
N+α ≥ 0

and that the sequence (un)n∈N converges weakly to some u ∈ H1(RN ). As
in the proof of proposition 2.3, by the weak convergence and by the classical
Rellich–Kondrashov compactness theorem, A′(u) = 0 and u± 6= 0, whence



NODAL SOLUTIONS FOR THE CHOQUARD EQUATION 19

u ∈ Nnod. We also have by lower semicontinuity of the Sobolev norm under
weak convergence

lim
n→∞

A(un) = lim
n→∞

A(un) − 1

2p
〈A′(un), un〉

= lim
n→∞

(1

2
− 1

2p

)

∫

RN
|∇un|2 + |un|2

≥
(1

2
− 1

2p

)

∫

RN
|∇u|2 + |u|2

= A(u) − 1

2p
〈A′(u), u〉 = A(u),

from which we deduce that A(u) = cnod and the strong convergence of the
sequence (un)n∈N in the space H1(RN ). �

Lemma 3.6. If N−2
N+α ≤ 1

p < N
N+α , then for every β ∈ (

α, min(1, p − 1)N
)

,

there exists C > 0 such that for every u, v ∈ H1(RN ),

∫

RN

(

Iα|u|p)|v|p ≤ C
(

∫

RN
|∇u|2 + |u|2

∫

RN
|∇v|2 + |v|2

)

1

2

(

sup
a∈RN

∫

BR(a)
|u|

2Np
N+α

∫

BR(a)
|v|

2Np
N+α

)

N+α
2N

(1− 1

p
)

+
C

Rβ−α

(

∫

RN
|∇u|2 + |u|2

∫

RN
|∇v|2 + |v|2

)

p
2

When p = N+α
N , then (p − 1)N = α and there is no β that would satisfy

the assumptions.

Proof of lemma 3.6. We first decompose the integral as
∫

RN

(

Iα|u|p)|v|p =

∫

RN

(

(χBR/2
Iα) ∗ |u|p)|v|p +

∫

RN

(

(χRN \BR/2
Iα) ∗ |u|p)|v|p.

We then observe that if β ∈ (α, N), then
∫

RN

(

(χRN \BR/2
∗ Iα)|u|p)|v|p ≤ C

Rβ−α

∫

RN
(Iβ ∗ |u|p)|v|p.

If β < (p − 1)N , then by the Hardy–Littewood–Sobolev inequality and by
the Sobolev inequality, we have
∫

RN

(

(χRN \BR/2
Iα)∗|u|p)|v|p ≤ C ′

Rβ−α

(

∫

RN
|∇u|2 + |u|2

)

p
2
(

∫

RN
|∇v|2 + |v|2

)

p
2

.

Next, we have
∫

RN

(

(χBR/2
Iα) ∗ |u|p)|v|p

≤ C ′

RN

∫

RN

∫

BR(a)

∫

BR(a)
Iα(x − y)|u(x)|p|v(y)|p dx dy da.

For every a ∈ R
N , we have, by the Hardy–Littewood–Sobolev inequality

(1.1) and the classical Sobolev inequality on the ball BR(a),
∫

BR(a)

∫

BR(a)
Iα(x − y)|u(x)|p|v(y)|p dx dy
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≤ C ′′
(

∫

BR(a)
|u|

2Np
N+α

∫

BR(a)
|v|

2Np
N+α

)

N+α
2N

≤ C ′′′
(

∫

BR(a)
|u|

2Np
N+α

∫

BR(a)
|v|

2Np
N+α

)

N+α
2N

(1− 1

p
)

×
(

∫

BR(a)
|∇u|2 + |u|2

∫

BR(a)
|∇v|2 + |v|2

)

1

2

.

We now integrate this estimate with respect to a ∈ R
N and apply the

Cauchy–Schwarz inequality to obtain
∫

RN

(

(χBR/2
Iα)|u|p)|v|p

≤ C ′′′

RN

(

∫

RN

(

∫

BR(a)
|∇u|2 + |u|2

)

da
)

1

2
(

∫

RN

(

∫

BR(a)
|∇v|2 + |v|2

)

da
)

1

2

×
(

sup
a∈RN

∫

BR(a)
|u|

2Np
N+α

∫

BR(a)
|v|

2Np
N+α

)

N+α
2N

(1− 1

p
)

= C ′′′′
(

∫

RN
|∇u|2 + |u|2

∫

RN
|∇v|2 + |v|2

)

1

2

×
(

sup
a∈RN

∫

BR(a)
|u|

2Np
N+α

∫

BR(a)
|v|

2Np
N+α

)

N+α
2N

(1− 1

p
)
.

�

3.3. Existence of a minimal action nodal solution. In order to prove
theorem 2, we finally establish the strict inequality.

Proposition 3.7. If N−2
N+α ≤ 1

p ≤ N
N+α , then

Nodd ⊂ Nnod.

In particular,

cnod ≤ codd.

Proof. If u ∈ Nodd, then since u ∈ N0,

〈A′(u), u+〉 + 〈A′(u), u−〉 = 〈A′(u), u〉 = 0.

On the other hand, since u ∈ H1
odd(RN ), by the invariance of u under odd

reflections,

〈A′(u), u+〉 = 〈A′(u), u−〉,
and the conclusion follows. �

We can now prove theorem 2 about the existence of minimal action nodal
solutions.

Proof of theorem 2. Proposition 3.4 gives the existence of a localized Palais–
Smale sequence (un)n∈N. By propositions 2.4 and 3.7, the strict inequality
cnod < 2c0 holds. Hence we can apply proposition 3.5 to reach the conclusion.
The solution u is twice continuously differentiable by the Choquard equa-
tion’s regularity theory [21, proposition 4.1] (see also [8, lemma A.10]). �
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3.4. Degeneracy in the locally sublinear case. We conclude this paper
by proving that cnod = c0 if p < 2.

Proof of theorem 3. We observe that if u ∈ N0, then |u| ∈ N0. Together
with a density argument, this shows that

c0 = inf
{A(u) : u ∈ N0 ∩ C1

c (RN ) and u ≥ 0 on R
N}.

Let now u ∈ N0 ∩ C1
c (RN ) such that u ≥ 0 on R

N . We choose a point
a 6∈ supp u and a function ϕ ∈ C1

c (RN ) \ {0} such that ϕ ≥ 0 and we define
for each δ > 0 the function uδ : RN → R for every x ∈ R

N by

uδ(x) = u(x) − δ
2

2−p ϕ
(x − a

δ

)

.

We observe that, if δ > 0 is small enough, u+
δ = u+. By a direct computation,

we have t+u+
δ + t−u−

δ ∈ Nnod if and only if
(3.5)














(t2−p
+ − tp

+)

∫

RN

(

Iα ∗ |u|p)|u|p = tp
−δ

N+ 2p
2−p Jδ ,

t2−p
−

∫

RN
|∇ϕ|2 + δ2|ϕ|2 = tp

+Jδ + tp
−δ

α+ 2p
2−p

∫

RN

(

Iα ∗ |ϕ|p)|ϕ|p,

where

Jδ =

∫

RN

(

Iα ∗ |u|p)(δz + a)
(

ϕ(z)
)p

dz.

We observe that when δ = 0, the system reduces to














(t2−p
+ − tp

+)

∫

RN

(

Iα ∗ |u|p)|u|p = 0,

t2−p
−

∫

RN
|∇ϕ|2 = tp

+

(

Iα ∗ |u|p)(a)

∫

RN
|ϕ|p,

which has a unique solution. By the implicit function theorem, for δ > 0
small enough there exists (t+,δ, t−,δ) ∈ (0, ∞)2 that solves the system (3.5)
and such that

lim
δ→0

(t+,δ, t−,δ) =

(

1,
(

(

Iα ∗ |u|p)(a)

∫

RN
|ϕ|p

/

∫

RN
|∇ϕ|2

)

1

2−p

)

.

Since (N − 2)(2 − p) > −4, we have t+u+
δ + t−u−

δ → u strongly in H1(RN )
as δ → 0, and it follows that

inf
Nnod

A ≤ A(u),

and thus cnod ≤ c0.
We assume now that the function u ∈ Nnod minimizes the action func-

tional A on the nodal Nehari set Nnod. Since c0 = cnod, we deduce that u
also minimizes A over the Nehari manifold N0. By the properties of such
groundstates [21, proposition 5.1], either u+ = 0 or u− = 0, in contradiction
with the assumption u ∈ Nnod and the definition of the Nehari nodal set
Nnod. �
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