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Abstract—Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data
analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the
amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make
informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in
order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a
representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient
processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable
out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels,
parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and
real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency
of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications.
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1 INTRODUCTION

P REFERENCE queries have received considerable atten-
tion over the last years for their increasing interest in de-

cision making processes based on real-time data (e.g., intru-
sion detection systems and financial applications). They are
executed for information filtering and extraction, in order to
reduce the volume of data used for successive phases that
combine various interests to make strategic decisions [1].
Their real-time execution represents a hot research topic [2],
since such queries are usually time consuming and need
expensive pairwise tuple-to-tuple comparisons (a tuple is a
structured data item consisting in a record of attributes).

With the emergence of data streams, preference queries
are continuously processed over unbounded sequences of
transient data received at high velocity. A common ap-
proach is to process the query under a sliding window
model [3], where the query is frequently re-evaluated over
the most recent tuples received in the last time interval (e.g.,
expressed in seconds or milliseconds) [3], [4]. This periodic
re-evaluation further increases the computational require-
ments and makes the use of parallel processing techniques on
today’s multicores a compelling choice to run the queries in
real-time efficiently and in a scalable manner [5], [6].

However, the performance of parallel continuous queries
may be hampered by the workload variations and the
temporal properties of real-world data streams. One is the
presence of bursts [7], i.e. sharp rises in the traffic volume, for
example generated when some sensors detect critical events
and respond with a temporarily increase in the sampling
rate [7]. The parallel processing of temporal windows over
bursty streams may suffer from an uneven load distribution,
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as the extents of different windows (i.e. the set of tuples
whose timestamp is within the window temporal interval)
may have a substantially different cardinality. The problem
is exacerbated in case some tuples arrive at a data receiver
out-of-order, i.e. not ordered according to their timestamps.
Possible causes include the multiplexing of several phys-
ical streams or the use of unreliable communication pro-
tocols [8], [9]. In those cases the way the system detects
when all the tuples of a window have likely been received
is critical to provide live results with tolerable latency.

An approach to deal with workload variations, such as
an increase or a decrease in the arrival rate, is to use elastic
runtimes [5], [6], [10] able to scale up/down the resources
(nodes/cores) hosting the query execution. Such resource
reconfigurations may disturb the flow of data by producing
latency spikes and throughput drops [6], [11]. Consequently,
they must be triggered when some deterministic trends
in the workload are observed or predicted at slow time-
scales (e.g., minutes or tens of seconds) [5], [10]. Different
instead is the nature of bursty workloads, where micro-
congestion episodes happen at very fast time-scales (e.g.,
few milliseconds). As stated in Ref. [12], bursts may produce
a detrimental effect in the query performance and may lead
to ineffective elastic responses. Burstiness is a important fea-
ture to be addressed in next-generation stream processing
frameworks, however it is often overlooked and the design
of burst-tolerant strategies represents a still open challenge.

Two opposite models have been used to deal with out-
of-order data streams [8], [9], [13], [14]: i) in-order process-
ing model (IOP), where tuples are first buffered and then
presented to the query in increasing order of their times-
tamps; ii) out-of-order processing model (OOP), where tuples
are immediately forwarded to the query and processed in
the arrival order. As shown in Ref. [14], the OOP model
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is capable of reducing the query latency and memory usage
provided that: a) the query semantics allows the results to be
incrementally computed by processing tuples in any order;
b) some additional operator in the query plan must be able
to recognize when all the tuples of a window have likely
been received and the query can be re-evaluated. While
solutions for this problem have been studied for simple
queries like sliding-window aggregates [8], [13], no previous
work copes with the problem of running preference queries
in parallel environments and over out-of-order data streams.

In this paper, for the first time, we study a parallel
model for continuous preference queries which is able to
handle both bursty transmissions and out-of-order arrivals
in data streams. We study a parallelization of the pane-based
model presented in Ref. [15]. We show that this approach,
originally thought to be sequential and designed for sliding-
window aggregates, can be profitably applied to a set of
preference queries that can be executed “à la” map-reduce,
i.e. by separating the set of tuples of each window in
different partitions called panes, and by merging the results
of the panes to obtain the final results of the windows.
The parallelization consists of two parallel stages working
in pipeline. The first executes the query on the panes, the
second computes the results of the windows. Both stages
incorporate sophisticated scheduling strategies to cope with
bursty data streams, and stream progress mechanisms to
allow tuples to be processed out-of-order.

1.1 Contributions
The general contribution of this paper is to fill some existing
gaps in the literature. From one side the impact of burstiness
in continuous query processing has not been studied quan-
titatively, and countermeasures represent a novelty per se.
On the other side, techniques for out-of-order data streams
have a long history, however their evaluation in multicore
parallel implementations is still missing. This paper covers
these aspects by targeting preference queries, a class of com-
putationally demanding queries. The specific contributions
can be summarized as follows:

• Burst-tolerant scheduling strategies: panes can be split
to improve load balancing in presence of bursts. For
preference queries, splitting too much the panes in-
creases the number of tuples transmitted to the second
stage. To solve this issue our scheduler dynamically
applies the minimum splitting needed to success-
fully handle the current burstiness level. To this end,
a proportional-integrative-derivative controller (PID)
adjusts the splitting threshold autonomically. In the
second stage, we design a scheduling strategy that
neutralizes the impact of bursts as much as possible.
The strategy uses feedbacks from the parallel workers
and schedules tasks in order to optimize load balanc-
ing while respecting the computation semantics.

• Use of a parameterized burstiness model: in order to
have a systematic way to evaluate the capability to
handle bursty periods with different intensities and
duration, we adapt an existing approach [16] to in-
ject burstiness at fine time-scales in the stream. The
approach relies on a single parameter, the index of
dispersion, and has been applied in the past for stress

tests of client-server systems. Its application in the data
stream processing domain is completely novel.

• Modularity of disordering handling: we localize the
disordering handling mechanisms in the first stage.
We show that the disordering handling logic is com-
pletely orthogonal to the scheduling strategies used
to handle bursty periods, and can be configured to
further decrease latency once the degree of parallelism
is sufficient to avoid the query being a bottleneck.

An implementation is provided within the FastFlow1

framework [17] for shared-memory architectures. The ex-
periments, on synthetic and real-world datasets, show that
our approach accommodates high levels of burstiness in an
effective way while achieving satisfactory processing band-
width and latency. Furthermore, we show that the parallel
implementation tolerates high degrees of out-of-orderness
and the latency reduction justifies the use of the OOP model.

The outline of this paper is the following. Sect. 2 pro-
vides background concepts. Sect. 3 shows the parallel query
model. Sects. 4 and 5 describe the implementation strategies
evaluated under synthetic datasets. Sect. 6 shows a final
evaluation using real-world datasets. Finally, Sect. 7 de-
scribes related works and Sect. 8 provides the conclusions.

2 BACKGROUND

In this section we describe the background of preference
queries and the pane-based model [15]. Then, we identify
the reasons that make this model suitable for supporting
parallel and out-of-order processing.

2.1 Continuous Preference Queries
Let D be a d-dimensional sub-space of Rd with d ≥ 1.
A preference query Q finds the subset S ⊆ D of the
most relevant tuples according to some criterion. Some
queries guarantee a fixed-cardinality output set, like the top-
k query [18] that returns exactly the k ≥ 1 most interesting
tuples by using a user-defined scoring function. In contrast,
the skyline query [19] uses an implicit criterion called Pareto
dominance, i.e a tuple t dominates a tuples t′ if it is better or
equal in all the dimensions and better in at least one dimen-
sion. In case of high-dimensional datasets, this relation may
produce large skylines (i.e. the output set of non-comparable
tuples) because as d increases, for any tuple t it is more likely
that exists another tuple t′ where (t, t′) are better than each
other over different subsets of dimensions [20].

A recent effort has been made to define queries pro-
viding a fixed-size output set without using user-defined
scoring functions that are in general difficult to be defined
effectively. An example is the top-δ dominant query [20],
in which a relaxation of the Pareto dominance called k-
dominance is used, i.e. a tuple t in the k-dominant skyline is a
tuple for which there does not exist any other tuple t′ better
or equal to t in k ≤ d dimensions and better in at least one
of these dimensions. Accordingly, the size of the k-dominant
skyline decreases with smaller values of k. The aim of the
top-δ dominant query is to find the smallest k ≤ d such that
there are more than δ ≥ 1 k-dominant skyline tuples.

1. FastFlow: http://mc-fastflow.sourceforge.net. The implementation
source code can be found at https://github.com/ParaGroup/BT-PPQ.
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Continuous preference queries over data streams are
executed according to a sliding window model [4], where
the query is evaluated over the most recent tuples. Time-
based windows are most commonly used in stream processing
applications [4]. It is possible to distinguish between:

• time-based sliding windows with a temporal activation
mode: each window has a length of w time units and
a new window is triggered every s time units (slide).
For example, the query is evaluated over the tuples
received in the last five seconds (w = 5) by producing
a new result every one second (s = 1);

• time-based sliding windows with a slide-by-tuple activa-
tion mode: each window covers a timespan of w time
units from the last received tuple, i.e. the window
slides every new tuple (s = 1 tuple).

The first model is supported in most of the modern
stream processing frameworks (e.g., Apache Storm [21])
and produces an output set Si for each window Wi. The
second, applied to some continuous preference queries in
the literature [22], [23], produces a sequence of incremental
updates of a unique output set S . In this work we will adopt
the first model for the following reasons:

• in case of very fast input rates producing a result
update every tuple is not realistic [13], [15]. Instead,
the user may prefer to receive results at a regular fre-
quency independently of the temporal characteristics
of the stream like the presence of traffic bursts or lulls;

• the slide-by-tuple semantics may be difficult to be
applied in out-of-order streams, as the arrival of a new
tuple does not always imply that the maximum times-
tamp seen so far increases. Instead, with a temporal
activation mode the user specifies how far apart are
consecutive windows in terms of time units, indepen-
dently of the arrival order of the tuples.

In the next part we will introduce a query process-
ing model for sliding windows with temporal activation
mode [15]. This approach will be the basis of our work.

2.2 The Pane-based Model
The pane-based model has been introduced for sliding-
window aggregates [15], but the idea can be extended for
a representative set of preference queries. The approach
divides each window into a set of disjoint (tumbling) sub-
windows called panes, computes the result of a sub-query on
each pane, and merges the results of the panes to determine
the result over each window, as depicted in Fig. 1.
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Fig. 1: Pane-based approach to sliding-window queries.

Let w and s be the window length and slide expressed in
time units, D the set of all the tuples of the input stream and
t.ts the timestamp attribute (starting from zero) of a tuple t.

Each pane is a tumbling window of length Lp = GCD(w, s)
time units [15], e.g., with windows of 5 seconds and slide of
2 seconds each window is partitioned into five panes each
of length 1 second. The pane with identifier i = 1, 2, . . . ,
contains the set of tuples Pi ⊆ D defined as follows:

Pi =
{
t | t ∈ D, t.ts ∈

[
(i− 1) · Lp, i · Lp

)}
(1)

Each tuple t ∈ D coming to the query operator belongs to
exactly one pane, i.e. the one with identifier i = dt.ts/Lpe.

To apply the pane-based model the continuous prefer-
ence query must be decomposable by the user into two
sub-queries Q = {G,H}. The first is the pane-level query
(PLQ), which processes the panes and produces a result
Ri = G(Pi) for each pane. The result of a pane is the
subset of the pane tuples selected according to the used
preference relation, i.e. Ri ⊆ Pi. The second sub-query
is called window-level query (WLQ), and runs over all the
results of the panes and computes the final results of the
windows. Let wp = w/Lp and sp = s/Lp be the number
of panes per window and slide respectively, and Wi the
window with identifier i = 1, 2, . . .. We define Zi the set of
the identifiers of the panes belonging to the i-th window:

Zi =
{
j | j ∈ N,

[
(i− 1)sp

]
< j ≤

[
(i− 1)sp

]
+ wp

}
(2)

The result of the i-th window is Si = H({Rj}j∈Zi
) and

represents the set of the most preferred tuples among to
ones in the panes of the window, i.e. Si ⊆

⋃
j∈Zi

Rj .
The functions G and H are specific of the query. As

an example, in the skyline query the PLQ computes the
local skyline of each pane, and the global skyline of each
window is computed by the WLQ using the local skylines
of the panes. The same idea can be used for top-δ dominant
query, where the set of k-dominant skyline points is always
a subset of the skyline [20]. Analogously, in top-k queries the
individual answers on the panes can be merged to produce
the top-k answers of the windows [24].

The pane-based model reduces the query processing
time [15]. In fact, each pane result Ri contains a subset
(likely small) of the original input tuples of the pane.
Consequently, the WLQ performs fewer tuple comparisons
because it processes pane results instead of input tuples, and
the results of panes shared among windows can be re-used
by saving computation time. In addition, the pane-based
approach has two useful properties:
Exploiting parallelism: the execution on different panes

(PLQ) and windows (WLQ) is independent and they
can be processed concurrently by multiple threads in
order to increase the overall query throughput.

Handling disordered tuples: to enable OOP tuples must be
processed in the arrival order. The pane-based approach
is compatible with this vision provided that a proper
mechanism is implemented in the PLQ to detect when
all the tuples of a pane have likely been received. This
aspect will be studied in Sect. 4.

3 OVERVIEW OF THE PARALLEL SOLUTION

We designed a parallel implementation of the pane-based
approach written on top of the FastFlow parallel program-
ming framework [17] for streaming applications on multi-
core systems.
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FastFlow is a C++11 template library. The FastFlow
model allows the programmer to build networks of stream-
ing operators. Single-threaded operators cooperate by ex-
changing data items (tasks) through clearly identified data
paths. Each operator performs an infinite loop that: i) gets
a task (a memory pointer to a data item) from its input
queue; ii) executes a user code on the task; iii) puts a
task/result (a pointer) into its output queue. FastFlow uses
lock-free single-producer single-consumer queues to enable
low-latency cooperation among operators [25].

FastFlow provides two basic parallel patterns to build
graphs of operators. The first is the pipeline pattern, which al-
lows the tandem composition of streaming operators work-
ing on different data items in parallel. The second is the
farm pattern, where the same computation takes place on
different data items in parallel. The pane-based approach is
parallelized as a pipeline of two parallel stages (the PLQ
and WLQ ones), each of them parallelized according to the
farm parallel pattern as shown in Fig. 2. The two stages,
although based on the same parallelism pattern, will be
characterized by proper customized scheduling strategies
as it will be explained in Sects. 4 and 5.
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Fig. 2: Parallelization of pane-based sliding-window queries.

Each farm has an emitter operator in charge of splitting
the input stream into several outbound streams, one for each
worker operator. Workers are identical replicas of the same
functionality. PLQ workers execute the pane-level query
on the panes, while the workers within the WLQ perform
the window-level query. The collector in the second farm is
responsible to merge back the results of different windows
into a single stream by restoring their correct order.

The whole parallel implementation can be instantiated
by the user as a C++ object extending the FastFlow pipeline
pattern, by providing as input arguments to the constructor
the window specifications (window length and slide) and
the sub-query functions of the PLQ and the WLQ stages.

4 PARALLEL PANE-LEVEL QUERY

The PLQ parallel implementation is designed to withstand
the arrival rate (input bandwidth) without being a bottleneck
(this condition will be formalized later in this section). In
this part we will study and evaluate the implementation
choices applied to the PLQ emitter and workers.

4.1 PLQ Emitter
The PLQ emitter functionality is a sequential operator re-
sponsible to serve two distinct roles:

• handling of out-of-order arrivals: as studied in Ref. [14],
OOP needs that input streams are punctuated, i.e. they

are enriched with special meta-tuples used as a stream
progress indicator. In our implementation the PLQ
emitter generates such punctuations to the workers;

• scheduling of input tuples to the workers in order to
exploit at best their computational capabilities.

In the following sections we will describe how these
roles have been implemented in our approach.

4.1.1 Punctuation generation
The distinguishable aspect of out-of-order data streams is
the presence of so-called late arrivals [8]. A tuple t ∈ D is
a late arrival if it arrives after a tuple t′ ∈ D such that
t′.ts > t.ts. The presence of late arrivals makes difficult
to determine when all the tuples of a pane have been
received. A solution is to embed in the stream special meta-
tuples called punctuations [26]. A punctuation contains no
meaningful fields except a timestamp attribute. A punctu-
ation with timestamp tp means that no more tuples with
timestamp lower than tp are expected. Such a punctuation
allows the PLQ to close all the panes with identifier smaller
than dtp/Lpe, i.e. their results can be produced to the WLQ.

The punctuation logic is localized in the PLQ emitter.
One of the approaches that can be used to generate punc-
tuations is based on the K-slack algorithm [27]. The original
idea has been commonly used for IOP systems, where tuples
are first buffered and then transmitted to the query in order
of their timestamps. In that case the K-slack logic is used
to determine how long the tuples must be buffered before
being transmitted in order. Instead, in this work we forward
immediately the tuples to the workers in their arrival order,
and we use the K-slack algorithm to determine the value of
punctuations that are periodically embedded in the stream.

The K-slack algorithm uses a delay parameter K initial-
ized to zero. A variable tmax stores the maximum timestamp
of the tuples received so far. For each newly received tuple
t, t.ts is compared with tmax. If tmax must be updated, the
emitter performs the following actions:

• the value of K is updated to the maximum between
its previous value and d(ti) = tmax − ti.ts for all the
tuples ti received since the last update of tmax;

• the emitter generates a punctuation with value tp =
tmax −K , which is broadcasted to all the PLQ workers.

This mechanism does not guarantee that the punctuation
timestamps are monotonically increasing. Therefore, the
PLQ emitter emits a new punctuation only if it is a real
stream progress, i.e. its timestamp is greater than the one of
the last emitted punctuation.

Punctuations are used to admit or drop the tuples that
arrive at the query. For each received tuple, if its timestamp
is greater than the value of the last emitted punctuation
the tuple is scheduled to the workers (as described in the
next section). Otherwise, the tuple is dropped and it will
not contribute to the result of the corresponding pane.

4.1.2 Scheduling of tuples
The major role of the PLQ emitter is to schedule the tuples to
the PLQ workers. A basic strategy (referred to as PB_RR in
the sequel) consists in a round-robin assignment of panes to
the workers, i.e. all the tuples of the i-th pane are scheduled
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to the worker with identifier j = (i mod n) + 1, where
n ≥ 1 is the number of workers (the PLQ parallelism degree).

The main drawback of this scheduling strategy is its
inability to keep the computational load always balanced
among workers, potentially causing the PLQ to be a bot-
tleneck. Load unbalancing can be caused by both extrinsic
and intrinsic factors. Extrinsic factors are related to the
temporal properties of the input stream, like its velocity
and the presence of bursts. A burst can be defined as a
time period in which the number of arrivals is abnormally
over the average. In bursty scenarios the amount of tuples
per pane can be very uneven, making the computation on
some panes more time-consuming than the others. When
such bursty behavior happens, the PB_RR scheduling may
be unfair because several costly panes can be assigned to the
same workers while other workers may remain idle.

The unbalance can be amplified by intrinsic factors pecu-
liar to the query executed. We recall that the workers process
the tuples incrementally by updating the corresponding
pane result (the output set of the most preferred tuples in
the pane). The number of tuples in the pane result may
depend on the spatial distribution of the tuple attributes.
For example, the skyline is small if the dataset is correlated,
whereas independent or anticorrelated distributions produce
larger skylines [19]. If the stream conveys tuples with a time-
varying spatial distribution, it is be possible that panes with
similar input cardinalities have a substantially different size
of their skylines, and thus tuples of different panes may
have different processing times. Such feature exacerbates the
problem of finding an effective load distribution.

To remedy this problem, we need a scheduling strategy
able to withstand the input bandwidth in presence of both
the factors. Our solution is based on a proactive splitting of
panes. The general idea is the following:

• the PLQ emitter records the number of tuples per pane
transmitted to each worker and periodically estimates
a splitting threshold θ expressed in terms of number
of tuples. The threshold estimation requires a careful
design that will be described later in this section;

• when the first tuple t of pane Pi is received, the worker
wj with the smallest number of tuples in its input
queue at that time instant (called least loaded worker,
briefly LLW) becomes the owner of that pane and t is
scheduled to it;

• for each successive tuple t′ of Pi, if the current number
of tuples of that pane transmitted to the owner is
smaller than the actual value of the threshold θ, the
tuple is still scheduled to the owner. Otherwise, the
current LLW, let say wk, becomes the new owner and
t′ is scheduled to it.

Therefore, more workers can hold different partitions of the
same pane. We denote by Pi,j the j-th partition of the i-
th pane and by Ri,j its result. We define the splitting factor
σs ≥ 1 as the average number of existing partitions per pane.

The approach has an intrinsic proactive nature due to the
guess that the algorithm performs when a pane partition
exceeds the current threshold. In fact, the emitter is not
aware of the number of tuples that will contribute to the new
partition, and the splitting can be ineffective if it will contain
too few tuples. However, the LLW policy counteracts this

effect by assigning new partitions to those workers where
such small partitions have been assigned.

In general, there are two advantages and a main concern
of using low values for the threshold θ:

3 distribution fairness: low thresholds allow the emitter
to distribute almost the same number of tuples to the
PLQ workers, despite the presence of possible extrinsic
factors like a severe burstiness;

3 fine computational grain: the processing time per tuple
depends on the current cardinality of the correspond-
ing result of the pane partition. With low θ both the
input cardinality (number of input tuples) and the re-
sult cardinality (tuples in the result) of a pane partition
are kept as smallest as possible. This is an effective way
to cope with intrinsics factors to load unbalance;

7 result size blowup: the greater the number of partitions
per pane the larger the number of tuples transmitted
to the WLQ, as the PLQ selects the local ”best” tuples
within each partition. This increases the computational
requirement of the WLQ and may vanish the compu-
tational advantage of the pane-based approach.

In contrast, high threshold values allow the PLQ to produce
smaller result sets at the expense of a possibly unfair distri-
bution and a coarser computational grain.

The work in Ref. [28] targets the execution of sliding-
window aggregates (e.g., sum, max, avg, quantiles) over
data streams exhibiting load variations (not properly bursts
at fine time scales). That work uses a sort of splitting ap-
proach driven exclusively by some statistical estimates such
as the average size of the most recently completed panes.
The downside of this solution is that it does not correlate
the obtained splitting factor with the actual query perfor-
mance, and the used splitting may be too aggressive (or
too conservative) with dramatic performance consequences
for preference queries. Our idea is to make the threshold
selection aware of the actual PLQ performance. In fact,
as it will be shown in Sect. 4.3, it is not essential that all
the workers are perfectly balanced, but it is just sufficient that
none of them are bottlenecks. Therefore, the scheduling should
adapt the threshold in such a way as to apply the minimum
splitting to make the PLQ not a bottleneck. In this way the
PLQ is capable of sustaining the input bandwidth without
producing too large result sets to the WLQ. To this end, we
use an adaptive splitting method (called AS_PID) based on
a PID (Proportional-Integrative-Derivative) controller [29].

Adaptive splitting with PID. Fig. 3 shows the logical
components within the emitter. The Statistics Manager
records the number of tuples that take part to the pane
partitions and periodically estimates a base threshold θb,
calculated as the sum of the average size of the most recent
pane partitions closed by a punctuation plus the standard
deviation, similarly to Ref. [28]. The Scheduler receives
the tuples from the stream and dispatches them to the PLQ
workers by using an actual splitting threshold θ calculated as
θ = α · θb, where α > 0 is an adaptation parameter.

The Controller is a discrete-time PID with a sampling
interval of T time units. Every sampling interval the con-
troller gets the PLQ utilization factor from the Monitoring
component. The utilization factor ρ is defined as in Queue-
ing Theory [30], i.e. it is the ratio of the arrival rate of
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Fig. 3: Logical components of the PLQ emitter.

tuples over the average number of tuples that the PLQ is
able to serve per time unit. The condition ρ < 1 states that
the PLQ is not a bottleneck, while values greater than one
indicate that the service rate is not high enough to withstand
the input bandwidth. At each sampling interval τ , the
controller determines an adjustment ∆α(τ)—i.e. an increase
or a decrease—of the α(τ) parameter, and provides it to the
Scheduler in order to compute the splitting threshold used
for the next interval. The value of ∆α(τ) is chosen according
to the PID control law stated as follows:

∆α(τ) = Kp e(τ) +Ki

τ∑
i=0

e(i) +Kd [e(τ)− e(τ − 1)] (3)

where e(τ) = ρ − ρ(τ) is the absolute error between a
setpoint value ρ and the measured utilization factor. To
remove the bottleneck without splitting too much the panes,
the setpoint should be set to a value slightly smaller than
one. The adjustment is the sum of three components: a term
proportional to the last error, a term proportional to the
sum of the last errors (integrative), and a term proportional
to the last variation of the error (derivative). To set the
weights Kp, Ki and Kd we use the Aström-Hägglund relay
method [31] to tune the controller automatically during an
initial warm-up period of the execution. Furthermore, we use
classic techniques developed for PIDs in order to avoid the
accumulation of past errors (integral windup [32]) which can
occur during phases where the error is large independently
of the controller action, e.g., when the PLQ is a bottleneck
also using the minimum threshold, or when the operator
has very low utilization also with a very high threshold.

The pseudo-code of the Scheduler component is shown
in Alg. 1. The scheduling strategy obtains the last estimate of
the utilization factor and the new value of ∆α(τ) at lines 3 -
5. The algorithm uses a data structure PD to store a descrip-
tor for each pane. Each descriptor contains: i) the number of
tuples currently assigned to the owner (a tuples); ii) the
identifier of the owner of the pane (a worker); iii) an array
of counters (i sizes) representing the number of tuples
of that pane currently scheduled to each worker (zero if
the worker does not have a partition of that pane). The
descriptors are purged from PD when panes are closed.

From line 9 to 15 the algorithm handles the case where
no splitting is needed. If t is the first tuple received for pane

Algorithm 1 AS_PID Scheduling Strategy
1: function PLQ SCHEDULING(t, θb)
2: if curr time() > end sample time then
3: ρ(τ) = MONITORING.GETUTILIZATION()
4: ∆α(τ) = PID.GETOUTPUT(ρ(τ))
5: α(τ) = α(τ) + ∆α(τ)
6: end sample time = curr time() + T
7: end if
8: i = bt.ts/Lc
9: if PD[i].a tuples < α(τ) · θb then . Case 1: no splitting

10: if PD[i].a tuples = 0 then
11: w = GET LLW ID()
12: PD[i].a worker = w
13: end if
14: PD[i].a tuples = PD[i].a tuples+ 1
15: SEND TO WORKER(t,PD[i].a worker)
16: else . Case 2: splitting
17: w = GET LLW ID()
18: oldw = PD[i].a worker
19: PD[i].a worker = w
20: PD[i].i sizes[oldw] = PD[i].a tuples
21: PD[i].a tuples = PD[i].i sizes[w] + 1
22: SEND TO WORKER(t,PD[i].a worker)
23: end if
24: end function

i, the Scheduler selects the LLW (line 11) as the owner.
Pane splitting case is handled from line 16 to 23.

PLQ utilization factor estimation. The estimation of the
utilization factor by the Monitoring component is critical.
FastFlow provides an API to monitor the workers activ-
ity [17]. Measurements that can be collected are:

• work time: the total time spent in processing input
tuples (it does not include the periods in which the
worker was idle waiting for a new input tuple);

• tasks cnt: the total number of tuples processed by a
worker from the beginning of the execution.

These measurements are used to estimate the fraction of
the last sampling interval in which worker i was active in
processing tuples (denoted by φi) and the number of tuples
processed qi. The used symbols are summarized in Tab. 1.

Symbol M or C Description

φi M length of the fraction of the last sampling interval
in which the i-th worker was active in processing
tuples.

φtot C sum of the intervals φi of the workers, i.e. φtot =∑
φi.

qi M number of tuples processed by the i-th worker in
the last sampling interval.

qtot C total number of tuples processed by the workers in
the last sampling interval, i.e. qtot =

∑
qi.

µi C number of tuples that the i-th worker would have
been able to process during the last sampling inter-
val.

λi M number of tuples scheduled to the i-th worker in
the last sampling interval.

λtot C number of tuples scheduled by the PLQ emitter in
the last sampling interval, i.e. λtot =

∑
λi.

pi C probability to schedule a tuple to the i-th worker,
i.e. pi = λi/λtot.

TABLE 1: Metrics used for estimating the utilization factor.
In the second column the symbol M means that the metric is
directly measured from the execution, C means that the metric
value is computed using cost models.

To accommodate fluctuating input rates like in bursty
scenarios, we configure the farm pattern in order to use
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unbounded FastFlow queues [25]. In this way if one of the
worker is currently congested, the emitter is still capable
of scheduling the tuples to the other workers at the arrival
speed. This allows each steady-state arrival rate λi to the
various workers to be derived independently of each other.

To determine the utilization factor of the i-th worker, we
need an approximation of its service rate µi, i.e. the expected
number of tuples that it is able to serve in a sampling
interval assuming that the worker is never idle. This estima-
tion must be carefully evaluated because of the incremental
nature of the computation. In fact, it should be noted that
the processing time of a tuple over an almost empty pane is
low compared with the one of a tuple computed on panes
that are about to be closed by a punctuation. We use a
global average estimate of the processing time per tuple C
computed as the ratio of φtot over the total amount of tuples
processed by the workers, i.e. C = φtot/qtot. The service rate
is estimated as:

µi = qi +
T − φi
C

(4)

that is, we add to the number of already processed tuples
the estimated number of tuples that the worker would have
been able to serve during the idle part of the last interval.

The use of unbounded queues allows the workers to act
as independent systems, and the global utilization of the
PLQ can be evaluated as the weighted average of the utiliza-
tion factors of its workers, where the weights correspond to
the distribution frequencies:

ρ =
n∑
i=1

(
pi ·

λi
µi

)
=

n∑
i=1

λ2i
λtot µi

(5)

where n ≥ 1 is the number of workers. As it will be shown
experimentally in Sect. 4.3, this cost model will be able
identify accurately when the PLQ is a bottleneck.

4.2 PLQ Workers

PLQ workers receive both tuples and punctuations from
the emitter. They maintain a private data structure RD
containing a result descriptor for each pane partition. A
worker j can execute the following types of actions:

• search: determine whether the result of a pane with a
specified identifier i exists in RD;

• insertion: the result of a pane partition is created and
inserted into RD. The result is incrementally updated
each time a new tuple of that pane is received;

• removal: when a punctuation tp is received, the descrip-
tors of panes with identifier i < dtp/Lpe are deleted
from RD and the results transmitted to the WLQ.

While the search is performed each time a tuple arrives
at the worker, the other actions are less frequent. We imple-
ment the RD container as a double-ended queue (C++STL
deque), in order to reach a good compromise between
efficiency and simplicity. Descriptors are kept ordered by the
pane identifier in order to exploit a logarithmic time search,
while removals are handled efficiently because we remove
the first descriptors in the deque (the panes closed by a
punctuations are always at the beginning of the container).
Also insertions are handled efficiently, as they likely happen

Algorithm 2 PLQ worker
1: function PROCESS TUPLE(t)
2: i = bt.ts/Lc
3: if t = punctuation then . Case 1: t is a punctuation
4: Ω = RD.SEARCH LOWER BOUND(i)
5: for each p ∈ Ω do
6: SEND TO WLQ(p.resultset)
7: RD.REMOVE(p)
8: end for
9: else if t = tuple then . Case 2: t is a regular tuple

10: if RD.SEARCH ENTRY(i) = false then
11: p = new Pane(i)
12: RD.INSERT(p)
13: else
14: p = RD.GET ENTRY(i)
15: end if
16: p.ADD COMPUTE(t)
17: end if
18: end function

at the last positions of the deque (except for huge disorder-
ing). The pseudo-code of a worker is shown in Alg. 2.

The worker handles punctuations from line 3 to 8. The
function called at line 4 returns the set of pane entries with
identifier lower than the input argument. The results of
those entries are transmitted to the WLQ and the corre-
sponding pane partitions are closed. In the code region from
line 9 to 16 the algorithm processes a regular tuple. The
corresponding pane partition is searched in RD: if it is not
found we create a new entry for the pane partition. Then,
the worker updates the corresponding result at line 16.

4.3 PLQ Evaluation

In this section we describe the experimental platform used
in this paper and how synthetic datasets are generated.
In particular, we show the application of a methodology
to parameterize the burstiness level of synthetic datasets.
Then, we will demonstrate the effectiveness of the PID-
based adaptive splitting scheduling described before.

4.3.1 Test-bed architecture
All the experiments shown in this paper have been obtained
on a two-socket IBM server 8247-42L equipped with two
Power8 processors each with ten cores (total 20 cores). Each
core has eight thread contexts (SMT), private L1d and L2
caches per core of 64 KB and 512 KB, and a shared on-chip
L3 cache of 8 MB per core (globally 80 MB per socket). The
machine is installed with 64 GB of RAM.

The source code of the parallel implementation using the
FastFlow library version 2.1 has been compiled with the
gcc compiler version 4.8.4 with the -O3 optimization flag
enabled. Each benchmark has been repeated 20 times and
the results show a small standard deviation (in the range
of 1.5 − 4% of the mean). For this reason and to improve
readability we avoid showing the error bars in the plots.

The run-time system of our framework (FastFlow, see
Sect. 3) is strongly based on non-blocking synchroniza-
tion primitives that provide a very low-latency coopera-
tion mechanism among threads [25]. However, when more
threads are mapped onto the same physical cores such kind
of synchronization usually generates a mutual interference
among threads that can be detrimental for performance. For
this reason: i) we limit the maximum query parallelism to
the number of physical cores in order to have more stable
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and predictable results; ii) we will show that this parallelism
degree will be sufficient in real-world scenarios.

4.3.2 Synthetic datasets
To stress our parallel implementation, we developed a con-
figurable data generator that produces synthetic datasets
of tuples. Each tuple has an application timestamp used to
determine the pane/window boundaries, and a generator
timestamp used to transmit tuples according to a chosen rate.
The generator timestamp is obtained from the application
one by adding a random delay (generated using a uniform
distribution with mean Davg). The tuples in the dataset are
ordered and transmitted based on their generator times-
tamps. Therefore, a tuple t received after t′ can have an
application timestamp smaller than the one of t′, i.e. it is
a late arrival. In general, the higher the average delay the
greater the number of late arrivals in the dataset.

We use the approach presented in Ref. [16] to inject
bursty phases with different intensities. We use a two-state
Markovian Arrival Process model (MAP(2)). The idea is de-
picted in Fig. 4. In the “normal” state the inter-arrival times
are generated using an exponential distribution with rate
λnormal set to a value reproducing a condition of normal
traffic; in the “bursty” state the rate is λburst > λnormal,
hence the arrivals are more closely spaced possibly generat-
ing bursts. The terms pn,b and pb,n denote the probabilities
to change the state, while pn,n = 1−pn,b and pb,b = 1−pb,n
are the probabilities to remain in the same state.

Normal 
Traffic

Bursty 
Traffic

pb,n

pn,n

pn,b

pb,b

Fig. 4: Two-state MAP distribution modeling bursty arrivals.

This model allows generating both short temporal inter-
vals with highly condensed arrivals and variations within a
traffic burst. As in Ref. [16], we use the index of dispersion I
as a regulator of the intensity of traffic surges. It is defined
as I = SCV · (1 + 2

∑∞
i=1 rk), where SCV is the squared

coefficient of variation and rk is the k-lag autocorrelation
coefficient. As shown in Ref. [33], the index of dispersion has
the fundamental property to grow proportionally with both
variability and correlations, thus it can be used to generate a
sequence of inter-arrival times reproducing bursty arrivals,
i.e. the higher the value of I the higher the burstiness level.

To parameterize the MAP(2), we provide the desired
mean inter-arrival time λ−1 and the target index of dis-
persion I as inputs of a non-linear optimizer that searches
the probabilities pn,b and pb,n such that the MAP(2) model
matches as much as possible the required index of dis-
persion. Further details about this approach can be found
in Ref. [16]. Fig. 5a shows the case of Poisson arrivals
(exponential inter-arrival times) with average rate of 1K
tuples per second. In this case we have no bursts, and the
index of dispersion is equal to the SCV of the distribution,
i.e. SCV = 1. Fig. 5b shows a MAP(2) distribution, fitted
with the above approach, having the same mean and an
index of dispersion I = 100, where the effect of burstiness
is already remarkable.
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Fig. 5: Effect of the burstiness in two synthetic datasets.

4.3.3 Results
The benchmarks in this section show the effect of dimen-
sionality and data correlation in the computational grain,
the effectiveness of our scheduling strategy in the PLQ, and
the benefit of the out-of-order processing.

Effect of dimensionality and correlation. In this paper
we focus on two computationally demanding preference
queries, i.e. the skyline query and the top-δ dominant query
(with δ = 100). Coherently with some past works [22], [23],
we study the case of panes containing 2 − 10K tuples on
average, corresponding to arrival rates (denoted by λ) of
tens of thousands/hundreds of tuples per second and pane
lengths Lp of hundreds/thousands of milliseconds.

The implementation of the skyline query is based on
the block nested loop algorithm (BNL) described in Ref. [19],
which repeatedly scans the input set to compare all the pairs
of tuples2. The top-δ dominant query has been implemented
on top of the skyline one, where in addition we compute for
each skyline tuple t the highest k ≤ d such that t is k-
dominated by another tuple. The query returns the first δ
tuples with the lowest k value.

Fig. 6 shows the average processing time per tuple
(i.e. time to update the pane result given a new tuple t)
by variating the dimensionality d. The processing time is
proportional to both the number of tuples per pane, i.e.
|P| = λ · Lp, and the number of attributes per tuple d ≥ 1.
The top-δ dominant query has a higher processing time,
1.5− 2 times higher than the skyline query.
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Fig. 6: Effect of dimensionality in the processing time per tuple.

Fig. 7 shows the processing time per tuple by changing
the data distribution. We consider correlated, independent
(used for the experiments in Fig. 6) and anticorrelated
distributions. The distribution affects the size of the pane
results. In the skyline query, 74% of the tuples belong to
the skyline with d = 12 and anticorrelated data, while in

2. More efficient algorithms, e.g., based on some index structures, can
be used and easily integrated in our parallel query model.
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the correlated case the skyline is composed of only 3% of
the pane tuples. The lower the number of dimensions the
higher the capability of the PLQ to incrementally filter out
non-skyline tuples, thus the lower the processing time.
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Fig. 7: Effect of data distribution in the processing time per
tuple. Case with |P| = 10K.

Evaluation of the PLQ scheduling strategies. We study the
skyline query under four scenarios all having 10K tuples
per pane on average (λ = 100K tuples/sec and Lp = 0.1
seconds). The first scenario has no bursts, the others have a
low, medium and high level of burstiness3 obtained by gener-
ating datasets with I = 1K , I = 2.5K and I = 6K . In the
non-bursty scenario the tuples (eight attributes to have suf-
ficient computational grain) are independently distributed,
while in the bursty scenarios we periodically change the
data correlation. In all the datasets we use an average delay
of Davg = 200 ms similar to the one considered in other
works [8], [9]. In the last part of this section a thorough study
of different disordering configurations will be presented.

We study the behavior of the PB_RR and AS_PID strate-
gies by comparing them with other two strategies:

• TB_RR: tuples are distributed to the workers in a
round-robin fashion. Therefore, all the panes are
evenly partitioned among the workers, i.e. σs is equal
to the parallelism degree;

• AS: a modification of the AS_PID strategy without
PID. The actual threshold is directly the one from
the Statistics Manager, i.e. θ = θb, similarly to the
solution proposed in Ref. [28].

Fig. 8a shows the minimum parallelism degree needed
to sustain the input bandwidth (named optimal parallelism
degree, denoted by n∗). In the non-bursty case (where the
standard deviation of the pane size is 2.8% of the mean)
the PB_RR strategy needs seven workers to withstand 100%
of the input bandwidth. In all the bursty scenarios instead
(with standard deviation equal to 123% of the mean in the
highly-bursty case), PB_RR is not able to remove the bottleneck
with any parallelism degree. In those cases we report the
fraction of the input bandwidth sustained by the PLQ with
the highest parallelism degree (17 workers4). The higher the
burstiness level the lower the fraction of the input traffic
managed. This result is not due to the lack of cores, but
to load unbalancing that prevents to exploit the worker

3. Bursty workloads are characterized by an index of dispersion of
several thousands, as stated in Refs. [16].

4. Two cores host two threads generating the stream and consuming
the pane results, while another core hosts the PLQ emitter thread.

processing capabilities. This is confirmed by the results in
Figs. 8d-f, where the utilization factor of PB_RR is always
greater than one by increasing the number of workers.
These results show the effectiveness of the utilization factor
estimation method described in Sect. 4.1.2. As soon as we
obtain ρ < 1, the PLQ is able to sustain 100% of the input
bandwidth, i.e. on average 1/Lp pane results per second are
produced by the PLQ.

Instead, the TB_RR strategy removes the bottleneck in all
the scenarios. This outcome is due to the high splitting fac-
tor, as the panes are evenly partitioned among the workers.
Since the processing time per tuple is proportional to the
size of the corresponding pane partition of the destination
worker, the TB_RR strategy reduces the computational grain
compared with PB_RR. This advantage is offset by the
increase in the number of selected tuples per pane (union of
the local skylines of the pane partitions). Fig. 8g shows that
in the highly-bursty scenario the average number of selected
tuples per pane with 17 workers is 60% greater than in the
PB_RR case. Therefore, the lower computational grain in the
PLQ is actually paid in the WLQ, where the pane results are
merged to compute the final window results.

The AS_PID strategy (with ρ = 0.9 and T = 1 second)
finds the right amount of splitting to remove the bottleneck
with the used parallelism degree. If AS_PID is not able to
achieve ρ < 1, it behaves like TB_RR by splitting the panes
as much as possible, see Fig. 8b. The splitting factor, higher
with a more intensive burstiness level, increases up to the
optimal parallelism degree n∗ and decreases by adding
more workers. This is because, owing to the presence of
more available resources, the scheduler needs to split less
the panes to get closer to the utilization factor setpoint.
Peculiar is the case of the non-bursty scenario, where with
more than seven workers AS_PID avoids splitting the panes
(seven workers is the n∗ of PB_RR, see Fig. 8a). The precision
of the PID in confirmed by the results in Figs. 8c-f, where the
utilization factor is always near to the setpoint (error less
than 2%) with parallelism degrees greater or equal to n∗.

The AS strategy divides the panes by using a statistic
threshold without the PID intervention. The average split-
ting factor applied by AS is of 1.01, 1.48, 1.66 and 2.41 in
the non-bursty scenario and in the three bursty scenarios.
There are two situations where this strategy is ineffective:

• the splitting factor with AS could be insufficient to remove
the bottleneck. As shown in Fig. 8f, with five workers
the AS strategy obtains ρ ≈ 1.88 with σs = 2.41 while
AS_PID obtains ρ ≈ 0.91 with σs = 3.90. In that
case AS_PID transmits to the WLQ stage more tuples
per pane than using the AS strategy (13% more, see
Fig. 8g), however such splitting is necessary to remove
the bottleneck (the AS strategy with five workers with-
stands only 53% of the input bandwidth);

• AS can split too much the panes. As an example, in the
highly-bursty scenario with 17 workers the AS strategy
achieves ρ ≈ 0.63 with σs = 2.41, hence the PLQ is
unnecessarily fast. Instead, AS_PID obtains ρ ≈ 0.89
with σs = 2.03 and the results of the pane partitions
are 11% smaller than with AS, see Fig. 8g.

Finally, Fig. 8h shows the load unbalancing ratio of the
average CPU load of the most loaded worker over the one
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(a) Optimal no. of cores.
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Fig. 8: Performance evaluation and comparison between the various scheduling strategies of the PLQ stage. Skyline query with
high (I = 6K), medium (I = 2.5K) and low (I = 1K) burstiness and |P| = 10K.

of the least loaded worker. The higher the ratio the higher
the load unbalance. In the highly-bursty case the ratio is
high with PB_RR (up to 58% with 17 workers). TB_RR is
always able to balance the load. Adaptive splitting tech-
niques obtain intermediate results. The PID-based approach
is less effective in terms of load balancing than AS. This is
an expected result, because AS_PID applies the minimum
splitting to remove the bottleneck and although not optimal
the load balancing with AS_PID is sufficient to obtain ρ < 1.

In conclusion, these results confirm that the AS_PID
scheduling strategy is effective in eliminating the bottleneck
in the PLQ even in highly-bursty scenarios and without
splitting too much the panes.

Comparison between IOP and OOP models. To compare
the different processing models, we developed an IOP ver-
sion of the PLQ in which tuples are internally buffered by
the emitter using the standard K-slack buffer [27], and pre-
sented in increasing order of their application timestamps
to the workers. Therefore, no punctuation is needed in this
implementation. We introduce the following definition:

Definition 1 (Pane latency). The latency of a pane is the time
elapsed from the arrival of the first tuple of the pane until the last
tuple has been computed.

Fig. 9a shows the latency of the OOP and IOP versions in
the highly-bursty scenario studied above. Since the process-
ing time per tuple depends on the splitting factor, we use the
TB_RR strategy with n = 5 workers in order to have a fair
comparison and to remove the bottleneck. The results show
that the higher the tuple delay the greater the latency reduc-
tion with OOP, while the latency is similar with low delays.
The reason is due to the buffering performed by the emitter
in the IOP version, while in OOP the tuples are immediately
forwarded to the workers. In all cases the dropped tuples
are about 0.01%. The latency reduction is remarkable: 68%

and 80% with delays of 500 ms and 1 second. Nevertheless,
though with smaller values, also the latency of the OOP
version has an increasing slope. To understand this aspect
we introduce the following definition:
Definition 2 (Closing lag). The closing lag of a pane is the time
elapsed from the computation on the last received tuple of the pane
until the arrival of the punctuation that closes it.

The average closing lag increases with higher delays
(Fig. 9a) because punctuations are emitted less frequently.
However, it represents a small fraction of the pane latency
which is substantially lower than in the IOP case. We ob-
serve that the closing lag can be significantly lower than the
average tuple delay, because the last late arrival of a pane
can be received and computed slightly before the generation
of the punctuation that closes the pane.

The case with a zero delay (a totally ordered stream)
deserves a further consideration. In this case, according to
the description in Sect. 4.1.1, a new punctuation is emitted
every new tuple. Although this huge number of punctua-
tions could be considered a high overhead, actually it has
an imperceptible impact owing to the efficient way adopted
by the FastFlow framework to exchange data among threads
(i.e. passing pointers to punctuation messages through lock-
free queues [25]) and the negligible processing time of
punctuations that do not close any pane (few microseconds
on average). In addition, our implementation can be further
configured to limit the maximum number of punctuations
to emit per second if needed.

Fig. 9b shows the average number of tuples present in
the computation per second including: i) the tuples buffered
in the K-slack buffer within the emitter (only in the IOP
case); ii) the tuples in the pane results maintained internally
by the workers; iii) the tuples enqueued in the FastFlow
input queues of the workers. For the OOP case in the figure
we show the overall number of tuples, while in the IOP case
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Fig. 9: IOP and OOP comparison in the highly-bursty scenario:
average latency and number of tuples in the PLQ per second.

we separate the number of tuples at point i) (denoted by
IOP-buffer) and the sum of the tuples at points ii) and iii)
(denoted by IOP-workers).

In the IOP case most of the tuples are in the K-slack
buffer, and this number increases with higher delays. In
the OOP version the tuples are forwarded to the workers
as they arrive. Since the result of a pane only contains the
selected tuples (i.e. the skyline tuples), the sooner the tuples
are processed by the workers the sooner the non-skyline
tuples can be deleted from the results of the open panes.
This is the reason for the lower number of tuples present in
the PLQ (on average 60% less) with the OOP version.

Finally, we analyze the size of the RD data structure
maintained by the workers in the OOP model, see Fig. 10.
The number of open panes increases with higher delays and
shorter panes. Even in the pessimistic case of very short
panes and long delays, the number of open panes is at
most in the order of hundreds and grows linearly with the
average delay. This justifies the choice of the data structures
used in the worker implementation, see Sect. 4.2.
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In conclusion, these experiments confirm that the OOP
model is useful for continuous preference queries both for
latency and space cost reasons.

5 PARALLEL WINDOW-LEVEL QUERY

The goal of the WLQ is to find the set of preferred tuples
within each temporal window. To this end, the WLQ com-
putes the window results by processing the results of the
panes received from the PLQ, where most of the input tuples
have likely been filtered out.

Once a result Ri,k of a pane partition is received from
the PLQ, the WLQ emitter determines the identifiers of the

windows that pane i belongs to. We denote this set by Φi,
defined as follows (for i > wp):

Φi =

{
j | j ∈ N,

⌈
(i− wp)
sp

⌉
< j ≤

⌈
i

sp

⌉}
(6)

For each window Wj with j ∈ Φi its result Sj is
incrementally updated by processing the tuples in Ri,k. We
call this activity window task (denoted by wt). The WLQ in
general executes more window tasks for each received result
Ri,k, one for each window in Φi. In the next section we will
study specific strategies to schedule window tasks to the
WLQ workers.

5.1 Scheduling of Window Tasks
A task is a data structure containing a memory pointer to the
result of a pane partition and a pointer to the window result
to update. Tasks must be scheduled without modifying the
computation semantics. Specifically, tasks on different win-
dows can be executed in parallel, while tasks on the same window
must be processed serially (they modify the same window
result Sj). Our goal is to design a scheduling strategy that
meets this constraint while exploiting at best the worker
processing capabilities.

The idea is to change the initial structure of the WLQ
farm shown in Fig. 2 by using the feedback pattern-modifier
provided by FastFlow. WLQ workers provide feedbacks to
the emitter through additional FastFlow queues as shown
in Fig. 11. Feedbacks are used to inform the emitter that
workers are ready to receive new tasks.

WLQ 
Emitter

WLQ
Worker

WLQ
Worker

window tasks

feedback

feedback

pane results

busy
flag

window 
descriptors

i

pending 
queue

worker 
ready flags

j

flag

Fig. 11: WLQ emitter and feedback-based scheduling strategy
of window tasks.

The pseudo-code of the scheduling strategy is described
in Alg. 3. The WLQ emitter receives messages either from
the PLQ (results of pane partitions) or from the WLQ work-
ers (feedbacks). The emitter maintains a data structureWD
that stores window descriptors containing: i) a flag which is
false if there is a task of that window in execution in any
worker (the window is busy); ii) a queue of pending tasks of
that window, i.e. tasks that are waiting to be executed by an
available worker. If the message comes from the PLQ, the
algorithm generates a task for each window that that pane
belongs to. Each task of a not-busy window is scheduled to
an available worker. If a task modifies a busy window, or
if there is no available worker, it is inserted into the pending
queue of the corresponding window. This phase corresponds
to the code region from line 2 to 13.

The case of a feedback message is managed from line 14
to 36. The feedback contains the identifier of the worker
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Algorithm 3 Feedback-based Scheduling Strategy
1: function WLQ SCHEDULING(msg)
2: if msg.src = PLQ then . Case 1: msg comes from the PLQ
3: Pi,k = MSG.GETPANERESULT()
4: for each j ∈ Φi do
5: worker id = GET READY WORKER()
6: ifWD[j].notBusy and worker id 6= −1 then
7: WD[j].notBusy = false
8: SET NOT READY(worker id)
9: SEND TO WORKER(new win task(Pi,k,Sj), worker id)

10: else
11: WD[j]. ADD TO QUEUE(new WT (Pi,k,Sj))
12: end if
13: end for
14: else . Case 2: msg is a feedback message
15: worker id = MSG.GET WORKER ID()
16: w′ = MSG.GET WINDOW ID()
17: ifWD[w′]. QUEUE LEN > 0 then
18: wt =WD[w′]. GET PENDING()
19: SEND TO WORKER(wt,worker id)
20: else
21: WD[w′].notBusy = true
22: served = false
23: for each w ∈ WD do
24: ifWD[w].notBusy andWD[w]. QUEUE LEN > 0 then
25: WD[w].notBusy = false
26: wt =WD[w]. GET PENDING()
27: SEND TO WORKER(wt,worker id)
28: served = true
29: break
30: end if
31: end for
32: if not served then
33: SET READY(worker id)
34: end if
35: end if
36: end if
37: end function

and of the window of the last executed task. If there exist
some pending tasks of that window, the first in queue is
scheduled to the same worker sending the feedback (line 17
to 20). This strategy exploits at best temporal locality in
the core’s private caches by trying to schedule tasks of the
same window to the same worker5. Otherwise, the emitter
checks the presence of a pending task of any other not-busy
window and, if presents, schedules it to the worker (line 23
to 31). Finally, if there are no pending tasks, the worker is
marked as available (line 32 to 34).

5.2 WLQ Workers and Collector
The implementation of the WLQ worker is straightforward.
For each window task received from the emitter, the worker
executes the following actions: i) it computes the task by
updating the result of the corresponding window; ii) if
the task is the last of that window (this information is set
through a flag in the task by the emitter, not shown in
Alg. 3 for brevity), the worker transmits the window result
to the collector; iii) the worker notifies its availability to
receive new tasks by sending a feedback message to the
WLQ emitter.

The WLQ collector receives window results from the
workers. Its main goal is to temporarily buffer those results
and emits them in increasing order of the window identifier.

5.3 WLQ Evaluation
In this section we evaluate the WLQ implementation using
synthetic datasets generated as in Sect. 4.3.2. We will show

5. According to the FastFlow default setting, each thread is exclu-
sively pinned onto an available core.

the advantages of the feedback-based scheduler (WIN_FB)
compared with a static strategy (WIN_RR) that preassigns
windows to workers in a round-robin fashion, i.e. the
tasks of the i-th window are executed by worker j = (i
mod m) + 1 where m ≥ 1 is the WLQ parallelism degree.

WLQ performance and load balancing. We run the skyline
query with λ = 50K tuples/sec, w = 1 and s = 0.2 seconds
(Lp = 0.2). We analyze the best performance achieved by
the whole query parallelization with the AS_PID strategy
for the PLQ and by comparing the use of the WIN_RR
and WIN_FB strategies in the WLQ. Fig. 12 reports the
performance achieved under different levels of burstiness,
i.e. up to an index of dispersion of I = 8K which is a
dramatic burstiness case [16]. We measure the ratio of the
offered bandwidth (throughput) achieved by the paralleliza-
tion over the (ideal) required bandwidth theoretically equal to
1/Lp windows per second. A value of the ratio close to one
represents the optimal case where the actual throughput is
similar to required bandwidth.
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Fig. 12: Performance of the parallel skyline query with various
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In the WIN_RR case the ratio drops significantly with
high burstiness and it is always lower than the one achieved
by the WIN_FB strategy. The reason is that with the WIN_RR
strategy it is possible that windows of bursty periods (so-
called “heavy windows”) are assigned to the same workers
by impairing parallel efficiency and scalability. This is con-
firmed by the further experiments in Fig. 13, where we show
the unbalancing factor by using a different number of WLQ
workers in two cases, a medium-bursty case (I = 2.5K ,
three workers in the PLQ) and a highly-bursty case (I =
6K , four PLQ workers). With more than five WLQ workers
the unbalancing factor with WIN_RR increases. Instead, the
WIN_FB strategy always schedules tasks based on the actual
availability of the workers to compute them and, hence, the
load unbalancing factor remains significantly lower.
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Stream speed Out-of-ordering Burstiness

no. tuples arrival rate no. late arrivals avg. delay max delay index of dispersion level

Game1 (G1) 7.12M 8, 514 tuples/sec 5.94M 34 ms 142 sec 2, 853 severe
Game2 (G2) 4.02M 10, 037 tuples/sec 3.49M 29 ms 171 sec 207 no bursts
Game3 (G3) 12.64M 8, 766 tuples/sec 10.67M 26 ms 77 sec 1, 507 moderate
Game4 (G4) 7.67M 11, 610 tuples/sec 6.66M 24 ms 54 sec 155 no bursts
Game5 (G5) 10.57M 18, 850 tuples/sec 9.14M 15 ms 50 sec 1, 845 moderate
Game6 (G6) 6.90M 18, 462 tuples/sec 5.98M 16 ms 71 sec 23 no bursts
Game7 (G7) 24.58M 21, 102 tuples/sec 21.64M 20 ms 5.03 sec 89 no bursts
Game8 (G8) 12.92M 23, 071 tuples/sec 12.14M 265 ms 5.18 sec 3, 062 severe

TABLE 2: Characteristics of the real datasets: stream speed, out-of-order features and burstiness levels.

Very high burstiness levels also affect the WIN_FB strat-
egy. In fact, we point out that all the tasks of the same
window must be executed serially by the WLQ, thus the
impact of burstiness cannot always be neutralized. With
very high burstiness we experience a slight performance
degradation (of 10% in the worst case). However, such
dramatic levels of burstiness are often theoretical or likely
characterize relatively short periods of the execution.

Pane-based vs. windowed approach. The advantage of the
pane-based approach has been demonstrated in Ref. [15]
for sliding-window aggregates. In this part we show that
this approach is beneficial also for continuous preference
queries. Fig. 14 shows the ratio of the execution time of the
skyline query using panes over the execution time without
panes (the lower the ratio the greater the benefit of the pane-
based approach). This last is obtained by parallelizing the
standard approach presented in Ref. [13], i.e. each tuple is
scheduled to multiple workers that update in parallel the
results of all the windows containing the tuple.
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The pane-based approach reduces the query execution
time. The PLQ filters out most of the tuples, and this
reduces the total number of tuple comparisons. Instead, the
windowed approach updates the result of each window that
contains the tuple, and the higher the overlapping between
windows (panes per windows, P/W) the greater the perfor-
mance advantage in favor of the pane-based approach.

6 SYSTEM EVALUATION

In this final section we will evaluate the performance of
our parallel query model on a set of real datasets exhibiting
various disordering and burstiness characteristics.

6.1 Real Datasets
We use eight data streams obtained from the Real-time
Locating System (RTLS) installed in the main soccer stadium

in Nuremberg, Germany [34]. Sensor data (embedded in the
shoes of the players and in the ball) are obtained during
several training games with high data rate sensors tracking
the positions and velocities of players (eight attributes per
tuple). The characteristics of the streams are summarized
in Tab. 2. Sensor data are gathered by the sink node of the
sensor network where the query is supposed to be executed.
The sink experiences some delay in receiving the readings
from the sensors, which can be collected out-of-order. All the
datasets have an average tuple delay of tens of milliseconds
(with peaks of tens of seconds). Fig. 16a and Fig. 16b show
the delay of the tuples and the arrivals per second in the
second part of the execution of the Game8 dataset, where
this behavior is more evident.
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Fig. 16: Out-of-order pattern and arrivals in Game8.

Differently from the synthetic datasets where the inter-
arrival times are generated with a MAP(2) distribution
and the tuple delays are uniformly distributed, in the
real datasets the delays are non-uniformly distributed (like
Game8, see Fig. 16a), and this may generate bursty arrivals
to the sink node (see Fig. 16b). In fact, time periods char-
acterized by bursty arrivals correspond to phases where
the received tuples have a larger delay. Each dataset has a
different level of burstiness depending on the temporal dis-
tribution of the tuple delays: the more uniformly distributed
are the tuple delays the less is the index of dispersion.
The index of dispersion can be estimated using an alter-
native definition, i.e. as the limit limt→∞ V ar(Nt)/E[Nt]
where Nt is the number of arrivals during an interval of t
time units. Based on this definition, to estimate the index
of dispersion of an existing dataset we use the method
proposed in Ref. [33], where the number of arrivals are
measured for consecutive time intervals by increasing the
interval length up to reach a given accuracy. The estimated
indices of dispersion are shown in Tab. 2. Some datasets are
characterized by low levels of burstiness while others like
Game1 and Game8 have a severe burstiness.
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Fig. 15: Parallelism degrees of the PLQ and the WLQ and offered bandwidth with different preference queries.

6.2 Experiments

We study the execution of the skyline and the top-δ dom-
inant queries. The real datasets are processed in real-time
in order to extract complex analytics of the players per-
formance that are notified to the team managers and vi-
sualized on mobile devices like a smartphone or a PDA.
Typically, sensor readings are analyzed using a sliding win-
dow model with a refresh interval of several hundreds of
milliseconds [8], [9]. For the sake of brevity, we execute both
the queries in order to produce a result every 200 ms by
processing the tuples received in the last second (w = 1,
s = 0.2 and Lp = 0.2 seconds).

Parallelism degree and offered bandwidth. Figs. 15a and 15c
show the number of workers needed by the PLQ and the
WLQ stages to remove the bottleneck in each of the eight
real datasets. For each stage we use the best scheduling
approach, i.e. AS_PID for the PLQ, WIN_FB for the WLQ.
As we can observe, the second stage needs more parallelism
and the number of cores in the top-δ query is generally
higher, owing to the higher processing time per tuple, as
explained in Sect. 4.3. Furthermore, the last two datasets
have a faster rate and thus they need more cores, while
a slightly higher number of cores is usually necessary for
datasets with a higher burstiness level.

Figs. 15b and 15d report the offered bandwidth by
the parallel query with the number of workers described
in Figs. 15a and 15c. In addition, we report the offered
bandwidth by the single-threaded implementation of the
pane-based approach, where the PLQ and WLQ stages are
executed serially. The results confirm that the parallel imple-
mentation is able to reach the requested bandwidth of 1/Lp
windows per second in all the datasets. Over each bar we
report the performance gain that shows how much the offered
bandwidth has been improved. It is computed as the ratio
of the offered bandwidth by the parallel implementation
over the one of the sequential query processing. The gain
is always close to the whole number of utilized workers
(PLQ+WLQ), demonstrating the effectiveness of our parallel
query processing model in operating efficiently under real-
world out-of-order and bursty streams.

Latency with different punctuation mechanisms. In this
concluding part of the paper we show the latency of the
parallel query processing. We define the latency of a win-
dow as done in Sect. 4.3 for the pane latency:

Definition 3 (Window latency). The latency of a window is the

time elapsed from the arrival of the first tuple of the window until
the window result is finalized.

Accordingly, the latency cannot be smaller than the window
length and it may be actually higher depending on the
disordering characteristics of the stream.

Once removed the bottleneck, the latency mainly de-
pends on the punctuation mechanism. The basic K-slack
mechanism introduced in Sect. 4.1.1 generates the punc-
tuation that closes a pane when likely all the late arrivals
have been received. To do that, the mechanism adapts to
the maximum delay seen so far and this may produce very
large latency results. Fig. 17 shows the latency of the skyline
query using the number of cores shown in Fig. 15a. The
latency obtained with K-slack is much more higher than the
window length, and in general approaches the value of the
maximum delay of the datasets reported in Tab. 2.

1

3

10

30

100

G1 G2 G3 G4 G5 G6 G7 G8

W
in

. l
at

. (
se

c)
-lo

gs
ca

le

Datasets

Average window latency (Skyline Query)
K-slack Drop=1% Drop=2% Drop=5%

Fig. 17: Window latency with different punctuation mecha-
nisms (Skyline Query).

Our parallel implementation can easily incorporate any
punctuation mechanism in the PLQ emitter. To show the
effect of different mechanisms, we repeated the experiments
using an adaptive punctuation mechanism based on the
AQ-K-slack presented in Ref. [8]. The idea is to anticipate
the generation of punctuations so that the dropping ratio
(of dropped tuples over the total number of received tuples)
meets a user-defined value. Fig. 17 shows three ratios of
1%, 2% and 5%. As we can note, a low ratio (of 1%) allows
the query to drastically reduce (of one order of magnitude)
the average latency, and better results can be achieved with
higher dropping ratios. In general, the acceptable level of
dropping depends on the application requirements, and can
be provided as a configuration parameter of the chosen
punctuation mechanism.
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7 RELATED WORK

In this section we provide a review of some of the most
representative papers covering topics similar to the ones
studied in this work. We will highlight the overlapping and
the differences with the approach presented in this paper.

Disorder handling approaches. The paper in Ref. [13]
presents a framework for processing sliding-window ag-
gregates over out-of-order streams. The authors introduce a
technique called WID to map tuples to window extents. Tu-
ples are processed on-the-fly and punctuation mechanisms
determine when a window can be finalized. The approach
does not explore parallel processing techniques and does
not study the application to preference queries. An OOP
architecture has been presented in Ref. [14]. The utilized
punctuation mechanism (Gigascope heartbeats) assumes
that all the input streams are ordered. The approach has
been evaluated for traditional query operators (e.g., joins
and union) executed in a sequential fashion, and shows the
benefit in terms of latency reduction and memory saving
compared with IOP frameworks. Almost all the existing
papers do not explore the combined use of the OOP model
with intra-operator parallel processing, as the operators are
usually single-threaded. Intra-operator parallelism has been
studied for sliding-window operators in Ref. [28], however
under the assumption that all the tuples arrive in order.

The work in Ref. [35] focuses on the problem of dealing
with late tuples that arrive after a window closes. Such tu-
ples are usually dropped without being processed. Instead,
the authors propose a partial processing technique. When
the system receives a set of tuples older than the last emitted
punctuation, it processes them by producing a partial result.
Such late results are used to consolidate previously emitted
results of closed windows. This is performed in a lazy
fashion when these results are needed by the user. Although
supporting parallel processing, this approach is not suited
for real-time queries. A more suitable approach is the one
proposed in Refs. [8], [9], where punctuations are emitted in
a controllable way by regulating the dropping ratio. The
idea is to relate the dropping ratio with the accuracy of
query results. The approach is actually limited to simple
sliding-window queries like sum, count or quantiles, and
does not support intra-operator parallelism. The integration
of such quality-driven approach to our parallel OOP archi-
tecture represents an interesting topic of our future research.

Handling load variations. A set of papers like the ones in
Refs. [5], [6], [10] focus on elastic supports for data stream
processing frameworks, in order to dynamically scale the
used resources based on the actual/predicted incoming
workload. Resource scaling usually needs complex state
transfer protocols to migrate the query state without altering
the computation semantics. As shown in Ref. [6], such pro-
tocols may generate latency spikes and transient throughput
drops, and are suitable to handle long-/medium-term vari-
ations in the arrival rate in order to amortize the transient
reconfiguration overhead with the performance benefit ex-
pected during the steady-state phase.

We have already studied elastic supports for stream
processing in Ref. [6], and their integration is one of our next
planned activities. Instead, this paper focused on scheduling
strategies to handle bursty arrivals that cannot be handled

satisfactorily with resource scaling only. In fact, bursty
streams are characterized by traffic surges at short time-
scales (e.g., few hundreds of milliseconds). As an example,
the arrival pattern shown in Fig. 5b depicts a stationary pro-
cess where the mean does not change over time. However,
short-term bursty episodes characterize the arrival pattern
throughout the execution. As demonstrated in Ref. [12],
ignoring such fine-scale burstiness may provide an over-
optimistic view of the elasticity behavior, which may turn
out to be disastrous in practical scenarios. Although some
existing papers [3]–[5], [10] cite burstiness as a critical issue
in stream processing applications, they do not provide ex-
plicit solutions to cope with it. The recent work in Ref. [36]
provides a formal model based on Petri nets for controlling
which streams to admit for storage and analysis in the
cloud. The goal is to maximize the revenue by respecting
the desired QoS. The approach accounts for bursty streams,
however the policy controls only which streams to admit
for processing, while in our approach the streams must
always be processed despite short-term traffic surges that
may unbalance the load among cores.

8 CONCLUSIONS

Burstiness and out-of-orderness represent two of the major
issues of real-world data streams. This paper coped with
both the problems in the context of the parallel execution
of preference queries. We proposed a parallelization of the
pane-based approach which has been proven effective for
sliding-window aggregates in the past. We studied sophis-
ticated scheduling strategies that make use of interdisci-
plinary approaches from Control Theory. Furthermore, we
allowed the out-of-order execution of input tuples through
the use of punctuation mechanisms, and we stressed our
implementation under various levels of burstiness injected
in the synthetic datasets in a controllable way using a simple
parameterization inspired by the work in Ref. [16].

The results showed the effectiveness of our approach in
handling fast streams with high levels of burstiness and out-
of-orderness. A wide set of real-world datasets have been
used to assess the validity of our approach in real scenarios,
confirming the results of the synthetic experiments.

Several future extensions of this work can be devised.
Notably, the integration in our approach of elastic supports,
like the ones that we presented in Ref. [6], is an interesting
topic to fully provide our framework with mechanisms and
strategies to deal with both bursty events at fine time-scales
and long-/medium-term variations in the workload (trends,
cyclic variations in the arrival rate).
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Springer, 2015, vol. 8606, pp. 29–75.

[18] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k
query processing techniques in relational database systems,”
ACM Comput. Surv., vol. 40, no. 4, pp. 11:1–11:58, Oct. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1391729.1391730

[19] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,”
in Data Engineering, 2001. Proceedings. 17th International Conference
on, 2001, pp. 421–430.

[20] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang, “Finding k-dominant skylines in high dimensional
space,” in Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’06. New
York, NY, USA: ACM, 2006, pp. 503–514. [Online]. Available:
http://doi.acm.org/10.1145/1142473.1142530

[21] J. Leibiusky, G. Eisbruch, and D. Simonassi, Getting Started with
Storm. O’Reilly Media, Inc., 2012.

[22] Y. Tao and D. Papadias, “Maintaining sliding window skylines
on data streams,” IEEE Trans. on Knowl. and Data Eng.,
vol. 18, no. 3, pp. 377–391, Mar. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2006.48

[23] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, “Contin-
uous top-k dominating queries,” IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 5, pp. 840–853, May 2012.

[24] K. C.-C. Chang and S.-w. Hwang, “Minimal probing: Supporting
expensive predicates for top-k queries,” in Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’02. New York, NY, USA: ACM, 2002, pp. 346–357.
[Online]. Available: http://doi.acm.org/10.1145/564691.564731

[25] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati, “An efficient unbounded lock-free queue for multi-
core systems,” in Proceedings of the 18th International Conference
on Parallel Processing, ser. Euro-Par’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 662–673. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-32820-6 65

[26] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting
punctuation semantics in continuous data streams,” IEEE Trans.
on Knowl. and Data Eng., vol. 15, no. 3, pp. 555–568, Mar.
2003. [Online]. Available: http://dx.doi.org/10.1109/TKDE.2003.
1198390

[27] S. Babu, U. Srivastava, and J. Widom, “Exploiting k-
constraints to reduce memory overhead in continuous queries
over data streams,” ACM Trans. Database Syst., vol. 29,
no. 3, pp. 545–580, Sep. 2004. [Online]. Available: http:
//doi.acm.org/10.1145/1016028.1016032

[28] C. Balkesen, N. Tatbul, and M. T. Özsu, “Adaptive input
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