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Abstract

We present the implementation of a Born-Oppenheimer (BO) hybrid Quantum Mechan-
ics/Molecular Mechanics (QM/MM) Molecular Dynamics (MD) strategy using Density Func-
tional Theory (DFT) and the polarizable AMOEBA force field. This approach couples the
Gaussian and Tinker suite of programs through a variational formalism allowing for a full self-
consistent relaxation of both the AMOEBA induced dipoles and the DFT electron density at
each MD step. As the DFT SCF cycles are the limiting factor in terms of computational efforts
and MD stability, we focus on the latter aspect and compare the Time-Reversible BO (TR–
BO) and the Extended BO Lagrangian approaches (XL–BO) to the MD propagation. The
XL–BO approach allows for stable, energy-conserving trajectories offering various perspectives
for hybrid simulations using polarizable force fields.

1 Introduction

In recent years lots of efforts have been de-
voted to improve both the efficiency and the
applicability of polarizable Molecular Mechan-
ics (MM) force fields (FF).1–3 In contrast to
standard force fields, polarizable ones include
many-body effects, which makes them in prin-
ciple more flexible and accurate. Naturally,
a fully classical description, even if including
polarization, is not sufficient for many impor-
tant chemical and physical problems, such as
the study of chemical reactivity and photo-
induced processes. In that context, a hybrid
QM/MM approach that couples a polarizable
FF with a quantum mechanical (QM) approach
represents a very promising strategy as it com-
bines the computational efficiency of an accu-
rate classical model with the required quan-
tum description of the subsystem of interest.
Many examples in this direction have been pre-
sented so far in the literature, where the po-
larizable FF can be obtained either in terms
of fluctuating charges,4–8 drude oscillators9,10

or induced dipoles.11–19 In the framework of
induced dipoles formulations, we recently pre-
sented a polarizable QM/MM implementation
based on Density Functional Theory (DFT) and
the AMOEBA polarizable FF.20 Such an im-
plementation is based on a variational formal-
ism21,22 and couples the induced dipoles and
the electron density in a fully self-consistent
way. Both ground and excited-state energies
have been presented; the latter are obtained
within the framework of time-dependent DFT
(TD-DFT), either in a linear response or in a
state-specific picture. Our work complements

several other QM/AMOEBA implementations
within various other suite of programs, such as
LICHEM,23 ONETEP/TINKER24 and the Q-
Chem/LibEFP interface.25

In our last work, however, the QM/AMOEBA
computations were performed on snapshots ob-
tained from a purely classical MD simulation.
In other words, the MD and the QM/MM cal-
culations were decoupled and performed using
different methods. We pursue here a genuine
QM/MM MD strategy, which is achieved by
coupling together the Tinker26 MD package and
the Gaussian27 suite of programs and by imple-
menting analytical gradients for the polarizable
QM/AMOEBA energy.

QM/MM MD simulations28–31 have been
proposed both within a Born-Oppenheimer
MD (BOMD)32 and Lagrangian Car-Parrinello
MD (CPMD).33 In BOMD the electronic
QM(/MM) equations are solved at each time-
step to obtain the ground state potential energy
and forces acting on the nuclei. In CPMD the
electronic degrees of freedom are rather prop-
agated together with the nuclear ones, which
avoids the cost of solving at each step the QM
electronic problem. CPMD is thus computa-
tionally much more efficient that BOMD. This
comes, however, at a cost, as CPMD can pro-
duce different results from BOMD.32,34,35

The efficiency of BOMD can be majorly im-
proved by building better initial guess for the
SCF equations using information that is avail-
able along the trajectory.34,36–38

Over the years, many strategies have been
proposed to accelerate the SCF procedure in ab
initio dynamics.34,36–38 Among them, the time-
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reversible BOMD developed by Niklasson and
coworkers39 represents an efficient and accurate
method, preserving the time-reversal symme-
try, thus avoiding systematic errors in energy
and gradients and, consequently, memory ef-
fects in the nuclear trajectory and an unphysi-
cal systematic drift in the system’s total energy.

They observed however that the perfect time-
reversibility leads to instabilities under noisy
conditions, requiring a sufficiently accurate
electron density for longer simulations. To ad-
dress this issue, they proposed an Extended La-
grangian approach,40 including the coupling to
a fictitious external “dissipative reservoir” to
remove the numerical error fluctuations with-
out introducing any significant energy drift or
modification of the nuclear forces. In Ref. 40
the authors show how the dissipative scheme is
capable to efficiently remove numerical noise ar-
tificially generated introducing a perturbation
during the dynamics of a model system. The
same has been done with the lossless approach,
producing a noisy trajectory, where the extra-
noise never disappears.

In the present contribution we apply the Ex-
tended Lagrangian formalism in the context
of the hybrid QM/AMOEBA BOMD, showing
that stable and accurate dynamics can indeed
be performed. To do so, we will first recall
the working equations for the QM/AMOEBA
implementation in a variational formulation.
Then a special focus will be given on the pre-
sentation of the analytical derivatives of the
QM/AMOEBA energy and on the compari-
son of the two predictor-corrector schemes by
Niklasson et al.39,40 that we applied to the com-
putation of the QM part to reduce the compu-
tational cost at every hybrid MD step.

2 Polarizable QM/MM

with the AMOEBA force

field

In this section, we will briefly sum up the cou-
pled QM/AMOEBA equations for a SCF-based
QM method. A full derivation can be found in
a previous work of some of us.20 Detailed in-

formation on the AMOEBA force field and the
way it treats the polarization problem can be
found in the relevant literature.22,41,42

Here, we report the QM/AMOEBA varia-
tional energy functional

E(P ,µ) = EQM(P ) + EMM(µ)+ (1)

+ECoup(P ,µ) = EQM(P ) + EEnv(P ,µ),

where we introduced an environment term EEnv,
which is given by the sum of three contribu-
tions:

EEnv = EFF+EElQM/MM(P)+EPolQM/MM(P ,µ). (2)

The first term in eq. 2 includes the MM bonded
and dispersion-repulsion interactions, which de-
pend on neither the electron density nor the in-
duced dipoles. This term includes also the “van
der Waals” interactions between the classical
and quantum subsystems, which in our imple-
mentation are treated with the AMOEBA force
field. The second term is given by the electro-
static interaction between the AMOEBA static
multipoles and the QM density

EElQM/MM(P ) = q†V QM(P )− µ†sEQM(P )+

(3)

−Θ†GQM(P ),

where qi, ~µs,i and Θi are the fixed charges,
dipoles and quadrupoles, respectively, and the
potential, field and field gradient produced by
the QM density at the i-th MM atom are each
written as the sum of a nuclear and an elec-
tronic contribution:

V QM(~ri;P ) =

NQM∑
k

Zk

|~ri − ~Rk|
+

Nb∑
µν

PµνVµν(~ri)

(4)

~EQM(~ri;P ) =

NQM∑
k

Zk(~ri − ~Rk)

|~ri − ~Rk|3
+

Nb∑
µν

Pµν ~Eµν(~ri)

(5)
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[GQM]αβ(~ri;P ) =

NQM∑
k

Zk

(
3(rαi −Rα

k )(rβi −R
β
k)

|~ri − ~Rk|5

− δαβ

|~ri − ~Rk|3

)
+

Nb∑
µν

PµνG
αβ
µν (~ri)

(6)

In eqs. 4–6 the index k runs over the NQM QM

nuclei, and Zk and ~Rk denote the charge and
position of the k-th nucleus, respectively. The
electronic contributions are written in terms of
the density matrix Pµν , where µ and ν label

atomic orbitals, and the integrals Vµν , ~Eµν and
Gαβ
µν read:

Vµν(~ri) =−
∫
R3

χµ(~r)χν(~r)

|~ri − ~r|
d3r, (7)

~Eµν(~ri) =−
∫
R3

χµ(~r)χν(~r)(~ri − ~r)
|~ri − ~r|3

d3r, (8)

Gαβ
µν (~ri) =−

∫
R3

χµ(~r)χν(~r) (9)(
3(rαi − rα)(rβi − rβ)

|~ri − ~r|5
− δαβ
|~ri − ~r|3

)
d3r.

Finally, the last term in eq. 2 is the varia-
tional polarization energy

EPolQM/MM =
1

2
µ†dTµp −

1

2

(
µ†pEd + µ†dEp

)
+

− 1

2

(
µp + µd

)†
EQM(P). (10)

This term accounts for the mutual polarization
of the QM density and the AMOEBA induced
dipoles. A more detailed derivation of the vari-
ational formulation of the AMOEBA polariza-
tion energy can be found in Ref. 22, while de-
tails on the AMOEBA induced dipoles µp and
µd, and the related electric fields are discussed
in Ref. 41.

The use of a variational formalism makes the
derivation of the coupled equations straightfor-
ward.The QM/AMOEBA Fock matrix is ob-
tained as the gradient of the functional in 1 with
respect to the density matrix:

F̃ =
∂E(P ,µ)

∂P
= F ◦ + F Env. (11)

In eq. 11, F ◦ is the standard Fock matrix,
while F Env is the contribution due to the em-
bedding:

FEnv
µν = q†Vµν−µ†sEµν−Θ†Gµν−

1

2
(µp+µd)†Eµν

(12)
The Fock operator in eq. 11 can be used to
set up a self-consistent field procedure. Since
it depends on the AMOEBA induced dipoles,
the AMOEBA polarization equations need to
be solved at each SCF iteration. These are ob-
tained by differentiating the energy functional
in eq. 1 with respect to both sets of dipoles, and
setting the derivative to zero, which yields:

Tµp = Ep +EQM(P )

Tµd = Ed +EQM(P ). (13)

The two linear systems in eq. 13 can be eas-
ily solved by using an iterative method, as dis-
cussed in detail in refs. 42,43. In particular, in
the present work we use Jacobi Iterations to-
gether with the direct inversion in the iterative
subspace (DIIS) method44 to accelerate conver-
gence. To reduce the drift issue (see discussion
in the Numerical section), all simulations are
performed with a tight convergence threshold
(10−8 D) for the dipoles.

2.1 Analytical derivatives of the
QM/AMOEBA energy

We will now proceed with the derivation of the
QM/AMOEBA gradients. We will focus the
discussion on the QM/MM interaction energy,
and in particular on the electrostatic and po-
larization terms, given in eqs. 3 and 10, respec-
tively. Thanks to our variational formulation,
we are only concerned with partial derivatives.
By differentiating eq. 3 with respect to the co-
ordinates of a QM nucleus k we get:

∂EElQM/MM

∂Rα
k

= q†
∂VQM

∂Rα
k

− µ†s
∂EQM

∂Rα
k

−Θ†∂GQM

∂Rα
k

.

(14)
Eq. 14 contains the derivatives of the poten-

tial, field and field gradient, as given in eqs. 4–6:
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∂V QM(~ri;P )

∂Rα
k

=
Zk(r

α
i −Rα

k )

|~ri − ~Rk|3
+

Nb∑
µν

Pµν
∂Vµν(~ri)

∂Rα
k

∂[EQM]β(~ri;P )

∂Rα
k

=Zk

(
3(rαi −Rα

k )(rβi −R
β
k)

|~ri − ~Rk|5
− δαβ

|~ri − ~Rk|3

)
+

Nb∑
µν

Pµν
∂Eβ

µν(~ri)

∂Rα
k

∂[GQM]βγ(~ri;P )

∂Rα
k

=3Zk
(rαi −Rα

k )δβγ + (rβi −R
β
k)δαγ + (rγi −R

γ
k)δαβ

|~ri − ~Rk|5

− 15Zk
(rαi −Rα

k )(rβi −R
β
k)(rγi −R

γ
k)

|~ri − ~Rk|7
+

Nb∑
µν

Pµν
∂Gβγ

µν(~ri)

∂Rα
k

, (15)

where the integral derivatives are defined as
follows:

∂Vµν(~ri)

∂Rα
k

=−
∫
R3

∂(χµ(~r)χν(~r))

∂Rα
k

1

|~ri − ~r|
d3r,

∂Eβ
µν(~ri)

∂Rα
k

=−
∫
R3

∂(χµ(~r)χν(~r))

∂Rα
k

(rβi − rβ)

|~ri − ~r|3
d3r,

∂Gβγ
µν(~ri)

∂Rα
k

=−
∫
R3

∂(χµ(~r)χν(~r))

∂Rα
k

(16)(
3(rβi − rβ)(rγi − rγ)

|~ri − ~r|5
− δβγ
|~ri − ~r|3

)
d3r.

Similarly, the gradient of the QM/AMOEBA
polarization energy with respect to the position
of a QM nucleus is:

∂EPolQM/MM

∂Rα
k

= −1

2
(µd + µp)

∂EQM(P)

∂Rα
k

, (17)

with the derivative of the QM field given in
eq. 15.

We now proceed to differentiate the
QM/AMOEBA energy with respect to the po-
sitions of a MM atom. The electrostatic term
gives rise to two different contributions. The
first arises from the derivatives of the potential,
field and field gradient, which are, respectively,
the field, field gradient and field second deriva-
tive. The second contribution, which we will
denote with ~Frot,i, comes from the matrices
that are used to rotate the static dipoles and

quadrupoles from the molecular frame to the
lab frame. The latter contribution is straight-
forward, but very cumbersome, and will not be
discussed here. The reader can find a complete
derivation in ref. 42. The derivative of the elec-
trostatic energy with respect to the position of
a classical atoms thus reads:

∂EElQM/MM

∂rαi
= q†[EQM]α − [GQM]αβµβs+ (18)

−[OQM]αβγΘβγ + Fα
rot,i.

where we introduced the second field derivative
OQM, whose components are given by:
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[OQM]αβγ(~ri;P ) =−
NQM∑
k

Zk

(
3

(rαi −Rα
k )δβγ + (rβi −R

β
k)δαγ + (rγi −R

γ
k)δαβ

|~ri − ~Rk|5

− 15
(rαi −Rα

k )(rβi −R
β
k)(rγi −R

γ
k)

|~ri − ~Rk|7

)
+

Nb∑
µν

PµνO
αβγ
µν (~ri), (19)

and

Oαβγ
µν (~ri) =

∫
R3

χµ(~r)χν(~r)

(
3

(rαi − rα)δβγ + (rβi − rβ)δαγ + (rγi − rγ)δαβ
|~ri − ~r|5

− 15
(rαi − rα)(rβi − rβ)(rγi − rγ)

|~ri − ~r|7

)
d3r. (20)

The derivatives of the QM/AMOEBA polar-
ization energy with respect to the position of a
MM atom are given by:

∂EPolQM/MM

∂rαi
=

1

2
µ†d

∂T

∂rαi
µp −

1

2

(
µ†p
∂Ed

∂rαi
+ (21)

+µ†d
∂Ep

∂rαi

)
− 1

2
[GQM]αβ(µβd + µβp ).

The derivatives of the T matrix and of the Ed

and Ep fields are again detailed in Ref. 42.

2.2 Acceleration of the QM part
through an Extended La-
grangian formalism

The so called Extended BO (XBO) Lagrangian,
LXBO, defined in eq. 22, includes auxiliary elec-
tronic degrees of freedom (EDF), here expressed
in terms of orthogonal electron density matri-
ces, P∗ and its time derivative Ṗ∗, evolving
on a harmonic potential centered at the SCF
ground state solution PSCF. In our implementa-
tion, the latter is defined as the QM/AMOEBA
SCF ground state potential E(R; PSCF ,µ) for
the real EDF. The third and fourth terms of
the RHS of eq. 22 are the fictitious kinetic and
potential energies of the auxiliary EDFs, rela-
tive to the fictitious electronic mass m and fre-
quency ω.

LXBO(R, Ṙ,P∗, Ṗ∗) =
1

2

NZ∑
I

MIṘ
2
I − E(R; PSCF,µ) +

m

2
Tr[Ṗ∗

2
]− mω

2
Tr
[
(PSCF −P∗)2

]
(22)

In the limit m −→ 0, LXBO −→ LBO and
the evolution in time of the system is described

by the Euler–Lagrange equations of motion

MIR̈I = −∂E(R; PSCF,µ)

∂RI

(23)

P̈∗ = ω2(PSCF −P∗). (24)
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As shown in eq. 23, the nuclear degrees of free-
dom remain unaffected by the extended ones as
in a regular BOMD.

The auxiliary EDFs are propagated in a
Verlet scheme, as well as the nuclear coordi-
nates, introducing a dissipative force term in a
Langevin-like approach,40 resulting in the fol-
lowing expression:

P∗tn+1
= 2P∗tn −P∗tn−1

+ k(Ptn −P∗tn)+ (25)

+α
K∑
l=0

clP
∗
tn−l

where α is the coupling coefficient between the
auxiliary EDFs and the external dissipative
bath. Further details can be found in ref. 40
where also various optimized values for k, α
and the linear combination parameters cl are
reported. This expression represents the im-
proved density which will be used as a guess
in the SCF procedure. Since the Gaussian code
works with non-orthogonal density matrices, we
propagate P̃∗tn = S1/2P∗tnS1/2 rather than P∗tn ,
as proposed by Skylaris et al.45 The initial guess
is again given by eq. 25, after multiplying P̃∗tn+1

by S−1/2 on left and right.

3 Numerical Tests

To perform hybrid polarizable QM/MM MD
simulation, an interface between a locally mod-
ified version of Gaussian27 and Tinker (and
Tinker-HP) has been created. The work flow is
described in details in Fig. 1. In our implemen-
tation, Gaussian is used to solve the QM/MM
equations and to compute the electrostatic and
polarization QM/MM energy and forces. This
allows us to minimize communication between
Gaussian and Tinker, and will allow us to ex-
ploit our previous FMM-based linear scaling
implementation of the polarizable electrostat-
ics.19 A fully linear scaling implementation is
currently under active investigation.

Tinker/Tinker-HP computes all MM non-
electrostatic terms and, given the total forces,
integrates the equations of motions. The
QM/MM driver handles the communication be-
tween Gaussian and Tinker, and works directly

on the input/output of each program.
As a test case we perform a series of

QM/AMOEBA MD simulations using free
(non–preiodic) boundary condition of the ala-
nine dipeptide (ADP) in a cubic box of 631 wa-
ters (1 912 atoms overall, see fig. 2). The dipep-
tide represents the QM subsystem in our hybrid
approach and is treated at the B3LYP/6-31G
level, while the water molecules are treated at
the AMOEBA level.

Figure 2: Snapshot extracted from an MD run.
The ADP molecule in the center is the QM
subsystem, surrounded by water molecules de-
scribed with the AMOEBA polarizable FF.

We run several MD trajectories in the NVE
ensemble, using a time step δt = 0.5 fs for a
total simulation time of 1 ps, without imposing
any boundary condition. In general this can
lead to various issue, and in particular, to the
evaporation of the system, but since our tests
were performed for very short simulation times,
comparable to that of a low energy vibration,
we are not concerned here with these kinds of
problem.

For longer simulations, a harmonic repulsive
constraint46 is available to avoid evaporation
artifacts. Indeed the water–solute cluster can
be confined by a spherical boundary with a
van der Waals soft wall represented by a 12–
6 Lennard–Jones potential, which can be set to
a fixed buffer distance of 2.5 Å outside the spec-
ified radius.

Here we discuss the tests we carried out to
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Figure 1: Work-flow diagram of the implementation and Gaussian/TINKER interface. The driver
is a bash script overseeing the writing of input files and the exchange of informations between
TINKER and Gaussian codes. TINKER is the main program as it collects the energy gradients
computed by Gaussian and takes care of the nuclear classical dynamics. Gaussian solves the time-
independent Schrödinger equation, computing the electronic PES on-the-fly and its derivative at
each nuclear configuration.

Driver

Gaussian

Tinker

Setting input parameters:

- initial coordinates

- time step δt and total time
length τ

- temperature for initial
velocities

MD initialization at t0;
Velocity Verlet first step

Compute fully relaxed µ and
P in the SCF Procedure

&
Polarization + QM/MM

Energy Gradients

MM Energy Gradients
Reading GAUSSIAN Gradients

&
atomic position integration

Is t = τ?

End message
Processes termination

Update input files and time:

- n = n+ 1

- t = t0 + nδt

Velocity Verlet inte-
grator initialization

YES

NO

analyze the effect that the environment, the ex-
trapolation scheme and the SCF convergence
threshold have on the energy conservation. The
SCF convergence thresholds tested are 10−3,
10−5 and 10−8. Note that convergence in Gaus-
sian is based on the root mean square (RMS)
variation of the electron density, rather than
the energy. The loosest value (10−3) is cho-
sen to mimic a strongly noised dynamics, with
poorly converged density and inaccurate gradi-
ents. Since our simulations are run in the mi-
crocanonical ensemble, we cannot directly con-
trol temperature, except for the sampling of
the initial velocities, obtained from a Maxwell–
Boltzmann distribution.

The two extrapolation schemes employed are
that of Niklasson et al.39 (henceforth labeled
TR–BOMD), and that of eq. 25 (XL–BOMD)
with K = 7. While different values of K have
been used in the literature,45,47 we follow the
work of Niklasson and coworkers,48 where tight-

binding DFT is applied to different amino acids
and different K values are compared. Finally
we test the effect of the environment by com-
paring the simulations in water with gas-phase
simulations, keeping all the other settings un-
changed.

We compare the drift in total energy and
the noise in each of the twelve resulting tra-
jectories. The drift is assumed to be linear
in time, and is computed as the slope of the
best line interpolating the time sequence of
the energy values. The noise is evaluated as
the root mean square of the energy fluctua-
tions after removing the drift.38 We also report
the pseudo-temperature of the EDFs,45,49 com-

puted as Tr[Ẋ
2
]/Ne, where X = P∗ or PSCF ,

the dot indicates time derivatives (performed
numerically), and Ne is the number of elec-
trons. As starting geometry, we use a snap-
shot extracted from an Amber classical MD,
and set a low temperature (50 K) for the ini-
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Table 1: Comparison of the average number of SCF cycles (N), total energy drift and noise between
different convergence criteria, for both gas-phase and QM/AMOEBA BOMD, using eq. 7 in Ref.
39 (TR–BOMD) and eq. 25 (XL–BOMD) with K = 7 for the SCF guess extrapolation.
a: In this case the trajectory explodes around 315 fs in gas-phase and 355 fs in water, so the average
number of SCF cycles, the drift and the noise are computed over these time intervals

Conv. (10−N) Method
Gas-Phase QM/AMOEBA

N Drift noise N Drift noise
(µEH/ps) (µEH) (µEH/ps) (µEH)

3
TR–BOa 5.4 72340 ± 79320 92220 5.1 54930 ± 53770 74810
XL–BO 2.8 2090 ± 470 3190 2.7 1060 ± 530 3630

5
TR–BO 5.18 -9.0 ± 0.67 4.6 5.46 -82 ± 3.2 22
XL–BO 3.62 -0.66 ± 0.74 5.0 3.78 -72 ± 3.2 22

8
TR–BO 7.29 -0.20 ± 0.19 1.3 7.40 -70 ± 3.2 22
XL–BO 7.83 -0.21 ± 0.19 1.3 8.09 -70 ± 3.2 22

Figure 3: Energy variation (mEH) along 1 ps-long trajectories. The plots on the left (A, C, E) refer
to gas-phase simulations, those on the right (B, D, F) to simulations in water solution. Convergence
thresholds are 10−3 (plots A and B), 10−5 (C and D), 10−8 (E and F). The insets in plots A, B and
C show the full energy fluctuation range.
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tial velocity sampling. Since the temperature
determines the amount of energy per vibra-
tional degree of freedom, the energy oscillation
amplitudes are temperature dependent. High-
temperature simulations have the effect of in-
creasing the noise, thus affecting the accuracy
of our estimation of the energy drift, as shown
in the Supporting Information where the results

of a 300 K dynamics is reported (Figure S1).
The results are reported in Tab. 1. In Fig. 3,

we plot the total energy as Etot(t) − Eavg for
each simulation. Panels A and B refer to gas-
phase and QM/AMOEBA simulations. The red
lines represent the energy of TR–BO, using the
10−3 SCF convergence threshold. The insets
clearly show that the energy diverges, reaching
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∼2000 mEH after 315 fs in gas-phase and 355
fs in water. Due to the high noise (92220 and
74810 µEH respectively) and inaccuracy in the
drift determination, the results are not mean-
ingful and conclusion cannot be drawn on the
dynamics conservativity.

Using the XL–BO extrapolation (Fig. 3, blue
line, panels A, B), the results are more stable, as
the energy does not diverge in either gas- and
condensed- phase, although the drift is quite
large (∼ 2000 and ∼ 1000 µEH/ps). Further-
more the average number of SCF cycles along
the whole trajectory, N , in XL–BO is almost
half as that in TR–BO (∼ 3 for XL–BO vs. ∼ 5
for TR–BO), as expected. Since the dissipative
extended Lagrangian approach removes the nu-
merical noise, the dynamics is more stable, even
though the noise remains rather large (∼ 3 and
∼ 4 mEH in gas-phase and QM/AMOEBA, re-
spectively).

The different behavior of the two approaches
can be easily understood by plotting the
pseudo-temperature of the auxiliary and real
EDFs in the two cases. Fig. 4 shows the over-
heating of the auxiliary variables for TR–BO,
which diverge significantly and quite rapidly
(after ∼ 200 fs) from the real converged den-
sity. This leads to a loss of computational
efficiency, since the SCF procedure is no longer
able to reach convergence quickly. In the XL–
BO case the two pseudo-temperatures remain
quite close to each other. However, even if
the XL–BO extrapolation stabilize the trajec-
tory, the still large values of the energy drift
and noise prevent one to consider as safe and
reliable such low convergence thresholds.

Increasing the convergence threshold to 10−5

we obtain consistently better results, and we
can observe a non-negligible difference between
TR– and XL–BO (see Tab. 1, and Figure 3,
panels C and D.). In gas-phase (red lines) both
approaches give substantially no drift; never-
theless XL–BO still exhibits a better behavior,
showing a smaller noise value and ∼ 30% less
SCF cycles on average.

Comparing these results with the QM/AMOEBA
ones (blue lines), we find that the drift and the
noise are two and one orders of magnitude
greater (XL–BO and TR–BO, respectively)

than the corresponding values in gas-phase.
This is mainly due to the effect of the MM
polarization, since the iterative resolution for
the induced dipoles causes the term ∂E

∂µ
to be

not exactly zero, with a consequent non-zero
Hellmann-Feynman residual force. TR– and
XL–BO schemes are almost equivalent in con-
densed phase, where the energy drift in our 1 ps
test (panel D in Fig. 3) is noticeable although
very small (10−1 mEH).

The XL–BO still shows a 30% gain in SCF ef-
ficiency, which can be explained again with the
EDFs pseudo-temperature analysis (see Sup-
porting Information, Figure S2). We should
also observe that, compared to a regular
BOMD, the save in elapsed time is almost of
50%.

Moving to the tightest convergence criterion
(10−8), almost no difference can be found com-
paring TR– and XL–BO within the same en-
vironment, and also no differences with XL–
BO when the SCF convergence is set to 10−5.
The same happens for the pseudo-temperature
of the electronic variables, which we are not re-
porting. As a final remark, we note that, given
the small size of the QM system we employed
for our tests, the impact of the different conver-
gence thresholds on the overall computational
cost of a simulation is limited. However, we ex-
pect that being able to use a less conservative
threshold will speed up real life applications of
a factor approximately proportional to the re-
duction in SCF cycles.

We can then conclude that:

– for XL–BO, convergence for energy and
energy gradients is reached already with
a much lower convergence criterion than
that usually suggested when QM forces
have to be computed (10−8);

– as expected from theory, the perfectly
lossless TR–BOMD is affected by the
noise due to numerical approximations in
the SCF solution. Nevertheless, as soon
as well-converged densities are used, it is
efficient in reducing the number of SCF
cycles and produces a very stable simula-
tion.
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4 Conclusions

In this contribution, we presented an implemen-
tation of the analytical gradients of the polar-
izable QM/AMOEBA energy and of the ma-
chinery needed to perform efficient and stable
molecular dynamics simulations. In particular,
we used density functional theory as a quantum
mechanical method, and the extended Born-
Oppenheimer Lagrangian technique to provide
an improved guess to the self-consistent field
solver. Such a technique allows one to achieve
energy-conserving and stable simulations, also
offering remarkable computational advantages.
We tested it by running several MD simulations
on a small system, the alanine dipedptide (QM)
solvated by water molecules (AMOEBA), com-
paring the TR– and XL–BO schemes using dif-
ferent SCF thresholds. We found that the XL–
BO is the most effective approach when a mod-
erately accurate convergence threshold is used,
thanks to its capability to avoid the “heating”
of the auxiliary EDFs, which remain close to
the real ones along the dynamics. Our imple-
mentation is presently limited to systems where
the MM portion is not covalently bonded to
the QM one, and is therefore suited to study
solute/solvent systems. A further implemen-
tation allowing to treat covalently bonded QM
and MM systems is currently under investiga-
tion, aiming to apply the link atom strategy as
well as a pseudo-potential approach, following
the implementation of Ref. 23. This work repre-
sents a first step towards large scale polarizable
QM/MM MD simulations and reactivity stud-
ies. More efficient and parallel computational
strategies need to be used in order to extend
the applicability of the method. In particu-
lar, in order to be able to treat large to very
large systems, comprising up to tens of thou-
sands of atoms in the classical subsystem, a
linear-scaling, parallel and efficient implemen-
tation of AMOEBA will be required, such as
the one available in the Tinker HP suite of pro-
grams,19,43,50,51 developed by some of us. It
should be noted that polarizable QM/MM sim-
ulations are in principle more expensive than
their non-polarizable counterparts. However,
the QM part of the calculation usually domi-

nates the overall simulation cost, making the
increased cost associated with the classical part
not an issue. Another aspect that needs to be
addressed is the handling of boundary condi-
tions. For non-periodic, polarizable QM/MM
MD simulations, the use of a polarizable con-
tinuum as a boundary is particularly attrac-
tive.52,53 Purely classical polarizable MD simu-
lations within a polarizable continuum have al-
ready been discussed by some of us,22 and are
made possible by ddCOSMO, a fast, domain-
decomposition-based implementation54,55 of the
conductor-like screening model.56 An efficient
and scalable implementation of a three-layer
QM/AMOEBA/ddCOSMO model for molecu-
lar dynamics simulation is currently being in-
vestigated.
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Figure 4: Comparison between the QM/AMOEBA auxiliary and real EDF pseudo-temperature for
SCF convergence set to 10−3 in arbitrary units (a.u.). The values for the auxiliary EDFs are scaled
by a factor 10−3 for TR–BO and 10−1 for XL–BO to obtain comparable scales
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