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ABSTRACT

When reliable a priori information is not available, it is difficult
to correctly predict near-surface S-wave velocity models from
Rayleigh waves through existing techniques, especially in the
case of complex geology. To tackle this issue, we have developed
a new method: two-grid genetic-algorithm Rayleigh-wave full-
waveform inversion (FWI). Adopting a two-grid parameterization
of the model, the genetic algorithm inverts for unknown velocities
and densities at the nodes of a coarse grid, whereas the forward
modeling is performed on a fine grid to avoid numerical disper-
sion. A bilinear interpolation brings the coarse-grid results into
the fine-grid models. The coarse inversion grid allows for a sig-
nificant reduction in the computing time required by the genetic
algorithm to converge. With a coarser grid, there are fewer un-
knowns and less required computing time, at the expense of

the model resolution. To further increase efficiency, our inversion
code can perform the optimization using an offset-marching strat-
egy and/or a frequency-marching strategy that can make use of
different kinds of objective functions and allows for parallel com-
puting. We illustrate the effect of our inversion method using
three synthetic examples with rather complex near-surface mod-
els. Although no a priori information was used in all three tests,
the long-wavelength structures of the reference models were
fairly predicted, and satisfactory matches between “observed”
and predicted data were achieved. The fair predictions of the
reference models suggest that the final models estimated by
our genetic-algorithm FWI, which we call macromodels, would
be suitable inputs to gradient-based Rayleigh-wave FWI for
further refinement. We also explored other issues related to the
practical use of the method in different work and explored appli-
cations of the method to field data.

INTRODUCTION

Multichannel analysis of surface waves (MASW) (among others,
Park et al., 1999; Xia et al., 1999; Bohlen et al., 2004; Socco and
Strobbia, 2004; Cercato, 2009; Maraschini et al., 2010; Socco et al.,
2010) is the current standard for Rayleigh-wave inversion, in which
the observed data are given as the dispersion curves extracted from
frequency-wavenumber (f-k) or frequency-slowness (f-p) spectra.
However, over the past few years, a new approach, full-waveform
inversion (FWI) of Rayleigh waves, has emerged (Schäfer et al.,
2013; Tran et al., 2013; Groos et al., 2014; Masoni et al., 2014,
2016). This new approach seems to be promising because of several
advantages over conventional techniques. First, instead of exploiting
only the dispersion curves of the fundamental and higher modes, it

makes use of the entire information (traveltime, amplitude, and
phase) present in the recorded Rayleigh waves. Second, it naturally
supports the predictions of multidimensional models. Third, it re-
quires no subjective interpretation, such as the picking of dispersion
curves on the f-p spectra of the observed data.
Nevertheless, the application of FWI to Rayleigh-wavefield data

is still rare. Schäfer et al. (2013) invert Rayleigh-wave data to study
a vertical fault system near Frankfurt, Germany, but they limit the
inverted data within 10 Hz because adding higher frequencies
would lead to local minima. Tran et al. (2013) use an FWI approach
for sinkhole detection in Florida, United States. Groos et al. (2017)
obtain reasonable results by applying FWI to a Rayleigh-wave data
set acquired at a gliding airfield near Karlsruhe, Germany.
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However, due to the strong nonlinearity of Rayleigh waves (For-
briger, 2003a, 2003b; Rix, 2004; Brossier et al., 2009; Schäfer et al.,
2013), local optimization methods, which require the computation
of the gradient of the objective function, need adequate initial mod-
els to avoid getting trapped into local minima.
As a general rule, an adequate initial model ought to contain the

long-wavelength structures of the investigated near-surface zone. In
addition, it should lead to simulated seismograms that limit cycle
skipping, particularly in the portions containing the fundamental
mode. Unfortunately, in actual data cases such optimal initial models
may be difficult to obtain because of the lack of a priori information.
To tackle this issue, we propose a new approach of Rayleigh-wave
FWI with a global stochastic optimization based on genetic algo-
rithms. Genetic algorithms (Stoffa and Sen, 1991; Sen and Stoffa,
1992; Mallick, 1995, 1999) explore a wide model space to attain in-
version outcomes and, thus, they are much less affected than local
methods by the presence of local minima. As a result, the importance
of finding an adequate initial model is not as crucial as for local, gra-
dient-based optimization methods.
Nonetheless, stochastic methods generally require huge compu-

tational resources especially when costly forward modeling is
needed, leading to serious limitations in their practical applicability.
To attenuate this problem, we proceed as follows: (1) We param-

eterize the subsurface by adopting a two-grid strategy (Sajeva et al.,
2014, 2016; Aleardi and Mazzotti, 2017; Mazzotti et al., 2017), one
coarse grid for the inversion phase and one fine grid for the model-
ing phase; (2) we make use of an offset-marching scheme and/or a
frequency-marching scheme (Bunks et al., 1995) if deemed neces-
sary; and (3) we perform parallel computing (our code has been
parallelized with Open MPI — C++). With these strategies
adopted, the genetic-algorithm Rayleigh-wave FWI method that
we propose can be used to derive near-surface VS models even
in cases in which null a priori information is available.
We illustrate the proposed method starting from a brief descrip-

tion of the finite-difference modeling (FDM) algorithm that we use.
Then, we introduce the two-grid strategy and the genetic-algorithm
optimization. Finally, we discuss the results of three inversion tests,
carried out without making use of any a priori information, on three
synthetic examples that reproduce complex near-surface models.
All of the inversion tests have been performed assuming elastic
wave propagation.
The application of the two-grid genetic-algorithm Rayleigh-wave

FWI to two actual data sets, along with additional considerations
required for field data inversion, is presented in a companion paper
(Xing and Mazzotti, 2019).

METHOD

This section describes the three key parts that construct our
method. The first is the reliable simulation of Rayleigh waves.
The second illustrates the two-grid scheme, which is quite important
for reducing the computational time. The third is the genetic-algo-
rithm workflow.

Rayleigh-wave modeling

The engine that we use for Rayleigh-wave modeling is a time-
domain 2D elastic FDM code developed by Thorbecke and Draga-
nov (2011) and further modified by Xing and Mazzotti (2016). We

use the second-order approximation of derivatives in time and the
fourth-order approximation in space.
A convolutional perfectly matched layer (Roden and Gedney,

2000; Collino and Tsogka, 2001; Festa and Vilotte, 2005; Koma-
titsch and Martin, 2007; Gedney, 2011) is implemented in the mod-
eling code to attenuate wave energy in the absorbing boundaries.
The free-surface condition recommended by Robertsson (1996)
is used to simulate wave propagation in the presence of irregular
topographic surfaces. To achieve a reliable simulation of Rayleigh
waves, we suggest that the number of points (n) per minimum
wavelength in the elastic FDM is set to 20 instead of to 5, which
is the standard value for modeling body waves (Alford et al., 1974).
The suggestion is based on our comparisons among results gener-
ated from various modeling codes and on many tests in which n has
been increased up to 100. This indication also coincides with that
given by Nagai et al. (2005).
The value of 20 assigned to the number of points per minimum

wavelength and the fact that VS at the near surface is usually low,
dictate that very fine grids should be used for modeling Rayleigh
waves, thus making Rayleigh-wave modeling quite costly.
We checked the reliability of the used FDM code by comparing

its simulations on various reference models with the results of other
modeling codes on the same models. The modeling results gener-
ated by the adopted 2D FDM code match well with seismograms
from reflectivity modeling (Fuchs and Muller, 1971), seismograms
from spectral element modeling (Komatitsch et al., 2001), and seis-
mograms provided by Eni S.p.A. using another FDM code, con-
firming the reliability of the used forward-modeling code.

The two-grid scheme

To reach satisfying results, a stochastic (global optimization)
approach roughly requires a computing time that is exponentially
proportional to the number of unknowns (Bellman, 1957); so does
a genetic algorithm. In the FWI method that we propose, the un-
knowns are the VS, VP, and rho at the nodes of the model grid. In
the case of actual data (Xing and Mazzotti, 2018), the number of
nodes in the modeling grid is usually tens of thousands. Such a huge
number of grid nodes, triplicated, determines several unknowns that
would require unacceptable computing time for a direct application
of the genetic-algorithm Rayleigh-wave FWI.
The solution that we propose to render the number of unknowns

workable with the computing resources of standard computers is the
adoption of a two-grid scheme. Figure 1 introduces the two-grid
strategy. It shows a fine grid (the black net) and the nodes (the ma-
genta dots) of a much coarser grid superimposed on the VS model
pertaining to the third synthetic example that we will discuss in de-
tail later on. Only the portion of interest of the model is shown, but
we consider that absorbing boundaries are also present at the bor-
ders of the shown model.
The fine grid is used in forward modeling to guarantee the reli-

able computation of Rayleigh waves; therefore, it follows the spac-
ing criterion in FDM. Instead, the VS, VP, and rho at each node of
the coarse grid constitute the unknowns, i.e., the total number of
unknowns is three times the number of the nodes of the coarse grid.
Therefore, it is on earth models parameterized with coarse grids that
genetic-algorithm optimization is performed. With coarser grids, the
model resolution attained by the inversion is lower and the required
computing time is less. Although in Figure 1 the shown coarse grid
is regular, it can practically be irregular or even random.
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The choice of the coarse-grid dimensions depends on the avail-
able a priori information that we may have, particularly on the mini-
mum velocities of the subsurface and on the recorded maximum
frequencies that could be recorded. With such information, we
could devise a grid whose spacing among the nodes is governed by
the expected resolution, as can be roughly estimated making use of
rules of thumb, such as that indicated by Park et al. (1999) for
dispersion curve inversion. The grid node spacing can even be var-
iable as a function of the (supposed) velocity variations. When no a
priori information is available, as is the case that we discuss here,
the issue of how to parameterize the coarse grid model is inevitable:
Unless a transdimensional approach (Bodin et al., 2012) to the in-
version is adopted, i.e., an approach in which the number of un-
knowns is itself an unknown, the common practical choice is to
design a regular grid with a reasonable number of nodes to maintain
the computing times acceptable and, possibly, perform a second run
with a more sophisticated grid designed on the basis of the provi-
sional results.
We realize the conversion from the coarse-grid model to the cor-

respondent fine-grid model by means of bilinear interpolation. Due
to the long spacing among the nodes of the coarse grid and the
smoothing effect of the interpolation, we usually obtain smooth pre-
dicted models reproducing only the long-wavelength structures of
the subsurface. We name such predicted models “macro” models.

Genetic-algorithm FWI with frequency and offset
marching

Compared with local optimization methods, global optimization
approaches are much less vulnerable to local minima and this is why
we choose the genetic algorithm in the context of Rayleigh-wave
FWI, which is notoriously a strong nonlinear problem. In addition,
different objective functions can be more easily implemented in
global optimization methods.
The reason why we choose the genetic algorithm over other

global optimization approaches is discussed by Sajeva et al. (2017).
They compare the genetic algorithm with adaptive simulated
annealing, particle swarm optimization, and the neighborhood algo-
rithm. They find that in the context of analytical objective functions
and 1D elastic FWI, the genetic algorithm outperformed the others.
Moreover, the genetic algorithm is naturally par-
allelizable, which is particularly important in our
case for speeding up computation.
Genetic algorithms imitate the biological evo-

lution process to realize optimization. Figure 2
displays the workflow of our genetic-algorithm
FWI. The mechanism of the inversion is as
follows.
The first step is the creation of the initial pop-

ulation, which in our case is an ensemble of VS,
VP, and density (rho) models. The randomly cre-
ated models (individuals) are uniformly distributed
within predefined search ranges that limit the
model space to be explored by the algorithm. The
user can establish such search ranges on the basis
of deductions on the observed data (e.g., on
dispersion spectra) or on some kind of a priori in-
formation on the investigated zone, when available.
Next, a synthetic seismogram is computed by

forward modeling for each model of the initial

population. Based on a user defined objective function, data misfits
between observed data and simulated data are calculated for the
evaluation of the model fitness to sift out the promising models that
are then paired to produce offspring by combination and mutation.
“Combination” here means exchanging part of the values (i.e.,
velocities and densities at some of the grid nodes) of paired models,
whereas “mutation” is randomly changing within the predefined
search ranges a small portion of values of selected models.
After that, the models leading to minor data misfits in the off-

spring are inserted back to the original population to replace the
models associated with larger data misfits. At each generation, se-
lection, recombination, mutation, and reinsertion are performed to
obtain models with ever-decreasing data misfits. This indicates that,
theoretically, the data misfits can always be improved until the ideal
one is found. In practice, considering efficiency, a stopping cri-
terion, such as a predefined maximum generation or a threshold
on the data misfit, is set to terminate the inversion.
The forward modeling, which is performed between the creation

(or reinsertion) of models and the evaluation of the objective func-
tion, requires most of the computational time.
As shown in Figure 2, frequency (Bunks et al., 1995) and off-

set (Masoni et al., 2016) marching are embedded in the inversion

Figure 1. An example of the two-grid scheme. The black grid in-
dicates the fine modeling grid that guarantees the reliable modeling
of Rayleigh waves. The magenta dots denote the coarse inversion
grid. A bilinear interpolation converts the coarse-grid model into its
correspondent fine-grid model. The background colors refer to the
VS model of the third example. In the figure, only the portion of the
model that is of interest is exhibited; that is, the absorbing bounda-
ries to be added in modeling are not shown here.

Figure 2. The workflow of our genetic-algorithm FWI. Frequency and offset marching
have been embedded in the workflow to further avoid cycle skipping.

GA-FWI of Rayleigh waves — Method R807
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workflow for the further avoidance of cycle skipping. Below, we list
the main controlling parameters (Pohlheim, 2006) of the genetic al-
gorithm we use. The correct setting of the parameters is empirical, and
it is strongly influenced by the number of unknowns. In the list, we
also indicate the settings adopted in all the inversion tests shown in
this and in the accompanying paper. Our choices were based on sev-
eral tests and previous works (Sajeva et al., 2014, 2016; Aleardi and
Mazzotti, 2017; Mazzotti et al., 2017; Xing and Mazzotti, 2017a,
2017b).

• Number of individuals: It is the number of subsurface mod-
els that form the population. The higher this number, the
more thorough the exploration of the model space. With ap-
proximately 200 unknowns (VS, VP, and rho at the nodes of
the coarse model grid), the number of individuals that we set
was 2000.

• Number of subpopulations: It is the number of groups that
population (models) is divided into so as to simulate biologi-
cal migration. We adopted five subpopulations. In our case,
migration means moving a percentage of models from one to
other subpopulations. Recombination in Figure 2 occurs for
interpopulation.

• Maximum generation: It is the number of generations
evolved before the inversion outcome is obtained, and we
set it to 200.

• Selection rate: It is the percentage of the models (individuals)
that are chosen to be paired for generating models of the next
generation (offspring). We set this parameter to 0.8.

• Selection pressure: It is the ratio between the probability that
more promising models, namely, the models associated with
relatively smaller data misfits, are selected and the probabil-
ity that any model is chosen. In our tests, it changed linearly
from 1 to 2 along generations.

• Mutation rate: It is the probability that a model is mutated,
and we set it to 0.1.

• Reinsertion rate: It is the percentage of the offspring that re-
place the less promising individuals (models) in the original
population to form the new population. Here, 0.6 was the
setting that we chose.

• The first generation of migration: It is the number of the gen-
eration at which migration occurs at the first time. We set it
to 30.

• Migration interval: It is the number of the generations between
two successive migrations. In our tests, it was set to 20.

• Migration rate: It is the percentage of models that are al-
lowed to migrate. Here, 0.2 was the value that we adopted.

The values of the controlling parameters were chosen considering
the balance between the inversion results and the computational
time. For instance, if we increase the number of individuals, the
exploration of the model space will be more thorough at the expense
of higher computing costs. Conversely, if we decrease the selection
rate, we may attain a faster convergence and save computing time,
but we increase the risk of reaching a premature convergence and
being stuck in a local minimum.
According to our experience, with the proposed genetic-algo-

rithm FWI, depending on the selected coarse-grid spacing, we
are able to derive final model predictions or provide adequate initial
models for Rayleigh-wave FWI with local optimization techniques
for further refinements (Xing et al., 2018).
In what follows, we show the application of our FWI to three syn-

thetic examples. Instead, for checking the application of the method
to actual Rayleigh-wave data, along with the additional considera-
tions demanded for the practical use of the method, readers can refer
to our companion paper.

SYNTHETIC EXAMPLES

We aim at demonstrating that the proposed method is able to
fairly predict near-surface VS models from Rayleigh waves, even
in the case in which no a priori information is given. In this section,
we first present the reference models. Then, we show the inversion
specifications. Finally, we illustrate the predicted VS models and
seismograms together with the evolution of data and model misfits.

Reference models

The reference models that we used in the three tests are displayed
in Figure 3. Only VS models are shown due to the well-known fact
that Rayleigh waves are mostly sensitive to VS; consequently, VS is
the most important parameter that can be retrieved by Rayleigh-
wave inversion.
The first model (Figure 3a) is a 1D model with strong velocity

contrasts and velocity inversions in the second and fourth layers.
This kind of layering is generally considered as difficult to invert

Figure 3. Reference near-surface VS models: (a) 1D model with
sharp velocity contrasts and inversions, (b) 2D model with strong
lateral velocity variations, and (c) 2D model with an irregular topo-
graphic surface and lateral velocity variations. The blasts and reverse
triangles on the topographic surfaces illustrate the locations of the
sources and receivers used in the inversions.
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for by existing Rayleigh-wave inversion techniques (among others,
Cercato, 2009). This seems to be confirmed by some test that we
carried out using dispersion curve inversion with no or with scarce a
priori information. One of the reasons is that the velocity inversions
prevent the generation of head waves and consequently make it dif-
ficult to build suitable initial models by approaches such as first-
break tomography.
The second model (Figure 3b) is a 2D model with strong lateral

variations: At the depth of, say, 6 m, at the lateral coordinate 20 m, the
lateral velocity contrast amounts to 200 m/s. This “anticlinal” struc-
ture violates the 1D assumption that is common in dispersion curve
inversion, and makes it difficult to be inverted for via that method.
The third model (Figure 3c), besides the lateral velocity variation

at depth, shows an irregular topographic surface that further distant-
iates the model from 1D geometry. Moreover, the different eleva-
tions of sources and receivers will result in the distortion of the
observed data and will likely produce diffractions. Intuitively, the
increased complexity will make the data more vulnerable to the lo-
cal-minimum problem (Bunks et al., 1995; Cercato, 2011).
We carried out the synthetic tests committing an inversion

“crime,” that is, the observed data were computed by using the same
forward-modeling engine used in our inversion code and source
wavelets were known.
The acquisition geometry was the same for all the three tests.

Following the lead of engineering studies in which, upon applying
techniques such as MASW, only a few shots are generally used,
three shot gathers, of which one is split-spread and two are off-ends
with evenly spaced receivers, were the input data for the inversion.
The blasts and reverse triangles in Figure 3 symbolically illustrate
the positions of the sources and receivers that were placed on the
topographic surface. The source-to-receiver offsets ranged from
4.25 to 32 m.
To test the impact of background noise, weak random noise was

added to the simulated observed data in the first example.

Inversion specifications

The same inversion specifications were set for the three tests.
Because we simulated the case in which no a priori information

was available, the genetic-algorithm search ranges were constant with
depth and with lateral position. Search ranges limit the model space
that can be explored by the genetic algorithm and, thus, it is recom-
mendable to use a relatively large search range when no a priori in-
formation can suggest a restriction. Therefore, we set the search
ranges for VS, VP, and rho as 100–500 m∕s, 500–900 m∕s, and
1350–1750 kg∕m3, respectively.
Data misfits χ were calculated by the L1 norm, which is less

vulnerable (Kwak, 2008) to outliers compared with the L2 norm,
between the observed and predicted data

χ ¼
P

Nx
nx¼1

P
Nt
nt¼1

jDnt;nx−Pnt;nx jP
Nx
nx¼1

P
Nt
nt¼1

jDnt;nx j
; (1)

where D and P are the observed and predicted data, respectively, nt
and nx are the time and trace sampling number, respectively, Nt and
Nx are the total number of time samples and traces, respectively. In
the tests, the total misfit was a summation over all three shots.
We made use of the offset-marching strategy, and we started the

inversion with the near-offset data until the offset of 9 m. Then, we
gradually included in the inversion the data at larger offsets until 12,

15, 20, 26, and 32 m. Given the minimum velocity defined in the
search ranges and the inverted maximum frequency that were the
same for all three examples, the modeling grid was composed of
5289 nodes to guarantee an appropriate grid spacing. The coarse grids
for the inversion were defined simulating the case in which no a priori
information could suggest a particular geometry of the grids; thus,
they were set as regularly spaced. In the two flat-topography exam-
ples, we defined the same coarse inversion grid of 45 nodes, which
brought the total to 135 unknowns to be inverted for. Instead, in the
test with the 2D irregular topography model, due to the plain fact that
the part above the surface was not to be inverted for, the coarse grid
was built with 39 nodes, which led to 117 unknowns.
The other parameters related to the genetic algorithm, such as the

number of individuals and the maximum generation, were set as the
empirical values listed in the “Method” section.
The tests were carried out on a distributed computing system

made of computers with two cores. Each core had 20 threads. Using
1 thread, each forward simulation took approximately 2 s. Using
545 threads, each inversion took approximately 1 h.

Inversion outcomes

In this part, we show that fair inversion outcomes can be obtained
by applying the two-grid genetic-algorithm FWI method, even
though in the tests (1) complex near-surface models have been

Figure 4. The predicted VS models corresponding to the best seis-
mograms (minimum data misfits): (a) 1D model, (b) 2D model, and
(c) 2D irregular topography model. The dashed magenta lines in-
dicate the positions of the 1D VS profiles that will be presented in
Figure 5. Note that the long-wavelength structures of the reference
models (Figure 3) have been fairly reproduced.
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considered, (2) coarse inversion grids have been used, and (3) no
a priori information has been exploited. The predicted VS models
are displayed in Figure 4, whereas the 1D VS vertical profiles at the
lateral distance of 4 m are presented in Figure 5 to allow for a more
detailed comparison. The best predicted seismograms, along with
the observed data, are shown in Figure 6. An example of the evo-
lution of the data and model misfits is given in Figure 7.
Concerning the first test on the 1D model (Figure 3a), we can see

that the main subsurface features have been recovered (although
with moderately different velocities) by the inversion (Figure 4a).
Despite the fact that the search ranges had been set constant with
depth, the two velocity inversions located at the second and fourth
(bottom) layer have been detected and the prediction of their depth
positions is acceptable. Obviously, sharp interfaces cannot be repro-
duced owing to the adopted parameterization of the subsurface. It
appears that the random noise added to the observed data has not
influenced the results.
The model prediction for the 2D model test is shown in Figure 4b

and should be compared with the reference model in Figure 3b. The
long-wavelength structures have been predicted, particularly the anti-

clinal form on the right and the general increase in velocities with
depth. The predicted model does not fully coincide with the reference
model, but this is expected due to the coarseness of the inversion grid
and, likely, illumination problems at the edges of the model.
The inversion result of the third example, the one with an irregu-

lar topography model, is shown in Figure 4c. Again, the main struc-
ture of the reference model (Figure 3c) has been recovered even in
the shallowest part, and the transition from low velocities to deeper
and laterally varying higher velocities is quite distinguishable.
A more detailed assessment of the results can be made on the 1D

VS profiles shown in Figure 5. The dashed cyan lines indicate the
search ranges set in the inversion. Note that the search ranges are
wide and constant; that is, they do not follow the VS trends of the
reference models. Notwithstanding that, all of the predicted velocity
trends seem to be a low-frequency reproduction of the actual trends.
Although the velocity values of the reference and predicted models
do not coincide, the inversion seems to be able to detect the velocity
changes (particularly the velocity inversions in the first example).
Coming to the comparison between observed and predicted

data, Figure 6 shows the three sets of shot gathers, separated by the
dashed cyan lines, with observed traces represented in black and
predicted traces represented in red. All of the seismograms have

Figure 5. The VS profiles picked from the reference (Figure 3) and
predicted (Figure 4) models at the lateral distance of 4 m. From (a to
c), the profiles sequentially correspond with the 1D model, the 2D
model, and the 2D irregular topography model. The profiles picked
from the reference models are drawn in gray, whereas those picked
from the predicted models are presented in blue. The dashed cyan
lines show the VS search ranges in our genetic-algorithm FWI. Note
that the search ranges are wide and constant; that is, they do not
follow the trends of the reference VS profiles, and that the predicted
VS profiles fairly match the reference model profiles.

Figure 6. The observed (the black traces) and predicted (the red
traces) best seismograms related to the (a) 1D model, (b) 2D model,
and (c) 2D irregular topography model. One in every six traces is plot-
ted. The observed seismograms in (a) have been contaminated with
weak random noise. The dashed cyan lines delimit the left, middle,
and right shot gathers. The seismograms have been normalized trace
by trace. The matching between the observed and predicted seismo-
grams is quite good at all offsets.
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been normalized trace by trace. Figure 6a illus-
trates the case of the first example. Although the
observed data have been contaminated by weak
random noise (S/N equal to 30.7 dB), the predicted
data fairly match the observed data along the
whole range of offsets. The same conclusion can
also be drawn for the other two examples shown in
Figure 6b and 6c. Note that in Figure 6c, the com-
plex distortions of the observed wavetrain caused
by the irregular topographic surface have been well
reproduced in the simulated data.
As a further check, we present in Figure 7 the

evolution along the genetic-algorithm generations
of the data misfit and of the VS, VP, and rho model
misfits pertaining to the third example. The evo-
lution of the misfits in the other two examples is
not exhibited because they show the same charac-
ter. The black curves indicate the minimum data
misfit at each generation in Figure 7a, whereas in
Figure 7b–7d, they indicate the misfit of the model
associated with the seismogram giving the mini-
mum data misfit. The red curves in Figure 7 are,
sequentially, the mean misfits computed over the
entire population of simulated seismograms (Fig-
ure 7a) and their respective models of VS, VP, and
rho (Figure 7b–7d). The dashed cyan lines delin-
eate the offset-marching frame. The blue annota-
tions indicate the offset ranges of the inverted data
at each offset-marching phase.
In Figure 7a, we can observe that within each offset-marching

phase, the minimum as well as the mean data misfits tend to rapidly
decrease, which is encouraging. At generations when an offset-
marching transition occurs, the absolute data misfit will likely in-
crease because the data can be very different before and after the
addition of an offset range. However, from the plot in Figure 7a,
we can assess the evolution of the data misfit only within each offset
range, but we cannot make any comparison among the data misfit
values within different offset ranges due to the fact that the observed
data that are the normalization factor in the objective function of
equation 1, change with offset range. At the last (200th) generation
of the inversion, the mean data misfit is very close to the minimum
data misfit. Combined with the fairly predicted data in Figure 6c,
this closeness indicates that the space for a further reduction of the
data misfit is limited.
The evolution of the VS-model misfit (Figure 7b), although gen-

erally decreasing, shows significant oscillations that are a conse-
quence of the strong nonlinearity of the Rayleigh-wave inversion.
We use the term “best” model misfits to indicate the misfits of the
models that give rise to the minimum data misfits. Encouragingly,
despite the ambiguity, in Figure 7b, the best VS-model misfits and
the meanVS-model misfits show a general decreasewith generations.
At the last (200th) generation, the mean VS-model misfit is slightly
larger than the best VS-model misfit, but the two misfits are fairly
near, indicating that the best and the mean model are likely very sim-
ilar. This is indeed demonstrated in Figure 8 in which the mean mod-
els for all of the previous examples are shown. The reason for the
similarity between the best models and the mean models is the con-
tinuous loss of the variety in the population along generations as a
consequence of selection and recombination.

Figure 7. The evolution of the data and model misfits for the third example: (a) data
misfits, (b) VS-model misfits, (c) VP-model misfits, and (d) rho-model misfits. The black
and red curves in (a) indicate the minimum data misfits and the mean data misfits, re-
spectively. In (b-d), the black curve shows the misfits of the VS, VP, and rho models
associated with the seismograms giving the minimum data misfits (best seismograms),
whereas the red curve represents the misfits of the mean models calculated over the
entire population. The blue annotations delimited by the dashed cyan lines indicate
the offset ranges of the data inverted at each phase of the offset-marching frame.

Figure 8. The mean of the VS models at the last generations of our
genetic-algorithm Rayleigh-wave FWI: (a) 1D model, (b) 2D
model, and (c) 2D irregular topography model. These mean models
are rather similar to the best models presented in Figure 4.
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Concerning the estimation of VP and rho models, Figure 7c and
7d shows their respective evolution. It is immediately evident in the
effect of the minor sensitivity of the data to VP and rho. In fact,
although we observe a general improvement in the best VP-model
misfit and the best rho-model misfit (the black curves in Figure 7c
and 7d) along generations, the rate of the improvement is signifi-
cantly lower than that for VS models. Also, VP and rho models as-
sociated with the best seismograms may show misfits that are much
greater than the mean model misfits at the same generation. This is
again a consequence of the lower control that VP and rho exercise
on the observed Rayleigh waves: The average of a certain number
of — somewhat erratic — VP and rho models may be more sim-
ilar to the reference model than the model associated with the best
seismogram. This is why, according to our inversion tests, unless a
priori information is included, we can rarely obtain VP or rho mod-
els with correct structures. In fact, the VP and rho models retrieved
in the present tests are far from reproducing the true models.

CONCLUSION

We have proposed a two-grid Rayleigh-wave FWI via a genetic-
algorithm optimization. A two-grid scheme, which limits the number
of unknowns so as to decrease significantly the computational time,
has been adopted for the practical applicability of the method. The
proposed inversion fairly predicts the long-wavelength components
of near-surface VS models, confirming the ability of genetic algo-
rithms to converge even when no a priori information is available.
Among the many tests that had been performed, we have shown

here the results pertaining to three synthetic models that are generally
considered as being fairly complex to be inverted for by means of
dispersion curve inversion or by FWI with local optimization tech-
niques, without a priori information. The three models individually
contain (1) strong velocity contrasts and velocity inversions, (2) strong
lateral velocity variations, and (3) an irregular
topographic surface.
Although fairly coarse inversion grids had been

used, so that the reconstructed models can only be
low-resolution models, in the first test with the 1D
model, the two velocity decreases have been cor-
rectly detected, whereas in the second and third
examples, the lateral velocity variations and the
effects of the irregular topography have been
fairly reproduced.
Because of the fair reproduction of the macro-

structures of the reference models and the adequate
match of predicted and observed seismograms,
the models obtained by our stochastic method
are supposed to be suitable inputs to Rayleigh-
wave FWI through local optimization techniques
for further refinement, if needed. Preliminary tests
carried out using IFOS2D, a gradient-based FWI
code developed by the Toolbox for Applied Seis-
mic Tomography project (Bohlen, 2002; Köhn
et al., 2012; Groos et al., 2014), seem to confirm
the expectations.
Because all of the models explored by the ge-

netic algorithm can be collected, we can also think
of expressing the results not just as the best model
or the mean model, but as frequency histograms
that could be further elaborated to retrieve prob-

ability distributions. This would allow for the parallel estimation
of uncertainties associated with the most likely model. However, this
approach remains among the works to be done for Rayleigh-wave
FWI. Instead, a work that has been done is the application of the
proposed method to two field data cases. The results are presented
in a companion paper, along with a discussion on practical issues that
need to be addressed.
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APPENDIX A

3D TO 2D CORRECTION

In the real world, wavefronts are spherical, whereas in 2D FDM,
the source is a line source that gives rise to cylindrical wave propa-
gation. To make field data (or modeled 3D data) and our 2D mod-
eling outcomes comparable, we correct the former via a 3D to 2D
correction technique proposed by Forbriger et al. (2014).
Following Forbriger et al. (2014) and Schäfer et al. (2014), we

apply the multilayer surface-wave transformation to the 3D data,
with the exception of the near-offset traces in which the single-layer
transformation is used instead.

Figure A-1. Models used for checking the effectivity of the adopted 3D-to-2D correc-
tion (Forbriger et al., 2014) method. (a) A synthetic model that contains sharp velocity
contrasts and velocity inversions. (b) A realistic model derived from 3C down-hole re-
cordings and density log.
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The algorithm for multilayer surface-wave transformation is as
follows:

1) Convolve the data with
ffiffiffiffiffiffi
t−1

p
where t is the time.

2) Multiply the data with r
ffiffiffiffiffiffiffiffiffi
2t−1

p
where r is the source-receiver

distance.

The algorithm for the single-layer transformation is as follows:

1) Convolve the data with
ffiffiffiffiffiffi
t−1

p
.

2) Multiply the data with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2rVph

p
, where Vph is the single-phase

velocity.

We checked the effectiveness of the adopted correction method
on the basis of two near-surface models shown in Figure A-1. The
first model (Figure A-1a) is a quite complex near-surface model that
contains sharp velocity contrasts and strong velocity inversions. The
second model (Figure A-1b) is a realistic model derived from an
actual borehole.
The reflectivity modeling results of the two models are shown in

Figure A-2, with the black traces indicating the seismograms simu-
lated via a 3D wave propagation and the red traces representing the
3D to 2D corrected seismograms. For the seismograms of both
models, the phase correction is particularly evident although a sig-
nificant amplitude correction has also been performed but its effect
is less visible due to the trace-by-trace normalization.
In Figure A-3, the reflectivity modeling results with the 3D-to-2D

correction applied are displayed as the black seismograms, whereas
the 2D elastic FDM outcomes are presented as the red seismograms.
The results for both models show very satisfactory matching be-
tween FDM traces and 3D-to-2D corrected reflectivity traces at
all offsets.
In the perspective of Rayleigh-wave FWI, the application of the

3D-to-2D correction, whose effectiveness is confirmed by the quite-
good match between the 2D FDM seismograms and the 3D-to-2D
corrected reflectivity seismograms, will assure more correct model
predictions.
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