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Abstract

We introduce a set of state access patterns suitable for managing accesses to state in par-
allel computations operating on streams. The state access patterns are useful for modelling
typical stream parallel applications. We present a classification of the patterns according to
the extent and way in which the state can be structured and accessed. We define precisely the
state access patterns and discuss possible implementation schemas, performances and possi-
bilities to manage adaptivity (parallelism degree) in the patterns. We present experimental
results relative to implementations built on top of the structured parallel programming frame-
work FastFlow that demonstrate the feasibility and efficiency of the proposed access patterns.
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1 Introduction

Structured parallel programming models have been developed to support the design and im-
plementation of parallel applications. They provide the parallel application programmer with a
set of pre-defined, ready to use parallel pattern abstractions that may be directly instantiated,
alone or in composition, to model the complete parallel behaviour of the application at hand.
This raises the level of abstraction by ensuring that the application programmer need not be
concerned with architectural and parallelism exploitation issues during application development.
Rather, these issues are dealt with efficiently, using state-of-the-art techniques, by the frame-
work programmer. Algorithmic skeletons, first introduced in the early ’90s in the field of High
Performance Computing [3], led to the development of several structured parallel programming
frameworks including Muesli [12], SKEPU [11] and FastFlow [8]. Meanwhile, the software engi-
neering community extended the classic design pattern concept [14] into the parallel design pattern
concept [16] inheriting much of the algorithmic skeleton experience, and advantages deriving from
structured parallel programming approaches have been clearly identified as a viable solution to
the development of efficient parallel applications [2, 17].

In the context of parallel design patterns/algorithmic skeletons, stream parallel computations
have typically been modelled via pipeline [10], farm [18] or other kinds of pattern/skeleton. How-
ever, they have traditionally been studied, designed and implemented as stateless patterns, i.e. as
patterns where the stage (in pipeline) or the worker (in farm) processes/threads do not support
internal state nor support access to some more generalized notion of “pattern” global state. This
despite the fact that there are several well-know classes of application requiring the maintenance of
either a “per pattern” or a “per component” state. Consequently, application programmers them-
selves must program state declaration and access within patterns, which is notably error prone and
negates the benefits of the pattern philosophy. In this work we focus on task farm computation
and discuss stateful pattern variations of the most general stream parallel pattern provided by
the task farm. In particular we identify a range of cases from read-only state to the case where
every computation requires access to the complete global state and in turn updates it, which is
essentially a sequential pattern. We highlight as a key point the fact that there exist intermediate
cases where there are clearly defined state updates and yet parallelism may be exploited because
of the restricted nature of these updates.

The specific contribution of this paper consists therefore in the introduction of a classification
schema for stateful stream parallel computations and identification of the conditions under which
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meaningful scalability may be obtained on state-of-the-art, off-the-shelf shared memory architec-
tures for each of the classes identified, along with some preliminary experimental results assessing
the FastFlow implementation of the patterns.

2 Stream parallel computations

A number of different stream parallel computations may be defined. In particular, here we are
interested in those computations defined by providing a function f mapping input data stream
items of type α to output data stream items of type β (map over streams). Thus the function f
will have type f : α→ β and the result of the computation over an input stream . . . x3, x2, x1, x0
will be . . . f(x3), f(x2), f(x1), f(x0). The ordering of the output items w.r.t. the input ones is
optionally preserved. Input data items are available at different times: if item xi is available
at time ti, item xi+k will be available at time ti + δt, δt > 0. Ideally, if input stream item
xi is available for computation at time ti, then the output stream item f(xi) will be delivered
to the output stream at time ti + tf , tf being the time to compute function f . Suppose input
items appear on the input stream every ta, and assuming use of nw parallel activities (threads,
processes) to compute f over different input stream items. The (ideal) service time of the parallel
computation Ts(nw) and the time spent to compute m input tasks Tc(nw,m) may, respectively,
be approximated as:

Ts(nw) = max{ta,
tf
nw
} and Tc(nw,m) ≈ mTs

Implementation Stream parallel computations are usually implemented according to well-know
parallel design patterns. Using a master/worker pattern, a master concurrent activity dis-
tributes input tasks and collects output results to/from a set of concurrent activities called work-
ers. Each worker executes a loop waiting for a task to be computed, computing f and returning
the result. Using a farm pattern, an emitter concurrent activity schedules input tasks to a set
of workers computing f . Workers direct the output to a collector concurrent activity which, in
turn, delivers the results onto the output stream. In this case the emitter and collector activities
are called “helper” activities. If the computation is not required to enforce input/output ordering
of tasks and results (i.e. if f(xi) may be delivered onto the output stream in any order w.r.t.
f(xi−1)), the collector activity may be suppressed and worker activities may deliver directly to
the output stream. In both cases, the master (emitter) concurrent activity may be programmed
to implement different scheduling strategies and the master (collector) concurrent activity may be
programmed to post-process the f(xi) items computed by the workers.

FastFlow In the remainder of this paper, we will discuss possible implementations, while high-
lighting advantages and issues, of state access patterns in stream parallel computations on top
of FastFlow, which is a structured parallel programming framework available as an open source
header-only library 1. FastFlow natively provides a number of different stream and data parallel
algorithmic skeletons implementing various parallel design patterns [8] on shared memory multi-
cores. FastFlow provides the ff farm class which implements both the master/worker and the farm
pattern with fully programmable (if required) master/emitter and collector. For more details, the
interested reader may refer to the FastFlow tutorial [8].

3 State patterns

When state is taken into account in a task farm pattern, various situations arise which may lead
to different parallelization opportunities. The generic situation is that the computation of the
result produced for input item xi depends on both the value of xi and on the value of the state

1FastFlow home: http://mc-fastflow.sourceforge.net
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at the moment xi is received. However, more specific possibilities can be identified according to
the way in which the state is logically used and the access pattern of the sequential computation
semantics, which must be respected by any parallization schema. To explain clearly from where
different parallel patterns originate, we introduce two orthogonal dimensions that characterize the
behavior of stateful streaming computations:

• non-partitionable vs. partitionable state : the state is non-partitionable when for every
input item it is not possible to establish a-priori (i.e. before executing the task item) which
parts of the state data structures are accessed and possibly modified by the item execution.
Instead, if for each item we can precisely state which parts of the state are used (e.g., by
inspecting specific properties of the item) we say that the state is logically partitionable.

• ordered state access vs. relaxed state access: in the case of ordered access semantics,
the computation on every input item xi must use the state obtained after the execution of
the immediately preceding item xi−1. In contrast, if the semantics allows the item xi to be
processed using the state obtained after the execution of any input item (received before or
after xi), we say that the computation allows a relaxed access to the state.

These two orthogonal dimensions can be used to define a precise classification of parallel
patterns for stateful computations on streams which, in combination with further properties of
the computation to be parallelized, turn out a) to be useful for modelling common real-world
parallel applications and b) to support non-serial implementations of the state concept or at least
provide upper/lower bounds on the scalability eventually achieved in the parallel computation. In
the following sections we will present different parallel patterns by providing for each of them a
description with its functional semantics, implementation directives and theoretical performance
(scalability).

3.1 Serial state access pattern

Definition This pattern (briefly, SSAP) models the most conservative situation of computations
with ordered access to partitionable/non-partitionable state when we have no further informa-
tion about the properties of the sequential computation and of the input items. The pattern
computes the result relative to input task xi : α as a function (F : α → γ → β) of the
value of the task and of the current value of a state si : γ. The new state si+1 to be used
to compute the next stream item will be computed using another function S : α × γ → γ.
Given an initial state s0 : γ and an input stream . . . , x2, x1, x0 the result of the computation is
. . . ,F(x2,S(x1,S(x0, s0))),F(x1,S(x0, s0)),F(x0, s0) which obviously implies sequential compu-
tation of the items appearing on the input stream.
Implementation To provide both consistent access to the state and to process input items in the
arrival order, the serial state access pattern may be implemented using a FastFlow farm with a
single worker (simplified to a sequential wrapper pattern) accessing a single global state variable.
Performance Serial state access pattern obviously implies serial execution of the worker code and,
as a consequence, no scalability can be achieved.

3.2 All-or-none state access pattern

Definition This pattern (briefly, ANSAP) represents a modification of the pattern described in
Sect. 3.1 in which, in the case of computations with ordered state access, we use the fact that not
all of the input items modify the internal state (partitionable or non-partitionable). In addition to
the function F defined as in the previous pattern, we introduce a boolean predicate P : α→ bool

which, evaluated on an input item, returns true if the input item may modify the state, or false
if the execution on the input item reads but does not modify the state. Therefore, the next state
xi+1 produced after the computation on the input item xi is defined as S(xi, si) if P(xi) = true

or si otherwise. The basic intuition of this pattern is that parallelism can be exploited among
input items that do not modify the state. Let xk be the last processed input item at a certain
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time instant such that P(xk) evaluates to true. All the consecutive input items xi with i > k such
that P(xi) is false can be executed in any order, because they do not modify the internal state,
i.e. their execution is idempotent.
Implementation The pattern can be implemented in FastFlow as a farm with nw workers, each
having a copy of the state. The emitter schedules items according to the value of the predicate.
For input items xi such that P(xi) is true, they are broadcast to all the workers which process
them keeping their state local copy updated. Instead, each xi such that P(xi) is false is scheduled
to a worker according to any scheduling strategy (e.g., round-robin, on-demand or any other).
Smaller memory occupation can be achieved using a single shared copy of the state, and placing
the emitter in charge of executing all the tasks that can modify the state in their arrival order. In
both implementations the scheduler has to ensure that all the previous items have already been
computed by the workers before scheduling (or executing) an item that modifies the state. No
locks/mutexes/semaphores are in general required to protect the state in this pattern.
Performance The scalability depends on the probability of receiving input items that modify the
state. The higher the probability the lower the scalability achieved by this parallelization. For-
mally, if tf and ts denote the time spent by the workers in executing the functions F and S,
respectively, and p the probability that the predicate returns true, the scalability with nw > 0
workers is:

sc(nw) =
tf + p ts

p (tf + ts) + (1− p) tf
nw

lim
p→0

sc(nw) = nw lim
nw→∞

sc(nw) =
tf + p ts
p (tf + ts)

This result is valid if the evaluation of the predicate P by the emitter introduces a negligi-
ble overhead. Otherwise, the maximum scalability is limited by 1/TP , where TP is the average
computation time of the predicate on an input task.

3.3 Fully partitioned state access pattern

Definition Preconditions to apply this pattern (briefly called FPSAP) are: i) the state must be
partitionable, and ii) we have an ordered access to the state. The state can be modelled as a
vector v of values of type γ of length N (v : γ vector). A hash function: H : α→ [0, N − 1] exists
mapping each of the input items to a state vector position (entry). The state vector is initialized
before starting the computation with some initial value sinit : γ. Functions F and S are defined
as stated in Sect. 3.1 and the computation of the farm is defined such that for each item of the
input stream xi, the output result on the output stream is computed as F(xi, v[H(xi)]) and the
state is updated as v[H(xi)] = s(xi, v[H(xi)]).

We can observe that while the pattern in Sect. 3.2 exploits the information that some of the
items do not modify the state, here we exploit a different property: state entries other than H(xi)
are not needed to compute stream item xi. This makes it possible to extract parallelism and an
ideal scalability in the best case.
Implementation Given a task farm skeleton with nw workers, the N state entries will be partitioned
among the workers. In the simplest situation, the workers are assigned to a subset of consecutive
state entries, i.e. by giving item vi to worker di/nwe. The farm emitter will schedule task xk to
worker dh(xk)/nwe using the hash function H. Furthermore, that worker will be the one hosting
the current, updated value of the state entry necessary to compute both the output result and the
state update. In general, other assignment strategies of state entries to the workers can be applied
in order to keep the load balanced. Since all the input items modifying the same state partition
are executed serially and in arrival order by the same worker, no locks/mutexes/semaphores are
in general required to protect the state partitions.
Performance Load balancing, and therefore scalability, depends on the effectiveness of the hash
function to spread incoming tasks (more or less) equally across the full range of workers. In
the case of a fair implementation of function H, we can get close to the ideal scalability. If the
function H schedules more items to a subset of the available workers, the scalability achieved will
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Pattern Motivating example/Application

SSAP An online auction system processes a stream of requests, each representing a buy proposal for a
set of goods with a proposed price and quantity. The system maintains a global state with all the
available goods, their quantity and a minimum price. The received bids are processed serially, as
they may modify the internal state, and in their strict arrival order in order to provide a fair bidding
environment.

ANSAP A financial auto-quoting system receives high-volume data streams of operations from either human
or automated users. Some operations (typically less frequent) may modify the market state, i.e. the
current set of bids and asks (buy and sell proposals) both active and suspended, which must be
executed in their arrival order. As an example, an operation can create/delete a proposal or modify
(edit) an existing one in the market. In contrast, more frequent operations are queries that do not
modify the market state (e.g., search for the best proposals for a given stock symbol).

FPSAP A recurrent pattern in Data Stream Processing [1] consists in the computation of data streams that
convey input items belonging to a collection of sub-streams, each corresponding to all the items with
the same partitioning attribute. The state is separated into independent partitions, each associated
with a sub-stream. The computation of an input item reads and modifies only the state partition of
its sub-stream. An example is a deep packet inspection system [7] that maintains a state partition
relative to each individual connection to be analyzed.

SFSAP The Dedup application of the PARSEC benchmark suite [4] consists in a pipeline of several stages
processing a stream of video frames. The third stage is executed in parallel by several threads sharing
a global hash table. Each input of that stage is a stream chunk which is uniquely identified by a
SHA-1 checksum. The stage checks the presence of the chunk in the global table (indexed by the
checksum) and, if present, the chunk is directly forwarded to the last stage of the computation.
Otherwise, the hash table is atomically updated and the chunk transmitted to a compression stage.

ASAP Searching for the number of occurrences of a string in a text (or of DNA sequences in a genome)
is a typical application implementing this state access pattern. The state maintains the number of
occurrences of the target strings that will be accessed and modified for each input item (a string in
the text).

SASAP An application that dynamically generates a space of solutions by looking for the one with the best
“fitness” value is an example of this state access pattern. The global state is represented by the best
solution candidate. Both solution and fitness values are stored in the state. Local approximations of
the currently available “best” solution may be maintained and updated to hasten convergence of the
overall computation. Solutions “worse” than the current “best” solution are simply discarded. This
pattern is naturally able to model Branch and Bound algorithms for finding the best solution in a
combinatorial search space.

Figure 1: Motivating examples and applications relative to the different state access patterns

be impaired. Let pi the probability to schedule an input item to the i-th worker. The maximum
scalability is: sc(nw) = 1

pmax
where pmax = max{p1, p2, . . . , pnw

}, i.e. the probability of the worker

receiving more input items. In the case of a uniform distribution (fair scheduling), the scalability
is ideal.

Another factor that may hamper scalability of this pattern is the computational weight of the
function H computed by the emitter on each input item. Let th be the processing time of this
function, the maximum number of input items processed by the farm per time unit is bounded
by 1/th and this may impair the overall performance if th is not negligible with respect to the
computation on the input items.

3.4 Separate task/state function state access pattern

Definition The separate task/state function access pattern (briefly, SFSAP) can be used in scenarios
characterized by a relaxed access to the state (any order is acceptable) in the case of both non-
partitionable and partitionable state. Let s : γ be the state. The computation relative to the input
item xi : α is performed in two steps: first a function F : α→ β (not depending on state values)
is applied to the input item to obtain yi = F(xi). Then, a new state value snew is computed out
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of yi and of the current value of the state scurr, i.e. snew = S(yi, scurr). It is worth noting that,
according to the relaxed access to the state, scurr is the current state value which is not necessarily
the result of the computation on the previous input item xi−1 in the arrival order.

The computation on a generic item xi will therefore require some time (tf ) to compute F and
then some time to fetch the current state value and to compute and commit the state update (ts).
The pattern can output all modifications applied to the state onto the output stream. A variant
worth consideration is the one which outputs only the value updates to the global state s such
that cond(s) holds true for some c : γ → bool.

Overall, this pattern is similar to that discussed in Sect. 3.1, the main difference being the way
in which the state is accessed. In the SSAP, the state is read at the beginning and written at the
end of the item computation, and the state needed to compute item xi is the one after computing
the previous item xi−1. In this pattern instead, the state must be accessed atomically during the
computation of the function S on any item. However, input items can be processed in any order.
Furthermore, in the SFSAP the state is accessed only while computing S. For the whole period
needed to compute F there is no need to access the state.
Implementation This pattern is implemented on top of a FastFlow farm. A global state is allocated
in shared memory before actually starting the farm, along with all the appropriate synchronization
mutexes/locks/semaphores needed to ensure mutually exclusive access to the state. Pointers to
the shared data and to all the required synchronization mechanism variables are passed to all the
parallel components composing the task farm pattern. A generic farm worker therefore computes F
relative to the received xi item and then: a) accesses shared global state using the synchronization
mechanisms provided along with the shared state pointer; b) computes the state update; c) updates
the global state; and d) eventually releases the locks over the global state.

This pattern can be also applied to partitionable states. In this case it is possible to increase
concurrency among threads by using a separate lock/mutex/semaphore protecting each state par-
tition instead of a lock for the whole state. This solution can be useful in cases where it is very
costly to have the emitter in charge of determining the partition of the state accessed by each input
item (as in the pattern in Sect. 3.3) provided that the computation semantics allows a relaxed
access to the state (any sequential order of input items is admissible).
Performance Scalability of the separate task/state function state access pattern is obviously im-
pacted by the ratio of the time spent in a worker to compute F (denoted by tf ) to the time spent
to update the state (ts), the latter contributing to the “serial fraction” of the farm. The time taken
to compute nw items sequentially will be nw(tf + ts). The time spent computing the same items
in parallel, using nw workers will be (at best) nwts + tf and therefore the maximum scalability
will be limited by:

lim
nw→∞

sc(nw) = lim
nw→∞

nw(tf + ts)

nwts + tf
= 1 +

tf
ts

(1)

3.5 Accumulator state access pattern

Definition In the accumulator state pattern (briefly, ASAP) the state is a value s : γ. Functions F
and S are defined that compute the result and the state update out of the current state and of
the current input item. Function S is restricted to be of the form: S(xi, scurr) = G(xi) ⊕ scurr
where ⊕ is an associative and commutative binary operator and G is any function G : α→ γ. We
denote by szero the initial value of the state.
Implementation Owing to the associativity and commutativity of the binary operator, we can
maintain a local state variable per worker, without needing mutual exclusion (locks, semaphores)
to access the global state directly by the workers as in the previous, more general, pattern. The
local state value sw of worker with identifier w = 1, 2, . . . , nw is initialized to the identity value with
respect to the function ⊕ (szero). The worker w processing item xi computes yi = F(xi, s

w
curr).

Then it either sends yi immediately to the farm collector, and then computes the new state value
swnew = G(xi)⊕swcurr and periodically sends the value swnew to the collector, re-initializing the local
state to szero; or delivers yi and G(xi) to the collector, which will update the global state value
accordingly, item by item.
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Pattern Adaptivity hints

SSAP This is de facto a serial pattern, therefore no adaptivity policies in this case.

ANSAP Adaptivity can be handled quite efficiently. In the solution with replicated state, a new worker can be
instantiated by assigning to it a copy of the updated version of the state (all the other workers must
have consumed their pending items). A worker can be removed from the pool of workers without the
need to modify/update the local state of the other workers.

FPSAP In case of an increase in the parallelism degree, some of the state partitions held by some workers must
be migrated to the new worker which, having acquired them, can start processing new input items.
The state migration must be performed by respecting the computation semantics (state partitions
must be accessed atomically) and must not violate the strict sequential order in which items of
the same group must be processed. Techniques to solve this issue in the case of autonomic/elastic
solutions have been proposed in some past research works [9, 15]. Symmetric actions are taken in
the case of parallelism degree reduction.

SFSAP Increasing or decreasing the number of workers used does not pose any particular issue. Adding a
new worker simply requires addition of the worker to the emitter worker queues. Taking away one
worker simply requires stopping it while it is waiting for a new input item.

ASAP When increasing the number of workers the new workers should be instantiated with a local state
value initialized with szero. When decreasing the number of workers, before stopping any worker
thread, the locally stored state values should be directed to the collector. If workers have to be
“merged” (e.g., to reduce the worker number but not imposing unexpected update messages on the
collector) the resulting worker should be given the “sum” of the merged workers’ local state values
(si ⊕ sj where workers i and j are merged).

SASAP When the number of workers in the farm is increased, the new worker(s) should be given the current
value of the global state maintained in the collector. This can also be implemented by allowing the
worker(s) to be started with a proper sinit and then leaving the new workers to get regular update
values from the collector. This obviously slows down the convergence of the overall computation, as
the new workers will initially only provide “wrong” approximations of the global state. When the
number of workers in the farm is decreased, the candidate workers to be removed may simply be
stopped immediately before attempting to get a new task on their input stream from the emitter.

Figure 2: Adaptivity issues in different state access patterns

Performance Load balancing is not affected by the state updates, apart from an increased load
on the collector. Depending on the computational weight of ⊕, the implementation with periodic
updates to the collector will be preferred to the one continuously sending the updates to the
collector. Scalability is theoretically ideal.

3.6 Successive approximation state access pattern

Definition The pattern (briefly, SASAP) manages a state which is a value s : γ. For an input
stream with items xi, a stream of successive approximations of the global state s is output by the
pattern. Each computation relative to the task xi updates state if and only if a given condition
C : α × γ → bool holds true. In that case, the new state value will be computed as S(xi, scurr).
Therefore, in this state access pattern we have:

snew =

 scurr if C(xi, scurr) = false

S(xi, scurr) otherwise

The state access pattern is defined if and only if S is monotone in the state parameter, that
is S(xi, scurr) ≤ scurr for any xi, and the computation converges even in the case of inexact state
updates, that is, where different updates read a state value and decide to update the state with
distinct values at the same time (global state updates are anyway executed in mutual exclusion).
Implementation The pattern is implemented with a task farm, where global state value is maintained
by the collector. Any update to the state is broadcast to the workers via a feedback channel from
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collector to the emitter. Each worker w maintains a properly initialized2 local copy of the global
state sw : γ. Workers processing an input stream item xi send update messages to the collector.
Updates are computed on the local value of the state, and so this may turn out to be misaligned
with respect to the global state value maintained by the collector and to the local copies maintained
by the other workers. The collector only accepts state updates satisfying the monotonic property
of S, that is if a worker sends an update that would change the state in a non-monotonic way,
that update is discarded on the basis that a better update has already been found. At any update
of its local “global” state value, the updated value is output over the pattern output stream, and
therefore the pattern output stream hosts all the subsequent successive approximations computed
for the global state.
Performance Again, by maintaining local copies and by relying on the monotonic property of the
state updates (when executed), we can avoid having a unique global state updated atomically
by the workers (as in the general pattern in Sect. 3.4). However, we can identify three possible
additional sources of overhead in the pattern compared with the stateless task farm pattern:

• a first performance penalty is paid to update the global state at the farm collector every time
a worker decides to send a state update. As this just requires the comparison between the
state currently computed as the “best” one in the collector and the update value obtained
from the worker, this may be considered negligible;

• a second penalty is paid to send back the global state update to the workers, through
the farm feedback channel. This requires an additional communication from collector to
emitter and a broadcast communication from emitter to workers. FastFlow implements both
communications very efficiently and so the associated overhead is negligible (in the range of
fewer than some hundred clock cycles on state-of-the-art multicore architectures);

• a third penalty is paid for the extra update messages directed by workers not having available
(as local state copy) an updated state value. This happens in the case that the collector
has already propagated the new state value but the message has not yet reached the worker.
This performance penalty comes in two components: a) the worker w may compute an
extra S(xi, s

w
curr) as a consequence of having a wrong local swcurr value in the computation

of C(xi, swcurr), and b) the worker directs an extra state update message to the collector.

3.7 Pattern summary

Here we briefly summarize the patterns described above with respect to their requirements in
terms of the nature of the state (partitionable vs. non-partitionable) and the type of state access
(ordered or relaxed). This summary is provided in Tab. 3.

SSAP ANSAP FPSAP SFSAP ASAP SASAP

Relaxed Access No No No Yes Yes Yes

Ordered Access Yes Yes Yes No No No

Partitionable State Yes Yes Yes Yes Yes Yes

No-partition. State Yes Yes No Yes Yes Yes

Table 3: Summary of the state access patterns presented in the paper.

It is interesting to observe that the two options in the state access dimension are indeed
mutually exclusive because this dimension is related to the computation semantics. Instead, the
nature of the state (partitionable or not) is a performance-oriented dimension meaningful mainly
for the application of FPSAP.

Motivating examples/applications for each pattern are summarized in the table in Fig. 1, while
hints about policies for dynamic adaptivity (i.e. dynamic variations in the number of workers) in

2e.g., to some known smax value.
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(a) IBM Power8 (b) Intel KNL

Figure 3: ANSAP scalability

the FastFlow implementations are outlined in the table in Fig. 2. It is worth pointing out that we
target off-the-shelf multicore architectures and the applications listed in Fig. 1 represent notable
use cases for this class of machine.

4 Experiments

We describe several experiments relating to the state access patterns aimed at demonstrating
that the patterns work and that the performance results are as predicted. The majority of the
experiments3 have been performed on a 64 core, 4 way hyperthreading Intel Xeon PHI Knights
Landing (KNL) architecture. The experiments use parallelism degrees up to 128, to exploit the
double floating point units per core available. For the experiments we used Linux 3.10.0 with icc

16.0.3 and FastFlow 2.1.2. All experiments have been run using synthetic applications employing
the various state access patterns, where actual computations are dummy floating point kernels. A
couple of full size applications have been used to assess FPSAP (see below).

All-or-none state access pattern: here we aimed to verify the scalability limits of this
pattern. We considered the case in which: i) tf = ts; ii) the state is replicated in all farm
workers; and iii) the probability of modifying the state varies between 1%, 10% and 20%. The
emitter checks if the predicate on the input item is true and if so it broadcasts the item to all
workers making sure that all of them are not still computing previous items. Fig. 3 shows that
the scalability achieved by the FastFlow implementation is very close to the theoretical bounds.
Fully partitioned state access pattern: we did not run specific synthetic benchmarks to verify
the performance of the FPSAP as some of the authors of this work have already developed distinct
applications explicitly using the pattern. The Deep packet inspection application in [6] uses the
FPSAP FastFlow pattern and i) achieved close to linear scalability on state-of-the-art Intel Sandy
Bridge 16 core servers and ii) succeeded to sustain deep packet inspection on a 10Gbit router.
Financial applications used in [5] achieved similar results (almost linear scalability on Intel Ivy
Bridge 24 core servers) using the FPSAP.
Separate task/state function state access pattern: the second experiment investigates the
performance of the separate task/state function state access pattern. In this case we aimed at
verifying the limits given by equation (1). We ran the synthetic application incorporating the
separate task/state function state access pattern while varying the ratio between the times spent
computing f and computing s. As shown in Fig. 3a, scalability behaves as predicted by (1):
for each tf/ts ratio, there is a corresponding maximum speedup asymptote which is the one
approximated by the actual speedup curve.
Accumulator state access pattern: we measured the execution time of our prototype synthetic
application incorporating the accumulator state access pattern while varying the amount of time
(tf ) spent in the computation of the task to be output on the output stream (f(xi, sw)) and the

3apart from those aimed at assessing performance portability – see paragraph “Different architectures” below
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(a) SFSAP speedup (x× means tf = x× ts) (b) ASAP compl. time vs. grain and update frequency

Figure 4: SFSAP and ASAP experimental results (KNL)

time (ts) spent in the computation of the new state value/update (g(xi)⊕ si−1)). When tf >> ts

we verified that the completion time is close to the ideal, that is
m(tf+ts)

nw
. We also investigated

the effect of the update frequency (f , the number of items processed by a worker before sending
the state update of the collect). Ideally, the frequency should be chosen so that the collector does
not become a bottleneck due to the state updates. This means that the number of workers should

not be larger than
f(tf+ts)

ts
. Fig. 4b shows completion times for a run where tf = 5ts. Ideally,

scalability should stop at 6 workers when f = 1, at 48 when f = 8 and at 96 when f = 16, which
is in fact what we can observe in the plot.

When tf = ts and the update frequency is 1 the scalability is limited to 2. Experiments (not
shown for space reasons) on the KNL have demonstrated that in fact the completion time halves
when moving from parallelism degree 1 to 2 and then stays constant for larger parallelism degree.
Successive approximation: Fig. 5a shows results obtained with the implementation of the
successive approximation state access pattern on the Sandy Bridge architecture. Several curves
are plotted against the ideal completion time (the one computing according to formula in Sec. 3.6),
while varying the amount of time spent computing the condition c(xi, si−1) (tf in the legend) and
the time spent computing the state update s′(xi, si−1) (ts in the legend). As expected, the larger
the time spent in the (worker local) computation of the condition, the better the results achieved.

Overhead We measured the overhead in the execution of our FastFlow implementation of the
state access patterns. Fig. 5b shows the overhead measured with different parallelism degree
and stream lengths in the execution of an ASAP pattern benchmark on a KNL architecture. The
overhead increases more significantly with the parallelism degree and less significantly with the
stream length, as expected in a stream parallel pattern. Specific experiments measuring the
overhead introduced by the FastFlow farm pattern used to implement all of the state access
patterns showed that the overhead related to the setup of the threads ranges from 30 to close to
80 msecs on KNL while the global overhead related to the management of a single stream item
across farm components ranges from 0.1 to 0.5 µsecs on the KNL.

Different architectures The experimental results discussed so far have been obtained on the
same Intel multicore architecture. However, very similar results have been achieved also when
running our synthetic applications on different types of state-of-the-art architectures. In particular,
we used Intel Sandy and Ivy bridge architectures with 16 and 24 2-way hyperthreading cores,
respectively, and a 20 core, 8-way hyperthreading IBM Power8 architecture. Fig. 3 compares
results achieved running the same experiment on IBM Power8 and Intel KNL.
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(a) SASAP scalability (x× means tf = x× ts) (b) Overhead in ASAP benchmark

Figure 5: SASAP scalability and ASAP overhead evaluation (KNL).

5 Related work & Conclusions

A number of authors have considered various aspects of state in the context of stream processing.
Typically, they employ less overtly structured approaches than the pattern-based concept pre-
sented here. Perhaps the closest to our work is that of Wu et al. [20] who introduce a framework
for parallelizing stateful operators in a stream processing system. Their split-(process*)-merge
assembly is very similar to the task farm presented here. They divide each stateful instance of
process into non-critical access and critical access segments and present a more comprehensive
theoretical model to determine scalability (based on shared lock access times, queue lengths, etc.)
than is attempted here. However, they do not attempt the sort of classification scheme given in
this work.

Verdu et al [19] focus on implementation issues in relation to parallel processing of stateful
deep pack inspection. The propose Multilayer Processing as a model to leverage parallelism in
stateful applications. They focus on lower level implementation issues, such as caching and do
not explicitly employ structured pattern based parallelism of the kind used here. Gedik [15]
examines properties of partitioning functions for distributing streaming data across a number of
parallel channels. Thus the author focuses on the equivalent of properties of the hash function
in our fully partitioned state access pattern. De Matteis et al. [9] discuss stateful, window based,
stream parallel patterns particularly suited to model financial applications. The techniques used
to implement the applications fit the design patterns discussed in this paper, but actually somehow
mix accumulator, partitioned and separate task/state state access patterns. Fernandez et al. [13]
also consider the partitioned state and examine issues related to dynamic scale-out and fault
tolerance. As with the others, they do not use a pattern-based approach nor do they attempt a
classification scheme of the kind presented here.

Stream processing has become increasing prevalent as a means to address the needs of ap-
plications in domains such as network processing, image processing and social media analysis.
Such applications, when targeted at multicore systems, may be implemented using task farm and
pipeline parallel patterns. We observe that typically such applications employ task farms in state-
less fashion as it is here that the implementation is easiest and the return in terms of parallel
scalability is greatest. However, we note that, while embracing state can lead to a de facto sequen-
tial computation, there are variations which can provide scope for parallel scalability. We have
classified these variations, indicating for each the issues that arise in relation to implementation
detail, performance and how the pattern may be adapted to vary performance. We have presented
experimental evidence that, in terms of performance, the various classes of stateful task farms be-
have as predicted. We consider that a greater understanding of the extent to which (streaming)
parallel patterns may incorporate state will broaden the possibilities for development of multicore
applications using parallel pattern based approaches. To this end, our next step is to investigate
other traditionally stateless patterns for stateful variants.
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Z. Horváth, and L. Csató, editors, Central European Functional Programming School, volume 8606
of Lecture Notes in Computer Science, pages 29–75. Springer International Publishing, 2015.

[9] T. De Matteis and G. Mencagli. Keep calm and react with foresight: Strategies for low-latency and
energy-efficient elastic data stream processing. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages 13:1–13:12, 2016.

[10] D. del Rio Astorga, M. F. Dolz, L. M. Sanchez, and J. D. Garćıa. Discovering Pipeline Parallel
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